1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42 /*
43  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44  *
45  * This delays freeing the SLAB page by a grace period, it does _NOT_
46  * delay object freeing. This means that if you do kmem_cache_free()
47  * that memory location is free to be reused at any time. Thus it may
48  * be possible to see another object there in the same RCU grace period.
49  *
50  * This feature only ensures the memory location backing the object
51  * stays valid, the trick to using this is relying on an independent
52  * object validation pass. Something like:
53  *
54  *  rcu_read_lock()
55  * again:
56  *  obj = lockless_lookup(key);
57  *  if (obj) {
58  *    if (!try_get_ref(obj)) // might fail for free objects
59  *      goto again;
60  *
61  *    if (obj->key != key) { // not the object we expected
62  *      put_ref(obj);
63  *      goto again;
64  *    }
65  *  }
66  *  rcu_read_unlock();
67  *
68  * This is useful if we need to approach a kernel structure obliquely,
69  * from its address obtained without the usual locking. We can lock
70  * the structure to stabilize it and check it's still at the given address,
71  * only if we can be sure that the memory has not been meanwhile reused
72  * for some other kind of object (which our subsystem's lock might corrupt).
73  *
74  * rcu_read_lock before reading the address, then rcu_read_unlock after
75  * taking the spinlock within the structure expected at that address.
76  *
77  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78  */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
85 
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS	0
91 #endif
92 
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95 
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB		0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT		0
107 #endif
108 
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN		0
113 #endif
114 
115 /*
116  * Ignore user specified debugging flags.
117  * Intended for caches created for self-tests so they have only flags
118  * specified in the code and other flags are ignored.
119  */
120 #define SLAB_NO_USER_FLAGS	((slab_flags_t __force)0x10000000U)
121 
122 /* The following flags affect the page allocator grouping pages by mobility */
123 /* Objects are reclaimable */
124 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
125 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
126 
127 /*
128  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
129  *
130  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
131  *
132  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
133  * Both make kfree a no-op.
134  */
135 #define ZERO_SIZE_PTR ((void *)16)
136 
137 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
138 				(unsigned long)ZERO_SIZE_PTR)
139 
140 #include <linux/kasan.h>
141 
142 struct list_lru;
143 struct mem_cgroup;
144 /*
145  * struct kmem_cache related prototypes
146  */
147 void __init kmem_cache_init(void);
148 bool slab_is_available(void);
149 
150 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
151 			unsigned int align, slab_flags_t flags,
152 			void (*ctor)(void *));
153 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
154 			unsigned int size, unsigned int align,
155 			slab_flags_t flags,
156 			unsigned int useroffset, unsigned int usersize,
157 			void (*ctor)(void *));
158 void kmem_cache_destroy(struct kmem_cache *s);
159 int kmem_cache_shrink(struct kmem_cache *s);
160 
161 /*
162  * Please use this macro to create slab caches. Simply specify the
163  * name of the structure and maybe some flags that are listed above.
164  *
165  * The alignment of the struct determines object alignment. If you
166  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
167  * then the objects will be properly aligned in SMP configurations.
168  */
169 #define KMEM_CACHE(__struct, __flags)					\
170 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
171 			__alignof__(struct __struct), (__flags), NULL)
172 
173 /*
174  * To whitelist a single field for copying to/from usercopy, use this
175  * macro instead for KMEM_CACHE() above.
176  */
177 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
178 		kmem_cache_create_usercopy(#__struct,			\
179 			sizeof(struct __struct),			\
180 			__alignof__(struct __struct), (__flags),	\
181 			offsetof(struct __struct, __field),		\
182 			sizeof_field(struct __struct, __field), NULL)
183 
184 /*
185  * Common kmalloc functions provided by all allocators
186  */
187 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
188 void kfree(const void *objp);
189 void kfree_sensitive(const void *objp);
190 size_t __ksize(const void *objp);
191 size_t ksize(const void *objp);
192 #ifdef CONFIG_PRINTK
193 bool kmem_valid_obj(void *object);
194 void kmem_dump_obj(void *object);
195 #endif
196 
197 /*
198  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
199  * alignment larger than the alignment of a 64-bit integer.
200  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
201  */
202 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
203 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
204 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
205 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
206 #else
207 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
208 #endif
209 
210 /*
211  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
212  * Intended for arches that get misalignment faults even for 64 bit integer
213  * aligned buffers.
214  */
215 #ifndef ARCH_SLAB_MINALIGN
216 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
217 #endif
218 
219 /*
220  * Arches can define this function if they want to decide the minimum slab
221  * alignment at runtime. The value returned by the function must be a power
222  * of two and >= ARCH_SLAB_MINALIGN.
