1 /*
2 Written 1998-2000 by Donald Becker.
3
4 This software may be used and distributed according to the terms of
5 the GNU General Public License (GPL), incorporated herein by reference.
6 Drivers based on or derived from this code fall under the GPL and must
7 retain the authorship, copyright and license notice. This file is not
8 a complete program and may only be used when the entire operating
9 system is licensed under the GPL.
10
11 The author may be reached as becker@scyld.com, or C/O
12 Scyld Computing Corporation
13 410 Severn Ave., Suite 210
14 Annapolis MD 21403
15
16 Support information and updates available at
17 http://www.scyld.com/network/pci-skeleton.html
18
19 Linux kernel updates:
20
21 Version 2.51, Nov 17, 2001 (jgarzik):
22 - Add ethtool support
23 - Replace some MII-related magic numbers with constants
24
25 */
26
27 #define DRV_NAME "fealnx"
28
29 static int debug; /* 1-> print debug message */
30 static int max_interrupt_work = 20;
31
32 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33 static int multicast_filter_limit = 32;
34
35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36 /* Setting to > 1518 effectively disables this feature. */
37 static int rx_copybreak;
38
39 /* Used to pass the media type, etc. */
40 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
41 /* interoperability. */
42 /* The media type is usually passed in 'options[]'. */
43 #define MAX_UNITS 8 /* More are supported, limit only on options */
44 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46
47 /* Operational parameters that are set at compile time. */
48 /* Keep the ring sizes a power of two for compile efficiency. */
49 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask. */
50 /* Making the Tx ring too large decreases the effectiveness of channel */
51 /* bonding and packet priority. */
52 /* There are no ill effects from too-large receive rings. */
53 // 88-12-9 modify,
54 // #define TX_RING_SIZE 16
55 // #define RX_RING_SIZE 32
56 #define TX_RING_SIZE 6
57 #define RX_RING_SIZE 12
58 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct fealnx_desc)
59 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct fealnx_desc)
60
61 /* Operational parameters that usually are not changed. */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
64
65 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
66
67
68 /* Include files, designed to support most kernel versions 2.0.0 and later. */
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/errno.h>
74 #include <linux/ioport.h>
75 #include <linux/interrupt.h>
76 #include <linux/pci.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/init.h>
81 #include <linux/mii.h>
82 #include <linux/ethtool.h>
83 #include <linux/crc32.h>
84 #include <linux/delay.h>
85 #include <linux/bitops.h>
86
87 #include <asm/processor.h> /* Processor type for cache alignment. */
88 #include <asm/io.h>
89 #include <linux/uaccess.h>
90 #include <asm/byteorder.h>
91
92 /* This driver was written to use PCI memory space, however some x86 systems
93 work only with I/O space accesses. */
94 #ifndef __alpha__
95 #define USE_IO_OPS
96 #endif
97
98 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99 /* This is only in the support-all-kernels source code. */
100
101 #define RUN_AT(x) (jiffies + (x))
102
103 MODULE_AUTHOR("Myson or whoever");
104 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105 MODULE_LICENSE("GPL");
106 module_param(max_interrupt_work, int, 0);
107 module_param(debug, int, 0);
108 module_param(rx_copybreak, int, 0);
109 module_param(multicast_filter_limit, int, 0);
110 module_param_array(options, int, NULL, 0);
111 module_param_array(full_duplex, int, NULL, 0);
112 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118
119 enum {
120 MIN_REGION_SIZE = 136,
121 };
122
123 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
124 enum chip_capability_flags {
125 HAS_MII_XCVR,
126 HAS_CHIP_XCVR,
127 };
128
129 /* 89/6/13 add, */
130 /* for different PHY */
131 enum phy_type_flags {
132 MysonPHY = 1,
133 AhdocPHY = 2,
134 SeeqPHY = 3,
135 MarvellPHY = 4,
136 Myson981 = 5,
137 LevelOnePHY = 6,
138 OtherPHY = 10,
139 };
140
141 struct chip_info {
142 char *chip_name;
143 int flags;
144 };
145
146 static const struct chip_info skel_netdrv_tbl[] = {
147 { "100/10M Ethernet PCI Adapter", HAS_MII_XCVR },
148 { "100/10M Ethernet PCI Adapter", HAS_CHIP_XCVR },
149 { "1000/100/10M Ethernet PCI Adapter", HAS_MII_XCVR },
150 };
151
152 /* Offsets to the Command and Status Registers. */
153 enum fealnx_offsets {
154 PAR0 = 0x0, /* physical address 0-3 */
155 PAR1 = 0x04, /* physical address 4-5 */
156 MAR0 = 0x08, /* multicast address 0-3 */
157 MAR1 = 0x0C, /* multicast address 4-7 */
158 FAR0 = 0x10, /* flow-control address 0-3 */
159 FAR1 = 0x14, /* flow-control address 4-5 */
160 TCRRCR = 0x18, /* receive & transmit configuration */
161 BCR = 0x1C, /* bus command */
162 TXPDR = 0x20, /* transmit polling demand */
163 RXPDR = 0x24, /* receive polling demand */
164 RXCWP = 0x28, /* receive current word pointer */
165 TXLBA = 0x2C, /* transmit list base address */
166 RXLBA = 0x30, /* receive list base address */
167 ISR = 0x34, /* interrupt status */
168 IMR = 0x38, /* interrupt mask */
169 FTH = 0x3C, /* flow control high/low threshold */
170 MANAGEMENT = 0x40, /* bootrom/eeprom and mii management */
171 TALLY = 0x44, /* tally counters for crc and mpa */
172 TSR = 0x48, /* tally counter for transmit status */
173 BMCRSR = 0x4c, /* basic mode control and status */
174 PHYIDENTIFIER = 0x50, /* phy identifier */
175 ANARANLPAR = 0x54, /* auto-negotiation advertisement and link
176 partner ability */
177 ANEROCR = 0x58, /* auto-negotiation expansion and pci conf. */
178 BPREMRPSR = 0x5c, /* bypass & receive error mask and phy status */
179 };
180
181 /* Bits in the interrupt status/enable registers. */
182 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183 enum intr_status_bits {
184 RFCON = 0x00020000, /* receive flow control xon packet */
185 RFCOFF = 0x00010000, /* receive flow control xoff packet */
186 LSCStatus = 0x00008000, /* link status change */
187 ANCStatus = 0x00004000, /* autonegotiation completed */
188 FBE = 0x00002000, /* fatal bus error */
189 FBEMask = 0x00001800, /* mask bit12-11 */
190 ParityErr = 0x00000000, /* parity error */
191 TargetErr = 0x00001000, /* target abort */
192 MasterErr = 0x00000800, /* master error */
193 TUNF = 0x00000400, /* transmit underflow */
194 ROVF = 0x00000200, /* receive overflow */
195 ETI = 0x00000100, /* transmit early int */
196 ERI = 0x00000080, /* receive early int */
197 CNTOVF = 0x00000040, /* counter overflow */
198 RBU = 0x00000020, /* receive buffer unavailable */
199 TBU = 0x00000010, /* transmit buffer unavilable */
200 TI = 0x00000008, /* transmit interrupt */
201 RI = 0x00000004, /* receive interrupt */
202 RxErr = 0x00000002, /* receive error */
203 };
204
205 /* Bits in the NetworkConfig register, W for writing, R for reading */
206 /* FIXME: some names are invented by me. Marked with (name?) */
207 /* If you have docs and know bit names, please fix 'em */
208 enum rx_mode_bits {
209 CR_W_ENH = 0x02000000, /* enhanced mode (name?) */
210 CR_W_FD = 0x00100000, /* full duplex */
211 CR_W_PS10 = 0x00080000, /* 10 mbit */
212 CR_W_TXEN = 0x00040000, /* tx enable (name?) */
213 CR_W_PS1000 = 0x00010000, /* 1000 mbit */
