1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 
29 static int debug;		/* 1-> print debug message */
30 static int max_interrupt_work = 20;
31 
32 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33 static int multicast_filter_limit = 32;
34 
35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36 /* Setting to > 1518 effectively disables this feature.          */
37 static int rx_copybreak;
38 
39 /* Used to pass the media type, etc.                            */
40 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
41 /* interoperability.                                            */
42 /* The media type is usually passed in 'options[]'.             */
43 #define MAX_UNITS 8		/* More are supported, limit only on options */
44 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46 
47 /* Operational parameters that are set at compile time.                 */
48 /* Keep the ring sizes a power of two for compile efficiency.           */
49 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
50 /* Making the Tx ring too large decreases the effectiveness of channel  */
51 /* bonding and packet priority.                                         */
52 /* There are no ill effects from too-large receive rings.               */
53 // 88-12-9 modify,
54 // #define TX_RING_SIZE    16
55 // #define RX_RING_SIZE    32
56 #define TX_RING_SIZE    6
57 #define RX_RING_SIZE    12
58 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
59 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
60 
61 /* Operational parameters that usually are not changed. */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT      (2*HZ)
64 
65 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
66 
67 
68 /* Include files, designed to support most kernel versions 2.0.0 and later. */
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/errno.h>
74 #include <linux/ioport.h>
75 #include <linux/interrupt.h>
76 #include <linux/pci.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/init.h>
81 #include <linux/mii.h>
82 #include <linux/ethtool.h>
83 #include <linux/crc32.h>
84 #include <linux/delay.h>
85 #include <linux/bitops.h>
86 
87 #include <asm/processor.h>	/* Processor type for cache alignment. */
88 #include <asm/io.h>
89 #include <linux/uaccess.h>
90 #include <asm/byteorder.h>
91 
92 /* This driver was written to use PCI memory space, however some x86 systems
93    work only with I/O space accesses. */
94 #ifndef __alpha__
95 #define USE_IO_OPS
96 #endif
97 
98 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99 /* This is only in the support-all-kernels source code. */
100 
101 #define RUN_AT(x) (jiffies + (x))
102 
103 MODULE_AUTHOR("Myson or whoever");
104 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105 MODULE_LICENSE("GPL");
106 module_param(max_interrupt_work, int, 0);
107 module_param(debug, int, 0);
108 module_param(rx_copybreak, int, 0);
109 module_param(multicast_filter_limit, int, 0);
110 module_param_array(options, int, NULL, 0);
111 module_param_array(full_duplex, int, NULL, 0);
112 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118 
119 enum {
120 	MIN_REGION_SIZE		= 136,
121 };
122 
123 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
124 enum chip_capability_flags {
125 	HAS_MII_XCVR,
126 	HAS_CHIP_XCVR,
127 };
128 
129 /* 89/6/13 add, */
130 /* for different PHY */
131 enum phy_type_flags {
132 	MysonPHY = 1,
133 	AhdocPHY = 2,
134 	SeeqPHY = 3,
135 	MarvellPHY = 4,
136 	Myson981 = 5,
137 	LevelOnePHY = 6,
138 	OtherPHY = 10,
139 };
140 
141 struct chip_info {
142 	char *chip_name;
143 	int flags;
144 };
145 
146 static const struct chip_info skel_netdrv_tbl[] = {
147 	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
148 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
149 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
150 };
151 
152 /* Offsets to the Command and Status Registers. */
153 enum fealnx_offsets {
154 	PAR0 = 0x0,		/* physical address 0-3 */
155 	PAR1 = 0x04,		/* physical address 4-5 */
156 	MAR0 = 0x08,		/* multicast address 0-3 */
157 	MAR1 = 0x0C,		/* multicast address 4-7 */
158 	FAR0 = 0x10,		/* flow-control address 0-3 */
159 	FAR1 = 0x14,		/* flow-control address 4-5 */
160 	TCRRCR = 0x18,		/* receive & transmit configuration */
161 	BCR = 0x1C,		/* bus command */
162 	TXPDR = 0x20,		/* transmit polling demand */
163 	RXPDR = 0x24,		/* receive polling demand */
164 	RXCWP = 0x28,		/* receive current word pointer */
165 	TXLBA = 0x2C,		/* transmit list base address */
166 	RXLBA = 0x30,		/* receive list base address */
167 	ISR = 0x34,		/* interrupt status */
168 	IMR = 0x38,		/* interrupt mask */
169 	FTH = 0x3C,		/* flow control high/low threshold */
170 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
171 	TALLY = 0x44,		/* tally counters for crc and mpa */
172 	TSR = 0x48,		/* tally counter for transmit status */
173 	BMCRSR = 0x4c,		/* basic mode control and status */
174 	PHYIDENTIFIER = 0x50,	/* phy identifier */
175 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
176 				   partner ability */
177 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
178 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
179 };
180 
181 /* Bits in the interrupt status/enable registers. */
182 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183 enum intr_status_bits {
184 	RFCON = 0x00020000,	/* receive flow control xon packet */
185 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
186 	LSCStatus = 0x00008000,	/* link status change */
187 	ANCStatus = 0x00004000,	/* autonegotiation completed */
