1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 #include <linux/perf_event.h>
23 #include <linux/hw_breakpoint.h>
24 
25 #include <asm/pgtable.h>
26 #include <asm/system.h>
27 #include <asm/traps.h>
28 
29 #define REG_PC	15
30 #define REG_PSR	16
31 /*
32  * does not yet catch signals sent when the child dies.
33  * in exit.c or in signal.c.
34  */
35 
36 #if 0
37 /*
38  * Breakpoint SWI instruction: SWI &9F0001
39  */
40 #define BREAKINST_ARM	0xef9f0001
41 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
42 #else
43 /*
44  * New breakpoints - use an undefined instruction.  The ARM architecture
45  * reference manual guarantees that the following instruction space
46  * will produce an undefined instruction exception on all CPUs:
47  *
48  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
49  *  Thumb: 1101 1110 xxxx xxxx
50  */
51 #define BREAKINST_ARM	0xe7f001f0
52 #define BREAKINST_THUMB	0xde01
53 #endif
54 
55 struct pt_regs_offset {
56 	const char *name;
57 	int offset;
58 };
59 
60 #define REG_OFFSET_NAME(r) \
61 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
62 #define REG_OFFSET_END {.name = NULL, .offset = 0}
63 
64 static const struct pt_regs_offset regoffset_table[] = {
65 	REG_OFFSET_NAME(r0),
66 	REG_OFFSET_NAME(r1),
67 	REG_OFFSET_NAME(r2),
68 	REG_OFFSET_NAME(r3),
69 	REG_OFFSET_NAME(r4),
70 	REG_OFFSET_NAME(r5),
71 	REG_OFFSET_NAME(r6),
72 	REG_OFFSET_NAME(r7),
73 	REG_OFFSET_NAME(r8),
74 	REG_OFFSET_NAME(r9),
75 	REG_OFFSET_NAME(r10),
76 	REG_OFFSET_NAME(fp),
77 	REG_OFFSET_NAME(ip),
78 	REG_OFFSET_NAME(sp),
79 	REG_OFFSET_NAME(lr),
80 	REG_OFFSET_NAME(pc),
81 	REG_OFFSET_NAME(cpsr),
82 	REG_OFFSET_NAME(ORIG_r0),
83 	REG_OFFSET_END,
84 };
85 
86 /**
87  * regs_query_register_offset() - query register offset from its name
88  * @name:	the name of a register
89  *
90  * regs_query_register_offset() returns the offset of a register in struct
91  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
92  */
regs_query_register_offset(const char * name)93 int regs_query_register_offset(const char *name)
94 {
95 	const struct pt_regs_offset *roff;
96 	for (roff = regoffset_table; roff->name != NULL; roff++)
97 		if (!strcmp(roff->name, name))
98 			return roff->offset;
99 	return -EINVAL;
100 }
101 
102 /**
103  * regs_query_register_name() - query register name from its offset
104  * @offset:	the offset of a register in struct pt_regs.
105  *
106  * regs_query_register_name() returns the name of a register from its
107  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
108  */
regs_query_register_name(unsigned int offset)109 const char *regs_query_register_name(unsigned int offset)
110 {
111 	const struct pt_regs_offset *roff;
112 	for (roff = regoffset_table; roff->name != NULL; roff++)
113 		if (roff->offset == offset)
114 			return roff->name;
115 	return NULL;
116 }
117 
118 /**
119  * regs_within_kernel_stack() - check the address in the stack
120  * @regs:      pt_regs which contains kernel stack pointer.
121  * @addr:      address which is checked.
122  *
123  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
124  * If @addr is within the kernel stack, it returns true. If not, returns false.
125  */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)126 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
127 {
128 	return ((addr & ~(THREAD_SIZE - 1))  ==
129 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
130 }
131 
132 /**
133  * regs_get_kernel_stack_nth() - get Nth entry of the stack
134  * @regs:	pt_regs which contains kernel stack pointer.
135  * @n:		stack entry number.
136  *
137  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
138  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
139  * this returns 0.
140  */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)141 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
142 {
143 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
144 	addr += n;
145 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
146 		return *addr;
147 	else
148 		return 0;
149 }
150 
151 /*
152  * this routine will get a word off of the processes privileged stack.
153  * the offset is how far from the base addr as stored in the THREAD.