214 /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215 CR_W_RXMODEMASK = 0x000000e0,
216 CR_W_PROM = 0x00000080, /* promiscuous mode */
217 CR_W_AB = 0x00000040, /* accept broadcast */
218 CR_W_AM = 0x00000020, /* accept mutlicast */
219 CR_W_ARP = 0x00000008, /* receive runt pkt */
220 CR_W_ALP = 0x00000004, /* receive long pkt */
221 CR_W_SEP = 0x00000002, /* receive error pkt */
222 CR_W_RXEN = 0x00000001, /* rx enable (unicast?) (name?) */
223
224 CR_R_TXSTOP = 0x04000000, /* tx stopped (name?) */
225 CR_R_FD = 0x00100000, /* full duplex detected */
226 CR_R_PS10 = 0x00080000, /* 10 mbit detected */
227 CR_R_RXSTOP = 0x00008000, /* rx stopped (name?) */
228 };
229
230 /* The Tulip Rx and Tx buffer descriptors. */
231 struct fealnx_desc {
232 s32 status;
233 s32 control;
234 u32 buffer;
235 u32 next_desc;
236 struct fealnx_desc *next_desc_logical;
237 struct sk_buff *skbuff;
238 u32 reserved1;
239 u32 reserved2;
240 };
241
242 /* Bits in network_desc.status */
243 enum rx_desc_status_bits {
244 RXOWN = 0x80000000, /* own bit */
245 FLNGMASK = 0x0fff0000, /* frame length */
246 FLNGShift = 16,
247 MARSTATUS = 0x00004000, /* multicast address received */
248 BARSTATUS = 0x00002000, /* broadcast address received */
249 PHYSTATUS = 0x00001000, /* physical address received */
250 RXFSD = 0x00000800, /* first descriptor */
251 RXLSD = 0x00000400, /* last descriptor */
252 ErrorSummary = 0x80, /* error summary */
253 RUNTPKT = 0x40, /* runt packet received */
254 LONGPKT = 0x20, /* long packet received */
255 FAE = 0x10, /* frame align error */
256 CRC = 0x08, /* crc error */
257 RXER = 0x04, /* receive error */
258 };
259
260 enum rx_desc_control_bits {
261 RXIC = 0x00800000, /* interrupt control */
262 RBSShift = 0,
263 };
264
265 enum tx_desc_status_bits {
266 TXOWN = 0x80000000, /* own bit */
267 JABTO = 0x00004000, /* jabber timeout */
268 CSL = 0x00002000, /* carrier sense lost */
269 LC = 0x00001000, /* late collision */
270 EC = 0x00000800, /* excessive collision */
271 UDF = 0x00000400, /* fifo underflow */
272 DFR = 0x00000200, /* deferred */
273 HF = 0x00000100, /* heartbeat fail */
274 NCRMask = 0x000000ff, /* collision retry count */
275 NCRShift = 0,
276 };
277
278 enum tx_desc_control_bits {
279 TXIC = 0x80000000, /* interrupt control */
280 ETIControl = 0x40000000, /* early transmit interrupt */
281 TXLD = 0x20000000, /* last descriptor */
282 TXFD = 0x10000000, /* first descriptor */
283 CRCEnable = 0x08000000, /* crc control */
284 PADEnable = 0x04000000, /* padding control */
285 RetryTxLC = 0x02000000, /* retry late collision */
286 PKTSMask = 0x3ff800, /* packet size bit21-11 */
287 PKTSShift = 11,
288 TBSMask = 0x000007ff, /* transmit buffer bit 10-0 */
289 TBSShift = 0,
290 };
291
292 /* BootROM/EEPROM/MII Management Register */
293 #define MASK_MIIR_MII_READ 0x00000000
294 #define MASK_MIIR_MII_WRITE 0x00000008
295 #define MASK_MIIR_MII_MDO 0x00000004
296 #define MASK_MIIR_MII_MDI 0x00000002
297 #define MASK_MIIR_MII_MDC 0x00000001
298
299 /* ST+OP+PHYAD+REGAD+TA */
300 #define OP_READ 0x6000 /* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301 #define OP_WRITE 0x5002 /* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302
303 /* ------------------------------------------------------------------------- */
304 /* Constants for Myson PHY */
305 /* ------------------------------------------------------------------------- */
306 #define MysonPHYID 0xd0000302
307 /* 89-7-27 add, (begin) */
308 #define MysonPHYID0 0x0302
309 #define StatusRegister 18
310 #define SPEED100 0x0400 // bit10
311 #define FULLMODE 0x0800 // bit11
312 /* 89-7-27 add, (end) */
313
314 /* ------------------------------------------------------------------------- */
315 /* Constants for Seeq 80225 PHY */
316 /* ------------------------------------------------------------------------- */
317 #define SeeqPHYID0 0x0016
318
319 #define MIIRegister18 18
320 #define SPD_DET_100 0x80
321 #define DPLX_DET_FULL 0x40
322
323 /* ------------------------------------------------------------------------- */
324 /* Constants for Ahdoc 101 PHY */
325 /* ------------------------------------------------------------------------- */
326 #define AhdocPHYID0 0x0022
327
328 #define DiagnosticReg 18
329 #define DPLX_FULL 0x0800
330 #define Speed_100 0x0400
331
332 /* 89/6/13 add, */
333 /* -------------------------------------------------------------------------- */
334 /* Constants */
335 /* -------------------------------------------------------------------------- */
336 #define MarvellPHYID0 0x0141
337 #define LevelOnePHYID0 0x0013
338
339 #define MII1000BaseTControlReg 9
340 #define MII1000BaseTStatusReg 10
341 #define SpecificReg 17
342
343 /* for 1000BaseT Control Register */
344 #define PHYAbletoPerform1000FullDuplex 0x0200
345 #define PHYAbletoPerform1000HalfDuplex 0x0100
346 #define PHY1000AbilityMask 0x300
347
348 // for phy specific status register, marvell phy.
349 #define SpeedMask 0x0c000
350 #define Speed_1000M 0x08000
351 #define Speed_100M 0x4000
352 #define Speed_10M 0
353 #define Full_Duplex 0x2000
354
355 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
356 #define LXT1000_100M 0x08000
357 #define LXT1000_1000M 0x0c000
358 #define LXT1000_Full 0x200
359 // 89/12/29 add, for phy specific status register, levelone phy, (end)
360
361 /* for 3-in-1 case, BMCRSR register */
362 #define LinkIsUp2 0x00040000
363
364 /* for PHY */
365 #define LinkIsUp 0x0004
366
367
368 struct netdev_private {
369 /* Descriptor rings first for alignment. */
370 struct fealnx_desc *rx_ring;
371 struct fealnx_desc *tx_ring;
372
373 dma_addr_t rx_ring_dma;
374 dma_addr_t tx_ring_dma;
375
376 spinlock_t lock;
377
378 /* Media monitoring timer. */
379 struct timer_list timer;
380
381 /* Reset timer */
382 struct timer_list reset_timer;
383 int reset_timer_armed;
384 unsigned long crvalue_sv;
385 unsigned long imrvalue_sv;
386
387 /* Frequently used values: keep some adjacent for cache effect. */
388 int flags;
389 struct pci_dev *pci_dev;
390 unsigned long crvalue;
391 unsigned long bcrvalue;
392 unsigned long imrvalue;
393 struct fealnx_desc *cur_rx;
394 struct fealnx_desc *lack_rxbuf;
395 int really_rx_count;
396 struct fealnx_desc *cur_tx;
397 struct fealnx_desc *cur_tx_copy;
398 int really_tx_count;
399 int free_tx_count;
400 unsigned int rx_buf_sz; /* Based on MTU+slack. */
401
402 /* These values are keep track of the transceiver/media in use. */
403 unsigned int linkok;
404 unsigned int line_speed;
405 unsigned int duplexmode;
406 unsigned int default_port:4; /* Last dev->if_port value. */
407 unsigned int PHYType;
408
409 /* MII transceiver section. */
410 int mii_cnt; /* MII device addresses. */
411 unsigned char phys[2]; /* MII device addresses. */
412 struct mii_if_info mii;
413 void __iomem *mem;
414 };
415
416
417 static int mdio_read(struct net_device *dev, int phy_id, int location);
418 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419 static int netdev_open(struct net_device *dev);
420 static void getlinktype(struct net_device *dev);
421 static void getlinkstatus(struct net_device *dev);
422 static void netdev_timer(struct timer_list *t);
423 static void reset_timer(struct timer_list *t);
424 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425 static void init_ring(struct net_device *dev);
426 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427 static irqreturn_t intr_handler(int irq, void *dev_instance);
