1 /*
2 * Copyright 1996-2002 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
10
11
12 #ifndef _LINUX_REISER_FS_H
13 #define _LINUX_REISER_FS_H
14
15 #include <linux/types.h>
16 #ifdef __KERNEL__
17 #include <linux/slab.h>
18 #include <linux/tqueue.h>
19 #include <asm/unaligned.h>
20 #include <linux/bitops.h>
21 #include <asm/hardirq.h>
22 #include <linux/proc_fs.h>
23 #endif
24
25 /*
26 * include/linux/reiser_fs.h
27 *
28 * Reiser File System constants and structures
29 *
30 */
31
32 /* in reading the #defines, it may help to understand that they employ
33 the following abbreviations:
34
35 B = Buffer
36 I = Item header
37 H = Height within the tree (should be changed to LEV)
38 N = Number of the item in the node
39 STAT = stat data
40 DEH = Directory Entry Header
41 EC = Entry Count
42 E = Entry number
43 UL = Unsigned Long
44 BLKH = BLocK Header
45 UNFM = UNForMatted node
46 DC = Disk Child
47 P = Path
48
49 These #defines are named by concatenating these abbreviations,
50 where first comes the arguments, and last comes the return value,
51 of the macro.
52
53 */
54
55 #define USE_INODE_GENERATION_COUNTER
56
57 #define REISERFS_PREALLOCATE
58 #define DISPLACE_NEW_PACKING_LOCALITIES
59 #define PREALLOCATION_SIZE 9
60
61 /* n must be power of 2 */
62 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
63
64 // to be ok for alpha and others we have to align structures to 8 byte
65 // boundary.
66 // FIXME: do not change 4 by anything else: there is code which relies on that
67 #define ROUND_UP(x) _ROUND_UP(x,8LL)
68
69 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
70 ** messages.
71 */
72 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
73
74 /* assertions handling */
75
76 /** always check a condition and panic if it's false. */
77 #define RASSERT( cond, format, args... ) \
78 if( !( cond ) ) \
79 reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at " \
80 __FILE__ ":%i:%s: " format "\n", \
81 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
82
83 #if defined( CONFIG_REISERFS_CHECK )
84 #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
85 #else
86 #define RFALSE( cond, format, args... ) do {;} while( 0 )
87 #endif
88
89 #define CONSTF __attribute__( ( const ) )
90 /*
91 * Disk Data Structures
92 */
93
94 /***************************************************************************/
95 /* SUPER BLOCK */
96 /***************************************************************************/
97
98 /*
99 * Structure of super block on disk, a version of which in RAM is often accessed as s->u.reiserfs_sb.s_rs
100 * the version in RAM is part of a larger structure containing fields never written to disk.
101 */
102 #define UNSET_HASH 0 // read_super will guess about, what hash names
103 // in directories were sorted with
104 #define TEA_HASH 1
105 #define YURA_HASH 2
106 #define R5_HASH 3
107 #define DEFAULT_HASH R5_HASH
108
109
110 struct journal_params {
111 __u32 jp_journal_1st_block; /* where does journal start from on its
112 * device */
113 __u32 jp_journal_dev; /* journal device st_rdev */
114 __u32 jp_journal_size; /* size of the journal */
115 __u32 jp_journal_trans_max; /* max number of blocks in a transaction. */
116 __u32 jp_journal_magic; /* random value made on fs creation (this
117 * was sb_journal_block_count) */
118 __u32 jp_journal_max_batch; /* max number of blocks to batch into a
119 * trans */
120 __u32 jp_journal_max_commit_age; /* in seconds, how old can an async
121 * commit be */
122 __u32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
123 * be */
124 };
125
126 /* this is the super from 3.5.X, where X >= 10 */
127 struct reiserfs_super_block_v1
128 {
129 __u32 s_block_count; /* blocks count */
130 __u32 s_free_blocks; /* free blocks count */
131 __u32 s_root_block; /* root block number */
132 struct journal_params s_journal;
133 __u16 s_blocksize; /* block size */
134 __u16 s_oid_maxsize; /* max size of object id array, see
135 * get_objectid() commentary */
136 __u16 s_oid_cursize; /* current size of object id array */
137 __u16 s_umount_state; /* this is set to 1 when filesystem was
138 * umounted, to 2 - when not */
139 char s_magic[10]; /* reiserfs magic string indicates that
140 * file system is reiserfs:
141 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
142 __u16 s_fs_state; /* it is set to used by fsck to mark which
143 * phase of rebuilding is done */
144 __u32 s_hash_function_code; /* indicate, what hash function is being use
145 * to sort names in a directory*/
146 __u16 s_tree_height; /* height of disk tree */
147 __u16 s_bmap_nr; /* amount of bitmap blocks needed to address
148 * each block of file system */
149 __u16 s_version; /* this field is only reliable on filesystem
150 * with non-standard journal */
151 __u16 s_reserved_for_journal; /* size in blocks of journal area on main
152 * device, we need to keep after
153 * making fs with non-standard journal */
154 } __attribute__ ((__packed__));
155
156 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
157
158 /* this is the on disk super block */
159 struct reiserfs_super_block
160 {
161 struct reiserfs_super_block_v1 s_v1;
162 __u32 s_inode_generation;
163 __u32 s_flags; /* Right now used only by inode-attributes, if enabled */
164 unsigned char s_uuid[16]; /* filesystem unique identifier */
165 unsigned char s_label[16]; /* filesystem volume label */
166 char s_unused[88] ; /* zero filled by mkreiserfs and
167 * reiserfs_convert_objectid_map_v1()
168 * so any additions must be updated
169 * there as well. */
170 } __attribute__ ((__packed__));
171
172 #define SB_SIZE (sizeof(struct reiserfs_super_block))
173
174 #define REISERFS_VERSION_1 0
175 #define REISERFS_VERSION_2 2
176
177
178 // on-disk super block fields converted to cpu form
179 #define SB_DISK_SUPER_BLOCK(s) ((s)->u.reiserfs_sb.s_rs)
180 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
181 #define SB_BLOCKSIZE(s) \
182 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
183 #define SB_BLOCK_COUNT(s) \
184 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
185 #define SB_FREE_BLOCKS(s) \
186 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
187 #define SB_REISERFS_MAGIC(s) \
188 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
189 #define SB_ROOT_BLOCK(s) \
190 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
191 #define SB_TREE_HEIGHT(s) \
192 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
193 #define SB_REISERFS_STATE(s) \
194 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
195 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
196 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
197
198 #define PUT_SB_BLOCK_COUNT(s, val) \
199 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
200 #define PUT_SB_FREE_BLOCKS(s, val) \
201 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
202 #define PUT_SB_ROOT_BLOCK(s, val) \
203 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
204 #define PUT_SB_TREE_HEIGHT(s, val) \
205 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
206 #define PUT_SB_REISERFS_STATE(s, val) \
207 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
208 #define PUT_SB_VERSION(s, val) \
209 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
210 #define PUT_SB_BMAP_NR(s, val) \
211 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
212
213
214 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
215 #define SB_ONDISK_JOURNAL_SIZE(s) \
216 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
217 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
218 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
219 #define SB_ONDISK_JOURNAL_DEVICE(s) \
220 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
221 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
222 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
223
224 #define is_block_in_log_or_reserved_area(s, block) \
225 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
226 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
227 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
228 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
229
230
231
232 /* used by gcc */
233 #define REISERFS_SUPER_MAGIC 0x52654973
234 /* used by file system utilities that
235 look at the superblock, etc. */
236 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
237 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
238 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
239
240 extern const char reiserfs_3_5_magic_string[];
241 extern const char reiserfs_3_6_magic_string[];
242 extern const char reiserfs_jr_magic_string[];
243
244 int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
245 int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
246 int is_reiserfs_jr (struct reiserfs_super_block * rs);
247
248
249
250 /* ReiserFS leaves the first 64k unused, so that partition labels have
251 enough space. If someone wants to write a fancy bootloader that
252 needs more than 64k, let us know, and this will be increased in size.
