1 /*
2 ** -----------------------------------------------------------------------------
3 **
4 **  Perle Specialix driver for Linux
5 **  Ported from existing RIO Driver for SCO sources.
6  *
7  *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8  *
9  *      This program is free software; you can redistribute it and/or modify
10  *      it under the terms of the GNU General Public License as published by
11  *      the Free Software Foundation; either version 2 of the License, or
12  *      (at your option) any later version.
13  *
14  *      This program is distributed in the hope that it will be useful,
15  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *      GNU General Public License for more details.
18  *
19  *      You should have received a copy of the GNU General Public License
20  *      along with this program; if not, write to the Free Software
21  *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **
23 **	Module		: rioboot.c
24 **	SID		: 1.3
25 **	Last Modified	: 11/6/98 10:33:36
26 **	Retrieved	: 11/6/98 10:33:48
27 **
28 **  ident @(#)rioboot.c	1.3
29 **
30 ** -----------------------------------------------------------------------------
31 */
32 
33 #ifdef SCCS_LABELS
34 static char *_rioboot_c_sccs_ = "@(#)rioboot.c	1.3";
35 #endif
36 
37 #define __NO_VERSION__
38 #include <linux/module.h>
39 #include <linux/slab.h>
40 #include <linux/errno.h>
41 #include <linux/interrupt.h>
42 #include <asm/io.h>
43 #include <asm/system.h>
44 #include <asm/string.h>
45 #include <asm/semaphore.h>
46 
47 
48 #include <linux/termios.h>
49 #include <linux/serial.h>
50 
51 #include <linux/compatmac.h>
52 #include <linux/generic_serial.h>
53 
54 
55 
56 #include "linux_compat.h"
57 #include "rio_linux.h"
58 #include "typdef.h"
59 #include "pkt.h"
60 #include "daemon.h"
61 #include "rio.h"
62 #include "riospace.h"
63 #include "top.h"
64 #include "cmdpkt.h"
65 #include "map.h"
66 #include "riotypes.h"
67 #include "rup.h"
68 #include "port.h"
69 #include "riodrvr.h"
70 #include "rioinfo.h"
71 #include "func.h"
72 #include "errors.h"
73 #include "pci.h"
74 
75 #include "parmmap.h"
76 #include "unixrup.h"
77 #include "board.h"
78 #include "host.h"
79 #include "error.h"
80 #include "phb.h"
81 #include "link.h"
82 #include "cmdblk.h"
83 #include "route.h"
84 
85 static uchar
86 RIOAtVec2Ctrl[] =
87 {
88 	/* 0 */  INTERRUPT_DISABLE,
89 	/* 1 */  INTERRUPT_DISABLE,
90 	/* 2 */  INTERRUPT_DISABLE,
91 	/* 3 */  INTERRUPT_DISABLE,
92 	/* 4 */  INTERRUPT_DISABLE,
93 	/* 5 */  INTERRUPT_DISABLE,
94 	/* 6 */  INTERRUPT_DISABLE,
95 	/* 7 */  INTERRUPT_DISABLE,
96 	/* 8 */  INTERRUPT_DISABLE,
97 	/* 9 */  IRQ_9|INTERRUPT_ENABLE,
98 	/* 10 */ INTERRUPT_DISABLE,
99 	/* 11 */ IRQ_11|INTERRUPT_ENABLE,
100 	/* 12 */ IRQ_12|INTERRUPT_ENABLE,
101 	/* 13 */ INTERRUPT_DISABLE,
102 	/* 14 */ INTERRUPT_DISABLE,
103 	/* 15 */ IRQ_15|INTERRUPT_ENABLE
104 };
105 
106 /*
107 ** Load in the RTA boot code.
108 */
109 int
RIOBootCodeRTA(p,rbp)110 RIOBootCodeRTA(p, rbp)
111 struct rio_info *	p;
112 struct DownLoad *	rbp;
113 {
114 	int offset;
115 
116 	func_enter ();
117 
118 	/* Linux doesn't allow you to disable interrupts during a
119 	   "copyin". (Crash when a pagefault occurs). */
120 	/* disable(oldspl); */
121 
122 	rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP);
123 
124 	/*
125 	** Check that we have set asside enough memory for this
126 	*/
127 	if ( rbp->Count > SIXTY_FOUR_K ) {
128 		rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
129 		p->RIOError.Error = HOST_FILE_TOO_LARGE;
130 		/* restore(oldspl); */
131 		func_exit ();
132 		return ENOMEM;
133 	}
134 
135 	if ( p->RIOBooting ) {
136 		rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
137 		p->RIOError.Error = BOOT_IN_PROGRESS;
138 		/* restore(oldspl); */
139 		func_exit ();
140 		return EBUSY;
141 	}
142 
143 	/*
144 	** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
145 	** so calculate how far we have to move the data up the buffer
146 	** to achieve this.
147 	*/
148 	offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) %
149 							RTA_BOOT_DATA_SIZE;
150 
151 	/*
152 	** Be clean, and clear the 'unused' portion of the boot buffer,
153 	** because it will (eventually) be part of the Rta run time environment
154 	** and so should be zeroed.
155 	*/
156 	bzero( (caddr_t)p->RIOBootPackets, offset );
157 
158 	/*
159 	** Copy the data from user space.
160 	*/
161 
162 	if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset,
163 				rbp->Count) ==COPYFAIL ) {
164 		rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n");
165 		p->RIOError.Error = COPYIN_FAILED;
166 		/* restore(oldspl); */
167 		func_exit ();
168 		return EFAULT;
169 	}
170 
171 	/*
172 	** Make sure that our copy of the size includes that offset we discussed
173 	** earlier.
