1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/clk.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/driver.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/iopoll.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/netdevice.h>
38 #include <linux/platform_device.h>
39 #include <linux/property.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/slab.h>
42 #include <linux/spi/spi.h>
43 #include <linux/uaccess.h>
44
45 /* SPI interface instruction set */
46 #define INSTRUCTION_WRITE 0x02
47 #define INSTRUCTION_READ 0x03
48 #define INSTRUCTION_BIT_MODIFY 0x05
49 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
50 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
51 #define INSTRUCTION_RESET 0xC0
52 #define RTS_TXB0 0x01
53 #define RTS_TXB1 0x02
54 #define RTS_TXB2 0x04
55 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
56
57 /* MPC251x registers */
58 #define BFPCTRL 0x0c
59 # define BFPCTRL_B0BFM BIT(0)
60 # define BFPCTRL_B1BFM BIT(1)
61 # define BFPCTRL_BFM(n) (BFPCTRL_B0BFM << (n))
62 # define BFPCTRL_BFM_MASK GENMASK(1, 0)
63 # define BFPCTRL_B0BFE BIT(2)
64 # define BFPCTRL_B1BFE BIT(3)
65 # define BFPCTRL_BFE(n) (BFPCTRL_B0BFE << (n))
66 # define BFPCTRL_BFE_MASK GENMASK(3, 2)
67 # define BFPCTRL_B0BFS BIT(4)
68 # define BFPCTRL_B1BFS BIT(5)
69 # define BFPCTRL_BFS(n) (BFPCTRL_B0BFS << (n))
70 # define BFPCTRL_BFS_MASK GENMASK(5, 4)
71 #define TXRTSCTRL 0x0d
72 # define TXRTSCTRL_B0RTSM BIT(0)
73 # define TXRTSCTRL_B1RTSM BIT(1)
74 # define TXRTSCTRL_B2RTSM BIT(2)
75 # define TXRTSCTRL_RTSM(n) (TXRTSCTRL_B0RTSM << (n))
76 # define TXRTSCTRL_RTSM_MASK GENMASK(2, 0)
77 # define TXRTSCTRL_B0RTS BIT(3)
78 # define TXRTSCTRL_B1RTS BIT(4)
79 # define TXRTSCTRL_B2RTS BIT(5)
80 # define TXRTSCTRL_RTS(n) (TXRTSCTRL_B0RTS << (n))
81 # define TXRTSCTRL_RTS_MASK GENMASK(5, 3)
82 #define CANSTAT 0x0e
83 #define CANCTRL 0x0f
84 # define CANCTRL_REQOP_MASK 0xe0
85 # define CANCTRL_REQOP_CONF 0x80
86 # define CANCTRL_REQOP_LISTEN_ONLY 0x60
87 # define CANCTRL_REQOP_LOOPBACK 0x40
88 # define CANCTRL_REQOP_SLEEP 0x20
89 # define CANCTRL_REQOP_NORMAL 0x00
90 # define CANCTRL_OSM 0x08
91 # define CANCTRL_ABAT 0x10
92 #define TEC 0x1c
93 #define REC 0x1d
94 #define CNF1 0x2a
95 # define CNF1_SJW_SHIFT 6
96 #define CNF2 0x29
97 # define CNF2_BTLMODE 0x80
98 # define CNF2_SAM 0x40
99 # define CNF2_PS1_SHIFT 3
100 #define CNF3 0x28
101 # define CNF3_SOF 0x08
102 # define CNF3_WAKFIL 0x04
103 # define CNF3_PHSEG2_MASK 0x07
104 #define CANINTE 0x2b
105 # define CANINTE_MERRE 0x80
106 # define CANINTE_WAKIE 0x40
107 # define CANINTE_ERRIE 0x20
108 # define CANINTE_TX2IE 0x10
109 # define CANINTE_TX1IE 0x08
110 # define CANINTE_TX0IE 0x04
111 # define CANINTE_RX1IE 0x02
112 # define CANINTE_RX0IE 0x01
113 #define CANINTF 0x2c
114 # define CANINTF_MERRF 0x80
115 # define CANINTF_WAKIF 0x40
116 # define CANINTF_ERRIF 0x20
117 # define CANINTF_TX2IF 0x10
118 # define CANINTF_TX1IF 0x08
119 # define CANINTF_TX0IF 0x04
120 # define CANINTF_RX1IF 0x02
121 # define CANINTF_RX0IF 0x01
122 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
123 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
124 # define CANINTF_ERR (CANINTF_ERRIF)
125 #define EFLG 0x2d
126 # define EFLG_EWARN 0x01
127 # define EFLG_RXWAR 0x02
128 # define EFLG_TXWAR 0x04
129 # define EFLG_RXEP 0x08
130 # define EFLG_TXEP 0x10
131 # define EFLG_TXBO 0x20
132 # define EFLG_RX0OVR 0x40
133 # define EFLG_RX1OVR 0x80
134 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
135 # define TXBCTRL_ABTF 0x40
136 # define TXBCTRL_MLOA 0x20
137 # define TXBCTRL_TXERR 0x10
138 # define TXBCTRL_TXREQ 0x08
139 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
140 # define SIDH_SHIFT 3
141 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
142 # define SIDL_SID_MASK 7
143 # define SIDL_SID_SHIFT 5
144 # define SIDL_EXIDE_SHIFT 3
145 # define SIDL_EID_SHIFT 16
146 # define SIDL_EID_MASK 3
147 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
148 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
149 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
150 # define DLC_RTR_SHIFT 6
151 #define TXBCTRL_OFF 0
152 #define TXBSIDH_OFF 1
153 #define TXBSIDL_OFF 2
154 #define TXBEID8_OFF 3
155 #define TXBEID0_OFF 4
156 #define TXBDLC_OFF 5
157 #define TXBDAT_OFF 6