428 static int netdev_rx(struct net_device *dev);
429 static void set_rx_mode(struct net_device *dev);
430 static void __set_rx_mode(struct net_device *dev);
431 static struct net_device_stats *get_stats(struct net_device *dev);
432 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433 static const struct ethtool_ops netdev_ethtool_ops;
434 static int netdev_close(struct net_device *dev);
435 static void reset_rx_descriptors(struct net_device *dev);
436 static void reset_tx_descriptors(struct net_device *dev);
437
stop_nic_rx(void __iomem * ioaddr,long crvalue)438 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439 {
440 int delay = 0x1000;
441 iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442 while (--delay) {
443 if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444 break;
445 }
446 }
447
448
stop_nic_rxtx(void __iomem * ioaddr,long crvalue)449 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450 {
451 int delay = 0x1000;
452 iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453 while (--delay) {
454 if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455 == (CR_R_RXSTOP+CR_R_TXSTOP) )
456 break;
457 }
458 }
459
460 static const struct net_device_ops netdev_ops = {
461 .ndo_open = netdev_open,
462 .ndo_stop = netdev_close,
463 .ndo_start_xmit = start_tx,
464 .ndo_get_stats = get_stats,
465 .ndo_set_rx_mode = set_rx_mode,
466 .ndo_eth_ioctl = mii_ioctl,
467 .ndo_tx_timeout = fealnx_tx_timeout,
468 .ndo_set_mac_address = eth_mac_addr,
469 .ndo_validate_addr = eth_validate_addr,
470 };
471
fealnx_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)472 static int fealnx_init_one(struct pci_dev *pdev,
473 const struct pci_device_id *ent)
474 {
475 struct netdev_private *np;
476 int i, option, err, irq;
477 static int card_idx = -1;
478 char boardname[12];
479 void __iomem *ioaddr;
480 unsigned long len;
481 unsigned int chip_id = ent->driver_data;
482 struct net_device *dev;
483 void *ring_space;
484 dma_addr_t ring_dma;
485 u8 addr[ETH_ALEN];
486 #ifdef USE_IO_OPS
487 int bar = 0;
488 #else
489 int bar = 1;
490 #endif
491
492 card_idx++;
493 sprintf(boardname, "fealnx%d", card_idx);
494
495 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
496
497 i = pci_enable_device(pdev);
498 if (i) return i;
499 pci_set_master(pdev);
500
501 len = pci_resource_len(pdev, bar);
502 if (len < MIN_REGION_SIZE) {
503 dev_err(&pdev->dev,
504 "region size %ld too small, aborting\n", len);
505 return -ENODEV;
506 }
507
508 i = pci_request_regions(pdev, boardname);
509 if (i)
510 return i;
511
512 irq = pdev->irq;
513
514 ioaddr = pci_iomap(pdev, bar, len);
515 if (!ioaddr) {
516 err = -ENOMEM;
517 goto err_out_res;
518 }
519
520 dev = alloc_etherdev(sizeof(struct netdev_private));
521 if (!dev) {
522 err = -ENOMEM;
523 goto err_out_unmap;
524 }
525 SET_NETDEV_DEV(dev, &pdev->dev);
526
527 /* read ethernet id */
528 for (i = 0; i < 6; ++i)
529 addr[i] = ioread8(ioaddr + PAR0 + i);
530 eth_hw_addr_set(dev, addr);
531
532 /* Reset the chip to erase previous misconfiguration. */
533 iowrite32(0x00000001, ioaddr + BCR);
534
535 /* Make certain the descriptor lists are aligned. */
536 np = netdev_priv(dev);
537 np->mem = ioaddr;
538 spin_lock_init(&np->lock);
539 np->pci_dev = pdev;
540 np->flags = skel_netdrv_tbl[chip_id].flags;
541 pci_set_drvdata(pdev, dev);
542 np->mii.dev = dev;
543 np->mii.mdio_read = mdio_read;
544 np->mii.mdio_write = mdio_write;
545 np->mii.phy_id_mask = 0x1f;
546 np->mii.reg_num_mask = 0x1f;
547
548 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
549 GFP_KERNEL);
550 if (!ring_space) {
551 err = -ENOMEM;
552 goto err_out_free_dev;
553 }
554 np->rx_ring = ring_space;
555 np->rx_ring_dma = ring_dma;
556
557 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
558 GFP_KERNEL);
559 if (!ring_space) {
560 err = -ENOMEM;
561 goto err_out_free_rx;
562 }
563 np->tx_ring = ring_space;
564 np->tx_ring_dma = ring_dma;
565
566 /* find the connected MII xcvrs */
567 if (np->flags == HAS_MII_XCVR) {
568 int phy, phy_idx = 0;
569
570 for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
571 phy++) {
572 int mii_status = mdio_read(dev, phy, 1);
573
574 if (mii_status != 0xffff && mii_status != 0x0000) {
575 np->phys[phy_idx++] = phy;
576 dev_info(&pdev->dev,
577 "MII PHY found at address %d, status "
578 "0x%4.4x.\n", phy, mii_status);
579 /* get phy type */
580 {
581 unsigned int data;
582
583 data = mdio_read(dev, np->phys[0], 2);
584 if (data == SeeqPHYID0)
585 np->PHYType = SeeqPHY;
586 else if (data == AhdocPHYID0)
587 np->PHYType = AhdocPHY;
588 else if (data == MarvellPHYID0)
589 np->PHYType = MarvellPHY;
590 else if (data == MysonPHYID0)
591 np->PHYType = Myson981;
592 else if (data == LevelOnePHYID0)
593 np->PHYType = LevelOnePHY;
594 else
595 np->PHYType = OtherPHY;
596 }
597 }
598 }
599
600 np->mii_cnt = phy_idx;
601 if (phy_idx == 0)
602 dev_warn(&pdev->dev,
603 "MII PHY not found -- this device may "
604 "not operate correctly.\n");
605 } else {
606 np->phys[0] = 32;
607 /* 89/6/23 add, (begin) */
608 /* get phy type */
609 if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
610 np->PHYType = MysonPHY;
611 else
612 np->PHYType = OtherPHY;
613 }
614 np->mii.phy_id = np->phys[0];
615
616 if (dev->mem_start)
617 option = dev->mem_start;
618
619 /* The lower four bits are the media type. */
620 if (option > 0) {
621 if (option & 0x200)
622 np->mii.full_duplex = 1;
623 np->default_port = option & 15;
624 }
625
626 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
627 np->mii.full_duplex = full_duplex[card_idx];
628
629 if (np->mii.full_duplex) {
630 dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
631 /* 89/6/13 add, (begin) */
632 // if (np->PHYType==MarvellPHY)
633 if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
634 unsigned int data;
635
636 data = mdio_read(dev, np->phys[0], 9);
637 data = (data & 0xfcff) | 0x0200;
638 mdio_write(dev, np->phys[0], 9, data);
639 }
640 /* 89/6/13 add, (end) */
641 if (np->flags == HAS_MII_XCVR)
642 mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
643 else
644 iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
645 np->mii.force_media = 1;
646 }
647
648 dev->netdev_ops = &netdev_ops;
649 dev->ethtool_ops = &netdev_ethtool_ops;
650 dev->watchdog_timeo = TX_TIMEOUT;
651
652 err = register_netdev(dev);
653 if (err)
654 goto err_out_free_tx;
655
656 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
657 dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
658 dev->dev_addr, irq);
659
660 return 0;
661
662 err_out_free_tx:
663 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
664 np->tx_ring_dma);
665 err_out_free_rx:
666 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
667 np->rx_ring_dma);
668 err_out_free_dev:
669 free_netdev(dev);
670 err_out_unmap:
671 pci_iounmap(pdev, ioaddr);
672 err_out_res:
673 pci_release_regions(pdev);
674 return err;
675 }
676
677
fealnx_remove_one(struct pci_dev * pdev)678 static void fealnx_remove_one(struct pci_dev *pdev)
679 {
680 struct net_device *dev = pci_get_drvdata(pdev);
681
682 if (dev) {
683 struct netdev_private *np = netdev_priv(dev);
684
685 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
686 np->tx_ring_dma);
687 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
688 np->rx_ring_dma);
689 unregister_netdev(dev);
690 pci_iounmap(pdev, np->mem);
691 free_netdev(dev);
692 pci_release_regions(pdev);