174 	*/
175 	p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE;
176 	p->RIOBootCount   = rbp->Count;
177 
178 	/* restore(oldspl); */
179 	func_exit();
180 	return 0;
181 }
182 
rio_start_card_running(struct Host * HostP)183 void rio_start_card_running (struct Host * HostP)
184 {
185 	func_enter ();
186 
187 	switch ( HostP->Type ) {
188 	case RIO_AT:
189 		rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n");
190 		WBYTE(HostP->Control,
191 		      BOOT_FROM_RAM | EXTERNAL_BUS_ON
192 		      | HostP->Mode
193 		      | RIOAtVec2Ctrl[HostP->Ivec & 0xF] );
194 		break;
195 
196 #ifdef FUTURE_RELEASE
197 	case RIO_MCA:
198 				/*
199 				** MCA handles IRQ vectors differently, so we don't write
200 				** them to this register.
201 				*/
202 		rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n");
203 		WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode);
204 		break;
205 
206 	case RIO_EISA:
207 				/*
208 				** EISA is totally different and expects OUTBZs to turn it on.
209 				*/
210 		rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n");
211 		OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM );
212 		break;
213 #endif
214 
215 	case RIO_PCI:
216 				/*
217 				** PCI is much the same as MCA. Everything is once again memory
218 				** mapped, so we are writing to memory registers instead of io
219 				** ports.
220 				*/
221 		rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n");
222 		WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode);
223 		break;
224 	default:
225 		rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
226 		break;
227 	}
228 /*
229 	printk (KERN_INFO "Done with starting the card\n");
230 	func_exit ();
231 */
232 	return;
233 }
234 
235 /*
236 ** Load in the host boot code - load it directly onto all halted hosts
237 ** of the correct type.
238 **
239 ** Put your rubber pants on before messing with this code - even the magic
240 ** numbers have trouble understanding what they are doing here.
241 */
242 int
RIOBootCodeHOST(p,rbp)243 RIOBootCodeHOST(p, rbp)
244 struct rio_info *	p;
245 register struct DownLoad *rbp;
246 {
247 	register struct Host *HostP;
248 	register caddr_t Cad;
249 	register PARM_MAP *ParmMapP;
250 	register int RupN;
251 	int PortN;
252 	uint host;
253 	caddr_t StartP;
254 	BYTE *DestP;
255 	int wait_count;
256 	ushort OldParmMap;
257 	ushort offset;	/* It is very important that this is a ushort */
258 	/* uint byte; */
259 	caddr_t DownCode = NULL;
260 	unsigned long flags;
261 
262 	HostP = NULL; /* Assure the compiler we've initialized it */
263 	for ( host=0; host<p->RIONumHosts; host++ ) {
264 		rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host);
265 		HostP = &p->RIOHosts[host];
266 
267 		rio_dprintk (RIO_DEBUG_BOOT,  "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
268 		    HostP->Type, HostP->Mode, HostP->Ivec);
269 
270 
271 		if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) {
272 			rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host);
273 			continue;
274 		}
275 
276 		/*
277 		** Grab a 32 bit pointer to the card.
278 		*/
279 		Cad = HostP->Caddr;
280 
281 		/*
282 		** We are going to (try) and load in rbp->Count bytes.
283 		** The last byte will reside at p->RIOConf.HostLoadBase-1;
284 		** Therefore, we need to start copying at address
285 		** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
286 		*/
287 		StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count];
288 
289 		rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad );
290 		rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP);
291 		rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
292 		rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
293 
294 		if ( p->RIOConf.HostLoadBase < rbp->Count ) {
295 			rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n");
296 			p->RIOError.Error = HOST_FILE_TOO_LARGE;
297 			func_exit ();
298 			return EFBIG;
299 		}
300 		/*
301 		** Ensure that the host really is stopped.
302 		** Disable it's external bus & twang its reset line.
303 		*/
304 		RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );
305 
306 		/*
307 		** Copy the data directly from user space to the SRAM.
308 		** This ain't going to be none too clever if the download
309 		** code is bigger than this segment.
310 		*/
311 		rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n");
312 
313 		/*
314 		** PCI hostcard can't cope with 32 bit accesses and so need to copy
315 		** data to a local buffer, and then dripfeed the card.
316 		*/
317 		if ( HostP->Type == RIO_PCI ) {
318 		  /* int offset; */
319 
320 			DownCode = sysbrk(rbp->Count);
321 			if ( !DownCode ) {
322 				rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n");
323 				p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
324 				func_exit ();
325 				return ENOMEM;
326 			}
327 			bzero(DownCode, rbp->Count);
328 
329 			if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) {
330 				rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
331 				sysfree( DownCode, rbp->Count );
332 				p->RIOError.Error = COPYIN_FAILED;
333 				func_exit ();
334 				return EFAULT;
335 			}
336 
337 			HostP->Copy( DownCode, StartP, rbp->Count );
338 
339 			sysfree( DownCode, rbp->Count );
340 		}
341 		else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) {
342 			rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
343 			p->RIOError.Error = COPYIN_FAILED;
344 			func_exit ();
345 			return EFAULT;
346 		}
347 
348 		rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n");
349 
350 		/*
351 		**			S T O P !
352 		**
353 		** Upto this point the code has been fairly rational, and possibly
354 		** even straight forward. What follows is a pile of crud that will
355 		** magically turn into six bytes of transputer assembler. Normally
356 		** you would expect an array or something, but, being me, I have
357 		** chosen [been told] to use a technique whereby the startup code
358 		** will be correct if we change the loadbase for the code. Which
359 		** brings us onto another issue - the loadbase is the *end* of the
360 		** code, not the start.