253 This number must be larger than than the largest block size on any
254 platform, or code will break. -Hans */
255 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
256 #define REISERFS_FIRST_BLOCK unused_define
257 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
258
259 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
260 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
261
262 // reiserfs internal error code (used by search_by_key adn fix_nodes))
263 #define CARRY_ON 0
264 #define REPEAT_SEARCH -1
265 #define IO_ERROR -2
266 #define NO_DISK_SPACE -3
267 #define NO_BALANCING_NEEDED (-4)
268 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
269
270 typedef unsigned long b_blocknr_t;
271 typedef __u32 unp_t;
272
273 struct unfm_nodeinfo {
274 unp_t unfm_nodenum;
275 unsigned short unfm_freespace;
276 };
277
278
279 /* there are two formats of keys: 3.5 and 3.6
280 */
281 #define KEY_FORMAT_3_5 0
282 #define KEY_FORMAT_3_6 1
283
284 /* there are two stat datas */
285 #define STAT_DATA_V1 0
286 #define STAT_DATA_V2 1
287
288 /** this says about version of key of all items (but stat data) the
289 object consists of */
290 #define get_inode_item_key_version( inode ) \
291 (((inode)->u.reiserfs_i.i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
292
293 #define set_inode_item_key_version( inode, version ) \
294 ({ if((version)==KEY_FORMAT_3_6) \
295 (inode)->u.reiserfs_i.i_flags |= i_item_key_version_mask; \
296 else \
297 (inode)->u.reiserfs_i.i_flags &= ~i_item_key_version_mask; })
298
299 #define get_inode_sd_version(inode) \
300 (((inode)->u.reiserfs_i.i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
301
302 #define set_inode_sd_version(inode, version) \
303 ({ if((version)==STAT_DATA_V2) \
304 (inode)->u.reiserfs_i.i_flags |= i_stat_data_version_mask; \
305 else \
306 (inode)->u.reiserfs_i.i_flags &= ~i_stat_data_version_mask; })
307
308 /* This is an aggressive tail suppression policy, I am hoping it
309 improves our benchmarks. The principle behind it is that percentage
310 space saving is what matters, not absolute space saving. This is
311 non-intuitive, but it helps to understand it if you consider that the
312 cost to access 4 blocks is not much more than the cost to access 1
313 block, if you have to do a seek and rotate. A tail risks a
314 non-linear disk access that is significant as a percentage of total
315 time cost for a 4 block file and saves an amount of space that is
316 less significant as a percentage of space, or so goes the hypothesis.
317 -Hans */
318 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
319 (\
320 (!(n_tail_size)) || \
321 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
322 ( (n_file_size) >= (n_block_size) * 4 ) || \
323 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
324 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
325 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
326 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
327 ( ( (n_file_size) >= (n_block_size) ) && \
328 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
329 )
330
331 /* Another strategy for tails, this one means only create a tail if all the
332 file would fit into one DIRECT item.
333 Primary intention for this one is to increase performance by decreasing
334 seeking.
335 */
336 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
337 (\
338 (!(n_tail_size)) || \
339 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
340 )
341
342
343
344 /*
345 * values for s_umount_state field
346 */
347 #define REISERFS_VALID_FS 1
348 #define REISERFS_ERROR_FS 2
349
350 //
351 // there are 5 item types currently
352 //
353 #define TYPE_STAT_DATA 0
354 #define TYPE_INDIRECT 1
355 #define TYPE_DIRECT 2
356 #define TYPE_DIRENTRY 3
357 #define TYPE_MAXTYPE 3
358 #define TYPE_ANY 15 // FIXME: comment is required
359
360 /***************************************************************************/
361 /* KEY & ITEM HEAD */
362 /***************************************************************************/
363
364 //
365 // directories use this key as well as old files
366 //
367 struct offset_v1 {
368 __u32 k_offset;
369 __u32 k_uniqueness;
370 } __attribute__ ((__packed__));
371
372 struct offset_v2 {
373 #ifdef __LITTLE_ENDIAN
374 /* little endian version */
375 __u64 k_offset:60;
376 __u64 k_type: 4;
377 #else
378 /* big endian version */
379 __u64 k_type: 4;
380 __u64 k_offset:60;
381 #endif
382 } __attribute__ ((__packed__));
383
384 #ifndef __LITTLE_ENDIAN
385 typedef union {
386 struct offset_v2 offset_v2;
387 __u64 linear;
388 } __attribute__ ((__packed__)) offset_v2_esafe_overlay;
389
offset_v2_k_type(const struct offset_v2 * v2)390 static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
391 {
392 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
393 tmp.linear = le64_to_cpu( tmp.linear );
394 return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
395 }
396
set_offset_v2_k_type(struct offset_v2 * v2,int type)397 static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
398 {
399 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
400 tmp->linear = le64_to_cpu(tmp->linear);
401 tmp->offset_v2.k_type = type;
402 tmp->linear = cpu_to_le64(tmp->linear);
403 }
404
offset_v2_k_offset(const struct offset_v2 * v2)405 static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
406 {
407 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
408 tmp.linear = le64_to_cpu( tmp.linear );
409 return tmp.offset_v2.k_offset;
410 }
411
set_offset_v2_k_offset(struct offset_v2 * v2,loff_t offset)412 static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
413 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
414 tmp->linear = le64_to_cpu(tmp->linear);
415 tmp->offset_v2.k_offset = offset;
416 tmp->linear = cpu_to_le64(tmp->linear);
417 }
418 #else
419 # define offset_v2_k_type(v2) ((v2)->k_type)
420 # define set_offset_v2_k_type(v2,val) (offset_v2_k_type(v2) = (val))
421 # define offset_v2_k_offset(v2) ((v2)->k_offset)
422 # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
423 #endif
424
425 /* Key of an item determines its location in the S+tree, and
426 is composed of 4 components */
427 struct key {
428 __u32 k_dir_id; /* packing locality: by default parent
429 directory object id */
430 __u32 k_objectid; /* object identifier */
431 union {
432 struct offset_v1 k_offset_v1;
433 struct offset_v2 k_offset_v2;
434 } __attribute__ ((__packed__)) u;
435 } __attribute__ ((__packed__));
436
437
438 struct cpu_key {
439 struct key on_disk_key;
440 int version;
441 int key_length; /* 3 in all cases but direct2indirect and
442 indirect2direct conversion */
443 };
444
445 /* Our function for comparing keys can compare keys of different
446 lengths. It takes as a parameter the length of the keys it is to
447 compare. These defines are used in determining what is to be passed
448 to it as that parameter. */
449 #define REISERFS_FULL_KEY_LEN 4
450 #define REISERFS_SHORT_KEY_LEN 2
451
452 /* The result of the key compare */
453 #define FIRST_GREATER 1
454 #define SECOND_GREATER -1
455 #define KEYS_IDENTICAL 0
456 #define KEY_FOUND 1
457 #define KEY_NOT_FOUND 0
458
459 #define KEY_SIZE (sizeof(struct key))
460 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
461
462 /* return values for search_by_key and clones */
463 #define ITEM_FOUND 1
464 #define ITEM_NOT_FOUND 0
465 #define ENTRY_FOUND 1
466 #define ENTRY_NOT_FOUND 0
467 #define DIRECTORY_NOT_FOUND -1
468 #define REGULAR_FILE_FOUND -2
469 #define DIRECTORY_FOUND -3
470 #define BYTE_FOUND 1
471 #define BYTE_NOT_FOUND 0
472 #define FILE_NOT_FOUND -1
473
474 #define POSITION_FOUND 1
475 #define POSITION_NOT_FOUND 0
476
477 // return values for reiserfs_find_entry and search_by_entry_key
478 #define NAME_FOUND 1
479 #define NAME_NOT_FOUND 0
480 #define GOTO_PREVIOUS_ITEM 2
481 #define NAME_FOUND_INVISIBLE 3
482
483 /* Everything in the filesystem is stored as a set of items. The
484 item head contains the key of the item, its free space (for
485 indirect items) and specifies the location of the item itself
486 within the block. */
487
488 struct item_head
489 {
490 /* Everything in the tree is found by searching for it based on
491 * its key.*/
492 struct key ih_key;
493 union {
494 /* The free space in the last unformatted node of an
495 indirect item if this is an indirect item. This
496 equals 0xFFFF iff this is a direct item or stat data
497 item. Note that the key, not this field, is used to
498 determine the item type, and thus which field this
499 union contains. */
500 __u16 ih_free_space_reserved;
501 /* Iff this is a directory item, this field equals the
502 number of directory entries in the directory item. */
503 __u16 ih_entry_count;
504 } __attribute__ ((__packed__)) u;
505 __u16 ih_item_len; /* total size of the item body */
506 __u16 ih_item_location; /* an offset to the item body
507 * within the block */
508 __u16 ih_version; /* 0 for all old items, 2 for new
509 ones. Highest bit is set by fsck
510 temporary, cleaned after all
511 done */
512 } __attribute__ ((__packed__));
513 /* size of item header */
514 #define IH_SIZE (sizeof(struct item_head))
515
516 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
517 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
518 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
519 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
520 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
521
522 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
523 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
524 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
525 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
526 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
527
528
529 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
530
531 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
532 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
533
534 /* these operate on indirect items, where you've got an array of ints
535 ** at a possibly unaligned location. These are a noop on ia32
536 **
537 ** p is the array of __u32, i is the index into the array, v is the value
538 ** to store there.