693 } else
694 printk(KERN_ERR "fealnx: remove for unknown device\n");
695 }
696
697
m80x_send_cmd_to_phy(void __iomem * miiport,int opcode,int phyad,int regad)698 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
699 {
700 ulong miir;
701 int i;
702 unsigned int mask, data;
703
704 /* enable MII output */
705 miir = (ulong) ioread32(miiport);
706 miir &= 0xfffffff0;
707
708 miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
709
710 /* send 32 1's preamble */
711 for (i = 0; i < 32; i++) {
712 /* low MDC; MDO is already high (miir) */
713 miir &= ~MASK_MIIR_MII_MDC;
714 iowrite32(miir, miiport);
715
716 /* high MDC */
717 miir |= MASK_MIIR_MII_MDC;
718 iowrite32(miir, miiport);
719 }
720
721 /* calculate ST+OP+PHYAD+REGAD+TA */
722 data = opcode | (phyad << 7) | (regad << 2);
723
724 /* sent out */
725 mask = 0x8000;
726 while (mask) {
727 /* low MDC, prepare MDO */
728 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
729 if (mask & data)
730 miir |= MASK_MIIR_MII_MDO;
731
732 iowrite32(miir, miiport);
733 /* high MDC */
734 miir |= MASK_MIIR_MII_MDC;
735 iowrite32(miir, miiport);
736 udelay(30);
737
738 /* next */
739 mask >>= 1;
740 if (mask == 0x2 && opcode == OP_READ)
741 miir &= ~MASK_MIIR_MII_WRITE;
742 }
743 return miir;
744 }
745
746
mdio_read(struct net_device * dev,int phyad,int regad)747 static int mdio_read(struct net_device *dev, int phyad, int regad)
748 {
749 struct netdev_private *np = netdev_priv(dev);
750 void __iomem *miiport = np->mem + MANAGEMENT;
751 ulong miir;
752 unsigned int mask, data;
753
754 miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
755
756 /* read data */
757 mask = 0x8000;
758 data = 0;
759 while (mask) {
760 /* low MDC */
761 miir &= ~MASK_MIIR_MII_MDC;
762 iowrite32(miir, miiport);
763
764 /* read MDI */
765 miir = ioread32(miiport);
766 if (miir & MASK_MIIR_MII_MDI)
767 data |= mask;
768
769 /* high MDC, and wait */
770 miir |= MASK_MIIR_MII_MDC;
771 iowrite32(miir, miiport);
772 udelay(30);
773
774 /* next */
775 mask >>= 1;
776 }
777
778 /* low MDC */
779 miir &= ~MASK_MIIR_MII_MDC;
780 iowrite32(miir, miiport);
781
782 return data & 0xffff;
783 }
784
785
mdio_write(struct net_device * dev,int phyad,int regad,int data)786 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
787 {
788 struct netdev_private *np = netdev_priv(dev);
789 void __iomem *miiport = np->mem + MANAGEMENT;
790 ulong miir;
791 unsigned int mask;
792
793 miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
794
795 /* write data */
796 mask = 0x8000;
797 while (mask) {
798 /* low MDC, prepare MDO */
799 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
800 if (mask & data)
801 miir |= MASK_MIIR_MII_MDO;
802 iowrite32(miir, miiport);
803
804 /* high MDC */
805 miir |= MASK_MIIR_MII_MDC;
806 iowrite32(miir, miiport);
807
808 /* next */
809 mask >>= 1;
810 }
811
812 /* low MDC */
813 miir &= ~MASK_MIIR_MII_MDC;
814 iowrite32(miir, miiport);
815 }
816
817
netdev_open(struct net_device * dev)818 static int netdev_open(struct net_device *dev)
819 {
820 struct netdev_private *np = netdev_priv(dev);
821 void __iomem *ioaddr = np->mem;
822 const int irq = np->pci_dev->irq;
823 int rc, i;
824
825 iowrite32(0x00000001, ioaddr + BCR); /* Reset */
826
827 rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
828 if (rc)
829 return -EAGAIN;
830
831 for (i = 0; i < 3; i++)
832 iowrite16(((const unsigned short *)dev->dev_addr)[i],
833 ioaddr + PAR0 + i*2);
834
835 init_ring(dev);
836
837 iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
838 iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
839
840 /* Initialize other registers. */
841 /* Configure the PCI bus bursts and FIFO thresholds.
842 486: Set 8 longword burst.
843 586: no burst limit.
844 Burst length 5:3
845 0 0 0 1
846 0 0 1 4
847 0 1 0 8
848 0 1 1 16
849 1 0 0 32
850 1 0 1 64
851 1 1 0 128
852 1 1 1 256
853 Wait the specified 50 PCI cycles after a reset by initializing
854 Tx and Rx queues and the address filter list.
855 FIXME (Ueimor): optimistic for alpha + posted writes ? */
856
857 np->bcrvalue = 0x10; /* little-endian, 8 burst length */
858 #ifdef __BIG_ENDIAN
859 np->bcrvalue |= 0x04; /* big-endian */
860 #endif
861
862 #if defined(__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
863 if (boot_cpu_data.x86 <= 4)
864 np->crvalue = 0xa00;
865 else
866 #endif
867 np->crvalue = 0xe00; /* rx 128 burst length */
868
869
870 // 89/12/29 add,
871 // 90/1/16 modify,
872 // np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
873 np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
874 if (np->pci_dev->device == 0x891) {
875 np->bcrvalue |= 0x200; /* set PROG bit */
876 np->crvalue |= CR_W_ENH; /* set enhanced bit */
877 np->imrvalue |= ETI;
878 }
879 iowrite32(np->bcrvalue, ioaddr + BCR);
880
881 if (dev->if_port == 0)
882 dev->if_port = np->default_port;
883
884 iowrite32(0, ioaddr + RXPDR);
885 // 89/9/1 modify,
886 // np->crvalue = 0x00e40001; /* tx store and forward, tx/rx enable */
887 np->crvalue |= 0x00e40001; /* tx store and forward, tx/rx enable */
888 np->mii.full_duplex = np->mii.force_media;
889 getlinkstatus(dev);
890 if (np->linkok)
891 getlinktype(dev);
892 __set_rx_mode(dev);
893
894 netif_start_queue(dev);
895
896 /* Clear and Enable interrupts by setting the interrupt mask. */
897 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
898 iowrite32(np->imrvalue, ioaddr + IMR);
899
900 if (debug)
901 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
902
903 /* Set the timer to check for link beat. */
904 timer_setup(&np->timer, netdev_timer, 0);
905 np->timer.expires = RUN_AT(3 * HZ);
906
907 /* timer handler */
908 add_timer(&np->timer);
909
910 timer_setup(&np->reset_timer, reset_timer, 0);
911 np->reset_timer_armed = 0;
912 return rc;
913 }
914
915
getlinkstatus(struct net_device * dev)916 static void getlinkstatus(struct net_device *dev)
917 /* function: Routine will read MII Status Register to get link status. */
918 /* input : dev... pointer to the adapter block. */
919 /* output : none. */
920 {
921 struct netdev_private *np = netdev_priv(dev);
922 unsigned int i, DelayTime = 0x1000;
923
924 np->linkok = 0;
925
926 if (np->PHYType == MysonPHY) {
927 for (i = 0; i < DelayTime; ++i) {
928 if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
929 np->linkok = 1;
930 return;
931 }
932 udelay(100);
933 }
934 } else {
935 for (i = 0; i < DelayTime; ++i) {
936 if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
937 np->linkok = 1;
938 return;
939 }
940 udelay(100);
941 }
942 }
943 }
944
945
getlinktype(struct net_device * dev)946 static void getlinktype(struct net_device *dev)
947 {
948 struct netdev_private *np = netdev_priv(dev);
949
950 if (np->PHYType == MysonPHY) { /* 3-in-1 case */
951 if (ioread32(np->mem + TCRRCR) & CR_R_FD)
952 np->duplexmode = 2; /* full duplex */
953 else
954 np->duplexmode = 1; /* half duplex */
955 if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
956 np->line_speed = 1; /* 10M */
957 else
958 np->line_speed = 2; /* 100M */
959 } else {
960 if (np->PHYType == SeeqPHY) { /* this PHY is SEEQ 80225 */
961 unsigned int data;
962
963 data = mdio_read(dev, np->phys[0], MIIRegister18);
964 if (data & SPD_DET_100)
965 np->line_speed = 2; /* 100M */
966 else
967 np->line_speed = 1; /* 10M */
968 if (data & DPLX_DET_FULL)
969 np->duplexmode = 2; /* full duplex mode */
970 else
971 np->duplexmode = 1; /* half duplex mode */