223  */
224 #ifndef arch_slab_minalign
arch_slab_minalign(void)225 static inline unsigned int arch_slab_minalign(void)
226 {
227 	return ARCH_SLAB_MINALIGN;
228 }
229 #endif
230 
231 /*
232  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
233  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
234  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
235  */
236 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
237 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
238 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
239 
240 /*
241  * Kmalloc array related definitions
242  */
243 
244 #ifdef CONFIG_SLAB
245 /*
246  * The largest kmalloc size supported by the SLAB allocators is
247  * 32 megabyte (2^25) or the maximum allocatable page order if that is
248  * less than 32 MB.
249  *
250  * WARNING: Its not easy to increase this value since the allocators have
251  * to do various tricks to work around compiler limitations in order to
252  * ensure proper constant folding.
253  */
254 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
255 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
256 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
257 #ifndef KMALLOC_SHIFT_LOW
258 #define KMALLOC_SHIFT_LOW	5
259 #endif
260 #endif
261 
262 #ifdef CONFIG_SLUB
263 /*
264  * SLUB directly allocates requests fitting in to an order-1 page
265  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
266  */
267 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
268 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
269 #ifndef KMALLOC_SHIFT_LOW
270 #define KMALLOC_SHIFT_LOW	3
271 #endif
272 #endif
273 
274 #ifdef CONFIG_SLOB
275 /*
276  * SLOB passes all requests larger than one page to the page allocator.
277  * No kmalloc array is necessary since objects of different sizes can
278  * be allocated from the same page.
279  */
280 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
281 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
282 #ifndef KMALLOC_SHIFT_LOW
283 #define KMALLOC_SHIFT_LOW	3
284 #endif
285 #endif
286 
287 /* Maximum allocatable size */
288 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
289 /* Maximum size for which we actually use a slab cache */
290 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
291 /* Maximum order allocatable via the slab allocator */
292 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
293 
294 /*
295  * Kmalloc subsystem.
296  */
297 #ifndef KMALLOC_MIN_SIZE
298 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
299 #endif
300 
301 /*
302  * This restriction comes from byte sized index implementation.
303  * Page size is normally 2^12 bytes and, in this case, if we want to use
304  * byte sized index which can represent 2^8 entries, the size of the object
305  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
306  * If minimum size of kmalloc is less than 16, we use it as minimum object
307  * size and give up to use byte sized index.
308  */
309 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
310                                (KMALLOC_MIN_SIZE) : 16)
311 
312 /*
313  * Whenever changing this, take care of that kmalloc_type() and
314  * create_kmalloc_caches() still work as intended.
315  *
316  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
317  * is for accounted but unreclaimable and non-dma objects. All the other
318  * kmem caches can have both accounted and unaccounted objects.
319  */
320 enum kmalloc_cache_type {
321 	KMALLOC_NORMAL = 0,
322 #ifndef CONFIG_ZONE_DMA
323 	KMALLOC_DMA = KMALLOC_NORMAL,
324 #endif
325 #ifndef CONFIG_MEMCG_KMEM
326 	KMALLOC_CGROUP = KMALLOC_NORMAL,
327 #else
328 	KMALLOC_CGROUP,
329 #endif
330 	KMALLOC_RECLAIM,
331 #ifdef CONFIG_ZONE_DMA
332 	KMALLOC_DMA,
333 #endif
334 	NR_KMALLOC_TYPES
335 };
336 
337 #ifndef CONFIG_SLOB
338 extern struct kmem_cache *
339 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
340 
341 /*
342  * Define gfp bits that should not be set for KMALLOC_NORMAL.
343  */
344 #define KMALLOC_NOT_NORMAL_BITS					\
345 	(__GFP_RECLAIMABLE |					\
346 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
347 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
348 
kmalloc_type(gfp_t flags)349 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
350 {
351 	/*
352 	 * The most common case is KMALLOC_NORMAL, so test for it
353 	 * with a single branch for all the relevant flags.
354 	 */
355 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
356 		return KMALLOC_NORMAL;
357 
358 	/*
359 	 * At least one of the flags has to be set. Their priorities in
360 	 * decreasing order are:
361 	 *  1) __GFP_DMA
362 	 *  2) __GFP_RECLAIMABLE
363 	 *  3) __GFP_ACCOUNT
364 	 */
365 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
366 		return KMALLOC_DMA;
367 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
368 		return KMALLOC_RECLAIM;
369 	else
370 		return KMALLOC_CGROUP;
371 }
372 
373 /*
374  * Figure out which kmalloc slab an allocation of a certain size
375  * belongs to.