539 */
540 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
541 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
542
543 //
544 // in old version uniqueness field shows key type
545 //
546 #define V1_SD_UNIQUENESS 0
547 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
548 #define V1_DIRECT_UNIQUENESS 0xffffffff
549 #define V1_DIRENTRY_UNIQUENESS 500
550 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
551
552 extern void reiserfs_warning (struct super_block *, const char * fmt, ...);
553 /* __attribute__( ( format ( printf, 1, 2 ) ) ); */
554
555 //
556 // here are conversion routines
557 //
558 static inline int uniqueness2type (__u32 uniqueness) CONSTF;
uniqueness2type(__u32 uniqueness)559 static inline int uniqueness2type (__u32 uniqueness)
560 {
561 switch (uniqueness) {
562 case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
563 case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
564 case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
565 case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
566 default:
567 reiserfs_warning(NULL, "vs-500: unknown uniqueness %d\n", uniqueness);
568 case V1_ANY_UNIQUENESS:
569 return TYPE_ANY;
570 }
571 }
572
573 static inline __u32 type2uniqueness (int type) CONSTF;
type2uniqueness(int type)574 static inline __u32 type2uniqueness (int type)
575 {
576 switch (type) {
577 case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
578 case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
579 case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
580 case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
581 default:
582 reiserfs_warning(NULL, "vs-501: unknown type %d\n", type);
583 case TYPE_ANY:
584 return V1_ANY_UNIQUENESS;
585 }
586 }
587
588 //
589 // key is pointer to on disk key which is stored in le, result is cpu,
590 // there is no way to get version of object from key, so, provide
591 // version to these defines
592 //
le_key_k_offset(int version,const struct key * key)593 static inline loff_t le_key_k_offset (int version, const struct key * key)
594 {
595 return (version == KEY_FORMAT_3_5) ?
596 le32_to_cpu( key->u.k_offset_v1.k_offset ) :
597 offset_v2_k_offset( &(key->u.k_offset_v2) );
598 }
599
le_ih_k_offset(const struct item_head * ih)600 static inline loff_t le_ih_k_offset (const struct item_head * ih)
601 {
602 return le_key_k_offset (ih_version (ih), &(ih->ih_key));
603 }
604
le_key_k_type(int version,const struct key * key)605 static inline loff_t le_key_k_type (int version, const struct key * key)
606 {
607 return (version == KEY_FORMAT_3_5) ?
608 uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
609 offset_v2_k_type( &(key->u.k_offset_v2) );
610 }
611
le_ih_k_type(const struct item_head * ih)612 static inline loff_t le_ih_k_type (const struct item_head * ih)
613 {
614 return le_key_k_type (ih_version (ih), &(ih->ih_key));
615 }
616
617
set_le_key_k_offset(int version,struct key * key,loff_t offset)618 static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
619 {
620 (version == KEY_FORMAT_3_5) ?
621 (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
622 (set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
623 }
624
625
set_le_ih_k_offset(struct item_head * ih,loff_t offset)626 static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
627 {
628 set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
629 }
630
631
set_le_key_k_type(int version,struct key * key,int type)632 static inline void set_le_key_k_type (int version, struct key * key, int type)
633 {
634 (version == KEY_FORMAT_3_5) ?
635 (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
636 (set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
637 }
set_le_ih_k_type(struct item_head * ih,int type)638 static inline void set_le_ih_k_type (struct item_head * ih, int type)
639 {
640 set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
641 }
642
643
644 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
645 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
646 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
647 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
648
649 //
650 // item header has version.
651 //
652 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
653 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
654 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
655 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
656
657
658
659 //
660 // key is pointer to cpu key, result is cpu
661 //
cpu_key_k_offset(const struct cpu_key * key)662 static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
663 {
664 return (key->version == KEY_FORMAT_3_5) ?
665 key->on_disk_key.u.k_offset_v1.k_offset :
666 key->on_disk_key.u.k_offset_v2.k_offset;
667 }
668
cpu_key_k_type(const struct cpu_key * key)669 static inline loff_t cpu_key_k_type (const struct cpu_key * key)
670 {
671 return (key->version == KEY_FORMAT_3_5) ?
672 uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
673 key->on_disk_key.u.k_offset_v2.k_type;
674 }
675
set_cpu_key_k_offset(struct cpu_key * key,loff_t offset)676 static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
677 {
678 (key->version == KEY_FORMAT_3_5) ?
679 (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
680 (key->on_disk_key.u.k_offset_v2.k_offset = offset);
681 }
682
683
set_cpu_key_k_type(struct cpu_key * key,int type)684 static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
685 {
686 (key->version == KEY_FORMAT_3_5) ?
687 (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
688 (key->on_disk_key.u.k_offset_v2.k_type = type);
689 }
690
691
cpu_key_k_offset_dec(struct cpu_key * key)692 static inline void cpu_key_k_offset_dec (struct cpu_key * key)
693 {
694 if (key->version == KEY_FORMAT_3_5)
695 key->on_disk_key.u.k_offset_v1.k_offset --;
696 else
697 key->on_disk_key.u.k_offset_v2.k_offset --;
698 }
699
700
701 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
702 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
703 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
704 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
705
706
707 /* are these used ? */
708 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
709 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
710 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
711 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
712
713
714
715
716
717 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
718 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
719 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
720
721 /* maximal length of item */
722 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
723 #define MIN_ITEM_LEN 1
724
725
726 /* object identifier for root dir */
727 #define REISERFS_ROOT_OBJECTID 2
728 #define REISERFS_ROOT_PARENT_OBJECTID 1
729 extern struct key root_key;
730
731
732
733
734 /*
735 * Picture represents a leaf of the S+tree
736 * ______________________________________________________
737 * | | Array of | | |
738 * |Block | Object-Item | F r e e | Objects- |
739 * | head | Headers | S p a c e | Items |
740 * |______|_______________|___________________|___________|
741 */
742
743 /* Header of a disk block. More precisely, header of a formatted leaf
744 or internal node, and not the header of an unformatted node. */
745 struct block_head {
746 __u16 blk_level; /* Level of a block in the tree. */
747 __u16 blk_nr_item; /* Number of keys/items in a block. */
748 __u16 blk_free_space; /* Block free space in bytes. */
749 __u16 blk_reserved;
750 /* dump this in v4/planA */
751 struct key blk_right_delim_key; /* kept only for compatibility */
752 };
753
754 #define BLKH_SIZE (sizeof(struct block_head))
755 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
756 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
757 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
758 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
759 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
760 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
761 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
762 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
763 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
764 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
765
766 /*
767 * values for blk_level field of the struct block_head
768 */
769
770 #define FREE_LEVEL 0 /* when node gets removed from the tree its
771 blk_level is set to FREE_LEVEL. It is then
772 used to see whether the node is still in the
773 tree */
774
775 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level.*/
776
777 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
778 #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
779 /* Number of items that are in buffer. */
780 #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
781 #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
782 #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
783
784 #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
785 #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
786 #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
787
788
789 /* Get right delimiting key. -- little endian */
790 #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
791
792 /* Does the buffer contain a disk leaf. */
793 #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
794
795 /* Does the buffer contain a disk internal node */
796 #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
797 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
798
799
800
801
802 /***************************************************************************/
803 /* STAT DATA */
804 /***************************************************************************/
805
806
807 //
808 // old stat data is 32 bytes long. We are going to distinguish new one by
809 // different size
810 //
811 struct stat_data_v1
812 {
813 __u16 sd_mode; /* file type, permissions */
814 __u16 sd_nlink; /* number of hard links */
815 __u16 sd_uid; /* owner */
816 __u16 sd_gid; /* group */
817 __u32 sd_size; /* file size */
818 __u32 sd_atime; /* time of last access */
819 __u32 sd_mtime; /* time file was last modified */
820 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
821 union {
822 __u32 sd_rdev;
823 __u32 sd_blocks; /* number of blocks file uses */
824 } __attribute__ ((__packed__)) u;
825 __u32 sd_first_direct_byte; /* first byte of file which is stored
826 in a direct item: except that if it
827 equals 1 it is a symlink and if it
828 equals ~(__u32)0 there is no
829 direct item. The existence of this
830 field really grates on me. Let's
831 replace it with a macro based on
832 sd_size and our tail suppression
833 policy. Someday. -Hans */
834 } __attribute__ ((__packed__));
835
836 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
837 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
838 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
839 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
840 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
841 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
842 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
843 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
844 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
845 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
846 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
847 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
848 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
849 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
850 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
851 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
852 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
853 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
854 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
855 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
856 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
857 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
858 #define sd_v1_first_direct_byte(sdp) \
859 (le32_to_cpu((sdp)->sd_first_direct_byte))
860 #define set_sd_v1_first_direct_byte(sdp,v) \
861 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
862
863 #include <linux/ext2_fs.h>
864
865 /* inode flags stored in sd_attrs (nee sd_reserved) */
866
867 /* we want common flags to have the same values as in ext2,
868 so chattr(1) will work without problems */
869 #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
870 #define REISERFS_APPEND_FL EXT2_APPEND_FL
871 #define REISERFS_SYNC_FL EXT2_SYNC_FL
872 #define REISERFS_NOATIME_FL EXT2_NOATIME_FL
873 #define REISERFS_NODUMP_FL EXT2_NODUMP_FL
874 #define REISERFS_SECRM_FL EXT2_SECRM_FL
875 #define REISERFS_UNRM_FL EXT2_UNRM_FL
876 #define REISERFS_COMPR_FL EXT2_COMPR_FL
877 /* persistent flag to disable tails on per-file basic.