972 } else if (np->PHYType == AhdocPHY) {
973 unsigned int data;
974
975 data = mdio_read(dev, np->phys[0], DiagnosticReg);
976 if (data & Speed_100)
977 np->line_speed = 2; /* 100M */
978 else
979 np->line_speed = 1; /* 10M */
980 if (data & DPLX_FULL)
981 np->duplexmode = 2; /* full duplex mode */
982 else
983 np->duplexmode = 1; /* half duplex mode */
984 }
985 /* 89/6/13 add, (begin) */
986 else if (np->PHYType == MarvellPHY) {
987 unsigned int data;
988
989 data = mdio_read(dev, np->phys[0], SpecificReg);
990 if (data & Full_Duplex)
991 np->duplexmode = 2; /* full duplex mode */
992 else
993 np->duplexmode = 1; /* half duplex mode */
994 data &= SpeedMask;
995 if (data == Speed_1000M)
996 np->line_speed = 3; /* 1000M */
997 else if (data == Speed_100M)
998 np->line_speed = 2; /* 100M */
999 else
1000 np->line_speed = 1; /* 10M */
1001 }
1002 /* 89/6/13 add, (end) */
1003 /* 89/7/27 add, (begin) */
1004 else if (np->PHYType == Myson981) {
1005 unsigned int data;
1006
1007 data = mdio_read(dev, np->phys[0], StatusRegister);
1008
1009 if (data & SPEED100)
1010 np->line_speed = 2;
1011 else
1012 np->line_speed = 1;
1013
1014 if (data & FULLMODE)
1015 np->duplexmode = 2;
1016 else
1017 np->duplexmode = 1;
1018 }
1019 /* 89/7/27 add, (end) */
1020 /* 89/12/29 add */
1021 else if (np->PHYType == LevelOnePHY) {
1022 unsigned int data;
1023
1024 data = mdio_read(dev, np->phys[0], SpecificReg);
1025 if (data & LXT1000_Full)
1026 np->duplexmode = 2; /* full duplex mode */
1027 else
1028 np->duplexmode = 1; /* half duplex mode */
1029 data &= SpeedMask;
1030 if (data == LXT1000_1000M)
1031 np->line_speed = 3; /* 1000M */
1032 else if (data == LXT1000_100M)
1033 np->line_speed = 2; /* 100M */
1034 else
1035 np->line_speed = 1; /* 10M */
1036 }
1037 np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1038 if (np->line_speed == 1)
1039 np->crvalue |= CR_W_PS10;
1040 else if (np->line_speed == 3)
1041 np->crvalue |= CR_W_PS1000;
1042 if (np->duplexmode == 2)
1043 np->crvalue |= CR_W_FD;
1044 }
1045 }
1046
1047
1048 /* Take lock before calling this */
allocate_rx_buffers(struct net_device * dev)1049 static void allocate_rx_buffers(struct net_device *dev)
1050 {
1051 struct netdev_private *np = netdev_priv(dev);
1052
1053 /* allocate skb for rx buffers */
1054 while (np->really_rx_count != RX_RING_SIZE) {
1055 struct sk_buff *skb;
1056
1057 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1058 if (skb == NULL)
1059 break; /* Better luck next round. */
1060
1061 while (np->lack_rxbuf->skbuff)
1062 np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1063
1064 np->lack_rxbuf->skbuff = skb;
1065 np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1066 skb->data,
1067 np->rx_buf_sz,
1068 DMA_FROM_DEVICE);
1069 np->lack_rxbuf->status = RXOWN;
1070 ++np->really_rx_count;
1071 }
1072 }
1073
1074
netdev_timer(struct timer_list * t)1075 static void netdev_timer(struct timer_list *t)
1076 {
1077 struct netdev_private *np = from_timer(np, t, timer);
1078 struct net_device *dev = np->mii.dev;
1079 void __iomem *ioaddr = np->mem;
1080 int old_crvalue = np->crvalue;
1081 unsigned int old_linkok = np->linkok;
1082 unsigned long flags;
1083
1084 if (debug)
1085 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1086 "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1087 ioread32(ioaddr + TCRRCR));
1088
1089 spin_lock_irqsave(&np->lock, flags);
1090
1091 if (np->flags == HAS_MII_XCVR) {
1092 getlinkstatus(dev);
1093 if ((old_linkok == 0) && (np->linkok == 1)) { /* we need to detect the media type again */
1094 getlinktype(dev);
1095 if (np->crvalue != old_crvalue) {
1096 stop_nic_rxtx(ioaddr, np->crvalue);
1097 iowrite32(np->crvalue, ioaddr + TCRRCR);
1098 }
1099 }
1100 }
1101
1102 allocate_rx_buffers(dev);
1103
1104 spin_unlock_irqrestore(&np->lock, flags);
1105
1106 np->timer.expires = RUN_AT(10 * HZ);
1107 add_timer(&np->timer);
1108 }
1109
1110
1111 /* Take lock before calling */
1112 /* Reset chip and disable rx, tx and interrupts */
reset_and_disable_rxtx(struct net_device * dev)1113 static void reset_and_disable_rxtx(struct net_device *dev)
1114 {
1115 struct netdev_private *np = netdev_priv(dev);
1116 void __iomem *ioaddr = np->mem;
1117 int delay=51;
1118
1119 /* Reset the chip's Tx and Rx processes. */
1120 stop_nic_rxtx(ioaddr, 0);
1121
1122 /* Disable interrupts by clearing the interrupt mask. */
1123 iowrite32(0, ioaddr + IMR);
1124
1125 /* Reset the chip to erase previous misconfiguration. */
1126 iowrite32(0x00000001, ioaddr + BCR);
1127
1128 /* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1129 We surely wait too long (address+data phase). Who cares? */
1130 while (--delay) {
1131 ioread32(ioaddr + BCR);
1132 rmb();
1133 }
1134 }
1135
1136
1137 /* Take lock before calling */
1138 /* Restore chip after reset */
enable_rxtx(struct net_device * dev)1139 static void enable_rxtx(struct net_device *dev)
1140 {
1141 struct netdev_private *np = netdev_priv(dev);
1142 void __iomem *ioaddr = np->mem;
1143
1144 reset_rx_descriptors(dev);
1145
1146 iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1147 ioaddr + TXLBA);
1148 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1149 ioaddr + RXLBA);
1150
1151 iowrite32(np->bcrvalue, ioaddr + BCR);
1152
1153 iowrite32(0, ioaddr + RXPDR);
1154 __set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1155
1156 /* Clear and Enable interrupts by setting the interrupt mask. */
1157 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1158 iowrite32(np->imrvalue, ioaddr + IMR);
1159
1160 iowrite32(0, ioaddr + TXPDR);
1161 }
1162
1163
reset_timer(struct timer_list * t)1164 static void reset_timer(struct timer_list *t)
1165 {
1166 struct netdev_private *np = from_timer(np, t, reset_timer);
1167 struct net_device *dev = np->mii.dev;
1168 unsigned long flags;
1169
1170 printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1171
1172 spin_lock_irqsave(&np->lock, flags);
1173 np->crvalue = np->crvalue_sv;
1174 np->imrvalue = np->imrvalue_sv;
1175
1176 reset_and_disable_rxtx(dev);
1177 /* works for me without this:
1178 reset_tx_descriptors(dev); */
1179 enable_rxtx(dev);
1180 netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1181
1182 np->reset_timer_armed = 0;
1183
1184 spin_unlock_irqrestore(&np->lock, flags);
1185 }
1186
1187
fealnx_tx_timeout(struct net_device * dev,unsigned int txqueue)1188 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1189 {
1190 struct netdev_private *np = netdev_priv(dev);
1191 void __iomem *ioaddr = np->mem;
1192 unsigned long flags;
1193 int i;
1194
1195 printk(KERN_WARNING
1196 "%s: Transmit timed out, status %8.8x, resetting...\n",
1197 dev->name, ioread32(ioaddr + ISR));
1198
1199 {
1200 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring);
1201 for (i = 0; i < RX_RING_SIZE; i++)
1202 printk(KERN_CONT " %8.8x",
1203 (unsigned int) np->rx_ring[i].status);
1204 printk(KERN_CONT "\n");
1205 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring);
1206 for (i = 0; i < TX_RING_SIZE; i++)
1207 printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1208 printk(KERN_CONT "\n");
1209 }
1210
1211 spin_lock_irqsave(&np->lock, flags);
1212
1213 reset_and_disable_rxtx(dev);
1214 reset_tx_descriptors(dev);
1215 enable_rxtx(dev);
1216
1217 spin_unlock_irqrestore(&np->lock, flags);
1218
1219 netif_trans_update(dev); /* prevent tx timeout */
1220 dev->stats.tx_errors++;