154  * this routine assumes that all the privileged stacks are in our
155  * data space.
156  */
get_user_reg(struct task_struct * task,int offset)157 static inline long get_user_reg(struct task_struct *task, int offset)
158 {
159 	return task_pt_regs(task)->uregs[offset];
160 }
161 
162 /*
163  * this routine will put a word on the processes privileged stack.
164  * the offset is how far from the base addr as stored in the THREAD.
165  * this routine assumes that all the privileged stacks are in our
166  * data space.
167  */
168 static inline int
put_user_reg(struct task_struct * task,int offset,long data)169 put_user_reg(struct task_struct *task, int offset, long data)
170 {
171 	struct pt_regs newregs, *regs = task_pt_regs(task);
172 	int ret = -EINVAL;
173 
174 	newregs = *regs;
175 	newregs.uregs[offset] = data;
176 
177 	if (valid_user_regs(&newregs)) {
178 		regs->uregs[offset] = data;
179 		ret = 0;
180 	}
181 
182 	return ret;
183 }
184 
185 /*
186  * Called by kernel/ptrace.c when detaching..
187  */
ptrace_disable(struct task_struct * child)188 void ptrace_disable(struct task_struct *child)
189 {
190 	/* Nothing to do. */
191 }
192 
193 /*
194  * Handle hitting a breakpoint.
195  */
ptrace_break(struct task_struct * tsk,struct pt_regs * regs)196 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
197 {
198 	siginfo_t info;
199 
200 	info.si_signo = SIGTRAP;
201 	info.si_errno = 0;
202 	info.si_code  = TRAP_BRKPT;
203 	info.si_addr  = (void __user *)instruction_pointer(regs);
204 
205 	force_sig_info(SIGTRAP, &info, tsk);
206 }
207 
break_trap(struct pt_regs * regs,unsigned int instr)208 static int break_trap(struct pt_regs *regs, unsigned int instr)
209 {
210 	ptrace_break(current, regs);
211 	return 0;
212 }
213 
214 static struct undef_hook arm_break_hook = {
215 	.instr_mask	= 0x0fffffff,
216 	.instr_val	= 0x07f001f0,
217 	.cpsr_mask	= PSR_T_BIT,
218 	.cpsr_val	= 0,
219 	.fn		= break_trap,
220 };
221 
222 static struct undef_hook thumb_break_hook = {
223 	.instr_mask	= 0xffff,
224 	.instr_val	= 0xde01,
225 	.cpsr_mask	= PSR_T_BIT,
226 	.cpsr_val	= PSR_T_BIT,
227 	.fn		= break_trap,
228 };
229 
thumb2_break_trap(struct pt_regs * regs,unsigned int instr)230 static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
231 {
232 	unsigned int instr2;
233 	void __user *pc;
234 
235 	/* Check the second half of the instruction.  */
236 	pc = (void __user *)(instruction_pointer(regs) + 2);
237 
238 	if (processor_mode(regs) == SVC_MODE) {
239 		instr2 = *(u16 *) pc;
240 	} else {
241 		get_user(instr2, (u16 __user *)pc);
242 	}
243 
244 	if (instr2 == 0xa000) {
245 		ptrace_break(current, regs);
246 		return 0;
247 	} else {
248 		return 1;
249 	}
250 }
251 
252 static struct undef_hook thumb2_break_hook = {
253 	.instr_mask	= 0xffff,
254 	.instr_val	= 0xf7f0,
255 	.cpsr_mask	= PSR_T_BIT,
256 	.cpsr_val	= PSR_T_BIT,
257 	.fn		= thumb2_break_trap,
258 };
259 
ptrace_break_init(void)260 static int __init ptrace_break_init(void)
261 {
262 	register_undef_hook(&arm_break_hook);
263 	register_undef_hook(&thumb_break_hook);
264 	register_undef_hook(&thumb2_break_hook);
265 	return 0;
266 }
267 
268 core_initcall(ptrace_break_init);
269 
270 /*
271  * Read the word at offset "off" into the "struct user".  We
272  * actually access the pt_regs stored on the kernel stack.