878 Note, that is inheritable: mark directory with this and
879 all new files inside will not have tails.
880
881 Teodore Tso allocated EXT2_NOTAIL_FL (0x00008000) for this. Change
882 numeric constant to ext2 macro when available. */
883 #define REISERFS_NOTAIL_FL (0x00008000) /* EXT2_NOTAIL_FL */
884
885 /* persistent flags that file inherits from the parent directory */
886 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
887 REISERFS_SYNC_FL | \
888 REISERFS_NOATIME_FL | \
889 REISERFS_NODUMP_FL | \
890 REISERFS_SECRM_FL | \
891 REISERFS_COMPR_FL | \
892 REISERFS_NOTAIL_FL )
893
894 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
895 address blocks) */
896 struct stat_data {
897 __u16 sd_mode; /* file type, permissions */
898 __u16 sd_attrs; /* persistent inode flags */
899 __u32 sd_nlink; /* number of hard links */
900 __u64 sd_size; /* file size */
901 __u32 sd_uid; /* owner */
902 __u32 sd_gid; /* group */
903 __u32 sd_atime; /* time of last access */
904 __u32 sd_mtime; /* time file was last modified */
905 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
906 __u32 sd_blocks;
907 union {
908 __u32 sd_rdev;
909 __u32 sd_generation;
910 //__u32 sd_first_direct_byte;
911 /* first byte of file which is stored in a
912 direct item: except that if it equals 1
913 it is a symlink and if it equals
914 ~(__u32)0 there is no direct item. The
915 existence of this field really grates
916 on me. Let's replace it with a macro
917 based on sd_size and our tail
918 suppression policy? */
919 } __attribute__ ((__packed__)) u;
920 } __attribute__ ((__packed__));
921 //
922 // this is 44 bytes long
923 //
924 #define SD_SIZE (sizeof(struct stat_data))
925 #define SD_V2_SIZE SD_SIZE
926 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
927 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
928 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
929 /* sd_reserved */
930 /* set_sd_reserved */
931 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
932 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
933 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
934 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
935 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
936 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
937 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
938 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
939 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
940 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
941 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
942 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
943 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
944 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
945 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
946 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
947 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
948 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
949 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
950 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
951 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
952 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
953
954
955 /***************************************************************************/
956 /* DIRECTORY STRUCTURE */
957 /***************************************************************************/
958 /*
959 Picture represents the structure of directory items
960 ________________________________________________
961 | Array of | | | | | |
962 | directory |N-1| N-2 | .... | 1st |0th|
963 | entry headers | | | | | |
964 |_______________|___|_____|________|_______|___|
965 <---- directory entries ------>
966
967 First directory item has k_offset component 1. We store "." and ".."
968 in one item, always, we never split "." and ".." into differing
969 items. This makes, among other things, the code for removing
970 directories simpler. */
971 #define SD_OFFSET 0
972 #define SD_UNIQUENESS 0
973 #define DOT_OFFSET 1
974 #define DOT_DOT_OFFSET 2
975 #define DIRENTRY_UNIQUENESS 500
976
977 /* */
978 #define FIRST_ITEM_OFFSET 1
979
980 /*
981 Q: How to get key of object pointed to by entry from entry?
982
983 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
984 of object, entry points to */
985
986 /* NOT IMPLEMENTED:
987 Directory will someday contain stat data of object */
988
989
990
991 struct reiserfs_de_head
992 {
993 __u32 deh_offset; /* third component of the directory entry key */
994 __u32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
995 by directory entry */
996 __u32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
997 __u16 deh_location; /* offset of name in the whole item */
998 __u16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
999 entry is hidden (unlinked) */
1000 } __attribute__ ((__packed__));
1001 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1002 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1003 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1004 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1005 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1006 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1007
1008 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1009 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1010 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1011 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1012 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1013
1014 /* empty directory contains two entries "." and ".." and their headers */
1015 #define EMPTY_DIR_SIZE \
1016 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1017
1018 /* old format directories have this size when empty */
1019 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1020
1021 #define DEH_Statdata 0 /* not used now */
1022 #define DEH_Visible 2
1023
1024 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1025 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1026 # define ADDR_UNALIGNED_BITS (3)
1027 #endif
1028
1029 /* These are only used to manipulate deh_state.
1030 * Because of this, we'll use the ext2_ bit routines,
1031 * since they are little endian */
1032 #ifdef ADDR_UNALIGNED_BITS
1033
1034 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1035 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1036
1037 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1038 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1039 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1040
1041 #else
1042
1043 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1044 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1045 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1046
1047 #endif
1048
1049 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1050 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1051 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1052 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1053
1054 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1055 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1056 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1057
1058 extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1059 __u32 par_dirid, __u32 par_objid);
1060 extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1061 __u32 par_dirid, __u32 par_objid);
1062
1063 /* array of the entry headers */
1064 /* get item body */
1065 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1066 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1067
1068 /* length of the directory entry in directory item. This define
1069 calculates length of i-th directory entry using directory entry
1070 locations from dir entry head. When it calculates length of 0-th
1071 directory entry, it uses length of whole item in place of entry
1072 location of the non-existent following entry in the calculation.
1073 See picture above.*/
1074 /*
1075 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1076 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1077 */
entry_length(const struct buffer_head * bh,const struct item_head * ih,int pos_in_item)1078 static inline int entry_length (const struct buffer_head * bh,
1079 const struct item_head * ih, int pos_in_item)
1080 {
1081 struct reiserfs_de_head * deh;
1082
1083 deh = B_I_DEH (bh, ih) + pos_in_item;
1084 if (pos_in_item)
1085 return deh_location(deh-1) - deh_location(deh);
1086
1087 return ih_item_len(ih) - deh_location(deh);
1088 }
1089
1090
1091
1092 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1093 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1094
1095
1096 /* name by bh, ih and entry_num */
1097 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1098
1099 // two entries per block (at least)
1100 #define REISERFS_MAX_NAME(block_size) 255
1101
1102
1103 /* this structure is used for operations on directory entries. It is
1104 not a disk structure. */
1105 /* When reiserfs_find_entry or search_by_entry_key find directory
1106 entry, they return filled reiserfs_dir_entry structure */
1107 struct reiserfs_dir_entry
1108 {
1109 struct buffer_head * de_bh;
1110 int de_item_num;
1111 struct item_head * de_ih;
1112 int de_entry_num;
1113 struct reiserfs_de_head * de_deh;
1114 int de_entrylen;
1115 int de_namelen;
1116 char * de_name;
1117 char * de_gen_number_bit_string;
1118
1119 __u32 de_dir_id;
1120 __u32 de_objectid;
1121
1122 struct cpu_key de_entry_key;
1123 };
1124
1125 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1126
1127 /* pointer to file name, stored in entry */
1128 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1129
1130 /* length of name */
1131 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1132 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1133
1134
1135
1136 /* hash value occupies bits from 7 up to 30 */
1137 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1138 /* generation number occupies 7 bits starting from 0 up to 6 */
1139 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1140 #define MAX_GENERATION_NUMBER 127
1141
1142 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1143
1144
1145 /*
1146 * Picture represents an internal node of the reiserfs tree
1147 * ______________________________________________________
1148 * | | Array of | Array of | Free |
1149 * |block | keys | pointers | space |
1150 * | head | N | N+1 | |
1151 * |______|_______________|___________________|___________|
1152 */
1153
1154 /***************************************************************************/
1155 /* DISK CHILD */
1156 /***************************************************************************/
1157 /* Disk child pointer: The pointer from an internal node of the tree
1158 to a node that is on disk. */
1159 struct disk_child {
1160 __u32 dc_block_number; /* Disk child's block number. */
1161 __u16 dc_size; /* Disk child's used space. */
1162 __u16 dc_reserved;
1163 };
1164
1165 #define DC_SIZE (sizeof(struct disk_child))
1166 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1167 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1168 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1169 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1170
1171 /* Get disk child by buffer header and position in the tree node. */
1172 #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1173 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1174
1175 /* Get disk child number by buffer header and position in the tree node. */
1176 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1177 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1178
1179 /* maximal value of field child_size in structure disk_child */
1180 /* child size is the combined size of all items and their headers */
1181 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1182
1183 /* amount of used space in buffer (not including block head) */
1184 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1185
1186 /* max and min number of keys in internal node */
1187 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1188 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1189
1190 /***************************************************************************/
1191 /* PATH STRUCTURES AND DEFINES */
1192 /***************************************************************************/
1193
1194
1195 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1196 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1197 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1198 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1199 position of the block_number of the next node if it is looking through an internal node. If it
1200 is looking through a leaf node bin_search will find the position of the item which has key either
1201 equal to given key, or which is the maximal key less than the given key. */
1202
1203 struct path_element {
1204 struct buffer_head * pe_buffer; /* Pointer to the buffer at the path in the tree. */
1205 int pe_position; /* Position in the tree node which is placed in the */
1206 /* buffer above. */
1207 };
1208
1209 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1210 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1211 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1212
1213 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1214 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1215
1216
1217
1218 /* We need to keep track of who the ancestors of nodes are. When we
1219 perform a search we record which nodes were visited while
1220 descending the tree looking for the node we searched for. This list
1221 of nodes is called the path. This information is used while
1222 performing balancing. Note that this path information may become
1223 invalid, and this means we must check it when using it to see if it
1224 is still valid. You'll need to read search_by_key and the comments
1225 in it, especially about decrement_counters_in_path(), to understand
1226 this structure.