361 		**
362 		** If I were you I wouldn't start from here.
363 		*/
364 
365 		/*
366 		** We now need to insert a short boot section into
367 		** the memory at the end of Sram2. This is normally (de)composed
368 		** of the last eight bytes of the download code. The
369 		** download has been assembled/compiled to expect to be
370 		** loaded from 0x7FFF downwards. We have loaded it
371 		** at some other address. The startup code goes into the small
372 		** ram window at Sram2, in the last 8 bytes, which are really
373 		** at addresses 0x7FF8-0x7FFF.
374 		**
375 		** If the loadbase is, say, 0x7C00, then we need to branch to
376 		** address 0x7BFE to run the host.bin startup code. We assemble
377 		** this jump manually.
378 		**
379 		** The two byte sequence 60 08 is loaded into memory at address
380 		** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
381 		** which adds '0' to the .O register, complements .O, and then shifts
382 		** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
383 		** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
384 		** location. Now, the branch starts from the value of .PC (or .IP or
385 		** whatever the bloody register is called on this chip), and the .PC
386 		** will be pointing to the location AFTER the branch, in this case
387 		** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
388 		**
389 		** A long branch is coded at 0x7FF8. This consists of loading a four
390 		** byte offset into .O using nfix (as above) and pfix operators. The
391 		** pfix operates in exactly the same way as the nfix operator, but
392 		** without the complement operation. The offset, of course, must be
393 		** relative to the address of the byte AFTER the branch instruction,
394 		** which will be (urm) 0x7FFC, so, our final destination of the branch
395 		** (loadbase-2), has to be reached from here. Imagine that the loadbase
396 		** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
397 		** is the first byte of the initial two byte short local branch of the
398 		** download code).
399 		**
400 		** To code a jump from 0x7FFC (which is where the branch will start
401 		** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
402 		** 0x7BFE.
403 		** This will be coded as four bytes:
404 		** 60 2C 20 02
405 		** being nfix .O+0
406 		**	   pfix .O+C
407 		**	   pfix .O+0
408 		**	   jump .O+2
409 		**
410 		** The nfix operator is used, so that the startup code will be
411 		** compatible with the whole Tp family. (lies, damn lies, it'll never
412 		** work in a month of Sundays).
413 		**
414 		** The nfix nyble is the 1s compliment of the nyble value you
415 		** want to load - in this case we wanted 'F' so we nfix loaded '0'.
416 		*/
417 
418 
419 		/*
420 		** Dest points to the top 8 bytes of Sram2. The Tp jumps
421 		** to 0x7FFE at reset time, and starts executing. This is
422 		** a short branch to 0x7FF8, where a long branch is coded.
423 		*/
424 
425 		DestP = (BYTE *)&Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */
426 
427 #define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */
428 #define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */
429 #define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O	 */
430 
431 		/*
432 		** 0x7FFC is the address of the location following the last byte of
433 		** the four byte jump instruction.
434 		** READ THE ABOVE COMMENTS
435 		**
436 		** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
437 		** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
438 		** cos I don't understand 2's complement).
439 		*/
440 		offset = (p->RIOConf.HostLoadBase-2)-0x7FFC;
441 		WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) );
442 		WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) );
443 		WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) );
444 		WBYTE( DestP[3] , JUMP( offset & 0xF) );
445 
446 		WBYTE( DestP[6] , NFIX(0) );
447 		WBYTE( DestP[7] , JUMP(8) );
448 
449 		rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
450 		rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset);
451 
452 		/*
453 		** Flag what is going on
454 		*/
455 		HostP->Flags &= ~RUN_STATE;
456 		HostP->Flags |= RC_STARTUP;
457 
458 		/*
459 		** Grab a copy of the current ParmMap pointer, so we
460 		** can tell when it has changed.
461 		*/
462 		OldParmMap = RWORD(HostP->__ParmMapR);
463 
464 		rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap);
465 
466 		/*
467 		** And start it running (I hope).
468 		** As there is nothing dodgy or obscure about the
469 		** above code, this is guaranteed to work every time.
470 		*/
471 		rio_dprintk (RIO_DEBUG_BOOT,  "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
472 		    HostP->Type, HostP->Mode, HostP->Ivec);
473 
474 		rio_start_card_running(HostP);
475 
476 		rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n");
477 
478 		/*
479 		** Now, wait for upto five seconds for the Tp to setup the parmmap
480 		** pointer:
481 		*/
482 		for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&&
483 			(RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) {
484 			rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR));
485 			delay(HostP, HUNDRED_MS);
486 
487 		}
488 
489 		/*
490 		** If the parmmap pointer is unchanged, then the host code
491 		** has crashed & burned in a really spectacular way
492 		*/
493 		if ( RWORD(HostP->__ParmMapR) == OldParmMap ) {
494 			rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR));
495 			rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
496 
497 #define	HOST_DISABLE \
498 		HostP->Flags &= ~RUN_STATE; \
499 		HostP->Flags |= RC_STUFFED; \
500 		RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\
501 		continue
502 
503 			HOST_DISABLE;
504 		}
505 
506 		rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR));
507 
508 		/*
509 		** Well, the board thought it was OK, and setup its parmmap
510 		** pointer. For the time being, we will pretend that this
511 		** board is running, and check out what the error flag says.
512 		*/
513 
514 		/*
515 		** Grab a 32 bit pointer to the parmmap structure
516 		*/
517 		ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR));
518 		rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
519 		ParmMapP = (PARM_MAP *)((unsigned long)Cad +
520 						(unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF));
521 		rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
522 
523 		/*
524 		** The links entry should be 0xFFFF; we set it up
525 		** with a mask to say how many PHBs to use, and
526 		** which links to use.
