1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel Keem Bay OCS HCU Crypto Driver.
4 *
5 * Copyright (C) 2018-2020 Intel Corporation
6 */
7
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14
15 #include <crypto/engine.h>
16 #include <crypto/scatterwalk.h>
17 #include <crypto/sha2.h>
18 #include <crypto/sm3.h>
19 #include <crypto/hmac.h>
20 #include <crypto/internal/hash.h>
21
22 #include "ocs-hcu.h"
23
24 #define DRV_NAME "keembay-ocs-hcu"
25
26 /* Flag marking a final request. */
27 #define REQ_FINAL BIT(0)
28 /* Flag marking a HMAC request. */
29 #define REQ_FLAGS_HMAC BIT(1)
30 /* Flag set when HW HMAC is being used. */
31 #define REQ_FLAGS_HMAC_HW BIT(2)
32 /* Flag set when SW HMAC is being used. */
33 #define REQ_FLAGS_HMAC_SW BIT(3)
34
35 /**
36 * struct ocs_hcu_ctx: OCS HCU Transform context.
37 * @engine_ctx: Crypto Engine context.
38 * @hcu_dev: The OCS HCU device used by the transformation.
39 * @key: The key (used only for HMAC transformations).
40 * @key_len: The length of the key.
41 * @is_sm3_tfm: Whether or not this is an SM3 transformation.
42 * @is_hmac_tfm: Whether or not this is a HMAC transformation.
43 */
44 struct ocs_hcu_ctx {
45 struct crypto_engine_ctx engine_ctx;
46 struct ocs_hcu_dev *hcu_dev;
47 u8 key[SHA512_BLOCK_SIZE];
48 size_t key_len;
49 bool is_sm3_tfm;
50 bool is_hmac_tfm;
51 };
52
53 /**
54 * struct ocs_hcu_rctx - Context for the request.
55 * @hcu_dev: OCS HCU device to be used to service the request.
56 * @flags: Flags tracking request status.
57 * @algo: Algorithm to use for the request.
58 * @blk_sz: Block size of the transformation / request.
59 * @dig_sz: Digest size of the transformation / request.
60 * @dma_list: OCS DMA linked list.
61 * @hash_ctx: OCS HCU hashing context.
62 * @buffer: Buffer to store: partial block of data and SW HMAC
63 * artifacts (ipad, opad, etc.).
64 * @buf_cnt: Number of bytes currently stored in the buffer.
65 * @buf_dma_addr: The DMA address of @buffer (when mapped).
66 * @buf_dma_count: The number of bytes in @buffer currently DMA-mapped.
67 * @sg: Head of the scatterlist entries containing data.
68 * @sg_data_total: Total data in the SG list at any time.
69 * @sg_data_offset: Offset into the data of the current individual SG node.
70 * @sg_dma_nents: Number of sg entries mapped in dma_list.
71 */
72 struct ocs_hcu_rctx {
73 struct ocs_hcu_dev *hcu_dev;
74 u32 flags;
75 enum ocs_hcu_algo algo;
76 size_t blk_sz;
77 size_t dig_sz;
78 struct ocs_hcu_dma_list *dma_list;
79 struct ocs_hcu_hash_ctx hash_ctx;
80 /*
81 * Buffer is double the block size because we need space for SW HMAC
82 * artifacts, i.e:
83 * - ipad (1 block) + a possible partial block of data.
84 * - opad (1 block) + digest of H(k ^ ipad || m)
85 */
86 u8 buffer[2 * SHA512_BLOCK_SIZE];
87 size_t buf_cnt;
88 dma_addr_t buf_dma_addr;
89 size_t buf_dma_count;
90 struct scatterlist *sg;
91 unsigned int sg_data_total;
92 unsigned int sg_data_offset;
93 unsigned int sg_dma_nents;
94 };
95
96 /**
97 * struct ocs_hcu_drv - Driver data
98 * @dev_list: The list of HCU devices.
99 * @lock: The lock protecting dev_list.
100 */
101 struct ocs_hcu_drv {
102 struct list_head dev_list;
103 spinlock_t lock; /* Protects dev_list. */
104 };
105
106 static struct ocs_hcu_drv ocs_hcu = {
107 .dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list),
108 .lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock),
109 };
110
111 /*
112 * Return the total amount of data in the request; that is: the data in the
113 * request buffer + the data in the sg list.
114 */
kmb_get_total_data(struct ocs_hcu_rctx * rctx)115 static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx)
116 {
117 return rctx->sg_data_total + rctx->buf_cnt;
118 }
119
120 /* Move remaining content of scatter-gather list to context buffer. */
flush_sg_to_ocs_buffer(struct ocs_hcu_rctx * rctx)121 static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx)
122 {
123 size_t count;
124
125 if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) {
126 WARN(1, "%s: sg data does not fit in buffer\n", __func__);
127 return -EINVAL;
128 }
129
130 while (rctx->sg_data_total) {
131 if (!rctx->sg) {
132 WARN(1, "%s: unexpected NULL sg\n", __func__);
133 return -EINVAL;
134 }
135 /*
136 * If current sg has been fully processed, skip to the next
137 * one.
138 */
139 if (rctx->sg_data_offset == rctx->sg->length) {
140 rctx->sg = sg_next(rctx->sg);
141 rctx->sg_data_offset = 0;
142 continue;
143 }
144 /*
145 * Determine the maximum data available to copy from the node.
146 * Minimum of the length left in the sg node, or the total data
147 * in the request.