1227
1228 Paths make the code so much harder to work with and debug.... An
1229 enormous number of bugs are due to them, and trying to write or modify
1230 code that uses them just makes my head hurt. They are based on an
1231 excessive effort to avoid disturbing the precious VFS code.:-( The
1232 gods only know how we are going to SMP the code that uses them.
1233 znodes are the way! */
1234
1235
1236 struct path {
1237 int path_length; /* Length of the array above. */
1238 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1239 int pos_in_item;
1240 };
1241
1242 #define pos_in_item(path) ((path)->pos_in_item)
1243
1244 #define INITIALIZE_PATH(var) \
1245 struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, }
1246
1247 /* Get path element by path and path position. */
1248 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1249
1250 /* Get buffer header at the path by path and path position. */
1251 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1252
1253 /* Get position in the element at the path by path and path position. */
1254 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1255
1256
1257 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1258 /* you know, to the person who didn't
1259 write this the macro name does not
1260 at first suggest what it does.
1261 Maybe POSITION_FROM_PATH_END? Or
1262 maybe we should just focus on
1263 dumping paths... -Hans */
1264 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1265
1266
1267 #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1268
1269 /* in do_balance leaf has h == 0 in contrast with path structure,
1270 where root has level == 0. That is why we need these defines */
1271 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1272 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1273 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1274 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1275
1276 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1277
1278 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1279 #define get_ih(path) PATH_PITEM_HEAD(path)
1280 #define get_item_pos(path) PATH_LAST_POSITION(path)
1281 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1282 #define item_moved(ih,path) comp_items(ih, path)
1283 #define path_changed(ih,path) comp_items (ih, path)
1284
1285
1286 /***************************************************************************/
1287 /* MISC */
1288 /***************************************************************************/
1289
1290 /* Size of pointer to the unformatted node. */
1291 #define UNFM_P_SIZE (sizeof(unp_t))
1292 #define UNFM_P_SHIFT 2
1293
1294 // in in-core inode key is stored on le form
1295 #define INODE_PKEY(inode) ((struct key *)((inode)->u.reiserfs_i.i_key))
1296
1297 #define MAX_UL_INT 0xffffffff
1298 #define MAX_INT 0x7ffffff
1299 #define MAX_US_INT 0xffff
1300
1301 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1302 #define U32_MAX (~(__u32)0)
1303
max_reiserfs_offset(const struct inode * inode)1304 static inline loff_t max_reiserfs_offset (const struct inode * inode)
1305 {
1306 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1307 return (loff_t)U32_MAX;
1308
1309 return (loff_t)((~(__u64)0) >> 4);
1310 }
1311
1312
1313 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1314 #define MAX_KEY_OBJECTID MAX_UL_INT
1315
1316
1317 #define MAX_B_NUM MAX_UL_INT
1318 #define MAX_FC_NUM MAX_US_INT
1319
1320
1321 /* the purpose is to detect overflow of an unsigned short */
1322 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1323
1324
1325 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1326 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1327 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1328
1329 #define fs_generation(s) ((s)->u.reiserfs_sb.s_generation_counter)
1330 #define get_generation(s) atomic_read (&fs_generation(s))
1331 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1332 #define fs_changed(gen,s) (gen != get_generation (s))
1333
1334
1335 /***************************************************************************/
1336 /* FIXATE NODES */
1337 /***************************************************************************/
1338
1339 #define VI_TYPE_LEFT_MERGEABLE 1
1340 #define VI_TYPE_RIGHT_MERGEABLE 2
1341
1342 /* To make any changes in the tree we always first find node, that
1343 contains item to be changed/deleted or place to insert a new
1344 item. We call this node S. To do balancing we need to decide what
1345 we will shift to left/right neighbor, or to a new node, where new
1346 item will be etc. To make this analysis simpler we build virtual
1347 node. Virtual node is an array of items, that will replace items of
1348 node S. (For instance if we are going to delete an item, virtual
1349 node does not contain it). Virtual node keeps information about
1350 item sizes and types, mergeability of first and last items, sizes
1351 of all entries in directory item. We use this array of items when
1352 calculating what we can shift to neighbors and how many nodes we
1353 have to have if we do not any shiftings, if we shift to left/right
1354 neighbor or to both. */
1355 struct virtual_item
1356 {
1357 int vi_index; // index in the array of item operations
1358 unsigned short vi_type; // left/right mergeability
1359 unsigned short vi_item_len; /* length of item that it will have after balancing */
1360 struct item_head * vi_ih;
1361 const char * vi_item; // body of item (old or new)
1362 const void * vi_new_data; // 0 always but paste mode
1363 void * vi_uarea; // item specific area
1364 };
1365
1366
1367 struct virtual_node
1368 {
1369 char * vn_free_ptr; /* this is a pointer to the free space in the buffer */
1370 unsigned short vn_nr_item; /* number of items in virtual node */
1371 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1372 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1373 short vn_affected_item_num;
1374 short vn_pos_in_item;
1375 struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1376 const void * vn_data;
1377 struct virtual_item * vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1378 };
1379
1380 /* used by directory items when creating virtual nodes */
1381 struct direntry_uarea {
1382 int flags;
1383 __u16 entry_count;
1384 __u16 entry_sizes[1];
1385 } __attribute__ ((__packed__)) ;
1386
1387
1388 /***************************************************************************/
1389 /* TREE BALANCE */
1390 /***************************************************************************/
1391
1392 /* This temporary structure is used in tree balance algorithms, and
1393 constructed as we go to the extent that its various parts are
1394 needed. It contains arrays of nodes that can potentially be
1395 involved in the balancing of node S, and parameters that define how
1396 each of the nodes must be balanced. Note that in these algorithms
1397 for balancing the worst case is to need to balance the current node
1398 S and the left and right neighbors and all of their parents plus
1399 create a new node. We implement S1 balancing for the leaf nodes
1400 and S0 balancing for the internal nodes (S1 and S0 are defined in
1401 our papers.)*/
1402
1403 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1404
1405 /* maximum number of FEB blocknrs on a single level */
1406 #define MAX_AMOUNT_NEEDED 2
1407
1408 /* someday somebody will prefix every field in this struct with tb_ */
1409 struct tree_balance
1410 {
1411 int tb_mode;
1412 int need_balance_dirty;
1413 struct super_block * tb_sb;
1414 struct reiserfs_transaction_handle *transaction_handle ;
1415 struct path * tb_path;
1416 struct buffer_head * L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1417 struct buffer_head * R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path*/
1418 struct buffer_head * FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1419 struct buffer_head * FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1420 struct buffer_head * CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1421 struct buffer_head * CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1422
1423 struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1424 cur_blknum. */
1425 struct buffer_head * used[MAX_FEB_SIZE];
1426 struct buffer_head * thrown[MAX_FEB_SIZE];
1427 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1428 shifted to the left in order to balance the
1429 current node; for leaves includes item that
1430 will be partially shifted; for internal
1431 nodes, it is the number of child pointers
1432 rather than items. It includes the new item
1433 being created. The code sometimes subtracts
1434 one to get the number of wholly shifted
1435 items for other purposes. */
1436 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1437 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1438 S[h] to its item number within the node CFL[h] */
1439 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1440 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1441 S[h]. A negative value means removing. */
1442 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1443 balancing on the level h of the tree. If 0 then S is
1444 being deleted, if 1 then S is remaining and no new nodes
1445 are being created, if 2 or 3 then 1 or 2 new nodes is
1446 being created */
1447
1448 /* fields that are used only for balancing leaves of the tree */
1449 int cur_blknum; /* number of empty blocks having been already allocated */
1450 int s0num; /* number of items that fall into left most node when S[0] splits */
1451 int s1num; /* number of items that fall into first new node when S[0] splits */
1452 int s2num; /* number of items that fall into second new node when S[0] splits */
1453 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1454 /* most liquid item that cannot be shifted from S[0] entirely */
1455 /* if -1 then nothing will be partially shifted */
1456 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1457 /* most liquid item that cannot be shifted from S[0] entirely */
1458 /* if -1 then nothing will be partially shifted */
1459 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1460 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1461 int s2bytes;
1462 struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1463 char * vn_buf; /* kmalloced memory. Used to create
1464 virtual node and keep map of
1465 dirtied bitmap blocks */
1466 int vn_buf_size; /* size of the vn_buf */
1467 struct virtual_node * tb_vn; /* VN starts after bitmap of bitmap blocks */
1468
1469 int fs_gen; /* saved value of `reiserfs_generation' counter
1470 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1471 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1472 struct key key; /* key pointer, to pass to block allocator or
1473 another low-level subsystem */
1474 #endif
1475 } ;
1476
1477 /* These are modes of balancing */
1478
1479 /* When inserting an item. */
1480 #define M_INSERT 'i'
1481 /* When inserting into (directories only) or appending onto an already
1482 existant item. */
1483 #define M_PASTE 'p'
1484 /* When deleting an item. */
1485 #define M_DELETE 'd'
1486 /* When truncating an item or removing an entry from a (directory) item. */
1487 #define M_CUT 'c'
1488
1489 /* used when balancing on leaf level skipped (in reiserfsck) */
1490 #define M_INTERNAL 'n'
1491
1492 /* When further balancing is not needed, then do_balance does not need
1493 to be called. */
1494 #define M_SKIP_BALANCING 's'
1495 #define M_CONVERT 'v'
1496
1497 /* modes of leaf_move_items */
1498 #define LEAF_FROM_S_TO_L 0
1499 #define LEAF_FROM_S_TO_R 1
1500 #define LEAF_FROM_R_TO_L 2
1501 #define LEAF_FROM_L_TO_R 3
1502 #define LEAF_FROM_S_TO_SNEW 4
1503
1504 #define FIRST_TO_LAST 0
1505 #define LAST_TO_FIRST 1
1506
1507 /* used in do_balance for passing parent of node information that has
1508 been gotten from tb struct */
1509 struct buffer_info {
1510 struct tree_balance * tb;
1511 struct buffer_head * bi_bh;
1512 struct buffer_head * bi_parent;
1513 int bi_position;
1514 };
1515
1516
1517 /* there are 4 types of items: stat data, directory item, indirect, direct.