158 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
159 # define RXBCTRL_BUKT 0x04
160 # define RXBCTRL_RXM0 0x20
161 # define RXBCTRL_RXM1 0x40
162 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
163 # define RXBSIDH_SHIFT 3
164 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
165 # define RXBSIDL_IDE 0x08
166 # define RXBSIDL_SRR 0x10
167 # define RXBSIDL_EID 3
168 # define RXBSIDL_SHIFT 5
169 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
170 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
171 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
172 # define RXBDLC_LEN_MASK 0x0f
173 # define RXBDLC_RTR 0x40
174 #define RXBCTRL_OFF 0
175 #define RXBSIDH_OFF 1
176 #define RXBSIDL_OFF 2
177 #define RXBEID8_OFF 3
178 #define RXBEID0_OFF 4
179 #define RXBDLC_OFF 5
180 #define RXBDAT_OFF 6
181 #define RXFSID(n) ((n < 3) ? 0 : 4)
182 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
183 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
184 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
185 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
186 #define RXMSIDH(n) ((n) * 4 + 0x20)
187 #define RXMSIDL(n) ((n) * 4 + 0x21)
188 #define RXMEID8(n) ((n) * 4 + 0x22)
189 #define RXMEID0(n) ((n) * 4 + 0x23)
190
191 #define GET_BYTE(val, byte) \
192 (((val) >> ((byte) * 8)) & 0xff)
193 #define SET_BYTE(val, byte) \
194 (((val) & 0xff) << ((byte) * 8))
195
196 /* Buffer size required for the largest SPI transfer (i.e., reading a
197 * frame)
198 */
199 #define CAN_FRAME_MAX_DATA_LEN 8
200 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
201 #define CAN_FRAME_MAX_BITS 128
202
203 #define TX_ECHO_SKB_MAX 1
204
205 #define MCP251X_OST_DELAY_MS (5)
206
207 #define DEVICE_NAME "mcp251x"
208
209 static const struct can_bittiming_const mcp251x_bittiming_const = {
210 .name = DEVICE_NAME,
211 .tseg1_min = 3,
212 .tseg1_max = 16,
213 .tseg2_min = 2,
214 .tseg2_max = 8,
215 .sjw_max = 4,
216 .brp_min = 1,
217 .brp_max = 64,
218 .brp_inc = 1,
219 };
220
221 enum mcp251x_model {
222 CAN_MCP251X_MCP2510 = 0x2510,
223 CAN_MCP251X_MCP2515 = 0x2515,
224 CAN_MCP251X_MCP25625 = 0x25625,
225 };
226
227 struct mcp251x_priv {
228 struct can_priv can;
229 struct net_device *net;
230 struct spi_device *spi;
231 enum mcp251x_model model;
232
233 struct mutex mcp_lock; /* SPI device lock */
234
235 u8 *spi_tx_buf;
236 u8 *spi_rx_buf;
237
238 struct sk_buff *tx_skb;
239
240 struct workqueue_struct *wq;
241 struct work_struct tx_work;
242 struct work_struct restart_work;
243
244 int force_quit;
245 int after_suspend;
246 #define AFTER_SUSPEND_UP 1
247 #define AFTER_SUSPEND_DOWN 2
248 #define AFTER_SUSPEND_POWER 4
249 #define AFTER_SUSPEND_RESTART 8
250 int restart_tx;
251 bool tx_busy;
252
253 struct regulator *power;
254 struct regulator *transceiver;
255 struct clk *clk;
256 #ifdef CONFIG_GPIOLIB
257 struct gpio_chip gpio;
258 u8 reg_bfpctrl;
259 #endif
260 };
261
262 #define MCP251X_IS(_model) \
263 static inline int mcp251x_is_##_model(struct spi_device *spi) \
264 { \
265 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 return priv->model == CAN_MCP251X_MCP##_model; \
267 }
268
269 MCP251X_IS(2510);
270
mcp251x_clean(struct net_device * net)271 static void mcp251x_clean(struct net_device *net)
272 {
273 struct mcp251x_priv *priv = netdev_priv(net);
274
275 if (priv->tx_skb || priv->tx_busy)
276 net->stats.tx_errors++;
277 dev_kfree_skb(priv->tx_skb);
278 if (priv->tx_busy)
279 can_free_echo_skb(priv->net, 0, NULL);
280 priv->tx_skb = NULL;
281 priv->tx_busy = false;
282 }
283
284 /* Note about handling of error return of mcp251x_spi_trans: accessing
285 * registers via SPI is not really different conceptually than using
286 * normal I/O assembler instructions, although it's much more
287 * complicated from a practical POV. So it's not advisable to always
288 * check the return value of this function. Imagine that every
289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290 * error();", it would be a great mess (well there are some situation
291 * when exception handling C++ like could be useful after all). So we
292 * just check that transfers are OK at the beginning of our
293 * conversation with the chip and to avoid doing really nasty things
294 * (like injecting bogus packets in the network stack).