148 */
149 count = min(rctx->sg->length - rctx->sg_data_offset,
150 rctx->sg_data_total);
151 /* Copy from scatter-list entry to context buffer. */
152 scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt],
153 rctx->sg, rctx->sg_data_offset,
154 count, 0);
155
156 rctx->sg_data_offset += count;
157 rctx->sg_data_total -= count;
158 rctx->buf_cnt += count;
159 }
160
161 return 0;
162 }
163
kmb_ocs_hcu_find_dev(struct ahash_request * req)164 static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req)
165 {
166 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
167 struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
168
169 /* If the HCU device for the request was previously set, return it. */
170 if (tctx->hcu_dev)
171 return tctx->hcu_dev;
172
173 /*
174 * Otherwise, get the first HCU device available (there should be one
175 * and only one device).
176 */
177 spin_lock_bh(&ocs_hcu.lock);
178 tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list,
179 struct ocs_hcu_dev,
180 list);
181 spin_unlock_bh(&ocs_hcu.lock);
182
183 return tctx->hcu_dev;
184 }
185
186 /* Free OCS DMA linked list and DMA-able context buffer. */
kmb_ocs_hcu_dma_cleanup(struct ahash_request * req,struct ocs_hcu_rctx * rctx)187 static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req,
188 struct ocs_hcu_rctx *rctx)
189 {
190 struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev;
191 struct device *dev = hcu_dev->dev;
192
193 /* Unmap rctx->buffer (if mapped). */
194 if (rctx->buf_dma_count) {
195 dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count,
196 DMA_TO_DEVICE);
197 rctx->buf_dma_count = 0;
198 }
199
200 /* Unmap req->src (if mapped). */
201 if (rctx->sg_dma_nents) {
202 dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE);
203 rctx->sg_dma_nents = 0;
204 }
205
206 /* Free dma_list (if allocated). */
207 if (rctx->dma_list) {
208 ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list);
209 rctx->dma_list = NULL;
210 }
211 }
212
213 /*
214 * Prepare for DMA operation:
215 * - DMA-map request context buffer (if needed)
216 * - DMA-map SG list (only the entries to be processed, see note below)
217 * - Allocate OCS HCU DMA linked list (number of elements = SG entries to
218 * process + context buffer (if not empty)).
219 * - Add DMA-mapped request context buffer to OCS HCU DMA list.
220 * - Add SG entries to DMA list.
221 *
222 * Note: if this is a final request, we process all the data in the SG list,
223 * otherwise we can only process up to the maximum amount of block-aligned data
224 * (the remainder will be put into the context buffer and processed in the next
225 * request).
226 */
kmb_ocs_dma_prepare(struct ahash_request * req)227 static int kmb_ocs_dma_prepare(struct ahash_request *req)
228 {
229 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
230 struct device *dev = rctx->hcu_dev->dev;
231 unsigned int remainder = 0;
232 unsigned int total;
233 size_t nents;
234 size_t count;
235 int rc;
236 int i;
237
238 /* This function should be called only when there is data to process. */
239 total = kmb_get_total_data(rctx);
240 if (!total)
241 return -EINVAL;
242
243 /*
244 * If this is not a final DMA (terminated DMA), the data passed to the
245 * HCU must be aligned to the block size; compute the remainder data to
246 * be processed in the next request.
247 */
248 if (!(rctx->flags & REQ_FINAL))
249 remainder = total % rctx->blk_sz;
250
251 /* Determine the number of scatter gather list entries to process. */
252 nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder);
253
254 /* If there are entries to process, map them. */
255 if (nents) {
256 rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents,
257 DMA_TO_DEVICE);
258 if (!rctx->sg_dma_nents) {
259 dev_err(dev, "Failed to MAP SG\n");
260 rc = -ENOMEM;
261 goto cleanup;
262 }
263 /*
264 * The value returned by dma_map_sg() can be < nents; so update
265 * nents accordingly.
266 */
267 nents = rctx->sg_dma_nents;
268 }
269
270 /*
271 * If context buffer is not empty, map it and add extra DMA entry for
272 * it.
273 */
274 if (rctx->buf_cnt) {
275 rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer,
276 rctx->buf_cnt,
277 DMA_TO_DEVICE);
278 if (dma_mapping_error(dev, rctx->buf_dma_addr)) {
279 dev_err(dev, "Failed to map request context buffer\n");
280 rc = -ENOMEM;
281 goto cleanup;
282 }
283 rctx->buf_dma_count = rctx->buf_cnt;
284 /* Increase number of dma entries. */
285 nents++;
286 }
287
288 /* Allocate OCS HCU DMA list. */
289 rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents);
290 if (!rctx->dma_list) {
291 rc = -ENOMEM;
292 goto cleanup;
293 }
294
295 /* Add request context buffer (if previously DMA-mapped) */
296 if (rctx->buf_dma_count) {
297 rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list,
298 rctx->buf_dma_addr,
299 rctx->buf_dma_count);
300 if (rc)
301 goto cleanup;
302 }
303
304 /* Add the SG nodes to be processed to the DMA linked list. */
305 for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) {
306 /*
307 * The number of bytes to add to the list entry is the minimum
308 * between:
309 * - The DMA length of the SG entry.
310 * - The data left to be processed.
311 */
312 count = min(rctx->sg_data_total - remainder,
313 sg_dma_len(rctx->sg) - rctx->sg_data_offset);
314 /*
315 * Do not create a zero length DMA descriptor. Check in case of
316 * zero length SG node.