273  */
ptrace_read_user(struct task_struct * tsk,unsigned long off,unsigned long __user * ret)274 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
275 			    unsigned long __user *ret)
276 {
277 	unsigned long tmp;
278 
279 	if (off & 3 || off >= sizeof(struct user))
280 		return -EIO;
281 
282 	tmp = 0;
283 	if (off == PT_TEXT_ADDR)
284 		tmp = tsk->mm->start_code;
285 	else if (off == PT_DATA_ADDR)
286 		tmp = tsk->mm->start_data;
287 	else if (off == PT_TEXT_END_ADDR)
288 		tmp = tsk->mm->end_code;
289 	else if (off < sizeof(struct pt_regs))
290 		tmp = get_user_reg(tsk, off >> 2);
291 
292 	return put_user(tmp, ret);
293 }
294 
295 /*
296  * Write the word at offset "off" into "struct user".  We
297  * actually access the pt_regs stored on the kernel stack.
298  */
ptrace_write_user(struct task_struct * tsk,unsigned long off,unsigned long val)299 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
300 			     unsigned long val)
301 {
302 	if (off & 3 || off >= sizeof(struct user))
303 		return -EIO;
304 
305 	if (off >= sizeof(struct pt_regs))
306 		return 0;
307 
308 	return put_user_reg(tsk, off >> 2, val);
309 }
310 
311 /*
312  * Get all user integer registers.
313  */
ptrace_getregs(struct task_struct * tsk,void __user * uregs)314 static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
315 {
316 	struct pt_regs *regs = task_pt_regs(tsk);
317 
318 	return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
319 }
320 
321 /*
322  * Set all user integer registers.
323  */
ptrace_setregs(struct task_struct * tsk,void __user * uregs)324 static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
325 {
326 	struct pt_regs newregs;
327 	int ret;
328 
329 	ret = -EFAULT;
330 	if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
331 		struct pt_regs *regs = task_pt_regs(tsk);
332 
333 		ret = -EINVAL;
334 		if (valid_user_regs(&newregs)) {
335 			*regs = newregs;
336 			ret = 0;
337 		}
338 	}
339 
340 	return ret;
341 }
342 
343 /*
344  * Get the child FPU state.
345  */
ptrace_getfpregs(struct task_struct * tsk,void __user * ufp)346 static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp)
347 {
348 	return copy_to_user(ufp, &task_thread_info(tsk)->fpstate,
349 			    sizeof(struct user_fp)) ? -EFAULT : 0;
350 }
351 
352 /*
353  * Set the child FPU state.
354  */
ptrace_setfpregs(struct task_struct * tsk,void __user * ufp)355 static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp)
356 {
357 	struct thread_info *thread = task_thread_info(tsk);
358 	thread->used_cp[1] = thread->used_cp[2] = 1;
359 	return copy_from_user(&thread->fpstate, ufp,
360 			      sizeof(struct user_fp)) ? -EFAULT : 0;
361 }
362 
363 #ifdef CONFIG_IWMMXT
364 
365 /*
366  * Get the child iWMMXt state.
367  */
ptrace_getwmmxregs(struct task_struct * tsk,void __user * ufp)368 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
369 {
370 	struct thread_info *thread = task_thread_info(tsk);
371 
372 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
373 		return -ENODATA;
374 	iwmmxt_task_disable(thread);  /* force it to ram */
375 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
376 		? -EFAULT : 0;
377 }
378 
379 /*
380  * Set the child iWMMXt state.
381  */
ptrace_setwmmxregs(struct task_struct * tsk,void __user * ufp)382 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
383 {
384 	struct thread_info *thread = task_thread_info(tsk);
385 
386 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
387 		return -EACCES;
388 	iwmmxt_task_release(thread);  /* force a reload */
389 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
390 		? -EFAULT : 0;
391 }
392 
393 #endif
394 
395 #ifdef CONFIG_CRUNCH
396 /*
397  * Get the child Crunch state.
398  */
ptrace_getcrunchregs(struct task_struct * tsk,void __user * ufp)399 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
400 {
401 	struct thread_info *thread = task_thread_info(tsk);
402 
403 	crunch_task_disable(thread);  /* force it to ram */
404 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
405 		? -EFAULT : 0;
406 }
407 
408 /*
409  * Set the child Crunch state.
410  */
ptrace_setcrunchregs(struct task_struct * tsk,void __user * ufp)411 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
412 {
413 	struct thread_info *thread = task_thread_info(tsk);
414 
415 	crunch_task_release(thread);  /* force a reload */
416 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
417 		? -EFAULT : 0;
418 }
419 #endif
420 
421 #ifdef CONFIG_VFP
422 /*
423  * Get the child VFP state.