527 		*/
528 		if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) {
529 			rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
530 			rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links));
531 			HOST_DISABLE;
532 		}
533 
534 		WWORD(ParmMapP->links , RIO_LINK_ENABLE);
535 
536 		/*
537 		** now wait for the card to set all the parmmap->XXX stuff
538 		** this is a wait of upto two seconds....
539 		*/
540 		rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime);
541 		HostP->timeout_id = 0;
542 		for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) &&
543 						!RWORD(ParmMapP->init_done); wait_count++ ) {
544 			rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n");
545 			delay(HostP, HUNDRED_MS);
546 		}
547 		rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n");
548 
549 		if (RWORD(ParmMapP->error) != E_NO_ERROR ||
550 							!RWORD(ParmMapP->init_done) ) {
551 			rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
552 			rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
553 			HOST_DISABLE;
554 		}
555 
556 		rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n");
557 
558 		/*
559 		** It runs! It runs!
560 		*/
561 		rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum);
562 
563 		/*
564 		** set the time period between interrupts.
565 		*/
566 		WWORD(ParmMapP->timer, (short)p->RIOConf.Timer );
567 
568 		/*
569 		** Translate all the 16 bit pointers in the __ParmMapR into
570 		** 32 bit pointers for the driver.
571 		*/
572 		HostP->ParmMapP	 =	ParmMapP;
573 		HostP->PhbP		 =	(PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr));
574 		HostP->RupP		 =	(RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups));
575 		HostP->PhbNumP	  = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr));
576 		HostP->LinkStrP	 =	(LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr));
577 
578 		/*
579 		** point the UnixRups at the real Rups
580 		*/
581 		for ( RupN = 0; RupN<MAX_RUP; RupN++ ) {
582 			HostP->UnixRups[RupN].RupP		= &HostP->RupP[RupN];
583 			HostP->UnixRups[RupN].Id		  = RupN+1;
584 			HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
585 			HostP->UnixRups[RupN].RupLock = SPIN_LOCK_UNLOCKED;
586 		}
587 
588 		for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) {
589 			HostP->UnixRups[RupN+MAX_RUP].RupP	= &HostP->LinkStrP[RupN].rup;
590 			HostP->UnixRups[RupN+MAX_RUP].Id  = 0;
591 			HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT;
592 			HostP->UnixRups[RupN+MAX_RUP].RupLock = SPIN_LOCK_UNLOCKED;
593 		}
594 
595 		/*
596 		** point the PortP->Phbs at the real Phbs
597 		*/
598 		for ( PortN=p->RIOFirstPortsMapped;
599 				PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) {
600 			if ( p->RIOPortp[PortN]->HostP == HostP ) {
601 				struct Port *PortP = p->RIOPortp[PortN];
602 				struct PHB *PhbP;
603 				/* int oldspl; */
604 
605 				if ( !PortP->Mapped )
606 					continue;
607 
608 				PhbP = &HostP->PhbP[PortP->HostPort];
609 				rio_spin_lock_irqsave(&PortP->portSem, flags);
610 
611 				PortP->PhbP = PhbP;
612 
613 				PortP->TxAdd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add));
614 				PortP->TxStart  = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start));
615 				PortP->TxEnd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end));
616 				PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove));
617 				PortP->RxStart  = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start));
618 				PortP->RxEnd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end));
619 
620 				rio_spin_unlock_irqrestore(&PortP->portSem, flags);
621 				/*
622 				** point the UnixRup at the base SysPort
623 				*/
624 				if ( !(PortN % PORTS_PER_RTA) )
625 					HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
626 			}
627 		}
628 
629 		rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n");
630 		/*
631 		** last thing - show the world that everything is in place
632 		*/
633 		HostP->Flags &= ~RUN_STATE;
634 		HostP->Flags |= RC_RUNNING;
635 	}
636 	/*
637 	** MPX always uses a poller. This is actually patched into the system
638 	** configuration and called directly from each clock tick.
639 	**
640 	*/
641 	p->RIOPolling = 1;
642 
643 	p->RIOSystemUp++;
644 
645 	rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
646 	func_exit ();
647 	return 0;
648 }
649 
650 
651 
652 /*
653 ** Boot an RTA. If we have successfully processed this boot, then
654 ** return 1. If we havent, then return 0.
655 */
656 int
RIOBootRup(p,Rup,HostP,PacketP)657 RIOBootRup( p, Rup, HostP, PacketP)
658 struct rio_info *	p;
659 uint Rup;
660 struct Host *HostP;
661 struct PKT *PacketP;
662 {
663 	struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data;
664 	struct PktCmd_M *PktReplyP;
665 	struct CmdBlk *CmdBlkP;
666 	uint sequence;
667 
668 #ifdef CHECK
669 	CheckHost(Host);
670 	CheckRup(Rup);
671 	CheckHostP(HostP);
672 	CheckPacketP(PacketP);
673 #endif
674 
675 	/*
676 	** If we haven't been told what to boot, we can't boot it.
677 	*/
678 	if ( p->RIONumBootPkts == 0 ) {
679 		rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n");
680 		return 0;
681 	}
682 
683 	/* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */
684 	/* ShowPacket( DBG_BOOT, PacketP ); */
685 
686 	/*
687 	** Special case of boot completed - if we get one of these then we
688 	** don't need a command block. For all other cases we do, so handle
689 	** this first and then get a command block, then handle every other
690 	** case, relinquishing the command block if disaster strikes!