317 */
318 if (count == 0)
319 continue;
320 /* Add sg to HCU DMA list. */
321 rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev,
322 rctx->dma_list,
323 rctx->sg->dma_address,
324 count);
325 if (rc)
326 goto cleanup;
327
328 /* Update amount of data remaining in SG list. */
329 rctx->sg_data_total -= count;
330
331 /*
332 * If remaining data is equal to remainder (note: 'less than'
333 * case should never happen in practice), we are done: update
334 * offset and exit the loop.
335 */
336 if (rctx->sg_data_total <= remainder) {
337 WARN_ON(rctx->sg_data_total < remainder);
338 rctx->sg_data_offset += count;
339 break;
340 }
341
342 /*
343 * If we get here is because we need to process the next sg in
344 * the list; set offset within the sg to 0.
345 */
346 rctx->sg_data_offset = 0;
347 }
348
349 return 0;
350 cleanup:
351 dev_err(dev, "Failed to prepare DMA.\n");
352 kmb_ocs_hcu_dma_cleanup(req, rctx);
353
354 return rc;
355 }
356
kmb_ocs_hcu_secure_cleanup(struct ahash_request * req)357 static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req)
358 {
359 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
360
361 /* Clear buffer of any data. */
362 memzero_explicit(rctx->buffer, sizeof(rctx->buffer));
363 }
364
kmb_ocs_hcu_handle_queue(struct ahash_request * req)365 static int kmb_ocs_hcu_handle_queue(struct ahash_request *req)
366 {
367 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
368
369 if (!hcu_dev)
370 return -ENOENT;
371
372 return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req);
373 }
374
prepare_ipad(struct ahash_request * req)375 static int prepare_ipad(struct ahash_request *req)
376 {
377 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
378 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
379 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
380 int i;
381
382 WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__);
383 WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW),
384 "%s: HMAC_SW flag is not set\n", __func__);
385 /*
386 * Key length must be equal to block size. If key is shorter,
387 * we pad it with zero (note: key cannot be longer, since
388 * longer keys are hashed by kmb_ocs_hcu_setkey()).
389 */
390 if (ctx->key_len > rctx->blk_sz) {
391 WARN(1, "%s: Invalid key length in tfm context\n", __func__);
392 return -EINVAL;
393 }
394 memzero_explicit(&ctx->key[ctx->key_len],
395 rctx->blk_sz - ctx->key_len);
396 ctx->key_len = rctx->blk_sz;
397 /*
398 * Prepare IPAD for HMAC. Only done for first block.
399 * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m))
400 * k ^ ipad will be first hashed block.
401 * k ^ opad will be calculated in the final request.
402 * Only needed if not using HW HMAC.
403 */
404 for (i = 0; i < rctx->blk_sz; i++)
405 rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE;
406 rctx->buf_cnt = rctx->blk_sz;
407
408 return 0;
409 }
410
kmb_ocs_hcu_do_one_request(struct crypto_engine * engine,void * areq)411 static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq)
412 {
413 struct ahash_request *req = container_of(areq, struct ahash_request,
414 base);
415 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
416 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
417 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
418 struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
419 int rc;
420 int i;
421
422 if (!hcu_dev) {
423 rc = -ENOENT;
424 goto error;
425 }
426
427 /*
428 * If hardware HMAC flag is set, perform HMAC in hardware.
429 *
430 * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx)
431 */
432 if (rctx->flags & REQ_FLAGS_HMAC_HW) {
433 /* Map input data into the HCU DMA linked list. */
434 rc = kmb_ocs_dma_prepare(req);
435 if (rc)
436 goto error;
437
438 rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len,
439 rctx->dma_list, req->result, rctx->dig_sz);
440
441 /* Unmap data and free DMA list regardless of return code. */
442 kmb_ocs_hcu_dma_cleanup(req, rctx);
443
444 /* Process previous return code. */
445 if (rc)
446 goto error;
447
448 goto done;
449 }
450
451 /* Handle update request case. */
452 if (!(rctx->flags & REQ_FINAL)) {
453 /* Update should always have input data. */
454 if (!kmb_get_total_data(rctx))
455 return -EINVAL;
456
457 /* Map input data into the HCU DMA linked list. */
458 rc = kmb_ocs_dma_prepare(req);
459 if (rc)
460 goto error;
461
462 /* Do hashing step. */
463 rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx,
464 rctx->dma_list);
465
466 /* Unmap data and free DMA list regardless of return code. */
467 kmb_ocs_hcu_dma_cleanup(req, rctx);
468
469 /* Process previous return code. */
470 if (rc)
471 goto error;
472
473 /*
474 * Reset request buffer count (data in the buffer was just
475 * processed).
476 */
477 rctx->buf_cnt = 0;
478 /*
479 * Move remaining sg data into the request buffer, so that it
480 * will be processed during the next request.
481 *
482 * NOTE: we have remaining data if kmb_get_total_data() was not
483 * a multiple of block size.