295 */
mcp251x_spi_trans(struct spi_device * spi,int len)296 static int mcp251x_spi_trans(struct spi_device *spi, int len)
297 {
298 struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 struct spi_transfer t = {
300 .tx_buf = priv->spi_tx_buf,
301 .rx_buf = priv->spi_rx_buf,
302 .len = len,
303 .cs_change = 0,
304 };
305 struct spi_message m;
306 int ret;
307
308 spi_message_init(&m);
309 spi_message_add_tail(&t, &m);
310
311 ret = spi_sync(spi, &m);
312 if (ret)
313 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
314 return ret;
315 }
316
mcp251x_spi_write(struct spi_device * spi,int len)317 static int mcp251x_spi_write(struct spi_device *spi, int len)
318 {
319 struct mcp251x_priv *priv = spi_get_drvdata(spi);
320 int ret;
321
322 ret = spi_write(spi, priv->spi_tx_buf, len);
323 if (ret)
324 dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
325
326 return ret;
327 }
328
mcp251x_read_reg(struct spi_device * spi,u8 reg)329 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
330 {
331 struct mcp251x_priv *priv = spi_get_drvdata(spi);
332 u8 val = 0;
333
334 priv->spi_tx_buf[0] = INSTRUCTION_READ;
335 priv->spi_tx_buf[1] = reg;
336
337 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
338 spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
339 } else {
340 mcp251x_spi_trans(spi, 3);
341 val = priv->spi_rx_buf[2];
342 }
343
344 return val;
345 }
346
mcp251x_read_2regs(struct spi_device * spi,u8 reg,u8 * v1,u8 * v2)347 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
348 {
349 struct mcp251x_priv *priv = spi_get_drvdata(spi);
350
351 priv->spi_tx_buf[0] = INSTRUCTION_READ;
352 priv->spi_tx_buf[1] = reg;
353
354 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
355 u8 val[2] = { 0 };
356
357 spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
358 *v1 = val[0];
359 *v2 = val[1];
360 } else {
361 mcp251x_spi_trans(spi, 4);
362
363 *v1 = priv->spi_rx_buf[2];
364 *v2 = priv->spi_rx_buf[3];
365 }
366 }
367
mcp251x_write_reg(struct spi_device * spi,u8 reg,u8 val)368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
369 {
370 struct mcp251x_priv *priv = spi_get_drvdata(spi);
371
372 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373 priv->spi_tx_buf[1] = reg;
374 priv->spi_tx_buf[2] = val;
375
376 mcp251x_spi_write(spi, 3);
377 }
378
mcp251x_write_2regs(struct spi_device * spi,u8 reg,u8 v1,u8 v2)379 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
380 {
381 struct mcp251x_priv *priv = spi_get_drvdata(spi);
382
383 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
384 priv->spi_tx_buf[1] = reg;
385 priv->spi_tx_buf[2] = v1;
386 priv->spi_tx_buf[3] = v2;
387
388 mcp251x_spi_write(spi, 4);
389 }
390
mcp251x_write_bits(struct spi_device * spi,u8 reg,u8 mask,u8 val)391 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
392 u8 mask, u8 val)
393 {
394 struct mcp251x_priv *priv = spi_get_drvdata(spi);
395
396 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
397 priv->spi_tx_buf[1] = reg;
398 priv->spi_tx_buf[2] = mask;
399 priv->spi_tx_buf[3] = val;
400
401 mcp251x_spi_write(spi, 4);
402 }
403
mcp251x_read_stat(struct spi_device * spi)404 static u8 mcp251x_read_stat(struct spi_device *spi)
405 {
406 return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
407 }
408
409 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
410 readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
411 delay_us, timeout_us)
412
413 #ifdef CONFIG_GPIOLIB
414 enum {
415 MCP251X_GPIO_TX0RTS = 0, /* inputs */
416 MCP251X_GPIO_TX1RTS,
417 MCP251X_GPIO_TX2RTS,
418 MCP251X_GPIO_RX0BF, /* outputs */
419 MCP251X_GPIO_RX1BF,
420 };
421
422 #define MCP251X_GPIO_INPUT_MASK \
423 GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
424 #define MCP251X_GPIO_OUTPUT_MASK \
425 GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
426
427 static const char * const mcp251x_gpio_names[] = {
428 [MCP251X_GPIO_TX0RTS] = "TX0RTS", /* inputs */
429 [MCP251X_GPIO_TX1RTS] = "TX1RTS",
430 [MCP251X_GPIO_TX2RTS] = "TX2RTS",
431 [MCP251X_GPIO_RX0BF] = "RX0BF", /* outputs */
432 [MCP251X_GPIO_RX1BF] = "RX1BF",
433 };
434
mcp251x_gpio_is_input(unsigned int offset)435 static inline bool mcp251x_gpio_is_input(unsigned int offset)
436 {
437 return offset <= MCP251X_GPIO_TX2RTS;
438 }
439
mcp251x_gpio_request(struct gpio_chip * chip,unsigned int offset)440 static int mcp251x_gpio_request(struct gpio_chip *chip,
441 unsigned int offset)
442 {
443 struct mcp251x_priv *priv = gpiochip_get_data(chip);
444 u8 val;
445
446 /* nothing to be done for inputs */
447 if (mcp251x_gpio_is_input(offset))
448 return 0;
449
450 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
451
452 mutex_lock(&priv->mcp_lock);
453 mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
454 mutex_unlock(&priv->mcp_lock);
455
456 priv->reg_bfpctrl |= val;
457
458 return 0;
459 }
460
mcp251x_gpio_free(struct gpio_chip * chip,unsigned int offset)461 static void mcp251x_gpio_free(struct gpio_chip *chip,
462 unsigned int offset)
463 {
464 struct mcp251x_priv *priv = gpiochip_get_data(chip);
465 u8 val;
466
467 /* nothing to be done for inputs */
468 if (mcp251x_gpio_is_input(offset))
469 return;
470
471 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
472
473 mutex_lock(&priv->mcp_lock);
474 mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
475 mutex_unlock(&priv->mcp_lock);
476
477 priv->reg_bfpctrl &= ~val;
478 }
479
mcp251x_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)480 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
481 unsigned int offset)
482 {
483 if (mcp251x_gpio_is_input(offset))
484 return GPIOF_DIR_IN;
485
486 return GPIOF_DIR_OUT;
487 }
488
mcp251x_gpio_get(struct gpio_chip * chip,unsigned int offset)489 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
490 {
491 struct mcp251x_priv *priv = gpiochip_get_data(chip);
492 u8 reg, mask, val;
493
494 if (mcp251x_gpio_is_input(offset)) {
495 reg = TXRTSCTRL;
496 mask = TXRTSCTRL_RTS(offset);
497 } else {
498 reg = BFPCTRL;
499 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