691 	*/
692 	if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) &&
693 			(RBYTE(PktCmdP->Command)==BOOT_COMPLETED) )
694 		return RIOBootComplete(p, HostP, Rup, PktCmdP );
695 
696 	/*
697 	** try to unhook a command block from the command free list.
698 	*/
699 	if ( !(CmdBlkP = RIOGetCmdBlk()) ) {
700 		rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
701 		return 0;
702 	}
703 
704 	/*
705 	** Fill in the default info on the command block
706 	*/
707 	CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0;
708 	CmdBlkP->Packet.dest_port = BOOT_RUP;
709 	CmdBlkP->Packet.src_unit  = 0;
710 	CmdBlkP->Packet.src_port  = BOOT_RUP;
711 
712 	CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
713 	PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data;
714 
715 	/*
716 	** process COMMANDS on the boot rup!
717 	*/
718 	if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) {
719 		/*
720 		** We only expect one type of command - a BOOT_REQUEST!
721 		*/
722 		if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) {
723 			rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n",
724 						PktCmdP->Command,Rup,HostP-p->RIOHosts);
725 			ShowPacket( DBG_BOOT, PacketP );
726 			RIOFreeCmdBlk( CmdBlkP );
727 			return 1;
728 		}
729 
730 		/*
731 		** Build a Boot Sequence command block
732 		**
733 		** 02.03.1999 ARG - ESIL 0820 fix
734 		** We no longer need to use "Boot Mode", we'll always allow
735 		** boot requests - the boot will not complete if the device
736 		** appears in the bindings table.
737 		** So, this conditional is not required ...
738 		**
739 		if (p->RIOBootMode == RC_BOOT_NONE)
740 			**
741 			** If the system is in slave mode, and a boot request is
742 			** received, set command to BOOT_ABORT so that the boot
743 			** will not complete.
744 			**
745 			PktReplyP->Command			 = BOOT_ABORT;
746 		else
747 		**
748 		** We'll just (always) set the command field in packet reply
749 		** to allow an attempted boot sequence :
750 		*/
751 		PktReplyP->Command = BOOT_SEQUENCE;
752 
753 		PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
754 		PktReplyP->BootSequence.LoadBase   = p->RIOConf.RtaLoadBase;
755 		PktReplyP->BootSequence.CodeSize   = p->RIOBootCount;
756 
757 		CmdBlkP->Packet.len				= BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
758 
759 		bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4);
760 
761 		rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n",
762 			HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts,
763 								p->RIOConf.RtaLoadBase);
764 
765 		/*
766 		** If this host is in slave mode, send the RTA an invalid boot
767 		** sequence command block to force it to kill the boot. We wait
768 		** for half a second before sending this packet to prevent the RTA
769 		** attempting to boot too often. The master host should then grab
770 		** the RTA and make it its own.
771 		*/
772 		p->RIOBooting++;
773 		RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
774 		return 1;
775 	}
776 
777 	/*
778 	** It is a request for boot data.
779 	*/
780 	sequence = RWORD(PktCmdP->Sequence);
781 
782 	rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup);
783 
784 	if ( sequence >= p->RIONumBootPkts ) {
785 		rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence,
786 					p->RIONumBootPkts);
787 		ShowPacket( DBG_BOOT, PacketP );
788 	}
789 
790 	PktReplyP->Sequence = sequence;
791 
792 	bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ],
793 				PktReplyP->BootData, RTA_BOOT_DATA_SIZE );
794 
795 	CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
796 	ShowPacket( DBG_BOOT, &CmdBlkP->Packet );
797 	RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
798 	return 1;
799 }
800 
801 /*
802 ** This function is called when an RTA been booted.
803 ** If booted by a host, HostP->HostUniqueNum is the booting host.
804 ** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
805 ** RtaUniq is the booted RTA.
806 */
RIOBootComplete(struct rio_info * p,struct Host * HostP,uint Rup,struct PktCmd * PktCmdP)807 int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP )
808 {
809 	struct Map	*MapP = NULL;
810 	struct Map	*MapP2 = NULL;
811 	int	Flag;
812 	int	found;
813 	int	host, rta;
814 	int	EmptySlot = -1;
815 	int	entry, entry2;
816 	char	*MyType, *MyName;
817 	uint	MyLink;
818 	ushort	RtaType;
819 	uint	RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) +
820 			  (RBYTE(PktCmdP->UniqNum[1]) << 8) +
821 			  (RBYTE(PktCmdP->UniqNum[2]) << 16) +
822 			  (RBYTE(PktCmdP->UniqNum[3]) << 24);
823 
824 	/* Was RIOBooting-- . That's bad. If an RTA sends two of them, the
825 	   driver will never think that the RTA has booted... -- REW */
826 	p->RIOBooting = 0;
827 
828 	rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
829 
830 	/*
831 	** Determine type of unit (16/8 port RTA).
832 	*/
833 	RtaType = GetUnitType(RtaUniq);
834         if ( Rup >= (ushort)MAX_RUP ) {
835 	    rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n",
836 	     HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A');
837 	} else {
838 	    rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n",
839 	     HostP->Mapping[Rup].Name, 8 * RtaType,
840 	     RBYTE(PktCmdP->LinkNum)+'A');
841 	}
842 
843 	rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq);
844 
845         if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) )
846 	{
847 	    rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
848 	    return TRUE;
849 	}
850 
851 	/*
852 	** If this RTA has just booted an RTA which doesn't belong to this
853 	** system, or the system is in slave mode, do not attempt to create
854 	** a new table entry for it.
855 	*/
856 	if (!RIOBootOk(p, HostP, RtaUniq))
857 	{
858 	    MyLink = RBYTE(PktCmdP->LinkNum);
859 	    if (Rup < (ushort) MAX_RUP)
860 	    {
861 		/*
862 		** RtaUniq was clone booted (by this RTA). Instruct this RTA
863 		** to hold off further attempts to boot on this link for 30
864 		** seconds.