376  * 0 = zero alloc
377  * 1 =  65 .. 96 bytes
378  * 2 = 129 .. 192 bytes
379  * n = 2^(n-1)+1 .. 2^n
380  *
381  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
382  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
383  * Callers where !size_is_constant should only be test modules, where runtime
384  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
385  */
__kmalloc_index(size_t size,bool size_is_constant)386 static __always_inline unsigned int __kmalloc_index(size_t size,
387 						    bool size_is_constant)
388 {
389 	if (!size)
390 		return 0;
391 
392 	if (size <= KMALLOC_MIN_SIZE)
393 		return KMALLOC_SHIFT_LOW;
394 
395 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
396 		return 1;
397 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
398 		return 2;
399 	if (size <=          8) return 3;
400 	if (size <=         16) return 4;
401 	if (size <=         32) return 5;
402 	if (size <=         64) return 6;
403 	if (size <=        128) return 7;
404 	if (size <=        256) return 8;
405 	if (size <=        512) return 9;
406 	if (size <=       1024) return 10;
407 	if (size <=   2 * 1024) return 11;
408 	if (size <=   4 * 1024) return 12;
409 	if (size <=   8 * 1024) return 13;
410 	if (size <=  16 * 1024) return 14;
411 	if (size <=  32 * 1024) return 15;
412 	if (size <=  64 * 1024) return 16;
413 	if (size <= 128 * 1024) return 17;
414 	if (size <= 256 * 1024) return 18;
415 	if (size <= 512 * 1024) return 19;
416 	if (size <= 1024 * 1024) return 20;
417 	if (size <=  2 * 1024 * 1024) return 21;
418 	if (size <=  4 * 1024 * 1024) return 22;
419 	if (size <=  8 * 1024 * 1024) return 23;
420 	if (size <=  16 * 1024 * 1024) return 24;
421 	if (size <=  32 * 1024 * 1024) return 25;
422 
423 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
424 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
425 	else
426 		BUG();
427 
428 	/* Will never be reached. Needed because the compiler may complain */
429 	return -1;
430 }
431 #define kmalloc_index(s) __kmalloc_index(s, true)
432 #endif /* !CONFIG_SLOB */
433 
434 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
435 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
436 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
437 			   gfp_t gfpflags) __assume_slab_alignment __malloc;
438 void kmem_cache_free(struct kmem_cache *s, void *objp);
439 
440 /*
441  * Bulk allocation and freeing operations. These are accelerated in an
442  * allocator specific way to avoid taking locks repeatedly or building
443  * metadata structures unnecessarily.
444  *
445  * Note that interrupts must be enabled when calling these functions.
446  */
447 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
448 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
449 
450 /*
451  * Caller must not use kfree_bulk() on memory not originally allocated
452  * by kmalloc(), because the SLOB allocator cannot handle this.
453  */
kfree_bulk(size_t size,void ** p)454 static __always_inline void kfree_bulk(size_t size, void **p)
455 {
456 	kmem_cache_free_bulk(NULL, size, p);
457 }
458 
459 #ifdef CONFIG_NUMA
460 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
461 							 __alloc_size(1);
462 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
463 									 __malloc;
464 #else
__kmalloc_node(size_t size,gfp_t flags,int node)465 static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
466 {
467 	return __kmalloc(size, flags);
468 }
469 
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t flags,int node)470 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
471 {
472 	return kmem_cache_alloc(s, flags);
473 }
474 #endif
475 
476 #ifdef CONFIG_TRACING
477 extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
478 				   __assume_slab_alignment __alloc_size(3);
479 
480 #ifdef CONFIG_NUMA
481 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
482 					 int node, size_t size) __assume_slab_alignment
483 								__alloc_size(4);
484 #else
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)485 static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
486 						 gfp_t gfpflags, int node, size_t size)
487 {
488 	return kmem_cache_alloc_trace(s, gfpflags, size);
489 }
490 #endif /* CONFIG_NUMA */
491 
492 #else /* CONFIG_TRACING */
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t flags,size_t size)493 static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
494 								    gfp_t flags, size_t size)
495 {
496 	void *ret = kmem_cache_alloc(s, flags);
497 
498 	ret = kasan_kmalloc(s, ret, size, flags);
499 	return ret;
500 }
501 
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)502 static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
503 							 int node, size_t size)
504 {
505 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
506 
507 	ret = kasan_kmalloc(s, ret, size, gfpflags);
508 	return ret;
509 }
510 #endif /* CONFIG_TRACING */
511 
512 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
513 									 __alloc_size(1);
514 
515 #ifdef CONFIG_TRACING
516 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
517 				__assume_page_alignment __alloc_size(1);
518 #else
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)519 static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
520 								 unsigned int order)
521 {
522 	return kmalloc_order(size, flags, order);
523 }
524 #endif
525 
kmalloc_large(size_t size,gfp_t flags)526 static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
527 {
528 	unsigned int order = get_order(size);
529 	return kmalloc_order_trace(size, flags, order);
530 }
531 
532 /**
533  * kmalloc - allocate memory
534  * @size: how many bytes of memory are required.