484 */
485 rc = flush_sg_to_ocs_buffer(rctx);
486 if (rc)
487 goto error;
488
489 goto done;
490 }
491
492 /* If we get here, this is a final request. */
493
494 /* If there is data to process, use finup. */
495 if (kmb_get_total_data(rctx)) {
496 /* Map input data into the HCU DMA linked list. */
497 rc = kmb_ocs_dma_prepare(req);
498 if (rc)
499 goto error;
500
501 /* Do hashing step. */
502 rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx,
503 rctx->dma_list,
504 req->result, rctx->dig_sz);
505 /* Free DMA list regardless of return code. */
506 kmb_ocs_hcu_dma_cleanup(req, rctx);
507
508 /* Process previous return code. */
509 if (rc)
510 goto error;
511
512 } else { /* Otherwise (if we have no data), use final. */
513 rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result,
514 rctx->dig_sz);
515 if (rc)
516 goto error;
517 }
518
519 /*
520 * If we are finalizing a SW HMAC request, we just computed the result
521 * of: H(k ^ ipad || m).
522 *
523 * We now need to complete the HMAC calculation with the OPAD step,
524 * that is, we need to compute H(k ^ opad || digest), where digest is
525 * the digest we just obtained, i.e., H(k ^ ipad || m).
526 */
527 if (rctx->flags & REQ_FLAGS_HMAC_SW) {
528 /*
529 * Compute k ^ opad and store it in the request buffer (which
530 * is not used anymore at this point).
531 * Note: key has been padded / hashed already (so keylen ==
532 * blksz) .
533 */
534 WARN_ON(tctx->key_len != rctx->blk_sz);
535 for (i = 0; i < rctx->blk_sz; i++)
536 rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE;
537 /* Now append the digest to the rest of the buffer. */
538 for (i = 0; (i < rctx->dig_sz); i++)
539 rctx->buffer[rctx->blk_sz + i] = req->result[i];
540
541 /* Now hash the buffer to obtain the final HMAC. */
542 rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer,
543 rctx->blk_sz + rctx->dig_sz, req->result,
544 rctx->dig_sz);
545 if (rc)
546 goto error;
547 }
548
549 /* Perform secure clean-up. */
550 kmb_ocs_hcu_secure_cleanup(req);
551 done:
552 crypto_finalize_hash_request(hcu_dev->engine, req, 0);
553
554 return 0;
555
556 error:
557 kmb_ocs_hcu_secure_cleanup(req);
558 return rc;
559 }
560
kmb_ocs_hcu_init(struct ahash_request * req)561 static int kmb_ocs_hcu_init(struct ahash_request *req)
562 {
563 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
564 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
565 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
566 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
567
568 if (!hcu_dev)
569 return -ENOENT;
570
571 /* Initialize entire request context to zero. */
572 memset(rctx, 0, sizeof(*rctx));
573
574 rctx->hcu_dev = hcu_dev;
575 rctx->dig_sz = crypto_ahash_digestsize(tfm);
576
577 switch (rctx->dig_sz) {
578 #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
579 case SHA224_DIGEST_SIZE:
580 rctx->blk_sz = SHA224_BLOCK_SIZE;
581 rctx->algo = OCS_HCU_ALGO_SHA224;
582 break;
583 #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
584 case SHA256_DIGEST_SIZE:
585 rctx->blk_sz = SHA256_BLOCK_SIZE;
586 /*
587 * SHA256 and SM3 have the same digest size: use info from tfm
588 * context to find out which one we should use.
589 */
590 rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 :
591 OCS_HCU_ALGO_SHA256;
592 break;
593 case SHA384_DIGEST_SIZE:
594 rctx->blk_sz = SHA384_BLOCK_SIZE;
595 rctx->algo = OCS_HCU_ALGO_SHA384;
596 break;
597 case SHA512_DIGEST_SIZE:
598 rctx->blk_sz = SHA512_BLOCK_SIZE;
599 rctx->algo = OCS_HCU_ALGO_SHA512;
600 break;
601 default:
602 return -EINVAL;
603 }
604
605 /* Initialize intermediate data. */
606 ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo);
607
608 /* If this a HMAC request, set HMAC flag. */
609 if (ctx->is_hmac_tfm)
610 rctx->flags |= REQ_FLAGS_HMAC;
611
612 return 0;
613 }
614
kmb_ocs_hcu_update(struct ahash_request * req)615 static int kmb_ocs_hcu_update(struct ahash_request *req)
616 {
617 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
618 int rc;
619
620 if (!req->nbytes)
621 return 0;
622
623 rctx->sg_data_total = req->nbytes;
624 rctx->sg_data_offset = 0;
625 rctx->sg = req->src;
626
627 /*
628 * If we are doing HMAC, then we must use SW-assisted HMAC, since HW
629 * HMAC does not support context switching (there it can only be used
630 * with finup() or digest()).
631 */
632 if (rctx->flags & REQ_FLAGS_HMAC &&
633 !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
634 rctx->flags |= REQ_FLAGS_HMAC_SW;
635 rc = prepare_ipad(req);
636 if (rc)
637 return rc;
638 }
639
640 /*
641 * If remaining sg_data fits into ctx buffer, just copy it there; we'll
642 * process it at the next update() or final().
643 */
644 if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt))
645 return flush_sg_to_ocs_buffer(rctx);
646
647 return kmb_ocs_hcu_handle_queue(req);
648 }
649
650 /* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */
kmb_ocs_hcu_fin_common(struct ahash_request * req)651 static int kmb_ocs_hcu_fin_common(struct ahash_request *req)
652 {
653 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
654 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
655 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
656 int rc;
657
658 rctx->flags |= REQ_FINAL;
659
660 /*
661 * If this is a HMAC request and, so far, we didn't have to switch to
662 * SW HMAC, check if we can use HW HMAC.