865 		*/
866 		if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink))
867 		{
868 		    rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n",
869 		     'A' + MyLink);
870 		}
871 	    }
872 	    else
873 	    {
874 		/*
875 		** RtaUniq was booted by this host. Set the booting link
876 		** to hold off for 30 seconds to give another unit a
877 		** chance to boot it.
878 		*/
879 		WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30);
880 	    }
881 	    rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n",
882 	      RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
883 	    return TRUE;
884 	}
885 
886 	/*
887 	** Check for a SLOT_IN_USE entry for this RTA attached to the
888 	** current host card in the driver table.
889 	**
890 	** If it exists, make a note that we have booted it. Other parts of
891 	** the driver are interested in this information at a later date,
892 	** in particular when the booting RTA asks for an ID for this unit,
893 	** we must have set the BOOTED flag, and the NEWBOOT flag is used
894 	** to force an open on any ports that where previously open on this
895 	** unit.
896 	*/
897         for ( entry=0; entry<MAX_RUP; entry++ )
898 	{
899 	    uint sysport;
900 
901 	    if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) &&
902 	       (HostP->Mapping[entry].RtaUniqueNum==RtaUniq))
903 	    {
904 	        HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT;
905 #if NEED_TO_FIX
906 		RIO_SV_BROADCAST(HostP->svFlags[entry]);
907 #endif
908 		if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT )
909 		{
910 		   if ( sysport < p->RIOFirstPortsBooted )
911 			p->RIOFirstPortsBooted = sysport;
912 		   if ( sysport > p->RIOLastPortsBooted )
913 			p->RIOLastPortsBooted = sysport;
914 		   /*
915 		   ** For a 16 port RTA, check the second bank of 8 ports
916 		   */
917 		   if (RtaType == TYPE_RTA16)
918 		   {
919 			entry2 = HostP->Mapping[entry].ID2 - 1;
920 			HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT;
921 #if NEED_TO_FIX
922 			RIO_SV_BROADCAST(HostP->svFlags[entry2]);
923 #endif
924 			sysport = HostP->Mapping[entry2].SysPort;
925 			if ( sysport < p->RIOFirstPortsBooted )
926 			    p->RIOFirstPortsBooted = sysport;
927 			if ( sysport > p->RIOLastPortsBooted )
928 			    p->RIOLastPortsBooted = sysport;
929 		   }
930 		}
931 		if (RtaType == TYPE_RTA16) {
932 		   rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n",
933 		    entry+1, entry2+1);
934 		} else {
935 		   rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1);
936 		}
937 		return TRUE;
938 	    }
939 	}
940 
941 	rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n");
942 
943 	if ( Rup >= (ushort)MAX_RUP )
944 	{
945 	    /*
946 	    ** It was a host that did the booting
947 	    */
948 	    MyType = "Host";
949 	    MyName = HostP->Name;
950 	}
951 	else
952 	{
953 	    /*
954 	    ** It was an RTA that did the booting
955 	    */
956 	    MyType = "RTA";
957 	    MyName = HostP->Mapping[Rup].Name;
958 	}
959 #ifdef CHECK
960 	CheckString(MyType);
961 	CheckString(MyName);
962 #endif
963 
964 	MyLink = RBYTE(PktCmdP->LinkNum);
965 
966 	/*
967 	** There is no SLOT_IN_USE entry for this RTA attached to the current
968 	** host card in the driver table.
969 	**
970 	** Check for a SLOT_TENTATIVE entry for this RTA attached to the
971 	** current host card in the driver table.
972 	**
973 	** If we find one, then we re-use that slot.
974 	*/
975 	for ( entry=0; entry<MAX_RUP; entry++ )
976 	{
977 	    if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) &&
978 		 (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) )
979 	    {
980 		if (RtaType == TYPE_RTA16)
981 		{
982 		    entry2 = HostP->Mapping[entry].ID2 - 1;
983 		    if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) &&
984 			 (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) )
985 			rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n",
986 			 entry, entry2);
987 		    else
988 			continue;
989 		}
990 		else
991 			rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry);
992 		if (! p->RIONoMessage)
993 		    cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
994 		return TRUE;
995 	    }
996 	}
997 
998 	/*
999 	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1000 	** attached to the current host card in the driver table.
1001 	**
1002 	** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
1003 	** host for this RTA in the driver table.
1004 	**
1005 	** For a SLOT_IN_USE entry on another host, we need to delete the RTA
1006 	** entry from the other host and add it to this host (using some of
1007 	** the functions from table.c which do this).
1008 	** For a SLOT_TENTATIVE entry on another host, we must cope with the
1009 	** following scenario:
1010 	**
1011 	** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
1012 	**   in table)
1013 	** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
1014 	**   entries)
1015 	** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
1016 	** + Unplug RTA and plug back into host A.
1017 	** + Configure RTA on host A. We now have the same RTA configured
1018 	**   with different ports on two different hosts.