424  */
ptrace_getvfpregs(struct task_struct * tsk,void __user * data)425 static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data)
426 {
427 	struct thread_info *thread = task_thread_info(tsk);
428 	union vfp_state *vfp = &thread->vfpstate;
429 	struct user_vfp __user *ufp = data;
430 
431 	vfp_sync_hwstate(thread);
432 
433 	/* copy the floating point registers */
434 	if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs,
435 			 sizeof(vfp->hard.fpregs)))
436 		return -EFAULT;
437 
438 	/* copy the status and control register */
439 	if (put_user(vfp->hard.fpscr, &ufp->fpscr))
440 		return -EFAULT;
441 
442 	return 0;
443 }
444 
445 /*
446  * Set the child VFP state.
447  */
ptrace_setvfpregs(struct task_struct * tsk,void __user * data)448 static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data)
449 {
450 	struct thread_info *thread = task_thread_info(tsk);
451 	union vfp_state *vfp = &thread->vfpstate;
452 	struct user_vfp __user *ufp = data;
453 
454 	vfp_sync_hwstate(thread);
455 
456 	/* copy the floating point registers */
457 	if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs,
458 			   sizeof(vfp->hard.fpregs)))
459 		return -EFAULT;
460 
461 	/* copy the status and control register */
462 	if (get_user(vfp->hard.fpscr, &ufp->fpscr))
463 		return -EFAULT;
464 
465 	vfp_flush_hwstate(thread);
466 
467 	return 0;
468 }
469 #endif
470 
471 #ifdef CONFIG_HAVE_HW_BREAKPOINT
472 /*
473  * Convert a virtual register number into an index for a thread_info
474  * breakpoint array. Breakpoints are identified using positive numbers
475  * whilst watchpoints are negative. The registers are laid out as pairs
476  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
477  * Register 0 is reserved for describing resource information.
478  */
ptrace_hbp_num_to_idx(long num)479 static int ptrace_hbp_num_to_idx(long num)
480 {
481 	if (num < 0)
482 		num = (ARM_MAX_BRP << 1) - num;
483 	return (num - 1) >> 1;
484 }
485 
486 /*
487  * Returns the virtual register number for the address of the
488  * breakpoint at index idx.
489  */
ptrace_hbp_idx_to_num(int idx)490 static long ptrace_hbp_idx_to_num(int idx)
491 {
492 	long mid = ARM_MAX_BRP << 1;
493 	long num = (idx << 1) + 1;
494 	return num > mid ? mid - num : num;
495 }
496 
497 /*
498  * Handle hitting a HW-breakpoint.
499  */
ptrace_hbptriggered(struct perf_event * bp,int unused,struct perf_sample_data * data,struct pt_regs * regs)500 static void ptrace_hbptriggered(struct perf_event *bp, int unused,
501 				     struct perf_sample_data *data,
502 				     struct pt_regs *regs)
503 {
504 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
505 	long num;
506 	int i;
507 	siginfo_t info;
508 
509 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
510 		if (current->thread.debug.hbp[i] == bp)
511 			break;
512 
513 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
514 
515 	info.si_signo	= SIGTRAP;
516 	info.si_errno	= (int)num;
517 	info.si_code	= TRAP_HWBKPT;
518 	info.si_addr	= (void __user *)(bkpt->trigger);
519 
520 	force_sig_info(SIGTRAP, &info, current);
521 }
522 
523 /*
524  * Set ptrace breakpoint pointers to zero for this task.
525  * This is required in order to prevent child processes from unregistering
526  * breakpoints held by their parent.
527  */
clear_ptrace_hw_breakpoint(struct task_struct * tsk)528 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
529 {
530 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
531 }
532 
533 /*
534  * Unregister breakpoints from this task and reset the pointers in
535  * the thread_struct.