1221 netif_wake_queue(dev); /* or .._start_.. ?? */
1222 }
1223
1224
1225 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1226 static void init_ring(struct net_device *dev)
1227 {
1228 struct netdev_private *np = netdev_priv(dev);
1229 int i;
1230
1231 /* initialize rx variables */
1232 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1233 np->cur_rx = &np->rx_ring[0];
1234 np->lack_rxbuf = np->rx_ring;
1235 np->really_rx_count = 0;
1236
1237 /* initial rx descriptors. */
1238 for (i = 0; i < RX_RING_SIZE; i++) {
1239 np->rx_ring[i].status = 0;
1240 np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1241 np->rx_ring[i].next_desc = np->rx_ring_dma +
1242 (i + 1)*sizeof(struct fealnx_desc);
1243 np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1244 np->rx_ring[i].skbuff = NULL;
1245 }
1246
1247 /* for the last rx descriptor */
1248 np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1249 np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1250
1251 /* allocate skb for rx buffers */
1252 for (i = 0; i < RX_RING_SIZE; i++) {
1253 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1254
1255 if (skb == NULL) {
1256 np->lack_rxbuf = &np->rx_ring[i];
1257 break;
1258 }
1259
1260 ++np->really_rx_count;
1261 np->rx_ring[i].skbuff = skb;
1262 np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1263 skb->data,
1264 np->rx_buf_sz,
1265 DMA_FROM_DEVICE);
1266 np->rx_ring[i].status = RXOWN;
1267 np->rx_ring[i].control |= RXIC;
1268 }
1269
1270 /* initialize tx variables */
1271 np->cur_tx = &np->tx_ring[0];
1272 np->cur_tx_copy = &np->tx_ring[0];
1273 np->really_tx_count = 0;
1274 np->free_tx_count = TX_RING_SIZE;
1275
1276 for (i = 0; i < TX_RING_SIZE; i++) {
1277 np->tx_ring[i].status = 0;
1278 /* do we need np->tx_ring[i].control = XXX; ?? */
1279 np->tx_ring[i].next_desc = np->tx_ring_dma +
1280 (i + 1)*sizeof(struct fealnx_desc);
1281 np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1282 np->tx_ring[i].skbuff = NULL;
1283 }
1284
1285 /* for the last tx descriptor */
1286 np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1287 np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1288 }
1289
1290
start_tx(struct sk_buff * skb,struct net_device * dev)1291 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1292 {
1293 struct netdev_private *np = netdev_priv(dev);
1294 unsigned long flags;
1295
1296 spin_lock_irqsave(&np->lock, flags);
1297
1298 np->cur_tx_copy->skbuff = skb;
1299
1300 #define one_buffer
1301 #define BPT 1022
1302 #if defined(one_buffer)
1303 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1304 skb->len, DMA_TO_DEVICE);
1305 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1306 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1307 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */
1308 // 89/12/29 add,
1309 if (np->pci_dev->device == 0x891)
1310 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1311 np->cur_tx_copy->status = TXOWN;
1312 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1313 --np->free_tx_count;
1314 #elif defined(two_buffer)
1315 if (skb->len > BPT) {
1316 struct fealnx_desc *next;
1317
1318 /* for the first descriptor */
1319 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1320 skb->data, BPT,
1321 DMA_TO_DEVICE);
1322 np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1323 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1324 np->cur_tx_copy->control |= (BPT << TBSShift); /* buffer size */
1325
1326 /* for the last descriptor */
1327 next = np->cur_tx_copy->next_desc_logical;
1328 next->skbuff = skb;
1329 next->control = TXIC | TXLD | CRCEnable | PADEnable;
1330 next->control |= (skb->len << PKTSShift); /* pkt size */
1331 next->control |= ((skb->len - BPT) << TBSShift); /* buf size */
1332 // 89/12/29 add,
1333 if (np->pci_dev->device == 0x891)
1334 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1335 next->buffer = dma_map_single(&ep->pci_dev->dev,
1336 skb->data + BPT, skb->len - BPT,
1337 DMA_TO_DEVICE);
1338
1339 next->status = TXOWN;
1340 np->cur_tx_copy->status = TXOWN;
1341
1342 np->cur_tx_copy = next->next_desc_logical;
1343 np->free_tx_count -= 2;
1344 } else {
1345 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1346 skb->data, skb->len,
1347 DMA_TO_DEVICE);
1348 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1349 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1350 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */
1351 // 89/12/29 add,
1352 if (np->pci_dev->device == 0x891)
1353 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1354 np->cur_tx_copy->status = TXOWN;
1355 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1356 --np->free_tx_count;
1357 }
1358 #endif
1359
1360 if (np->free_tx_count < 2)
1361 netif_stop_queue(dev);
1362 ++np->really_tx_count;
1363 iowrite32(0, np->mem + TXPDR);
1364
1365 spin_unlock_irqrestore(&np->lock, flags);
1366 return NETDEV_TX_OK;
1367 }
1368
1369
1370 /* Take lock before calling */
1371 /* Chip probably hosed tx ring. Clean up. */
reset_tx_descriptors(struct net_device * dev)1372 static void reset_tx_descriptors(struct net_device *dev)
1373 {
1374 struct netdev_private *np = netdev_priv(dev);
1375 struct fealnx_desc *cur;
1376 int i;
1377
1378 /* initialize tx variables */
1379 np->cur_tx = &np->tx_ring[0];
1380 np->cur_tx_copy = &np->tx_ring[0];
1381 np->really_tx_count = 0;
1382 np->free_tx_count = TX_RING_SIZE;
1383
1384 for (i = 0; i < TX_RING_SIZE; i++) {
1385 cur = &np->tx_ring[i];
1386 if (cur->skbuff) {
1387 dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1388 cur->skbuff->len, DMA_TO_DEVICE);
1389 dev_kfree_skb_any(cur->skbuff);
1390 cur->skbuff = NULL;
1391 }
1392 cur->status = 0;
1393 cur->control = 0; /* needed? */
1394 /* probably not needed. We do it for purely paranoid reasons */
1395 cur->next_desc = np->tx_ring_dma +
1396 (i + 1)*sizeof(struct fealnx_desc);
1397 cur->next_desc_logical = &np->tx_ring[i + 1];
1398 }
1399 /* for the last tx descriptor */
1400 np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1401 np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1402 }
1403
1404
1405 /* Take lock and stop rx before calling this */
reset_rx_descriptors(struct net_device * dev)1406 static void reset_rx_descriptors(struct net_device *dev)
1407 {
1408 struct netdev_private *np = netdev_priv(dev);
1409 struct fealnx_desc *cur = np->cur_rx;
1410 int i;
1411
1412 allocate_rx_buffers(dev);
1413
1414 for (i = 0; i < RX_RING_SIZE; i++) {
1415 if (cur->skbuff)
1416 cur->status = RXOWN;
1417 cur = cur->next_desc_logical;
1418 }
1419
1420 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1421 np->mem + RXLBA);
1422 }
1423
1424
1425 /* The interrupt handler does all of the Rx thread work and cleans up
1426 after the Tx thread. */
intr_handler(int irq,void * dev_instance)1427 static irqreturn_t intr_handler(int irq, void *dev_instance)
1428 {
1429 struct net_device *dev = (struct net_device *) dev_instance;
1430 struct netdev_private *np = netdev_priv(dev);
1431 void __iomem *ioaddr = np->mem;
1432 long boguscnt = max_interrupt_work;
1433 unsigned int num_tx = 0;
1434 int handled = 0;
1435
1436 spin_lock(&np->lock);
1437
1438 iowrite32(0, ioaddr + IMR);
1439
1440 do {
1441 u32 intr_status = ioread32(ioaddr + ISR);
1442
1443 /* Acknowledge all of the current interrupt sources ASAP. */
1444 iowrite32(intr_status, ioaddr + ISR);
1445
1446 if (debug)