1019 	*/
1020 	rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq );
1021 	found = 0;
1022 	Flag = 0; /* Convince the compiler this variable is initialized */
1023 	for ( host = 0; !found && (host < p->RIONumHosts); host++ )
1024 	{
1025 	    for ( rta=0; rta<MAX_RUP; rta++ )
1026 	    {
1027 		if ((p->RIOHosts[host].Mapping[rta].Flags &
1028 		 (SLOT_IN_USE | SLOT_TENTATIVE)) &&
1029 		 (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq))
1030 		{
1031 		    Flag = p->RIOHosts[host].Mapping[rta].Flags;
1032 		    MapP = &p->RIOHosts[host].Mapping[rta];
1033 		    if (RtaType == TYPE_RTA16)
1034 		    {
1035 			MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
1036 			rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n",
1037 			 rta+1, MapP->ID2, p->RIOHosts[host].Name);
1038 		    }
1039 		    else
1040 			rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n",
1041 			 rta+1, p->RIOHosts[host].Name);
1042 		    found = 1;
1043 		    break;
1044 		}
1045 	    }
1046 	}
1047 
1048 	/*
1049 	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1050 	** attached to the current host card in the driver table.
1051 	**
1052 	** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
1053 	** another host for this RTA in the driver table...
1054 	**
1055 	** Check for a SLOT_IN_USE entry for this RTA in the config table.
1056 	*/
1057 	if ( !MapP )
1058 	{
1059 	    rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq);
1060 	    for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ )
1061 	    {
1062 		rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)",
1063 		      rta,
1064 		      p->RIOSavedTable[rta].RtaUniqueNum);
1065 
1066 		if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) &&
1067 		 (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) )
1068 		{
1069 		    MapP = &p->RIOSavedTable[rta];
1070 		    Flag = p->RIOSavedTable[rta].Flags;
1071 		    if (RtaType == TYPE_RTA16)
1072 		    {
1073                         for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES;
1074                          entry2++)
1075                         {
1076                             if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
1077                                 break;
1078                         }
1079                         MapP2 = &p->RIOSavedTable[entry2];
1080                         rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n",
1081                               rta, entry2);
1082 		    }
1083 		    else
1084 			rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
1085 		    break;
1086 		}
1087 	    }
1088 	}
1089 
1090 	/*
1091 	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1092 	** attached to the current host card in the driver table.
1093 	**
1094 	** We may have found a SLOT_IN_USE entry on another host for this
1095 	** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
1096 	** on another host for this RTA in the driver table.
1097 	**
1098 	** Check the driver table for room to fit this newly discovered RTA.
1099 	** RIOFindFreeID() first looks for free slots and if it does not
1100 	** find any free slots it will then attempt to oust any
1101 	** tentative entry in the table.
1102 	*/
1103 	EmptySlot = 1;
1104 	if (RtaType == TYPE_RTA16)
1105 	{
1106 	    if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0)
1107 	    {
1108 		RIODefaultName(p, HostP, entry);
1109 		FillSlot(entry, entry2, RtaUniq, HostP);
1110 		EmptySlot = 0;
1111 	    }
1112 	}
1113 	else
1114 	{
1115 	    if (RIOFindFreeID(p, HostP, &entry, NULL) == 0)
1116 	    {
1117 		RIODefaultName(p, HostP, entry);
1118 		FillSlot(entry, 0, RtaUniq, HostP);
1119 		EmptySlot = 0;
1120 	    }
1121 	}
1122 
1123 	/*
1124 	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1125 	** attached to the current host card in the driver table.
1126 	**
1127 	** If we found a SLOT_IN_USE entry on another host for this
1128 	** RTA in the config or driver table, and there are enough free
1129 	** slots in the driver table, then we need to move it over and
1130 	** delete it from the other host.
1131 	** If we found a SLOT_TENTATIVE entry on another host for this
1132 	** RTA in the driver table, just delete the other host entry.
1133 	*/
1134 	if (EmptySlot == 0)
1135 	{
1136 	    if ( MapP )
1137 	    {
1138 		if (Flag & SLOT_IN_USE)
1139 		{
1140 		    rio_dprintk (RIO_DEBUG_BOOT,
1141     "This RTA configured on another host - move entry to current host (1)\n");
1142 		    HostP->Mapping[entry].SysPort = MapP->SysPort;
1143 		    CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN );
1144 		    HostP->Mapping[entry].Flags =
1145 		     SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
1146 #if NEED_TO_FIX
1147 		    RIO_SV_BROADCAST(HostP->svFlags[entry]);
1148 #endif
1149 		    RIOReMapPorts( p, HostP, &HostP->Mapping[entry] );
1150 		    if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted )
1151 			p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
1152 		    if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted )
1153 			p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
1154 		    rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name);
1155 		}
1156 		else
1157 		{
1158 		    rio_dprintk (RIO_DEBUG_BOOT,
1159    "This RTA has a tentative entry on another host - delete that entry (1)\n");
1160 		    HostP->Mapping[entry].Flags =
1161 		     SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
1162 #if NEED_TO_FIX
1163 		    RIO_SV_BROADCAST(HostP->svFlags[entry]);
1164 #endif
1165 		}
1166 		if (RtaType == TYPE_RTA16)
1167 		{
1168 		    if (Flag & SLOT_IN_USE)
1169 		    {
1170 			HostP->Mapping[entry2].Flags = SLOT_IN_USE |
1171 			 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1172 #if NEED_TO_FIX
1173 			RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1174 #endif
1175 			HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1176 			/*
1177 			** Map second block of ttys for 16 port RTA
1178 			*/
1179 			RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] );
1180 		       if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1181 			 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1182 		       if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1183 			 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1184 			rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",
1185 			       (int)HostP->Mapping[entry2].SysPort,
1186 			       HostP->Mapping[entry].Name);
1187 		    }
1188 		    else
1189 			HostP->Mapping[entry2].Flags = SLOT_TENTATIVE |
1190 			 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1191 #if NEED_TO_FIX
1192 			RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1193 #endif
1194 		    bzero( (caddr_t)MapP2, sizeof(struct Map) );
1195 		}
1196 		bzero( (caddr_t)MapP, sizeof(struct Map) );
1197 		if (! p->RIONoMessage)
1198 		    cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A');
1199 	    }
1200 	    else if (! p->RIONoMessage)
1201 		cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
1202 	    RIOSetChange(p);
1203 	    return TRUE;
1204 	}
1205 
1206 	/*
1207 	** There is no room in the driver table to make an entry for the
1208 	** booted RTA. Keep a note of its Uniq Num in the overflow table,
1209 	** so we can ignore it's ID requests.