536  */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)537 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
538 {
539 	int i;
540 	struct thread_struct *t = &tsk->thread;
541 
542 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
543 		if (t->debug.hbp[i]) {
544 			unregister_hw_breakpoint(t->debug.hbp[i]);
545 			t->debug.hbp[i] = NULL;
546 		}
547 	}
548 }
549 
ptrace_get_hbp_resource_info(void)550 static u32 ptrace_get_hbp_resource_info(void)
551 {
552 	u8 num_brps, num_wrps, debug_arch, wp_len;
553 	u32 reg = 0;
554 
555 	num_brps	= hw_breakpoint_slots(TYPE_INST);
556 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
557 	debug_arch	= arch_get_debug_arch();
558 	wp_len		= arch_get_max_wp_len();
559 
560 	reg		|= debug_arch;
561 	reg		<<= 8;
562 	reg		|= wp_len;
563 	reg		<<= 8;
564 	reg		|= num_wrps;
565 	reg		<<= 8;
566 	reg		|= num_brps;
567 
568 	return reg;
569 }
570 
ptrace_hbp_create(struct task_struct * tsk,int type)571 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
572 {
573 	struct perf_event_attr attr;
574 
575 	ptrace_breakpoint_init(&attr);
576 
577 	/* Initialise fields to sane defaults. */
578 	attr.bp_addr	= 0;
579 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
580 	attr.bp_type	= type;
581 	attr.disabled	= 1;
582 
583 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, tsk);
584 }
585 
ptrace_gethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)586 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
587 			     unsigned long  __user *data)
588 {
589 	u32 reg;
590 	int idx, ret = 0;
591 	struct perf_event *bp;
592 	struct arch_hw_breakpoint_ctrl arch_ctrl;
593 
594 	if (num == 0) {
595 		reg = ptrace_get_hbp_resource_info();
596 	} else {
597 		idx = ptrace_hbp_num_to_idx(num);
598 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
599 			ret = -EINVAL;
600 			goto out;
601 		}
602 
603 		bp = tsk->thread.debug.hbp[idx];
604 		if (!bp) {
605 			reg = 0;
606 			goto put;
607 		}
608 
609 		arch_ctrl = counter_arch_bp(bp)->ctrl;
610 
611 		/*
612 		 * Fix up the len because we may have adjusted it
613 		 * to compensate for an unaligned address.
614 		 */
615 		while (!(arch_ctrl.len & 0x1))
616 			arch_ctrl.len >>= 1;
617 
618 		if (num & 0x1)
619 			reg = bp->attr.bp_addr;
620 		else
621 			reg = encode_ctrl_reg(arch_ctrl);
622 	}
623 
624 put:
625 	if (put_user(reg, data))
626 		ret = -EFAULT;
627 
628 out:
629 	return ret;
630 }
631 
ptrace_sethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)632 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
633 			     unsigned long __user *data)
634 {
635 	int idx, gen_len, gen_type, implied_type, ret = 0;
636 	u32 user_val;
637 	struct perf_event *bp;
638 	struct arch_hw_breakpoint_ctrl ctrl;
639 	struct perf_event_attr attr;
640 
641 	if (num == 0)
642 		goto out;
643 	else if (num < 0)
644 		implied_type = HW_BREAKPOINT_RW;
645 	else
646 		implied_type = HW_BREAKPOINT_X;
647 
648 	idx = ptrace_hbp_num_to_idx(num);
649 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
650 		ret = -EINVAL;
651 		goto out;
652 	}
653 
654 	if (get_user(user_val, data)) {
655 		ret = -EFAULT;
656 		goto out;
657 	}
658 
659 	bp = tsk->thread.debug.hbp[idx];
660 	if (!bp) {
661 		bp = ptrace_hbp_create(tsk, implied_type);
662 		if (IS_ERR(bp)) {
663 			ret = PTR_ERR(bp);
664 			goto out;
665 		}
666 		tsk->thread.debug.hbp[idx] = bp;
667 	}
668 
669 	attr = bp->attr;
670 
671 	if (num & 0x1) {
672 		/* Address */
673 		attr.bp_addr	= user_val;
674 	} else {
675 		/* Control */
676 		decode_ctrl_reg(user_val, &ctrl);
677 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
678 		if (ret)
679 			goto out;
680 
681 		if ((gen_type & implied_type) != gen_type) {
682 			ret = -EINVAL;
683 			goto out;