1447 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1448 intr_status);
1449
1450 if (!(intr_status & np->imrvalue))
1451 break;
1452
1453 handled = 1;
1454
1455 // 90/1/16 delete,
1456 //
1457 // if (intr_status & FBE)
1458 // { /* fatal error */
1459 // stop_nic_tx(ioaddr, 0);
1460 // stop_nic_rx(ioaddr, 0);
1461 // break;
1462 // };
1463
1464 if (intr_status & TUNF)
1465 iowrite32(0, ioaddr + TXPDR);
1466
1467 if (intr_status & CNTOVF) {
1468 /* missed pkts */
1469 dev->stats.rx_missed_errors +=
1470 ioread32(ioaddr + TALLY) & 0x7fff;
1471
1472 /* crc error */
1473 dev->stats.rx_crc_errors +=
1474 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1475 }
1476
1477 if (intr_status & (RI | RBU)) {
1478 if (intr_status & RI)
1479 netdev_rx(dev);
1480 else {
1481 stop_nic_rx(ioaddr, np->crvalue);
1482 reset_rx_descriptors(dev);
1483 iowrite32(np->crvalue, ioaddr + TCRRCR);
1484 }
1485 }
1486
1487 while (np->really_tx_count) {
1488 long tx_status = np->cur_tx->status;
1489 long tx_control = np->cur_tx->control;
1490
1491 if (!(tx_control & TXLD)) { /* this pkt is combined by two tx descriptors */
1492 struct fealnx_desc *next;
1493
1494 next = np->cur_tx->next_desc_logical;
1495 tx_status = next->status;
1496 tx_control = next->control;
1497 }
1498
1499 if (tx_status & TXOWN)
1500 break;
1501
1502 if (!(np->crvalue & CR_W_ENH)) {
1503 if (tx_status & (CSL | LC | EC | UDF | HF)) {
1504 dev->stats.tx_errors++;
1505 if (tx_status & EC)
1506 dev->stats.tx_aborted_errors++;
1507 if (tx_status & CSL)
1508 dev->stats.tx_carrier_errors++;
1509 if (tx_status & LC)
1510 dev->stats.tx_window_errors++;
1511 if (tx_status & UDF)
1512 dev->stats.tx_fifo_errors++;
1513 if ((tx_status & HF) && np->mii.full_duplex == 0)
1514 dev->stats.tx_heartbeat_errors++;
1515
1516 } else {
1517 dev->stats.tx_bytes +=
1518 ((tx_control & PKTSMask) >> PKTSShift);
1519
1520 dev->stats.collisions +=
1521 ((tx_status & NCRMask) >> NCRShift);
1522 dev->stats.tx_packets++;
1523 }
1524 } else {
1525 dev->stats.tx_bytes +=
1526 ((tx_control & PKTSMask) >> PKTSShift);
1527 dev->stats.tx_packets++;
1528 }
1529
1530 /* Free the original skb. */
1531 dma_unmap_single(&np->pci_dev->dev,
1532 np->cur_tx->buffer,
1533 np->cur_tx->skbuff->len,
1534 DMA_TO_DEVICE);
1535 dev_consume_skb_irq(np->cur_tx->skbuff);
1536 np->cur_tx->skbuff = NULL;
1537 --np->really_tx_count;
1538 if (np->cur_tx->control & TXLD) {
1539 np->cur_tx = np->cur_tx->next_desc_logical;
1540 ++np->free_tx_count;
1541 } else {
1542 np->cur_tx = np->cur_tx->next_desc_logical;
1543 np->cur_tx = np->cur_tx->next_desc_logical;
1544 np->free_tx_count += 2;
1545 }
1546 num_tx++;
1547 } /* end of for loop */
1548
1549 if (num_tx && np->free_tx_count >= 2)
1550 netif_wake_queue(dev);
1551
1552 /* read transmit status for enhanced mode only */
1553 if (np->crvalue & CR_W_ENH) {
1554 long data;
1555
1556 data = ioread32(ioaddr + TSR);
1557 dev->stats.tx_errors += (data & 0xff000000) >> 24;
1558 dev->stats.tx_aborted_errors +=
1559 (data & 0xff000000) >> 24;
1560 dev->stats.tx_window_errors +=
1561 (data & 0x00ff0000) >> 16;
1562 dev->stats.collisions += (data & 0x0000ffff);
1563 }
1564
1565 if (--boguscnt < 0) {
1566 printk(KERN_WARNING "%s: Too much work at interrupt, "
1567 "status=0x%4.4x.\n", dev->name, intr_status);
1568 if (!np->reset_timer_armed) {
1569 np->reset_timer_armed = 1;
1570 np->reset_timer.expires = RUN_AT(HZ/2);
1571 add_timer(&np->reset_timer);
1572 stop_nic_rxtx(ioaddr, 0);
1573 netif_stop_queue(dev);
1574 /* or netif_tx_disable(dev); ?? */
1575 /* Prevent other paths from enabling tx,rx,intrs */
1576 np->crvalue_sv = np->crvalue;
1577 np->imrvalue_sv = np->imrvalue;
1578 np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1579 np->imrvalue = 0;
1580 }
1581
1582 break;
1583 }
1584 } while (1);
1585
1586 /* read the tally counters */
1587 /* missed pkts */
1588 dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1589
1590 /* crc error */
1591 dev->stats.rx_crc_errors +=
1592 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1593
1594 if (debug)
1595 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1596 dev->name, ioread32(ioaddr + ISR));
1597
1598 iowrite32(np->imrvalue, ioaddr + IMR);
1599
1600 spin_unlock(&np->lock);
1601
1602 return IRQ_RETVAL(handled);
1603 }
1604
1605
1606 /* This routine is logically part of the interrupt handler, but separated
1607 for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1608 static int netdev_rx(struct net_device *dev)
1609 {
1610 struct netdev_private *np = netdev_priv(dev);
1611 void __iomem *ioaddr = np->mem;
1612
1613 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1614 while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1615 s32 rx_status = np->cur_rx->status;
1616
1617 if (np->really_rx_count == 0)
1618 break;
1619
1620 if (debug)
1621 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", rx_status);
1622
1623 if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1624 (rx_status & ErrorSummary)) {
1625 if (rx_status & ErrorSummary) { /* there was a fatal error */
1626 if (debug)
1627 printk(KERN_DEBUG
1628 "%s: Receive error, Rx status %8.8x.\n",
1629 dev->name, rx_status);
1630
1631 dev->stats.rx_errors++; /* end of a packet. */
1632 if (rx_status & (LONGPKT | RUNTPKT))
1633 dev->stats.rx_length_errors++;
1634 if (rx_status & RXER)
1635 dev->stats.rx_frame_errors++;
1636 if (rx_status & CRC)
1637 dev->stats.rx_crc_errors++;
1638 } else {
1639 int need_to_reset = 0;
1640 int desno = 0;
1641
1642 if (rx_status & RXFSD) { /* this pkt is too long, over one rx buffer */
1643 struct fealnx_desc *cur;
1644
1645 /* check this packet is received completely? */
1646 cur = np->cur_rx;
1647 while (desno <= np->really_rx_count) {
1648 ++desno;
1649 if ((!(cur->status & RXOWN)) &&
1650 (cur->status & RXLSD))
1651 break;
1652 /* goto next rx descriptor */
1653 cur = cur->next_desc_logical;
1654 }
1655 if (desno > np->really_rx_count)
1656 need_to_reset = 1;
1657 } else /* RXLSD did not find, something error */
1658 need_to_reset = 1;
1659
1660 if (need_to_reset == 0) {
1661 int i;
1662
1663 dev->stats.rx_length_errors++;
1664
1665 /* free all rx descriptors related this long pkt */
1666 for (i = 0; i < desno; ++i) {
1667 if (!np->cur_rx->skbuff) {
1668 printk(KERN_DEBUG
1669 "%s: I'm scared\n", dev->name);
1670 break;
1671 }
1672 np->cur_rx->status = RXOWN;
1673 np->cur_rx = np->cur_rx->next_desc_logical;
1674 }
1675 continue;
1676 } else { /* rx error, need to reset this chip */
1677 stop_nic_rx(ioaddr, np->crvalue);
1678 reset_rx_descriptors(dev);
1679 iowrite32(np->crvalue, ioaddr + TCRRCR);
1680 }
1681 break; /* exit the while loop */
1682 }
1683 } else { /* this received pkt is ok */
1684
1685 struct sk_buff *skb;
1686 /* Omit the four octet CRC from the length. */
1687 short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1688
1689 #ifndef final_version
1690 if (debug)
1691 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1692 " status %x.\n", pkt_len, rx_status);
1693 #endif
1694
1695 /* Check if the packet is long enough to accept without copying
1696 to a minimally-sized skbuff. */
1697 if (pkt_len < rx_copybreak &&
1698 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1699 skb_reserve(skb, 2); /* 16 byte align the IP header */
1700 dma_sync_single_for_cpu(&np->pci_dev->dev,
1701 np->cur_rx->buffer,
1702 np->rx_buf_sz,
1703 DMA_FROM_DEVICE);
1704 /* Call copy + cksum if available. */
1705