535  * @flags: the type of memory to allocate.
536  *
537  * kmalloc is the normal method of allocating memory
538  * for objects smaller than page size in the kernel.
539  *
540  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
541  * bytes. For @size of power of two bytes, the alignment is also guaranteed
542  * to be at least to the size.
543  *
544  * The @flags argument may be one of the GFP flags defined at
545  * include/linux/gfp.h and described at
546  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
547  *
548  * The recommended usage of the @flags is described at
549  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
550  *
551  * Below is a brief outline of the most useful GFP flags
552  *
553  * %GFP_KERNEL
554  *	Allocate normal kernel ram. May sleep.
555  *
556  * %GFP_NOWAIT
557  *	Allocation will not sleep.
558  *
559  * %GFP_ATOMIC
560  *	Allocation will not sleep.  May use emergency pools.
561  *
562  * %GFP_HIGHUSER
563  *	Allocate memory from high memory on behalf of user.
564  *
565  * Also it is possible to set different flags by OR'ing
566  * in one or more of the following additional @flags:
567  *
568  * %__GFP_HIGH
569  *	This allocation has high priority and may use emergency pools.
570  *
571  * %__GFP_NOFAIL
572  *	Indicate that this allocation is in no way allowed to fail
573  *	(think twice before using).
574  *
575  * %__GFP_NORETRY
576  *	If memory is not immediately available,
577  *	then give up at once.
578  *
579  * %__GFP_NOWARN
580  *	If allocation fails, don't issue any warnings.
581  *
582  * %__GFP_RETRY_MAYFAIL
583  *	Try really hard to succeed the allocation but fail
584  *	eventually.
585  */
kmalloc(size_t size,gfp_t flags)586 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
587 {
588 	if (__builtin_constant_p(size)) {
589 #ifndef CONFIG_SLOB
590 		unsigned int index;
591 #endif
592 		if (size > KMALLOC_MAX_CACHE_SIZE)
593 			return kmalloc_large(size, flags);
594 #ifndef CONFIG_SLOB
595 		index = kmalloc_index(size);
596 
597 		if (!index)
598 			return ZERO_SIZE_PTR;
599 
600 		return kmem_cache_alloc_trace(
601 				kmalloc_caches[kmalloc_type(flags)][index],
602 				flags, size);
603 #endif
604 	}
605 	return __kmalloc(size, flags);
606 }
607 
kmalloc_node(size_t size,gfp_t flags,int node)608 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
609 {
610 #ifndef CONFIG_SLOB
611 	if (__builtin_constant_p(size) &&
612 		size <= KMALLOC_MAX_CACHE_SIZE) {
613 		unsigned int i = kmalloc_index(size);
614 
615 		if (!i)
616 			return ZERO_SIZE_PTR;
617 
618 		return kmem_cache_alloc_node_trace(
619 				kmalloc_caches[kmalloc_type(flags)][i],
620 						flags, node, size);
621 	}
622 #endif
623 	return __kmalloc_node(size, flags, node);
624 }
625 
626 /**
627  * kmalloc_array - allocate memory for an array.
628  * @n: number of elements.
629  * @size: element size.
630  * @flags: the type of memory to allocate (see kmalloc).
631  */
kmalloc_array(size_t n,size_t size,gfp_t flags)632 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
633 {
634 	size_t bytes;
635 
636 	if (unlikely(check_mul_overflow(n, size, &bytes)))
637 		return NULL;
638 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
639 		return kmalloc(bytes, flags);
640 	return __kmalloc(bytes, flags);
641 }
642 
643 /**
644  * krealloc_array - reallocate memory for an array.