684 		}
685 
686 		attr.bp_len	= gen_len;
687 		attr.bp_type	= gen_type;
688 		attr.disabled	= !ctrl.enabled;
689 	}
690 
691 	ret = modify_user_hw_breakpoint(bp, &attr);
692 out:
693 	return ret;
694 }
695 #endif
696 
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)697 long arch_ptrace(struct task_struct *child, long request,
698 		 unsigned long addr, unsigned long data)
699 {
700 	int ret;
701 	unsigned long __user *datap = (unsigned long __user *) data;
702 
703 	switch (request) {
704 		case PTRACE_PEEKUSR:
705 			ret = ptrace_read_user(child, addr, datap);
706 			break;
707 
708 		case PTRACE_POKEUSR:
709 			ret = ptrace_write_user(child, addr, data);
710 			break;
711 
712 		case PTRACE_GETREGS:
713 			ret = ptrace_getregs(child, datap);
714 			break;
715 
716 		case PTRACE_SETREGS:
717 			ret = ptrace_setregs(child, datap);
718 			break;
719 
720 		case PTRACE_GETFPREGS:
721 			ret = ptrace_getfpregs(child, datap);
722 			break;
723 
724 		case PTRACE_SETFPREGS:
725 			ret = ptrace_setfpregs(child, datap);
726 			break;
727 
728 #ifdef CONFIG_IWMMXT
729 		case PTRACE_GETWMMXREGS:
730 			ret = ptrace_getwmmxregs(child, datap);
731 			break;
732 
733 		case PTRACE_SETWMMXREGS:
734 			ret = ptrace_setwmmxregs(child, datap);
735 			break;
736 #endif
737 
738 		case PTRACE_GET_THREAD_AREA:
739 			ret = put_user(task_thread_info(child)->tp_value,
740 				       datap);
741 			break;
742 
743 		case PTRACE_SET_SYSCALL:
744 			task_thread_info(child)->syscall = data;
745 			ret = 0;
746 			break;
747 
748 #ifdef CONFIG_CRUNCH
749 		case PTRACE_GETCRUNCHREGS:
750 			ret = ptrace_getcrunchregs(child, datap);
751 			break;
752 
753 		case PTRACE_SETCRUNCHREGS:
754 			ret = ptrace_setcrunchregs(child, datap);
755 			break;
756 #endif
757 
758 #ifdef CONFIG_VFP
759 		case PTRACE_GETVFPREGS:
760 			ret = ptrace_getvfpregs(child, datap);
761 			break;
762 
763 		case PTRACE_SETVFPREGS:
764 			ret = ptrace_setvfpregs(child, datap);
765 			break;
766 #endif
767 
768 #ifdef CONFIG_HAVE_HW_BREAKPOINT
769 		case PTRACE_GETHBPREGS:
770 			if (ptrace_get_breakpoints(child) < 0)
771 				return -ESRCH;
772 
773 			ret = ptrace_gethbpregs(child, addr,
774 						(unsigned long __user *)data);
775 			ptrace_put_breakpoints(child);
776 			break;
777 		case PTRACE_SETHBPREGS:
778 			if (ptrace_get_breakpoints(child) < 0)
779 				return -ESRCH;
780 
781 			ret = ptrace_sethbpregs(child, addr,
782 						(unsigned long __user *)data);
783 			ptrace_put_breakpoints(child);
784 			break;
785 #endif
786 
787 		default:
788 			ret = ptrace_request(child, request, addr, data);
789 			break;
790 	}
791 
792 	return ret;
793 }
794 
syscall_trace(int why,struct pt_regs * regs,int scno)795 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
796 {
797 	unsigned long ip;
798 
799 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
800 		return scno;
801 	if (!(current->ptrace & PT_PTRACED))
802 		return scno;
803 
804 	/*
805 	 * Save IP.  IP is used to denote syscall entry/exit:
806 	 *  IP = 0 -> entry, = 1 -> exit
807 	 */
808 	ip = regs->ARM_ip;
809 	regs->ARM_ip = why;
810 
811 	current_thread_info()->syscall = scno;
812 
813 	/* the 0x80 provides a way for the tracing parent to distinguish
814 	   between a syscall stop and SIGTRAP delivery */
815 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
816 				 ? 0x80 : 0));
817 	/*
818 	 * this isn't the same as continuing with a signal, but it will do
819 	 * for normal use.  strace only continues with a signal if the
820 	 * stopping signal is not SIGTRAP.  -brl
821 	 */
822 	if (current->exit_code) {
823 		send_sig(current->exit_code, current, 1);
824 		current->exit_code = 0;
825 	}
826 	regs->ARM_ip = ip;
827 
828 	return current_thread_info()->syscall;
829 }
830