500 }
501
502 mutex_lock(&priv->mcp_lock);
503 val = mcp251x_read_reg(priv->spi, reg);
504 mutex_unlock(&priv->mcp_lock);
505
506 return !!(val & mask);
507 }
508
mcp251x_gpio_get_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)509 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
510 unsigned long *maskp, unsigned long *bitsp)
511 {
512 struct mcp251x_priv *priv = gpiochip_get_data(chip);
513 unsigned long bits = 0;
514 u8 val;
515
516 mutex_lock(&priv->mcp_lock);
517 if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
518 val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
519 val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
520 bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
521 }
522 if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
523 val = mcp251x_read_reg(priv->spi, BFPCTRL);
524 val = FIELD_GET(BFPCTRL_BFS_MASK, val);
525 bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
526 }
527 mutex_unlock(&priv->mcp_lock);
528
529 bitsp[0] = bits;
530 return 0;
531 }
532
mcp251x_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)533 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
534 int value)
535 {
536 struct mcp251x_priv *priv = gpiochip_get_data(chip);
537 u8 mask, val;
538
539 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
540 val = value ? mask : 0;
541
542 mutex_lock(&priv->mcp_lock);
543 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
544 mutex_unlock(&priv->mcp_lock);
545
546 priv->reg_bfpctrl &= ~mask;
547 priv->reg_bfpctrl |= val;
548 }
549
550 static void
mcp251x_gpio_set_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)551 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
552 unsigned long *maskp, unsigned long *bitsp)
553 {
554 struct mcp251x_priv *priv = gpiochip_get_data(chip);
555 u8 mask, val;
556
557 mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
558 mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
559
560 val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
561 val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
562
563 if (!mask)
564 return;
565
566 mutex_lock(&priv->mcp_lock);
567 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
568 mutex_unlock(&priv->mcp_lock);
569
570 priv->reg_bfpctrl &= ~mask;
571 priv->reg_bfpctrl |= val;
572 }
573
mcp251x_gpio_restore(struct spi_device * spi)574 static void mcp251x_gpio_restore(struct spi_device *spi)
575 {
576 struct mcp251x_priv *priv = spi_get_drvdata(spi);
577
578 mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
579 }
580
mcp251x_gpio_setup(struct mcp251x_priv * priv)581 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
582 {
583 struct gpio_chip *gpio = &priv->gpio;
584
585 if (!device_property_present(&priv->spi->dev, "gpio-controller"))
586 return 0;
587
588 /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
589 gpio->label = priv->spi->modalias;
590 gpio->parent = &priv->spi->dev;
591 gpio->owner = THIS_MODULE;
592 gpio->request = mcp251x_gpio_request;
593 gpio->free = mcp251x_gpio_free;
594 gpio->get_direction = mcp251x_gpio_get_direction;
595 gpio->get = mcp251x_gpio_get;
596 gpio->get_multiple = mcp251x_gpio_get_multiple;
597 gpio->set = mcp251x_gpio_set;
598 gpio->set_multiple = mcp251x_gpio_set_multiple;
599 gpio->base = -1;
600 gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
601 gpio->names = mcp251x_gpio_names;
602 gpio->can_sleep = true;
603
604 return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
605 }
606 #else
mcp251x_gpio_restore(struct spi_device * spi)607 static inline void mcp251x_gpio_restore(struct spi_device *spi)
608 {
609 }
610
mcp251x_gpio_setup(struct mcp251x_priv * priv)611 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
612 {
613 return 0;
614 }
615 #endif
616
mcp251x_hw_tx_frame(struct spi_device * spi,u8 * buf,int len,int tx_buf_idx)617 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
618 int len, int tx_buf_idx)
619 {
620 struct mcp251x_priv *priv = spi_get_drvdata(spi);
621
622 if (mcp251x_is_2510(spi)) {
623 int i;
624
625 for (i = 1; i < TXBDAT_OFF + len; i++)
626 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
627 buf[i]);
628 } else {
629 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
630 mcp251x_spi_write(spi, TXBDAT_OFF + len);
631 }
632 }
633
mcp251x_hw_tx(struct spi_device * spi,struct can_frame * frame,int tx_buf_idx)634 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
635 int tx_buf_idx)
636 {
637 struct mcp251x_priv *priv = spi_get_drvdata(spi);
638 u32 sid, eid, exide, rtr;
639 u8 buf[SPI_TRANSFER_BUF_LEN];
640
641 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
642 if (exide)
643 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
644 else
645 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
646 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
647 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
648
649 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
650 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
651 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
652 (exide << SIDL_EXIDE_SHIFT) |
653 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
654 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
655 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
656 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
657 memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
658 mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
659
660 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
661 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
662 mcp251x_spi_write(priv->spi, 1);
663 }
664
mcp251x_hw_rx_frame(struct spi_device * spi,u8 * buf,int buf_idx)665 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
666 int buf_idx)
667 {
668 struct mcp251x_priv *priv = spi_get_drvdata(spi);
669
670 if (mcp251x_is_2510(spi)) {
671 int i, len;
672
673 for (i = 1; i < RXBDAT_OFF; i++)
674 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
675
676 len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