1518 +-------------------+------------+--------------+------------+
1519 | | k_offset | k_uniqueness | mergeable? |
1520 +-------------------+------------+--------------+------------+
1521 | stat data | 0 | 0 | no |
1522 +-------------------+------------+--------------+------------+
1523 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1524 | non 1st directory | hash value | | yes |
1525 | item | | | |
1526 +-------------------+------------+--------------+------------+
1527 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1528 +-------------------+------------+--------------+------------+
1529 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1530 +-------------------+------------+--------------+------------+
1531 */
1532
1533 struct item_operations {
1534 int (*bytes_number) (struct item_head * ih, int block_size);
1535 void (*decrement_key) (struct cpu_key *);
1536 int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1537 void (*print_item) (struct item_head *, char * item);
1538 void (*check_item) (struct item_head *, char * item);
1539
1540 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1541 int is_affected, int insert_size);
1542 int (*check_left) (struct virtual_item * vi, int free,
1543 int start_skip, int end_skip);
1544 int (*check_right) (struct virtual_item * vi, int free);
1545 int (*part_size) (struct virtual_item * vi, int from, int to);
1546 int (*unit_num) (struct virtual_item * vi);
1547 void (*print_vi) (struct virtual_item * vi);
1548 };
1549
1550
1551 extern struct item_operations stat_data_ops, indirect_ops, direct_ops,
1552 direntry_ops;
1553 extern struct item_operations * item_ops [TYPE_ANY + 1];
1554
1555 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1556 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1557 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1558 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1559 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1560 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1561 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1562 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1563 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1564 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1565
1566
1567
1568
1569
1570 #define COMP_KEYS comp_keys
1571 #define COMP_SHORT_KEYS comp_short_keys
1572 /*#define keys_of_same_object comp_short_keys*/
1573
1574 /* number of blocks pointed to by the indirect item */
1575 #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1576
1577 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1578 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1579
1580 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1581
1582
1583 /* get the item header */
1584 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1585
1586 /* get key */
1587 #define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1588
1589 /* get the key */
1590 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1591
1592 /* get item body */
1593 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1594
1595 /* get the stat data by the buffer header and the item order */
1596 #define B_N_STAT_DATA(bh,nr) \
1597 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1598
1599 /* following defines use reiserfs buffer header and item header */
1600
1601 /* get stat-data */
1602 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1603
1604 // this is 3976 for size==4096
1605 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1606
1607 /* indirect items consist of entries which contain blocknrs, pos
1608 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1609 blocknr contained by the entry pos points to */
1610 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1611 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1612
1613 struct reiserfs_iget4_args {
1614 __u32 objectid ;
1615 } ;
1616
1617 /***************************************************************************/
1618 /* FUNCTION DECLARATIONS */
1619 /***************************************************************************/
1620
1621 /*#ifdef __KERNEL__*/
1622
1623 /* journal.c see journal.c for all the comments here */
1624
1625 #define JOURNAL_TRANS_HALF 1018 /* must be correct to keep the desc and commit structs at 4k */
1626
1627
1628 /* first block written in a commit. */
1629 struct reiserfs_journal_desc {
1630 __u32 j_trans_id ; /* id of commit */
1631 __u32 j_len ; /* length of commit. len +1 is the commit block */
1632 __u32 j_mount_id ; /* mount id of this trans*/
1633 __u32 j_realblock[JOURNAL_TRANS_HALF] ; /* real locations for each block */
1634 char j_magic[12] ;
1635 } ;
1636
1637 /* last block written in a commit */
1638 struct reiserfs_journal_commit {
1639 __u32 j_trans_id ; /* must match j_trans_id from the desc block */
1640 __u32 j_len ; /* ditto */
1641 __u32 j_realblock[JOURNAL_TRANS_HALF] ; /* real locations for each block */
1642 char j_digest[16] ; /* md5 sum of all the blocks involved, including desc and commit. not used, kill it */
1643 } ;
1644
1645 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1646 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1647 ** and this transaction does not need to be replayed.
1648 */
1649 struct reiserfs_journal_header {
1650 __u32 j_last_flush_trans_id ; /* id of last fully flushed transaction */
1651 __u32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */
1652 __u32 j_mount_id ;
1653 /* 12 */ struct journal_params jh_journal;
1654 } ;
1655
1656 extern task_queue reiserfs_commit_thread_tq ;
1657 extern wait_queue_head_t reiserfs_commit_thread_wait ;
1658
1659 /* biggest tunable defines are right here */
1660 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1661 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1662 #define JOURNAL_TRANS_MIN_DEFAULT 256
1663 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1664 #define JOURNAL_MIN_RATIO 2
1665 #define JOURNAL_MAX_COMMIT_AGE 30
1666 #define JOURNAL_MAX_TRANS_AGE 30
1667 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1668
1669 /* both of these can be as low as 1, or as high as you want. The min is the
1670 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1671 ** as needed, and released when transactions are committed. On release, if
1672 ** the current number of nodes is > max, the node is freed, otherwise,
1673 ** it is put on a free list for faster use later.