663 */
664 if (rctx->flags & REQ_FLAGS_HMAC &&
665 !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
666 /*
667 * If we are here, it means we never processed any data so far,
668 * so we can use HW HMAC, but only if there is some data to
669 * process (since OCS HW MAC does not support zero-length
670 * messages) and the key length is supported by the hardware
671 * (OCS HCU HW only supports length <= 64); if HW HMAC cannot
672 * be used, fall back to SW-assisted HMAC.
673 */
674 if (kmb_get_total_data(rctx) &&
675 ctx->key_len <= OCS_HCU_HW_KEY_LEN) {
676 rctx->flags |= REQ_FLAGS_HMAC_HW;
677 } else {
678 rctx->flags |= REQ_FLAGS_HMAC_SW;
679 rc = prepare_ipad(req);
680 if (rc)
681 return rc;
682 }
683 }
684
685 return kmb_ocs_hcu_handle_queue(req);
686 }
687
kmb_ocs_hcu_final(struct ahash_request * req)688 static int kmb_ocs_hcu_final(struct ahash_request *req)
689 {
690 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
691
692 rctx->sg_data_total = 0;
693 rctx->sg_data_offset = 0;
694 rctx->sg = NULL;
695
696 return kmb_ocs_hcu_fin_common(req);
697 }
698
kmb_ocs_hcu_finup(struct ahash_request * req)699 static int kmb_ocs_hcu_finup(struct ahash_request *req)
700 {
701 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
702
703 rctx->sg_data_total = req->nbytes;
704 rctx->sg_data_offset = 0;
705 rctx->sg = req->src;
706
707 return kmb_ocs_hcu_fin_common(req);
708 }
709
kmb_ocs_hcu_digest(struct ahash_request * req)710 static int kmb_ocs_hcu_digest(struct ahash_request *req)
711 {
712 int rc = 0;
713 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
714
715 if (!hcu_dev)
716 return -ENOENT;
717
718 rc = kmb_ocs_hcu_init(req);
719 if (rc)
720 return rc;
721
722 rc = kmb_ocs_hcu_finup(req);
723
724 return rc;
725 }
726
kmb_ocs_hcu_export(struct ahash_request * req,void * out)727 static int kmb_ocs_hcu_export(struct ahash_request *req, void *out)
728 {
729 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
730
731 /* Intermediate data is always stored and applied per request. */
732 memcpy(out, rctx, sizeof(*rctx));
733
734 return 0;
735 }
736
kmb_ocs_hcu_import(struct ahash_request * req,const void * in)737 static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in)
738 {
739 struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
740
741 /* Intermediate data is always stored and applied per request. */
742 memcpy(rctx, in, sizeof(*rctx));
743
744 return 0;
745 }
746
kmb_ocs_hcu_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)747 static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key,
748 unsigned int keylen)
749 {
750 unsigned int digestsize = crypto_ahash_digestsize(tfm);
751 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
752 size_t blk_sz = crypto_ahash_blocksize(tfm);
753 struct crypto_ahash *ahash_tfm;
754 struct ahash_request *req;
755 struct crypto_wait wait;
756 struct scatterlist sg;
757 const char *alg_name;
758 int rc;
759
760 /*
761 * Key length must be equal to block size:
762 * - If key is shorter, we are done for now (the key will be padded
763 * later on); this is to maximize the use of HW HMAC (which works
764 * only for keys <= 64 bytes).
765 * - If key is longer, we hash it.
766 */
767 if (keylen <= blk_sz) {
768 memcpy(ctx->key, key, keylen);
769 ctx->key_len = keylen;
770 return 0;
771 }
772
773 switch (digestsize) {
774 #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
775 case SHA224_DIGEST_SIZE:
776 alg_name = "sha224-keembay-ocs";
777 break;
778 #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
779 case SHA256_DIGEST_SIZE:
780 alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" :
781 "sha256-keembay-ocs";
782 break;
783 case SHA384_DIGEST_SIZE:
784 alg_name = "sha384-keembay-ocs";
785 break;
786 case SHA512_DIGEST_SIZE:
787 alg_name = "sha512-keembay-ocs";
788 break;
789 default:
790 return -EINVAL;
791 }
792
793 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
794 if (IS_ERR(ahash_tfm))
795 return PTR_ERR(ahash_tfm);
796
797 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
798 if (!req) {
799 rc = -ENOMEM;
800 goto err_free_ahash;
801 }
802
803 crypto_init_wait(&wait);
804 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
805 crypto_req_done, &wait);
806 crypto_ahash_clear_flags(ahash_tfm, ~0);
807
808 sg_init_one(&sg, key, keylen);
809 ahash_request_set_crypt(req, &sg, ctx->key, keylen);
810