677 for (; i < (RXBDAT_OFF + len); i++)
678 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
679 } else {
680 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
681 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
682 spi_write_then_read(spi, priv->spi_tx_buf, 1,
683 priv->spi_rx_buf,
684 SPI_TRANSFER_BUF_LEN);
685 memcpy(buf + 1, priv->spi_rx_buf,
686 SPI_TRANSFER_BUF_LEN - 1);
687 } else {
688 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
689 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
690 }
691 }
692 }
693
mcp251x_hw_rx(struct spi_device * spi,int buf_idx)694 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
695 {
696 struct mcp251x_priv *priv = spi_get_drvdata(spi);
697 struct sk_buff *skb;
698 struct can_frame *frame;
699 u8 buf[SPI_TRANSFER_BUF_LEN];
700
701 skb = alloc_can_skb(priv->net, &frame);
702 if (!skb) {
703 dev_err(&spi->dev, "cannot allocate RX skb\n");
704 priv->net->stats.rx_dropped++;
705 return;
706 }
707
708 mcp251x_hw_rx_frame(spi, buf, buf_idx);
709 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
710 /* Extended ID format */
711 frame->can_id = CAN_EFF_FLAG;
712 frame->can_id |=
713 /* Extended ID part */
714 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
715 SET_BYTE(buf[RXBEID8_OFF], 1) |
716 SET_BYTE(buf[RXBEID0_OFF], 0) |
717 /* Standard ID part */
718 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
719 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
720 /* Remote transmission request */
721 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
722 frame->can_id |= CAN_RTR_FLAG;
723 } else {
724 /* Standard ID format */
725 frame->can_id =
726 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
727 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
728 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
729 frame->can_id |= CAN_RTR_FLAG;
730 }
731 /* Data length */
732 frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
733 if (!(frame->can_id & CAN_RTR_FLAG)) {
734 memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
735
736 priv->net->stats.rx_bytes += frame->len;
737 }
738 priv->net->stats.rx_packets++;
739
740 netif_rx(skb);
741 }
742
mcp251x_hw_sleep(struct spi_device * spi)743 static void mcp251x_hw_sleep(struct spi_device *spi)
744 {
745 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
746 }
747
748 /* May only be called when device is sleeping! */
mcp251x_hw_wake(struct spi_device * spi)749 static int mcp251x_hw_wake(struct spi_device *spi)
750 {
751 u8 value;
752 int ret;
753
754 /* Force wakeup interrupt to wake device, but don't execute IST */
755 disable_irq(spi->irq);
756 mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
757
758 /* Wait for oscillator startup timer after wake up */
759 mdelay(MCP251X_OST_DELAY_MS);
760
761 /* Put device into config mode */
762 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
763
764 /* Wait for the device to enter config mode */
765 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
766 MCP251X_OST_DELAY_MS * 1000,
767 USEC_PER_SEC);
768 if (ret) {
769 dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
770 return ret;
771 }
772
773 /* Disable and clear pending interrupts */
774 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
775 enable_irq(spi->irq);
776
777 return 0;
778 }
779
mcp251x_hard_start_xmit(struct sk_buff * skb,struct net_device * net)780 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
781 struct net_device *net)
782 {
783 struct mcp251x_priv *priv = netdev_priv(net);
784 struct spi_device *spi = priv->spi;
785
786 if (priv->tx_skb || priv->tx_busy) {
787 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
788 return NETDEV_TX_BUSY;
789 }
790
791 if (can_dropped_invalid_skb(net, skb))
792 return NETDEV_TX_OK;
793
794 netif_stop_queue(net);
795 priv->tx_skb = skb;
796 queue_work(priv->wq, &priv->tx_work);
797
798 return NETDEV_TX_OK;
799 }
800
mcp251x_do_set_mode(struct net_device * net,enum can_mode mode)801 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
802 {
803 struct mcp251x_priv *priv = netdev_priv(net);
804
805 switch (mode) {
806 case CAN_MODE_START:
807 mcp251x_clean(net);
808 /* We have to delay work since SPI I/O may sleep */
809 priv->can.state = CAN_STATE_ERROR_ACTIVE;
810 priv->restart_tx = 1;
811 if (priv->can.restart_ms == 0)
812 priv->after_suspend = AFTER_SUSPEND_RESTART;
813 queue_work(priv->wq, &priv->restart_work);
814 break;
815 default:
816 return -EOPNOTSUPP;
817 }
818
819 return 0;
820 }
821
mcp251x_set_normal_mode(struct spi_device * spi)822 static int mcp251x_set_normal_mode(struct spi_device *spi)
823 {
824 struct mcp251x_priv *priv = spi_get_drvdata(spi);
825 u8 value;
826 int ret;
827
828 /* Enable interrupts */
829 mcp251x_write_reg(spi, CANINTE,
830 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
831 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
832
833 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
834 /* Put device into loopback mode */
835 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
836 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
837 /* Put device into listen-only mode */
838 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
839 } else {
840 /* Put device into normal mode */
841 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
842
843 /* Wait for the device to enter normal mode */
844 ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
845 MCP251X_OST_DELAY_MS * 1000,
846 USEC_PER_SEC);
847 if (ret) {
848 dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
849 return ret;
850 }
851 }
852 priv->can.state = CAN_STATE_ERROR_ACTIVE;
853 return 0;
854 }
855
mcp251x_do_set_bittiming(struct net_device * net)856 static int mcp251x_do_set_bittiming(struct net_device *net)
857 {
858 struct mcp251x_priv *priv = netdev_priv(net);
859 struct can_bittiming *bt = &priv->can.bittiming;
860 struct spi_device *spi = priv->spi;
861
862 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
863 (bt->brp - 1));