1706 #if ! defined(__alpha__)
1707 skb_copy_to_linear_data(skb,
1708 np->cur_rx->skbuff->data, pkt_len);
1709 skb_put(skb, pkt_len);
1710 #else
1711 skb_put_data(skb, np->cur_rx->skbuff->data,
1712 pkt_len);
1713 #endif
1714 dma_sync_single_for_device(&np->pci_dev->dev,
1715 np->cur_rx->buffer,
1716 np->rx_buf_sz,
1717 DMA_FROM_DEVICE);
1718 } else {
1719 dma_unmap_single(&np->pci_dev->dev,
1720 np->cur_rx->buffer,
1721 np->rx_buf_sz,
1722 DMA_FROM_DEVICE);
1723 skb_put(skb = np->cur_rx->skbuff, pkt_len);
1724 np->cur_rx->skbuff = NULL;
1725 --np->really_rx_count;
1726 }
1727 skb->protocol = eth_type_trans(skb, dev);
1728 netif_rx(skb);
1729 dev->stats.rx_packets++;
1730 dev->stats.rx_bytes += pkt_len;
1731 }
1732
1733 np->cur_rx = np->cur_rx->next_desc_logical;
1734 } /* end of while loop */
1735
1736 /* allocate skb for rx buffers */
1737 allocate_rx_buffers(dev);
1738
1739 return 0;
1740 }
1741
1742
get_stats(struct net_device * dev)1743 static struct net_device_stats *get_stats(struct net_device *dev)
1744 {
1745 struct netdev_private *np = netdev_priv(dev);
1746 void __iomem *ioaddr = np->mem;
1747
1748 /* The chip only need report frame silently dropped. */
1749 if (netif_running(dev)) {
1750 dev->stats.rx_missed_errors +=
1751 ioread32(ioaddr + TALLY) & 0x7fff;
1752 dev->stats.rx_crc_errors +=
1753 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1754 }
1755
1756 return &dev->stats;
1757 }
1758
1759
1760 /* for dev->set_multicast_list */
set_rx_mode(struct net_device * dev)1761 static void set_rx_mode(struct net_device *dev)
1762 {
1763 spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1764 unsigned long flags;
1765 spin_lock_irqsave(lp, flags);
1766 __set_rx_mode(dev);
1767 spin_unlock_irqrestore(lp, flags);
1768 }
1769
1770
1771 /* Take lock before calling */
__set_rx_mode(struct net_device * dev)1772 static void __set_rx_mode(struct net_device *dev)
1773 {
1774 struct netdev_private *np = netdev_priv(dev);
1775 void __iomem *ioaddr = np->mem;
1776 u32 mc_filter[2]; /* Multicast hash filter */
1777 u32 rx_mode;
1778
1779 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1780 memset(mc_filter, 0xff, sizeof(mc_filter));
1781 rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1782 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1783 (dev->flags & IFF_ALLMULTI)) {
1784 /* Too many to match, or accept all multicasts. */
1785 memset(mc_filter, 0xff, sizeof(mc_filter));
1786 rx_mode = CR_W_AB | CR_W_AM;
1787 } else {
1788 struct netdev_hw_addr *ha;
1789
1790 memset(mc_filter, 0, sizeof(mc_filter));
1791 netdev_for_each_mc_addr(ha, dev) {
1792 unsigned int bit;
1793 bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1794 mc_filter[bit >> 5] |= (1 << bit);
1795 }
1796 rx_mode = CR_W_AB | CR_W_AM;
1797 }
1798
1799 stop_nic_rxtx(ioaddr, np->crvalue);
1800
1801 iowrite32(mc_filter[0], ioaddr + MAR0);
1802 iowrite32(mc_filter[1], ioaddr + MAR1);
1803 np->crvalue &= ~CR_W_RXMODEMASK;
1804 np->crvalue |= rx_mode;
1805 iowrite32(np->crvalue, ioaddr + TCRRCR);
1806 }
1807
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1808 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1809 {
1810 struct netdev_private *np = netdev_priv(dev);
1811
1812 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1813 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1814 }
1815
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1816 static int netdev_get_link_ksettings(struct net_device *dev,
1817 struct ethtool_link_ksettings *cmd)
1818 {
1819 struct netdev_private *np = netdev_priv(dev);
1820
1821 spin_lock_irq(&np->lock);
1822 mii_ethtool_get_link_ksettings(&np->mii, cmd);
1823 spin_unlock_irq(&np->lock);
1824
1825 return 0;
1826 }
1827
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1828 static int netdev_set_link_ksettings(struct net_device *dev,
1829 const struct ethtool_link_ksettings *cmd)
1830 {
1831 struct netdev_private *np = netdev_priv(dev);
1832 int rc;
1833
1834 spin_lock_irq(&np->lock);
1835 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1836 spin_unlock_irq(&np->lock);
1837
1838 return rc;
1839 }
1840
netdev_nway_reset(struct net_device * dev)1841 static int netdev_nway_reset(struct net_device *dev)
1842 {
1843 struct netdev_private *np = netdev_priv(dev);
1844 return mii_nway_restart(&np->mii);
1845 }
1846
netdev_get_link(struct net_device * dev)1847 static u32 netdev_get_link(struct net_device *dev)
1848 {
1849 struct netdev_private *np = netdev_priv(dev);
1850 return mii_link_ok(&np->mii);
1851 }
1852
netdev_get_msglevel(struct net_device * dev)1853 static u32 netdev_get_msglevel(struct net_device *dev)
1854 {
1855 return debug;
1856 }
1857
netdev_set_msglevel(struct net_device * dev,u32 value)1858 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1859 {
1860 debug = value;
1861 }
1862
1863 static const struct ethtool_ops netdev_ethtool_ops = {
1864 .get_drvinfo = netdev_get_drvinfo,
1865 .nway_reset = netdev_nway_reset,
1866 .get_link = netdev_get_link,
1867 .get_msglevel = netdev_get_msglevel,
1868 .set_msglevel = netdev_set_msglevel,
1869 .get_link_ksettings = netdev_get_link_ksettings,
1870 .set_link_ksettings = netdev_set_link_ksettings,
1871 };
1872
mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1873 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874 {
1875 struct netdev_private *np = netdev_priv(dev);
1876 int rc;
1877
1878 if (!netif_running(dev))
1879 return -EINVAL;
1880
1881 spin_lock_irq(&np->lock);
1882 rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1883 spin_unlock_irq(&np->lock);
1884
1885 return rc;
1886 }
1887
1888
netdev_close(struct net_device * dev)1889 static int netdev_close(struct net_device *dev)
1890 {
1891 struct netdev_private *np = netdev_priv(dev);
1892 void __iomem *ioaddr = np->mem;
1893 int i;
1894
1895 netif_stop_queue(dev);
1896
1897 /* Disable interrupts by clearing the interrupt mask. */
1898 iowrite32(0x0000, ioaddr + IMR);
1899
1900 /* Stop the chip's Tx and Rx processes. */
1901 stop_nic_rxtx(ioaddr, 0);
1902
1903 del_timer_sync(&np->timer);
1904 del_timer_sync(&np->reset_timer);
1905
1906 free_irq(np->pci_dev->irq, dev);
1907
1908 /* Free all the skbuffs in the Rx queue. */
1909 for (i = 0; i < RX_RING_SIZE; i++) {
1910 struct sk_buff *skb = np->rx_ring[i].skbuff;
1911
1912 np->rx_ring[i].status = 0;
1913 if (skb) {
1914 dma_unmap_single(&np->pci_dev->dev,
1915 np->rx_ring[i].buffer, np->rx_buf_sz,
1916 DMA_FROM_DEVICE);
1917 dev_kfree_skb(skb);
1918 np->rx_ring[i].skbuff = NULL;
1919 }
1920 }
1921
1922 for (i = 0; i < TX_RING_SIZE; i++) {
1923 struct sk_buff *skb = np->tx_ring[i].skbuff;
1924
1925 if (skb) {
1926 dma_unmap_single(&np->pci_dev->dev,
1927 np->tx_ring[i].buffer, skb->len,
1928 DMA_TO_DEVICE);
1929 dev_kfree_skb(skb);
1930 np->tx_ring[i].skbuff = NULL;
1931 }
1932 }
1933
1934 return 0;
1935 }
1936
1937 static const struct pci_device_id fealnx_pci_tbl[] = {
1938 {0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1939 {0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1940 {0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1941 {} /* terminate list */
1942 };
1943 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1944
1945
1946 static struct pci_driver fealnx_driver = {
1947 .name = "fealnx",
1948 .id_table = fealnx_pci_tbl,
1949 .probe = fealnx_init_one,
1950 .remove = fealnx_remove_one,
1951 };
1952
1953 module_pci_driver(fealnx_driver);
1954