811 rc = crypto_wait_req(crypto_ahash_digest(req), &wait);
812 if (rc == 0)
813 ctx->key_len = digestsize;
814
815 ahash_request_free(req);
816 err_free_ahash:
817 crypto_free_ahash(ahash_tfm);
818
819 return rc;
820 }
821
822 /* Set request size and initialize tfm context. */
__cra_init(struct crypto_tfm * tfm,struct ocs_hcu_ctx * ctx)823 static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx)
824 {
825 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
826 sizeof(struct ocs_hcu_rctx));
827
828 /* Init context to 0. */
829 memzero_explicit(ctx, sizeof(*ctx));
830 /* Set engine ops. */
831 ctx->engine_ctx.op.do_one_request = kmb_ocs_hcu_do_one_request;
832 }
833
kmb_ocs_hcu_sha_cra_init(struct crypto_tfm * tfm)834 static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm)
835 {
836 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
837
838 __cra_init(tfm, ctx);
839
840 return 0;
841 }
842
kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm * tfm)843 static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm)
844 {
845 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
846
847 __cra_init(tfm, ctx);
848
849 ctx->is_sm3_tfm = true;
850
851 return 0;
852 }
853
kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm * tfm)854 static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm)
855 {
856 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
857
858 __cra_init(tfm, ctx);
859
860 ctx->is_sm3_tfm = true;
861 ctx->is_hmac_tfm = true;
862
863 return 0;
864 }
865
kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm * tfm)866 static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm)
867 {
868 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
869
870 __cra_init(tfm, ctx);
871
872 ctx->is_hmac_tfm = true;
873
874 return 0;
875 }
876
877 /* Function called when 'tfm' is de-initialized. */
kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm * tfm)878 static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm)
879 {
880 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
881
882 /* Clear the key. */
883 memzero_explicit(ctx->key, sizeof(ctx->key));
884 }
885
886 static struct ahash_alg ocs_hcu_algs[] = {
887 #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
888 {
889 .init = kmb_ocs_hcu_init,
890 .update = kmb_ocs_hcu_update,
891 .final = kmb_ocs_hcu_final,
892 .finup = kmb_ocs_hcu_finup,
893 .digest = kmb_ocs_hcu_digest,
894 .export = kmb_ocs_hcu_export,
895 .import = kmb_ocs_hcu_import,
896 .halg = {
897 .digestsize = SHA224_DIGEST_SIZE,
898 .statesize = sizeof(struct ocs_hcu_rctx),
899 .base = {
900 .cra_name = "sha224",
901 .cra_driver_name = "sha224-keembay-ocs",
902 .cra_priority = 255,
903 .cra_flags = CRYPTO_ALG_ASYNC,
904 .cra_blocksize = SHA224_BLOCK_SIZE,
905 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
906 .cra_alignmask = 0,
907 .cra_module = THIS_MODULE,
908 .cra_init = kmb_ocs_hcu_sha_cra_init,
909 }
910 }
911 },
912 {
913 .init = kmb_ocs_hcu_init,
914 .update = kmb_ocs_hcu_update,
915 .final = kmb_ocs_hcu_final,
916 .finup = kmb_ocs_hcu_finup,
917 .digest = kmb_ocs_hcu_digest,
918 .export = kmb_ocs_hcu_export,
919 .import = kmb_ocs_hcu_import,
920 .setkey = kmb_ocs_hcu_setkey,
921 .halg = {
922 .digestsize = SHA224_DIGEST_SIZE,
923 .statesize = sizeof(struct ocs_hcu_rctx),
924 .base = {
925 .cra_name = "hmac(sha224)",
926 .cra_driver_name = "hmac-sha224-keembay-ocs",
927 .cra_priority = 255,
928 .cra_flags = CRYPTO_ALG_ASYNC,
929 .cra_blocksize = SHA224_BLOCK_SIZE,
930 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
931 .cra_alignmask = 0,
932 .cra_module = THIS_MODULE,
933 .cra_init = kmb_ocs_hcu_hmac_cra_init,
934 .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
935 }
936 }
937 },
938 #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
939 {
940 .init = kmb_ocs_hcu_init,
941 .update = kmb_ocs_hcu_update,
942 .final = kmb_ocs_hcu_final,
943 .finup = kmb_ocs_hcu_finup,
944 .digest = kmb_ocs_hcu_digest,
945 .export = kmb_ocs_hcu_export,
946 .import = kmb_ocs_hcu_import,
947 .halg = {
948 .digestsize = SHA256_DIGEST_SIZE,
949 .statesize = sizeof(struct ocs_hcu_rctx),
950 .base = {
951 .cra_name = "sha256",
952 .cra_driver_name = "sha256-keembay-ocs",
953 .cra_priority = 255,
954 .cra_flags = CRYPTO_ALG_ASYNC,
955 .cra_blocksize = SHA256_BLOCK_SIZE,
956 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
957 .cra_alignmask = 0,
958 .cra_module = THIS_MODULE,