864 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
865 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
866 CNF2_SAM : 0) |
867 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
868 (bt->prop_seg - 1));
869 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
870 (bt->phase_seg2 - 1));
871 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
872 mcp251x_read_reg(spi, CNF1),
873 mcp251x_read_reg(spi, CNF2),
874 mcp251x_read_reg(spi, CNF3));
875
876 return 0;
877 }
878
mcp251x_setup(struct net_device * net,struct spi_device * spi)879 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
880 {
881 mcp251x_do_set_bittiming(net);
882
883 mcp251x_write_reg(spi, RXBCTRL(0),
884 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
885 mcp251x_write_reg(spi, RXBCTRL(1),
886 RXBCTRL_RXM0 | RXBCTRL_RXM1);
887 return 0;
888 }
889
mcp251x_hw_reset(struct spi_device * spi)890 static int mcp251x_hw_reset(struct spi_device *spi)
891 {
892 struct mcp251x_priv *priv = spi_get_drvdata(spi);
893 u8 value;
894 int ret;
895
896 /* Wait for oscillator startup timer after power up */
897 mdelay(MCP251X_OST_DELAY_MS);
898
899 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
900 ret = mcp251x_spi_write(spi, 1);
901 if (ret)
902 return ret;
903
904 /* Wait for oscillator startup timer after reset */
905 mdelay(MCP251X_OST_DELAY_MS);
906
907 /* Wait for reset to finish */
908 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
909 MCP251X_OST_DELAY_MS * 1000,
910 USEC_PER_SEC);
911 if (ret)
912 dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
913 return ret;
914 }
915
mcp251x_hw_probe(struct spi_device * spi)916 static int mcp251x_hw_probe(struct spi_device *spi)
917 {
918 u8 ctrl;
919 int ret;
920
921 ret = mcp251x_hw_reset(spi);
922 if (ret)
923 return ret;
924
925 ctrl = mcp251x_read_reg(spi, CANCTRL);
926
927 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
928
929 /* Check for power up default value */
930 if ((ctrl & 0x17) != 0x07)
931 return -ENODEV;
932
933 return 0;
934 }
935
mcp251x_power_enable(struct regulator * reg,int enable)936 static int mcp251x_power_enable(struct regulator *reg, int enable)
937 {
938 if (IS_ERR_OR_NULL(reg))
939 return 0;
940
941 if (enable)
942 return regulator_enable(reg);
943 else
944 return regulator_disable(reg);
945 }
946
mcp251x_stop(struct net_device * net)947 static int mcp251x_stop(struct net_device *net)
948 {
949 struct mcp251x_priv *priv = netdev_priv(net);
950 struct spi_device *spi = priv->spi;
951
952 close_candev(net);
953
954 priv->force_quit = 1;
955 free_irq(spi->irq, priv);
956
957 mutex_lock(&priv->mcp_lock);
958
959 /* Disable and clear pending interrupts */
960 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
961
962 mcp251x_write_reg(spi, TXBCTRL(0), 0);
963 mcp251x_clean(net);
964
965 mcp251x_hw_sleep(spi);
966
967 mcp251x_power_enable(priv->transceiver, 0);
968
969 priv->can.state = CAN_STATE_STOPPED;
970
971 mutex_unlock(&priv->mcp_lock);
972
973 return 0;
974 }
975
mcp251x_error_skb(struct net_device * net,int can_id,int data1)976 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
977 {
978 struct sk_buff *skb;
979 struct can_frame *frame;
980
981 skb = alloc_can_err_skb(net, &frame);
982 if (skb) {
983 frame->can_id |= can_id;
984 frame->data[1] = data1;
985 netif_rx(skb);
986 } else {
987 netdev_err(net, "cannot allocate error skb\n");
988 }
989 }
990
mcp251x_tx_work_handler(struct work_struct * ws)991 static void mcp251x_tx_work_handler(struct work_struct *ws)
992 {
993 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
994 tx_work);
995 struct spi_device *spi = priv->spi;
996 struct net_device *net = priv->net;
997 struct can_frame *frame;
998
999 mutex_lock(&priv->mcp_lock);
1000 if (priv->tx_skb) {
1001 if (priv->can.state == CAN_STATE_BUS_OFF) {
1002 mcp251x_clean(net);
1003 } else {
1004 frame = (struct can_frame *)priv->tx_skb->data;
1005
1006 if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1007 frame->len = CAN_FRAME_MAX_DATA_LEN;
1008 mcp251x_hw_tx(spi, frame, 0);
1009 priv->tx_busy = true;
1010 can_put_echo_skb(priv->tx_skb, net, 0, 0);
1011 priv->tx_skb = NULL;
1012 }
1013 }
1014 mutex_unlock(&priv->mcp_lock);
1015 }
1016
mcp251x_restart_work_handler(struct work_struct * ws)1017 static void mcp251x_restart_work_handler(struct work_struct *ws)
1018 {
1019 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1020 restart_work);
1021 struct spi_device *spi = priv->spi;
1022 struct net_device *net = priv->net;
1023
1024 mutex_lock(&priv->mcp_lock);
1025 if (priv->after_suspend) {
1026 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1027 mcp251x_hw_reset(spi);
1028 mcp251x_setup(net, spi);
1029 mcp251x_gpio_restore(spi);
1030 } else {
1031 mcp251x_hw_wake(spi);
1032 }
1033 priv->force_quit = 0;
1034 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1035 mcp251x_set_normal_mode(spi);
1036 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1037 netif_device_attach(net);
1038 mcp251x_clean(net);
1039 mcp251x_set_normal_mode(spi);
1040 netif_wake_queue(net);
1041 } else {
1042 mcp251x_hw_sleep(spi);
1043 }
1044 priv->after_suspend = 0;
1045 }
1046
1047 if (priv->restart_tx) {
1048 priv->restart_tx = 0;
1049 mcp251x_write_reg(spi, TXBCTRL(0), 0);
1050 mcp251x_clean(net);
1051 netif_wake_queue(net);
1052 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1053 }
1054 mutex_unlock(&priv->mcp_lock);
1055 }
1056
mcp251x_can_ist(int irq,void * dev_id)1057 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1058 {
1059 struct mcp251x_priv *priv = dev_id;
1060 struct spi_device *spi = priv->spi;
1061 struct net_device *net = priv->net;
1062
1063 mutex_lock(&priv->mcp_lock);
1064 while (!priv->force_quit) {
1065 enum can_state new_state;
1066 u8 intf, eflag;
1067 u8 clear_intf = 0;
1068 int can_id = 0, data1 = 0;
1069
1070 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1071
1072 /* receive buffer 0 */
1073 if (intf & CANINTF_RX0IF) {
1074 mcp251x_hw_rx(spi, 0);
1075 /* Free one buffer ASAP
1076 * (The MCP2515/25625 does this automatically.)