1210 	*/
1211 	if (! p->RIONoMessage)
1212 	    cprintf("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A');
1213 	for ( entry=0; entry<HostP->NumExtraBooted; entry++ )
1214 	{
1215 	    if ( HostP->ExtraUnits[entry] == RtaUniq )
1216 	    {
1217 		/*
1218 		** already got it!
1219 		*/
1220 		return TRUE;
1221 	    }
1222 	}
1223 	/*
1224 	** If there is room, add the unit to the list of extras
1225 	*/
1226 	if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS )
1227 	    HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1228 	return TRUE;
1229 }
1230 
1231 
1232 /*
1233 ** If the RTA or its host appears in the RIOBindTab[] structure then
1234 ** we mustn't boot the RTA and should return FALSE.
1235 ** This operation is slightly different from the other drivers for RIO
1236 ** in that this is designed to work with the new utilities
1237 ** not config.rio and is FAR SIMPLER.
1238 ** We no longer support the RIOBootMode variable. It is all done from the
1239 ** "boot/noboot" field in the rio.cf file.
1240 */
1241 int
RIOBootOk(p,HostP,RtaUniq)1242 RIOBootOk(p, HostP, RtaUniq)
1243 struct rio_info *	p;
1244 struct Host *		HostP;
1245 ulong RtaUniq;
1246 {
1247     int		Entry;
1248     uint HostUniq = HostP->UniqueNum;
1249 
1250 	/*
1251 	** Search bindings table for RTA or its parent.
1252 	** If it exists, return 0, else 1.
1253 	*/
1254 	for (Entry = 0;
1255 	    ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 );
1256 	    Entry++)
1257 	{
1258 		if ( (p->RIOBindTab[Entry] == HostUniq) ||
1259 		     (p->RIOBindTab[Entry] == RtaUniq) )
1260 			return 0;
1261 	}
1262 	return 1;
1263 }
1264 
1265 /*
1266 ** Make an empty slot tentative. If this is a 16 port RTA, make both
1267 ** slots tentative, and the second one RTA_SECOND_SLOT as well.
1268 */
1269 
1270 void
FillSlot(entry,entry2,RtaUniq,HostP)1271 FillSlot(entry, entry2, RtaUniq, HostP)
1272 int entry;
1273 int entry2;
1274 uint RtaUniq;
1275 struct Host *HostP;
1276 {
1277 	int		link;
1278 
1279 	rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq);
1280 
1281 	HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1282 	HostP->Mapping[entry].SysPort = NO_PORT;
1283 	HostP->Mapping[entry].RtaUniqueNum = RtaUniq;
1284 	HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum;
1285 	HostP->Mapping[entry].ID = entry + 1;
1286 	HostP->Mapping[entry].ID2 = 0;
1287 	if (entry2) {
1288 		HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT |
1289 								SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1290 		HostP->Mapping[entry2].SysPort = NO_PORT;
1291 		HostP->Mapping[entry2].RtaUniqueNum = RtaUniq;
1292 		HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum;
1293 		HostP->Mapping[entry2].Name[0] = '\0';
1294 		HostP->Mapping[entry2].ID = entry2 + 1;
1295 		HostP->Mapping[entry2].ID2 = entry + 1;
1296 		HostP->Mapping[entry].ID2 = entry2 + 1;
1297 	}
1298 	/*
1299 	** Must set these up, so that utilities show
1300 	** topology of 16 port RTAs correctly
1301 	*/
1302 	for ( link=0; link<LINKS_PER_UNIT; link++ ) {
1303 		HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1304 		HostP->Mapping[entry].Topology[link].Link = NO_LINK;
1305 		if (entry2) {
1306 			HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1307 			HostP->Mapping[entry2].Topology[link].Link = NO_LINK;
1308 		}
1309 	}
1310 }
1311 
1312 #if 0
1313 /*
1314 	Function:	This function is to disable the disk interrupt
1315     Returns :   Nothing
1316 */
1317 void
1318 disable_interrupt(vector)
1319 int	vector;
1320 {
1321 	int	ps;
1322 	int	val;
1323 
1324 	disable(ps);
1325 	if (vector > 40)  {
1326 		val = 1 << (vector - 40);
1327 		__outb(S8259+1, __inb(S8259+1) | val);
1328 	}
1329 	else {
1330 		val = 1 << (vector - 32);
1331 		__outb(M8259+1, __inb(M8259+1) | val);
1332 	}
1333 	restore(ps);
1334 }
1335 
1336 /*
1337 	Function:	This function is to enable the disk interrupt
1338     Returns :   Nothing
1339 */
1340 void
1341 enable_interrupt(vector)
1342 int	vector;
1343 {
1344 	int	ps;
1345 	int	val;
1346 
1347 	disable(ps);
1348 	if (vector > 40)  {
1349 		val = 1 << (vector - 40);
1350 		val = ~val;
1351 		__outb(S8259+1, __inb(S8259+1) & val);
1352 	}
1353 	else {
1354 		val = 1 << (vector - 32);
1355 		val = ~val;
1356 		__outb(M8259+1, __inb(M8259+1) & val);
1357 	}
1358 	restore(ps);
1359 }
1360 #endif
1361