959 .cra_init = kmb_ocs_hcu_sha_cra_init,
960 }
961 }
962 },
963 {
964 .init = kmb_ocs_hcu_init,
965 .update = kmb_ocs_hcu_update,
966 .final = kmb_ocs_hcu_final,
967 .finup = kmb_ocs_hcu_finup,
968 .digest = kmb_ocs_hcu_digest,
969 .export = kmb_ocs_hcu_export,
970 .import = kmb_ocs_hcu_import,
971 .setkey = kmb_ocs_hcu_setkey,
972 .halg = {
973 .digestsize = SHA256_DIGEST_SIZE,
974 .statesize = sizeof(struct ocs_hcu_rctx),
975 .base = {
976 .cra_name = "hmac(sha256)",
977 .cra_driver_name = "hmac-sha256-keembay-ocs",
978 .cra_priority = 255,
979 .cra_flags = CRYPTO_ALG_ASYNC,
980 .cra_blocksize = SHA256_BLOCK_SIZE,
981 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
982 .cra_alignmask = 0,
983 .cra_module = THIS_MODULE,
984 .cra_init = kmb_ocs_hcu_hmac_cra_init,
985 .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
986 }
987 }
988 },
989 {
990 .init = kmb_ocs_hcu_init,
991 .update = kmb_ocs_hcu_update,
992 .final = kmb_ocs_hcu_final,
993 .finup = kmb_ocs_hcu_finup,
994 .digest = kmb_ocs_hcu_digest,
995 .export = kmb_ocs_hcu_export,
996 .import = kmb_ocs_hcu_import,
997 .halg = {
998 .digestsize = SM3_DIGEST_SIZE,
999 .statesize = sizeof(struct ocs_hcu_rctx),
1000 .base = {
1001 .cra_name = "sm3",
1002 .cra_driver_name = "sm3-keembay-ocs",
1003 .cra_priority = 255,
1004 .cra_flags = CRYPTO_ALG_ASYNC,
1005 .cra_blocksize = SM3_BLOCK_SIZE,
1006 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1007 .cra_alignmask = 0,
1008 .cra_module = THIS_MODULE,
1009 .cra_init = kmb_ocs_hcu_sm3_cra_init,
1010 }
1011 }
1012 },
1013 {
1014 .init = kmb_ocs_hcu_init,
1015 .update = kmb_ocs_hcu_update,
1016 .final = kmb_ocs_hcu_final,
1017 .finup = kmb_ocs_hcu_finup,
1018 .digest = kmb_ocs_hcu_digest,
1019 .export = kmb_ocs_hcu_export,
1020 .import = kmb_ocs_hcu_import,
1021 .setkey = kmb_ocs_hcu_setkey,
1022 .halg = {
1023 .digestsize = SM3_DIGEST_SIZE,
1024 .statesize = sizeof(struct ocs_hcu_rctx),
1025 .base = {
1026 .cra_name = "hmac(sm3)",
1027 .cra_driver_name = "hmac-sm3-keembay-ocs",
1028 .cra_priority = 255,
1029 .cra_flags = CRYPTO_ALG_ASYNC,
1030 .cra_blocksize = SM3_BLOCK_SIZE,
1031 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1032 .cra_alignmask = 0,
1033 .cra_module = THIS_MODULE,
1034 .cra_init = kmb_ocs_hcu_hmac_sm3_cra_init,
1035 .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
1036 }
1037 }
1038 },
1039 {
1040 .init = kmb_ocs_hcu_init,
1041 .update = kmb_ocs_hcu_update,
1042 .final = kmb_ocs_hcu_final,
1043 .finup = kmb_ocs_hcu_finup,
1044 .digest = kmb_ocs_hcu_digest,
1045 .export = kmb_ocs_hcu_export,
1046 .import = kmb_ocs_hcu_import,
1047 .halg = {
1048 .digestsize = SHA384_DIGEST_SIZE,
1049 .statesize = sizeof(struct ocs_hcu_rctx),
1050 .base = {
1051 .cra_name = "sha384",
1052 .cra_driver_name = "sha384-keembay-ocs",
1053 .cra_priority = 255,
1054 .cra_flags = CRYPTO_ALG_ASYNC,
1055 .cra_blocksize = SHA384_BLOCK_SIZE,
1056 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1057 .cra_alignmask = 0,
1058 .cra_module = THIS_MODULE,
1059 .cra_init = kmb_ocs_hcu_sha_cra_init,
1060 }
1061 }
1062 },
1063 {
1064 .init = kmb_ocs_hcu_init,
1065 .update = kmb_ocs_hcu_update,
1066 .final = kmb_ocs_hcu_final,
1067 .finup = kmb_ocs_hcu_finup,
1068 .digest = kmb_ocs_hcu_digest,
1069 .export = kmb_ocs_hcu_export,
1070 .import = kmb_ocs_hcu_import,
1071 .setkey = kmb_ocs_hcu_setkey,
1072 .halg = {
1073 .digestsize = SHA384_DIGEST_SIZE,
1074 .statesize = sizeof(struct ocs_hcu_rctx),
1075 .base = {
1076 .cra_name = "hmac(sha384)",
1077 .cra_driver_name = "hmac-sha384-keembay-ocs",
1078 .cra_priority = 255,
1079 .cra_flags = CRYPTO_ALG_ASYNC,
1080 .cra_blocksize = SHA384_BLOCK_SIZE,
1081 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1082 .cra_alignmask = 0,
1083 .cra_module = THIS_MODULE,
1084 .cra_init = kmb_ocs_hcu_hmac_cra_init,
1085 .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
1086 }
1087 }
1088 },
1089 {
1090 .init = kmb_ocs_hcu_init,
1091 .update = kmb_ocs_hcu_update,
1092 .final = kmb_ocs_hcu_final,
1093 .finup = kmb_ocs_hcu_finup,
1094 .digest = kmb_ocs_hcu_digest,
1095 .export = kmb_ocs_hcu_export,
1096 .import = kmb_ocs_hcu_import,
1097 .halg = {
1098 .digestsize = SHA512_DIGEST_SIZE,
1099 .statesize = sizeof(struct ocs_hcu_rctx),
1100 .base = {
1101 .cra_name = "sha512",
1102 .cra_driver_name = "sha512-keembay-ocs",
1103 .cra_priority = 255,
1104 .cra_flags = CRYPTO_ALG_ASYNC,