1077 */
1078 if (mcp251x_is_2510(spi))
1079 mcp251x_write_bits(spi, CANINTF,
1080 CANINTF_RX0IF, 0x00);
1081
1082 /* check if buffer 1 is already known to be full, no need to re-read */
1083 if (!(intf & CANINTF_RX1IF)) {
1084 u8 intf1, eflag1;
1085
1086 /* intf needs to be read again to avoid a race condition */
1087 mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1088
1089 /* combine flags from both operations for error handling */
1090 intf |= intf1;
1091 eflag |= eflag1;
1092 }
1093 }
1094
1095 /* receive buffer 1 */
1096 if (intf & CANINTF_RX1IF) {
1097 mcp251x_hw_rx(spi, 1);
1098 /* The MCP2515/25625 does this automatically. */
1099 if (mcp251x_is_2510(spi))
1100 clear_intf |= CANINTF_RX1IF;
1101 }
1102
1103 /* mask out flags we don't care about */
1104 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1105
1106 /* any error or tx interrupt we need to clear? */
1107 if (intf & (CANINTF_ERR | CANINTF_TX))
1108 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1109 if (clear_intf)
1110 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1111
1112 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1113 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1114
1115 /* Update can state */
1116 if (eflag & EFLG_TXBO) {
1117 new_state = CAN_STATE_BUS_OFF;
1118 can_id |= CAN_ERR_BUSOFF;
1119 } else if (eflag & EFLG_TXEP) {
1120 new_state = CAN_STATE_ERROR_PASSIVE;
1121 can_id |= CAN_ERR_CRTL;
1122 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1123 } else if (eflag & EFLG_RXEP) {
1124 new_state = CAN_STATE_ERROR_PASSIVE;
1125 can_id |= CAN_ERR_CRTL;
1126 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1127 } else if (eflag & EFLG_TXWAR) {
1128 new_state = CAN_STATE_ERROR_WARNING;
1129 can_id |= CAN_ERR_CRTL;
1130 data1 |= CAN_ERR_CRTL_TX_WARNING;
1131 } else if (eflag & EFLG_RXWAR) {
1132 new_state = CAN_STATE_ERROR_WARNING;
1133 can_id |= CAN_ERR_CRTL;
1134 data1 |= CAN_ERR_CRTL_RX_WARNING;
1135 } else {
1136 new_state = CAN_STATE_ERROR_ACTIVE;
1137 }
1138
1139 /* Update can state statistics */
1140 switch (priv->can.state) {
1141 case CAN_STATE_ERROR_ACTIVE:
1142 if (new_state >= CAN_STATE_ERROR_WARNING &&
1143 new_state <= CAN_STATE_BUS_OFF)
1144 priv->can.can_stats.error_warning++;
1145 fallthrough;
1146 case CAN_STATE_ERROR_WARNING:
1147 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1148 new_state <= CAN_STATE_BUS_OFF)
1149 priv->can.can_stats.error_passive++;
1150 break;
1151 default:
1152 break;
1153 }
1154 priv->can.state = new_state;
1155
1156 if (intf & CANINTF_ERRIF) {
1157 /* Handle overflow counters */
1158 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1159 if (eflag & EFLG_RX0OVR) {
1160 net->stats.rx_over_errors++;
1161 net->stats.rx_errors++;
1162 }
1163 if (eflag & EFLG_RX1OVR) {
1164 net->stats.rx_over_errors++;
1165 net->stats.rx_errors++;
1166 }
1167 can_id |= CAN_ERR_CRTL;
1168 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1169 }
1170 mcp251x_error_skb(net, can_id, data1);
1171 }
1172
1173 if (priv->can.state == CAN_STATE_BUS_OFF) {
1174 if (priv->can.restart_ms == 0) {
1175 priv->force_quit = 1;
1176 priv->can.can_stats.bus_off++;
1177 can_bus_off(net);
1178 mcp251x_hw_sleep(spi);
1179 break;
1180 }
1181 }
1182
1183 if (intf == 0)
1184 break;
1185
1186 if (intf & CANINTF_TX) {
1187 if (priv->tx_busy) {
1188 net->stats.tx_packets++;
1189 net->stats.tx_bytes += can_get_echo_skb(net, 0,
1190 NULL);
1191 priv->tx_busy = false;
1192 }
1193 netif_wake_queue(net);
1194 }
1195 }
1196 mutex_unlock(&priv->mcp_lock);
1197 return IRQ_HANDLED;
1198 }
1199
mcp251x_open(struct net_device * net)1200 static int mcp251x_open(struct net_device *net)
1201 {
1202 struct mcp251x_priv *priv = netdev_priv(net);
1203 struct spi_device *spi = priv->spi;
1204 unsigned long flags = 0;
1205 int ret;
1206
1207 ret = open_candev(net);
1208 if (ret) {
1209 dev_err(&spi->dev, "unable to set initial baudrate!\n");
1210 return ret;
1211 }
1212
1213 mutex_lock(&priv->mcp_lock);
1214 mcp251x_power_enable(priv->transceiver, 1);
1215
1216 priv->force_quit = 0;
1217 priv->tx_skb = NULL;
1218 priv->tx_busy = false;
1219
1220 if (!dev_fwnode(&spi->dev))
1221 flags = IRQF_TRIGGER_FALLING;
1222
1223 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1224 flags | IRQF_ONESHOT, dev_name(&spi->dev),
1225 priv);
1226 if (ret) {
1227 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1228 goto out_close;
1229 }
1230
1231 ret = mcp251x_hw_wake(spi);
1232 if (ret)
1233 goto out_free_irq;
1234 ret = mcp251x_setup(net, spi);
1235 if (ret)
1236 goto out_free_irq;
1237 ret = mcp251x_set_normal_mode(spi);
1238 if (ret)
1239 goto out_free_irq;
1240
1241 netif_wake_queue(net);
1242 mutex_unlock(&priv->mcp_lock);
1243
1244 return 0;
1245
1246 out_free_irq:
1247 free_irq(spi->irq, priv);
1248 mcp251x_hw_sleep(spi);
1249 out_close:
1250 mcp251x_power_enable(priv->transceiver, 0);
1251 close_candev(net);
1252 mutex_unlock(&priv->mcp_lock);
1253 return ret;
1254 }
1255
1256 static const struct net_device_ops mcp251x_netdev_ops = {
1257 .ndo_open = mcp251x_open,
1258 .ndo_stop = mcp251x_stop,
1259 .ndo_start_xmit = mcp251x_hard_start_xmit,
1260 .ndo_change_mtu = can_change_mtu,
1261 };
1262
1263 static const struct of_device_id mcp251x_of_match[] = {
1264 {
1265 .compatible = "microchip,mcp2510",
1266 .data = (void *)CAN_MCP251X_MCP2510,
1267 },
1268 {
1269 .compatible = "microchip,mcp2515",
1270 .data = (void *)CAN_MCP251X_MCP2515,
1271 },
1272 {
1273 .compatible = "microchip,mcp25625",
1274 .data = (void *)CAN_MCP251X_MCP25625,
1275 },
1276 { }
1277 };
1278 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1279
1280 static const struct spi_device_id mcp251x_id_table[] = {
1281 {
1282 .name = "mcp2510",
1283 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1284 },
1285 {
1286 .name = "mcp2515",
1287 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1288 },
1289 {
1290 .name = "mcp25625",
1291 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP25625,
1292 },
1293 { }
1294 };
1295 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1296