1674 */
1675 #define REISERFS_MIN_BITMAP_NODES 10
1676 #define REISERFS_MAX_BITMAP_NODES 100
1677
1678 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1679 #define JBH_HASH_MASK 8191
1680
1681 /* After several hours of tedious analysis, the following hash
1682 * function won. Do not mess with it... -DaveM
1683 */
1684 /* The two definitions below were borrowed from fs/buffer.c file of Linux kernel
1685 * sources and are not licensed by Namesys to its non-GPL license customers */
1686 #define _jhashfn(dev,block) \
1687 ((((dev)<<(JBH_HASH_SHIFT - 6)) ^ ((dev)<<(JBH_HASH_SHIFT - 9))) ^ \
1688 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1689 #define journal_hash(t,dev,block) ((t)[_jhashfn((dev),(block)) & JBH_HASH_MASK])
1690
1691 /* finds n'th buffer with 0 being the start of this commit. Needs to go away, j_ap_blocks has changed
1692 ** since I created this. One chunk of code in journal.c needs changing before deleting it
1693 */
1694 #define JOURNAL_BUFFER(j,n) ((j)->j_ap_blocks[((j)->j_start + (n)) % JOURNAL_BLOCK_COUNT])
1695
1696 void reiserfs_commit_for_inode(struct inode *) ;
1697 void reiserfs_commit_for_tail(struct inode *) ;
1698 void reiserfs_update_inode_transaction(struct inode *) ;
1699 void reiserfs_update_tail_transaction(struct inode *) ;
1700 void reiserfs_wait_on_write_block(struct super_block *s) ;
1701 void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1702 void reiserfs_allow_writes(struct super_block *s) ;
1703 void reiserfs_check_lock_depth(char *caller) ;
1704 void reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1705 void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1706 struct buffer_head * journal_bread (struct super_block *s, int block);
1707 struct buffer_head * journal_getblk (struct super_block *s, int block);
1708 struct buffer_head * journal_get_hash_table (struct super_block *s, int block);
1709 int journal_init(struct super_block *, const char * j_dev_name, int old_format) ;
1710 int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1711 int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1712 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1713 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1714 int journal_mark_dirty_nolog(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1715 int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, unsigned long blocknr) ;
1716 int push_journal_writer(char *w) ;
1717 int pop_journal_writer(int windex) ;
1718 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1719 int reiserfs_in_journal(struct super_block *p_s_sb, kdev_t dev, int bmap_nr, int bit_nr, int size, int searchall, unsigned int *next) ;
1720 int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1721 struct super_block *reiserfs_get_super(kdev_t dev) ;
1722 void flush_async_commits(struct super_block *p_s_sb) ;
1723
1724 int buffer_journaled(const struct buffer_head *bh) ;
1725 int mark_buffer_journal_new(struct buffer_head *bh) ;
1726 int reiserfs_sync_all_buffers(kdev_t dev, int wait) ;
1727 int reiserfs_sync_buffers(kdev_t dev, int wait) ;
1728 int reiserfs_add_page_to_flush_list(struct reiserfs_transaction_handle *,
1729 struct inode *, struct buffer_head *) ;
1730 int reiserfs_remove_page_from_flush_list(struct reiserfs_transaction_handle *,
1731 struct inode *) ;
1732
1733 int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1734
1735 /* why is this kerplunked right here? */
reiserfs_buffer_prepared(const struct buffer_head * bh)1736 static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1737 if (bh && test_bit(BH_JPrepared, &( (struct buffer_head *)bh)->b_state))
1738 return 1 ;
1739 else
1740 return 0 ;
1741 }
1742
1743 /* buffer was journaled, waiting to get to disk */
buffer_journal_dirty(const struct buffer_head * bh)1744 static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1745 if (bh)
1746 return test_bit(BH_JDirty_wait, &( (struct buffer_head *)bh)->b_state) ;
1747 else
1748 return 0 ;
1749 }
mark_buffer_notjournal_dirty(struct buffer_head * bh)1750 static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1751 if (bh)
1752 clear_bit(BH_JDirty_wait, &bh->b_state) ;
1753 return 0 ;
1754 }
mark_buffer_notjournal_new(struct buffer_head * bh)1755 static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1756 if (bh) {
1757 clear_bit(BH_JNew, &bh->b_state) ;
1758 }
1759 return 0 ;
1760 }
1761
1762 void add_save_link (struct reiserfs_transaction_handle * th,
1763 struct inode * inode, int truncate);
1764 void remove_save_link (struct inode * inode, int truncate);
1765
1766 /* objectid.c */
1767 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1768 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1769 int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1770
1771 /* stree.c */
1772 int B_IS_IN_TREE(const struct buffer_head *);
1773 extern inline void copy_short_key (void * to, const void * from);
1774 extern void copy_item_head(struct item_head * p_v_to,
1775 const struct item_head * p_v_from);
1776
1777 // first key is in cpu form, second - le
1778 extern int comp_keys (const struct key * le_key,
1779 const struct cpu_key * cpu_key);
1780 extern int comp_short_keys (const struct key * le_key,
1781 const struct cpu_key * cpu_key);
1782 extern void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1783
1784 // both are cpu keys
1785 extern int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1786 extern int comp_short_cpu_keys (const struct cpu_key *,
1787 const struct cpu_key *);
1788 extern void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1789
1790 // both are in le form
1791 extern int comp_le_keys (const struct key *, const struct key *);
1792 extern int comp_short_le_keys (const struct key *, const struct key *);
1793
1794 //
1795 // get key version from on disk key - kludge
1796 //
le_key_version(const struct key * key)1797 static inline int le_key_version (const struct key * key)
1798 {
1799 int type;
1800
1801 type = offset_v2_k_type( &(key->u.k_offset_v2));
1802 if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1803 return KEY_FORMAT_3_5;
1804
1805 return KEY_FORMAT_3_6;
1806
1807 }
1808
1809
copy_key(struct key * to,const struct key * from)1810 static inline void copy_key (struct key *to, const struct key *from)
1811 {
1812 memcpy (to, from, KEY_SIZE);
1813 }
1814
1815
1816 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1817 const struct key * get_rkey (const struct path * p_s_chk_path,
1818 const struct super_block * p_s_sb);
1819 inline int bin_search (const void * p_v_key, const void * p_v_base,
1820 int p_n_num, int p_n_width, int * p_n_pos);
1821 int search_by_key (struct super_block *, const struct cpu_key *,
1822 struct path *, int);
1823 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1824 int search_for_position_by_key (struct super_block * p_s_sb,
1825 const struct cpu_key * p_s_cpu_key,
1826 struct path * p_s_search_path);
1827 extern void decrement_bcount (struct buffer_head * p_s_bh);
1828 void decrement_counters_in_path (struct path * p_s_search_path);
1829 void pathrelse (struct path * p_s_search_path);
1830 int reiserfs_check_path(struct path *p) ;
1831 void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1832
1833 int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1834 struct path * path,
1835 const struct cpu_key * key,
1836 struct item_head * ih, const char * body);
1837
1838 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1839 struct path * path,
1840 const struct cpu_key * key,
1841 const char * body, int paste_size);
1842
1843 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1844 struct path * path,
1845 struct cpu_key * key,
1846 struct inode * inode,
1847 struct page *page,
1848 loff_t new_file_size);
1849
1850 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1851 struct path * path,
1852 const struct cpu_key * key,
1853 struct inode * inode,
1854 struct buffer_head * p_s_un_bh);
1855
1856 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1857 struct key * key);
1858 void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1859 void reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1860 struct inode * p_s_inode, struct page *,
1861 int update_timestamps);
1862
1863 #define block_size(inode) ((inode)->i_sb->s_blocksize)
1864 #define file_size(inode) ((inode)->i_size)
1865 #define tail_size(inode) (file_size (inode) & (block_size (inode) - 1))
1866
1867 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1868 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), block_size (inode)):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), block_size (inode)):0 )
1869
1870 void padd_item (char * item, int total_length, int length);
1871
1872 /* inode.c */
1873
1874 void reiserfs_read_inode (struct inode * inode) ;
1875 void reiserfs_read_inode2(struct inode * inode, void *p) ;
1876 void reiserfs_delete_inode (struct inode * inode);
1877 void reiserfs_write_inode (struct inode * inode, int) ;
1878 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, __u32 *data,
1879 int len, int fhtype, int parent);
1880 int reiserfs_dentry_to_fh(struct dentry *dentry, __u32 *data, int *lenp, int need_parent);
1881
1882 int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1883 void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1884 void make_cpu_key (struct cpu_key * cpu_key, const struct inode * inode, loff_t offset,
1885 int type, int key_length);
1886 void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1887 int version,
1888 loff_t offset, int type, int length, int entry_count);
1889 struct inode * reiserfs_iget (struct super_block * s,
1890 const struct cpu_key * key);
1891
1892 int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1893 struct inode * dir, int mode,
1894 const char * symname,
1895 int i_size,
1896 struct dentry *dentry,
1897 struct inode *inode);
1898 int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode);
1899 void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode);
1900
1901 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1902 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1903
1904 /* namei.c */
1905 void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1906 int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1907 struct path * path,
1908 struct reiserfs_dir_entry * de);
1909 /* procfs.c */
1910
1911 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1912 #define REISERFS_PROC_INFO
1913 #else
1914 #undef REISERFS_PROC_INFO
1915 #endif
1916
1917 int reiserfs_proc_info_init( struct super_block *sb );
1918 int reiserfs_proc_info_done( struct super_block *sb );
1919 struct proc_dir_entry *reiserfs_proc_register( struct super_block *sb,
1920 char *name, read_proc_t *func );
1921 void reiserfs_proc_unregister( struct super_block *sb, const char *name );
1922 struct proc_dir_entry *reiserfs_proc_register_global( char *name,
1923 read_proc_t *func );
1924 void reiserfs_proc_unregister_global( const char *name );
1925 int reiserfs_proc_info_global_init( void );
1926 int reiserfs_proc_info_global_done( void );
1927 int reiserfs_proc_tail( int len, char *buffer, char **start,
1928 off_t offset, int count, int *eof );
1929 int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1930 int count, int *eof, void *data );
1931 int reiserfs_version_in_proc( char *buffer, char **start, off_t offset,
1932 int count, int *eof, void *data );
1933 int reiserfs_super_in_proc( char *buffer, char **start, off_t offset,
1934 int count, int *eof, void *data );
1935 int reiserfs_per_level_in_proc( char *buffer, char **start, off_t offset,
1936 int count, int *eof, void *data );
1937 int reiserfs_bitmap_in_proc( char *buffer, char **start, off_t offset,
1938 int count, int *eof, void *data );
1939 int reiserfs_on_disk_super_in_proc( char *buffer, char **start, off_t offset,
1940 int count, int *eof, void *data );
1941 int reiserfs_oidmap_in_proc( char *buffer, char **start, off_t offset,
1942 int count, int *eof, void *data );
1943 int reiserfs_journal_in_proc( char *buffer, char **start, off_t offset,
1944 int count, int *eof, void *data );
1945
1946 #if defined( REISERFS_PROC_INFO )
1947
1948 #define PROC_EXP( e ) e
1949
1950 #define MAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
1951 #define __PINFO( sb ) ( sb ) -> u.reiserfs_sb.s_proc_info_data
1952 #define PROC_INFO_MAX( sb, field, value ) \
1953 __PINFO( sb ).field = \
1954 MAX( ( sb ) -> u.reiserfs_sb.s_proc_info_data.field, value )
1955 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1956 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1957 #define PROC_INFO_BH_STAT( sb, bh, level ) \
1958 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
1959 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
1960 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1961 #else
1962 #define PROC_EXP( e )
1963 #define VOID_V ( ( void ) 0 )
1964 #define PROC_INFO_MAX( sb, field, value ) VOID_V
1965 #define PROC_INFO_INC( sb, field ) VOID_V
1966 #define PROC_INFO_ADD( sb, field, val ) VOID_V
1967 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1968 #endif
1969
1970 /* dir.c */
1971 extern struct inode_operations reiserfs_dir_inode_operations;
1972 extern struct file_operations reiserfs_dir_operations;
1973
1974 /* tail_conversion.c */
1975 int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
1976 int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
1977 void reiserfs_unmap_buffer(struct buffer_head *) ;
1978
1979
1980 /* file.c */
1981 extern struct inode_operations reiserfs_file_inode_operations;
1982 extern struct file_operations reiserfs_file_operations;
1983 extern struct address_space_operations reiserfs_address_space_operations ;
1984 int get_new_buffer (struct reiserfs_transaction_handle *th, struct buffer_head *,
1985 struct buffer_head **, struct path *);
1986
1987
1988 /* buffer2.c */
1989 struct buffer_head * reiserfs_getblk (kdev_t n_dev, int n_block, int n_size);
1990 void wait_buffer_until_released (const struct buffer_head * bh);
1991 struct buffer_head * reiserfs_bread (struct super_block *super, int n_block,
1992 int n_size);
1993
1994 /* fix_nodes.c */
1995 #ifdef CONFIG_REISERFS_CHECK
1996 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
1997 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
1998 #else
1999 #define reiserfs_kmalloc(x, y, z) kmalloc(x, y)
2000 #define reiserfs_kfree(x, y, z) kfree(x)
2001 #endif
2002
2003 int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
2004 struct item_head * p_s_ins_ih, const void *);
2005 void unfix_nodes (struct tree_balance *);
2006 void free_buffers_in_tb (struct tree_balance * p_s_tb);
2007
2008
2009 /* prints.c */
2010 void reiserfs_panic (struct super_block * s, const char * fmt, ...)