1105 .cra_blocksize = SHA512_BLOCK_SIZE,
1106 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1107 .cra_alignmask = 0,
1108 .cra_module = THIS_MODULE,
1109 .cra_init = kmb_ocs_hcu_sha_cra_init,
1110 }
1111 }
1112 },
1113 {
1114 .init = kmb_ocs_hcu_init,
1115 .update = kmb_ocs_hcu_update,
1116 .final = kmb_ocs_hcu_final,
1117 .finup = kmb_ocs_hcu_finup,
1118 .digest = kmb_ocs_hcu_digest,
1119 .export = kmb_ocs_hcu_export,
1120 .import = kmb_ocs_hcu_import,
1121 .setkey = kmb_ocs_hcu_setkey,
1122 .halg = {
1123 .digestsize = SHA512_DIGEST_SIZE,
1124 .statesize = sizeof(struct ocs_hcu_rctx),
1125 .base = {
1126 .cra_name = "hmac(sha512)",
1127 .cra_driver_name = "hmac-sha512-keembay-ocs",
1128 .cra_priority = 255,
1129 .cra_flags = CRYPTO_ALG_ASYNC,
1130 .cra_blocksize = SHA512_BLOCK_SIZE,
1131 .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
1132 .cra_alignmask = 0,
1133 .cra_module = THIS_MODULE,
1134 .cra_init = kmb_ocs_hcu_hmac_cra_init,
1135 .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
1136 }
1137 }
1138 },
1139 };
1140
1141 /* Device tree driver match. */
1142 static const struct of_device_id kmb_ocs_hcu_of_match[] = {
1143 {
1144 .compatible = "intel,keembay-ocs-hcu",
1145 },
1146 {}
1147 };
1148
kmb_ocs_hcu_remove(struct platform_device * pdev)1149 static int kmb_ocs_hcu_remove(struct platform_device *pdev)
1150 {
1151 struct ocs_hcu_dev *hcu_dev;
1152 int rc;
1153
1154 hcu_dev = platform_get_drvdata(pdev);
1155 if (!hcu_dev)
1156 return -ENODEV;
1157
1158 crypto_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
1159
1160 rc = crypto_engine_exit(hcu_dev->engine);
1161
1162 spin_lock_bh(&ocs_hcu.lock);
1163 list_del(&hcu_dev->list);
1164 spin_unlock_bh(&ocs_hcu.lock);
1165
1166 return rc;
1167 }
1168
kmb_ocs_hcu_probe(struct platform_device * pdev)1169 static int kmb_ocs_hcu_probe(struct platform_device *pdev)
1170 {
1171 struct device *dev = &pdev->dev;
1172 struct ocs_hcu_dev *hcu_dev;
1173 struct resource *hcu_mem;
1174 int rc;
1175
1176 hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL);
1177 if (!hcu_dev)
1178 return -ENOMEM;
1179
1180 hcu_dev->dev = dev;
1181
1182 platform_set_drvdata(pdev, hcu_dev);
1183 rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK);
1184 if (rc)
1185 return rc;
1186
1187 /* Get the memory address and remap. */
1188 hcu_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1189 if (!hcu_mem) {
1190 dev_err(dev, "Could not retrieve io mem resource.\n");
1191 return -ENODEV;
1192 }
1193
1194 hcu_dev->io_base = devm_ioremap_resource(dev, hcu_mem);
1195 if (IS_ERR(hcu_dev->io_base))
1196 return PTR_ERR(hcu_dev->io_base);
1197
1198 init_completion(&hcu_dev->irq_done);
1199
1200 /* Get and request IRQ. */
1201 hcu_dev->irq = platform_get_irq(pdev, 0);
1202 if (hcu_dev->irq < 0)
1203 return hcu_dev->irq;
1204
1205 rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq,
1206 ocs_hcu_irq_handler, NULL, 0,
1207 "keembay-ocs-hcu", hcu_dev);
1208 if (rc < 0) {
1209 dev_err(dev, "Could not request IRQ.\n");
1210 return rc;
1211 }
1212
1213 INIT_LIST_HEAD(&hcu_dev->list);
1214
1215 spin_lock_bh(&ocs_hcu.lock);
1216 list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list);
1217 spin_unlock_bh(&ocs_hcu.lock);
1218
1219 /* Initialize crypto engine */
1220 hcu_dev->engine = crypto_engine_alloc_init(dev, 1);
1221 if (!hcu_dev->engine) {
1222 rc = -ENOMEM;
1223 goto list_del;
1224 }
1225
1226 rc = crypto_engine_start(hcu_dev->engine);
1227 if (rc) {
1228 dev_err(dev, "Could not start engine.\n");
1229 goto cleanup;
1230 }
1231
1232 /* Security infrastructure guarantees OCS clock is enabled. */
1233
1234 rc = crypto_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
1235 if (rc) {
1236 dev_err(dev, "Could not register algorithms.\n");
1237 goto cleanup;
1238 }
1239
1240 return 0;
1241
1242 cleanup:
1243 crypto_engine_exit(hcu_dev->engine);
1244 list_del:
1245 spin_lock_bh(&ocs_hcu.lock);
1246 list_del(&hcu_dev->list);
1247 spin_unlock_bh(&ocs_hcu.lock);
1248
1249 return rc;
1250 }
1251
1252 /* The OCS driver is a platform device. */
1253 static struct platform_driver kmb_ocs_hcu_driver = {
1254 .probe = kmb_ocs_hcu_probe,
1255 .remove = kmb_ocs_hcu_remove,
1256 .driver = {
1257 .name = DRV_NAME,
1258 .of_match_table = kmb_ocs_hcu_of_match,
1259 },
1260 };
1261
1262 module_platform_driver(kmb_ocs_hcu_driver);
1263
1264 MODULE_LICENSE("GPL");
1265