645  * @p: pointer to the memory chunk to reallocate
646  * @new_n: new number of elements to alloc
647  * @new_size: new size of a single member of the array
648  * @flags: the type of memory to allocate (see kmalloc)
649  */
krealloc_array(void * p,size_t new_n,size_t new_size,gfp_t flags)650 static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
651 								    size_t new_n,
652 								    size_t new_size,
653 								    gfp_t flags)
654 {
655 	size_t bytes;
656 
657 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
658 		return NULL;
659 
660 	return krealloc(p, bytes, flags);
661 }
662 
663 /**
664  * kcalloc - allocate memory for an array. The memory is set to zero.
665  * @n: number of elements.
666  * @size: element size.
667  * @flags: the type of memory to allocate (see kmalloc).
668  */
kcalloc(size_t n,size_t size,gfp_t flags)669 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
670 {
671 	return kmalloc_array(n, size, flags | __GFP_ZERO);
672 }
673 
674 /*
675  * kmalloc_track_caller is a special version of kmalloc that records the
676  * calling function of the routine calling it for slab leak tracking instead
677  * of just the calling function (confusing, eh?).
678  * It's useful when the call to kmalloc comes from a widely-used standard
679  * allocator where we care about the real place the memory allocation
680  * request comes from.
681  */
682 extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller);
683 #define kmalloc_track_caller(size, flags) \
684 	__kmalloc_track_caller(size, flags, _RET_IP_)
685 
kmalloc_array_node(size_t n,size_t size,gfp_t flags,int node)686 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
687 							  int node)
688 {
689 	size_t bytes;
690 
691 	if (unlikely(check_mul_overflow(n, size, &bytes)))
692 		return NULL;
693 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
694 		return kmalloc_node(bytes, flags, node);
695 	return __kmalloc_node(bytes, flags, node);
696 }
697 
kcalloc_node(size_t n,size_t size,gfp_t flags,int node)698 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
699 {
700 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
701 }
702 
703 
704 #ifdef CONFIG_NUMA
705 extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
706 					 unsigned long caller) __alloc_size(1);
707 #define kmalloc_node_track_caller(size, flags, node) \
708 	__kmalloc_node_track_caller(size, flags, node, \
709 			_RET_IP_)
710 
711 #else /* CONFIG_NUMA */
712 
713 #define kmalloc_node_track_caller(size, flags, node) \
714 	kmalloc_track_caller(size, flags)
715 
716 #endif /* CONFIG_NUMA */
717 
718 /*
719  * Shortcuts
720  */
kmem_cache_zalloc(struct kmem_cache * k,gfp_t flags)721 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
722 {
723 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
724 }
725 
726 /**
727  * kzalloc - allocate memory. The memory is set to zero.
728  * @size: how many bytes of memory are required.
729  * @flags: the type of memory to allocate (see kmalloc).
730  */
kzalloc(size_t size,gfp_t flags)731 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
732 {
733 	return kmalloc(size, flags | __GFP_ZERO);
734 }
735 
736 /**
737  * kzalloc_node - allocate zeroed memory from a particular memory node.
738  * @size: how many bytes of memory are required.
739  * @flags: the type of memory to allocate (see kmalloc).
740  * @node: memory node from which to allocate
741  */
kzalloc_node(size_t size,gfp_t flags,int node)742 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
743 {
744 	return kmalloc_node(size, flags | __GFP_ZERO, node);
745 }
746 
747 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
kvmalloc(size_t size,gfp_t flags)748 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
749 {
750 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
751 }
kvzalloc_node(size_t size,gfp_t flags,int node)752 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
753 {
754 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
755 }
kvzalloc(size_t size,gfp_t flags)756 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
757 {
758 	return kvmalloc(size, flags | __GFP_ZERO);
759 }
760 
kvmalloc_array(size_t n,size_t size,gfp_t flags)761 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
762 {
763 	size_t bytes;
764 
765 	if (unlikely(check_mul_overflow(n, size, &bytes)))
766 		return NULL;
767 
768 	return kvmalloc(bytes, flags);
769 }
770 
kvcalloc(size_t n,size_t size,gfp_t flags)771 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
772 {
773 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
774 }
775 
776 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
777 		      __alloc_size(3);
778 extern void kvfree(const void *addr);
779 extern void kvfree_sensitive(const void *addr, size_t len);
780 
781 unsigned int kmem_cache_size(struct kmem_cache *s);
782 void __init kmem_cache_init_late(void);
783 
784 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
785 int slab_prepare_cpu(unsigned int cpu);
786 int slab_dead_cpu(unsigned int cpu);
787 #else
788 #define slab_prepare_cpu	NULL
789 #define slab_dead_cpu		NULL
790 #endif
791 
792 #endif	/* _LINUX_SLAB_H */
793