2011 __attribute__ ( ( noreturn ) );/* __attribute__( ( format ( printf, 2, 3 ) ) ) */
2012 void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2013 /* __attribute__( ( format ( printf, 3, 4 ) ) ); */
2014 void print_virtual_node (struct virtual_node * vn);
2015 void print_indirect_item (struct buffer_head * bh, int item_num);
2016 void store_print_tb (struct tree_balance * tb);
2017 void print_cur_tb (char * mes);
2018 void print_de (struct reiserfs_dir_entry * de);
2019 void print_bi (struct buffer_info * bi, char * mes);
2020 #define PRINT_LEAF_ITEMS 1 /* print all items */
2021 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2022 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2023 void print_block (struct buffer_head * bh, ...);
2024 void print_path (struct tree_balance * tb, struct path * path);
2025 void print_bmap (struct super_block * s, int silent);
2026 void print_bmap_block (int i, char * data, int size, int silent);
2027 /*void print_super_block (struct super_block * s, char * mes);*/
2028 void print_objectid_map (struct super_block * s);
2029 void print_block_head (struct buffer_head * bh, char * mes);
2030 void check_leaf (struct buffer_head * bh);
2031 void check_internal (struct buffer_head * bh);
2032 void print_statistics (struct super_block * s);
2033 char * reiserfs_hashname(int code);
2034
2035 /* lbalance.c */
2036 int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2037 int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2038 int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2039 void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2040 void leaf_insert_into_buf (struct buffer_info * bi, int before,
2041 struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2042 void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2043 int pos_in_item, int paste_size, const char * body, int zeros_number);
2044 void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2045 int cut_size);
2046 void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2047 int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2048 /* ibalance.c */
2049 int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2050 struct buffer_head **);
2051
2052 /* do_balance.c */
2053 void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2054 struct buffer_head * bh, int flag);
2055 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2056 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2057
2058 void do_balance (struct tree_balance * tb, struct item_head * ih,
2059 const char * body, int flag);
2060 void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2061
2062 int get_left_neighbor_position (struct tree_balance * tb, int h);
2063 int get_right_neighbor_position (struct tree_balance * tb, int h);
2064 void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2065 void replace_lkey (struct tree_balance *, int, struct item_head *);
2066 void replace_rkey (struct tree_balance *, int, struct item_head *);
2067 void make_empty_node (struct buffer_info *);
2068 struct buffer_head * get_FEB (struct tree_balance *);
2069
2070 /* bitmap.c */
2071
2072 /* structure contains hints for block allocator, and it is a container for
2073 * arguments, such as node, search path, transaction_handle, etc. */
2074 struct __reiserfs_blocknr_hint {
2075 struct inode * inode; /* inode passed to allocator, if we allocate unf. nodes */
2076 long block; /* file offset, in blocks */
2077 struct key key;
2078 struct path * path; /* search path, used by allocator to deternine search_start by
2079 * various ways */
2080 struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2081 * bitmap blocks changes */
2082 b_blocknr_t beg, end;
2083 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2084 * between different block allocator procedures
2085 * (determine_search_start() and others) */
2086 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2087 * function that do actual allocation */
2088
2089 int formatted_node:1; /* the allocator uses different polices for getting disk space for
2090 * formatted/unformatted blocks with/without preallocation */
2091 int preallocate:1;
2092 };
2093
2094 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2095
2096 int reiserfs_parse_alloc_options (struct super_block *, char *);
2097 int is_reusable (struct super_block * s, unsigned long block, int bit_value);
2098 void reiserfs_free_block (struct reiserfs_transaction_handle *th, unsigned long);
2099 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
reiserfs_new_form_blocknrs(struct tree_balance * tb,b_blocknr_t * new_blocknrs,int amount_needed)2100 extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2101 b_blocknr_t *new_blocknrs, int amount_needed)
2102 {
2103 reiserfs_blocknr_hint_t hint = {
2104 th:tb->transaction_handle,
2105 path: tb->tb_path,
2106 inode: NULL,
2107 key: tb->key,
2108 block: 0,
2109 formatted_node:1
2110 };
2111 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2112 }
2113
reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct path * path,long block)2114 extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2115 struct inode *inode,
2116 b_blocknr_t *new_blocknrs,
2117 struct path * path, long block)
2118 {
2119 reiserfs_blocknr_hint_t hint = {
2120 th: th,
2121 path: path,
2122 inode: inode,
2123 block: block,
2124 formatted_node: 0,
2125 preallocate: 0
2126 };
2127 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2128 }
2129
2130 #ifdef REISERFS_PREALLOCATE
reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct path * path,long block)2131 extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2132 struct inode * inode,
2133 b_blocknr_t *new_blocknrs,
2134 struct path * path, long block)
2135 {
2136 reiserfs_blocknr_hint_t hint = {
2137 th: th,
2138 path: path,
2139 inode: inode,
2140 block: block,
2141 formatted_node: 0,
2142 preallocate: 1
2143 };
2144 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2145 }
2146
2147 void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2148 struct inode * inode);
2149 void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2150 #endif
2151 void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2152 void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2153
2154 /* hashes.c */
2155 __u32 keyed_hash (const signed char *msg, int len);
2156 __u32 yura_hash (const signed char *msg, int len);
2157 __u32 r5_hash (const signed char *msg, int len);
2158
2159 /* the ext2 bit routines adjust for big or little endian as
2160 ** appropriate for the arch, so in our laziness we use them rather
2161 ** than using the bit routines they call more directly. These
2162 ** routines must be used when changing on disk bitmaps. */
2163 #define reiserfs_test_and_set_le_bit ext2_set_bit
2164 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2165 #define reiserfs_test_le_bit ext2_test_bit
2166 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2167
2168 /* sometimes reiserfs_truncate may require to allocate few new blocks
2169 to perform indirect2direct conversion. People probably used to
2170 think, that truncate should work without problems on a filesystem
2171 without free disk space. They may complain that they can not
2172 truncate due to lack of free disk space. This spare space allows us
2173 to not worry about it. 500 is probably too much, but it should be
2174 absolutely safe */
2175 #define SPARE_SPACE 500
2176
2177
2178 /* prototypes from ioctl.c */
2179 int reiserfs_ioctl (struct inode * inode, struct file * filp,
2180 unsigned int cmd, unsigned long arg);
2181 int reiserfs_unpack (struct inode * inode, struct file * filp);
2182
2183 /* ioctl's command */
2184 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2185 /* define following flags to be the same as in ext2, so that chattr(1),
2186 lsattr(1) will work with us. */
2187 #define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS
2188 #define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS
2189 #define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION
2190 #define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION
2191
2192 #endif /* _LINUX_REISER_FS_H */
2193
2194
2195