mcp251x_can_probe(struct spi_device * spi)1297 static int mcp251x_can_probe(struct spi_device *spi)
1298 {
1299 const void *match = device_get_match_data(&spi->dev);
1300 struct net_device *net;
1301 struct mcp251x_priv *priv;
1302 struct clk *clk;
1303 u32 freq;
1304 int ret;
1305
1306 clk = devm_clk_get_optional(&spi->dev, NULL);
1307 if (IS_ERR(clk))
1308 return PTR_ERR(clk);
1309
1310 freq = clk_get_rate(clk);
1311 if (freq == 0)
1312 device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1313
1314 /* Sanity check */
1315 if (freq < 1000000 || freq > 25000000)
1316 return -ERANGE;
1317
1318 /* Allocate can/net device */
1319 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1320 if (!net)
1321 return -ENOMEM;
1322
1323 ret = clk_prepare_enable(clk);
1324 if (ret)
1325 goto out_free;
1326
1327 net->netdev_ops = &mcp251x_netdev_ops;
1328 net->flags |= IFF_ECHO;
1329
1330 priv = netdev_priv(net);
1331 priv->can.bittiming_const = &mcp251x_bittiming_const;
1332 priv->can.do_set_mode = mcp251x_do_set_mode;
1333 priv->can.clock.freq = freq / 2;
1334 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1335 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1336 if (match)
1337 priv->model = (enum mcp251x_model)(uintptr_t)match;
1338 else
1339 priv->model = spi_get_device_id(spi)->driver_data;
1340 priv->net = net;
1341 priv->clk = clk;
1342
1343 spi_set_drvdata(spi, priv);
1344
1345 /* Configure the SPI bus */
1346 spi->bits_per_word = 8;
1347 if (mcp251x_is_2510(spi))
1348 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1349 else
1350 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1351 ret = spi_setup(spi);
1352 if (ret)
1353 goto out_clk;
1354
1355 priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1356 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1357 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1358 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1359 ret = -EPROBE_DEFER;
1360 goto out_clk;
1361 }
1362
1363 ret = mcp251x_power_enable(priv->power, 1);
1364 if (ret)
1365 goto out_clk;
1366
1367 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1368 0);
1369 if (!priv->wq) {
1370 ret = -ENOMEM;
1371 goto out_clk;
1372 }
1373 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1374 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1375
1376 priv->spi = spi;
1377 mutex_init(&priv->mcp_lock);
1378
1379 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1380 GFP_KERNEL);
1381 if (!priv->spi_tx_buf) {
1382 ret = -ENOMEM;
1383 goto error_probe;
1384 }
1385
1386 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1387 GFP_KERNEL);
1388 if (!priv->spi_rx_buf) {
1389 ret = -ENOMEM;
1390 goto error_probe;
1391 }
1392
1393 SET_NETDEV_DEV(net, &spi->dev);
1394
1395 /* Here is OK to not lock the MCP, no one knows about it yet */
1396 ret = mcp251x_hw_probe(spi);
1397 if (ret) {
1398 if (ret == -ENODEV)
1399 dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1400 priv->model);
1401 goto error_probe;
1402 }
1403
1404 mcp251x_hw_sleep(spi);
1405
1406 ret = register_candev(net);
1407 if (ret)
1408 goto error_probe;
1409
1410 ret = mcp251x_gpio_setup(priv);
1411 if (ret)
1412 goto error_probe;
1413
1414 netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1415 return 0;
1416
1417 error_probe:
1418 destroy_workqueue(priv->wq);
1419 priv->wq = NULL;
1420 mcp251x_power_enable(priv->power, 0);
1421
1422 out_clk:
1423 clk_disable_unprepare(clk);
1424
1425 out_free:
1426 free_candev(net);
1427
1428 dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1429 return ret;
1430 }
1431
mcp251x_can_remove(struct spi_device * spi)1432 static void mcp251x_can_remove(struct spi_device *spi)
1433 {
1434 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1435 struct net_device *net = priv->net;
1436
1437 unregister_candev(net);
1438
1439 mcp251x_power_enable(priv->power, 0);
1440
1441 destroy_workqueue(priv->wq);
1442 priv->wq = NULL;
1443
1444 clk_disable_unprepare(priv->clk);
1445
1446 free_candev(net);
1447 }
1448
mcp251x_can_suspend(struct device * dev)1449 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1450 {
1451 struct spi_device *spi = to_spi_device(dev);
1452 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1453 struct net_device *net = priv->net;
1454
1455 priv->force_quit = 1;
1456 disable_irq(spi->irq);
1457 /* Note: at this point neither IST nor workqueues are running.
1458 * open/stop cannot be called anyway so locking is not needed
1459 */
1460 if (netif_running(net)) {
1461 netif_device_detach(net);
1462
1463 mcp251x_hw_sleep(spi);
1464 mcp251x_power_enable(priv->transceiver, 0);
1465 priv->after_suspend = AFTER_SUSPEND_UP;
1466 } else {
1467 priv->after_suspend = AFTER_SUSPEND_DOWN;
1468 }
1469
1470 mcp251x_power_enable(priv->power, 0);
1471 priv->after_suspend |= AFTER_SUSPEND_POWER;
1472
1473 return 0;
1474 }
1475
mcp251x_can_resume(struct device * dev)1476 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1477 {
1478 struct spi_device *spi = to_spi_device(dev);
1479 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1480
1481 if (priv->after_suspend & AFTER_SUSPEND_POWER)
1482 mcp251x_power_enable(priv->power, 1);
1483 if (priv->after_suspend & AFTER_SUSPEND_UP)
1484 mcp251x_power_enable(priv->transceiver, 1);
1485
1486 if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1487 queue_work(priv->wq, &priv->restart_work);
1488 else
1489 priv->after_suspend = 0;
1490
1491 priv->force_quit = 0;
1492 enable_irq(spi->irq);
1493 return 0;
1494 }
1495
1496 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1497 mcp251x_can_resume);
1498
1499 static struct spi_driver mcp251x_can_driver = {
1500 .driver = {
1501 .name = DEVICE_NAME,
1502 .of_match_table = mcp251x_of_match,
1503 .pm = &mcp251x_can_pm_ops,
1504 },
1505 .id_table = mcp251x_id_table,
1506 .probe = mcp251x_can_probe,
1507 .remove = mcp251x_can_remove,
1508 };
1509 module_spi_driver(mcp251x_can_driver);
1510
1511 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1512 "Christian Pellegrin <chripell@evolware.org>");
1513 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1514 MODULE_LICENSE("GPL v2");
1515