188 	FBE = 0x00002000,	/* fatal bus error */
189 	FBEMask = 0x00001800,	/* mask bit12-11 */
190 	ParityErr = 0x00000000,	/* parity error */
191 	TargetErr = 0x00001000,	/* target abort */
192 	MasterErr = 0x00000800,	/* master error */
193 	TUNF = 0x00000400,	/* transmit underflow */
194 	ROVF = 0x00000200,	/* receive overflow */
195 	ETI = 0x00000100,	/* transmit early int */
196 	ERI = 0x00000080,	/* receive early int */
197 	CNTOVF = 0x00000040,	/* counter overflow */
198 	RBU = 0x00000020,	/* receive buffer unavailable */
199 	TBU = 0x00000010,	/* transmit buffer unavilable */
200 	TI = 0x00000008,	/* transmit interrupt */
201 	RI = 0x00000004,	/* receive interrupt */
202 	RxErr = 0x00000002,	/* receive error */
203 };
204 
205 /* Bits in the NetworkConfig register, W for writing, R for reading */
206 /* FIXME: some names are invented by me. Marked with (name?) */
207 /* If you have docs and know bit names, please fix 'em */
208 enum rx_mode_bits {
209 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
210 	CR_W_FD		= 0x00100000,	/* full duplex */
211 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
212 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
213 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
214      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215 	CR_W_RXMODEMASK	= 0x000000e0,
216 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
217 	CR_W_AB		= 0x00000040,	/* accept broadcast */
218 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
219 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
220 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
221 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
222 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
223 
224 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
225 	CR_R_FD		= 0x00100000,	/* full duplex detected */
226 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
227 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
228 };
229 
230 /* The Tulip Rx and Tx buffer descriptors. */
231 struct fealnx_desc {
232 	s32 status;
233 	s32 control;
234 	u32 buffer;
235 	u32 next_desc;
236 	struct fealnx_desc *next_desc_logical;
237 	struct sk_buff *skbuff;
238 	u32 reserved1;
239 	u32 reserved2;
240 };
241 
242 /* Bits in network_desc.status */
243 enum rx_desc_status_bits {
244 	RXOWN = 0x80000000,	/* own bit */
245 	FLNGMASK = 0x0fff0000,	/* frame length */
246 	FLNGShift = 16,
247 	MARSTATUS = 0x00004000,	/* multicast address received */
248 	BARSTATUS = 0x00002000,	/* broadcast address received */
249 	PHYSTATUS = 0x00001000,	/* physical address received */
250 	RXFSD = 0x00000800,	/* first descriptor */
251 	RXLSD = 0x00000400,	/* last descriptor */
252 	ErrorSummary = 0x80,	/* error summary */
253 	RUNTPKT = 0x40,		/* runt packet received */
254 	LONGPKT = 0x20,		/* long packet received */
255 	FAE = 0x10,		/* frame align error */
256 	CRC = 0x08,		/* crc error */
257 	RXER = 0x04,		/* receive error */
258 };
259 
260 enum rx_desc_control_bits {
261 	RXIC = 0x00800000,	/* interrupt control */
262 	RBSShift = 0,
263 };
264 
265 enum tx_desc_status_bits {
266 	TXOWN = 0x80000000,	/* own bit */
267 	JABTO = 0x00004000,	/* jabber timeout */
268 	CSL = 0x00002000,	/* carrier sense lost */
269 	LC = 0x00001000,	/* late collision */
270 	EC = 0x00000800,	/* excessive collision */
271 	UDF = 0x00000400,	/* fifo underflow */
272 	DFR = 0x00000200,	/* deferred */
273 	HF = 0x00000100,	/* heartbeat fail */
274 	NCRMask = 0x000000ff,	/* collision retry count */
275 	NCRShift = 0,
276 };
277 
278 enum tx_desc_control_bits {
279 	TXIC = 0x80000000,	/* interrupt control */
280 	ETIControl = 0x40000000,	/* early transmit interrupt */
281 	TXLD = 0x20000000,	/* last descriptor */
282 	TXFD = 0x10000000,	/* first descriptor */
283 	CRCEnable = 0x08000000,	/* crc control */
284 	PADEnable = 0x04000000,	/* padding control */
285 	RetryTxLC = 0x02000000,	/* retry late collision */
286 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
287 	PKTSShift = 11,
288 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
289 	TBSShift = 0,
290 };
291 
292 /* BootROM/EEPROM/MII Management Register */
293 #define MASK_MIIR_MII_READ       0x00000000
294 #define MASK_MIIR_MII_WRITE      0x00000008
295 #define MASK_MIIR_MII_MDO        0x00000004
296 #define MASK_MIIR_MII_MDI        0x00000002
297 #define MASK_MIIR_MII_MDC        0x00000001
298 
299 /* ST+OP+PHYAD+REGAD+TA */
300 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302 
303 /* ------------------------------------------------------------------------- */
304 /*      Constants for Myson PHY                                              */
305 /* ------------------------------------------------------------------------- */
306 #define MysonPHYID      0xd0000302
307 /* 89-7-27 add, (begin) */
308 #define MysonPHYID0     0x0302
309 #define StatusRegister  18
310 #define SPEED100        0x0400	// bit10
311 #define FULLMODE        0x0800	// bit11
312 /* 89-7-27 add, (end) */
313 
314 /* ------------------------------------------------------------------------- */
315 /*      Constants for Seeq 80225 PHY                                         */
316 /* ------------------------------------------------------------------------- */
317 #define SeeqPHYID0      0x0016
318 
319 #define MIIRegister18   18
320 #define SPD_DET_100     0x80
321 #define DPLX_DET_FULL   0x40
322 
323 /* ------------------------------------------------------------------------- */
324 /*      Constants for Ahdoc 101 PHY                                          */
325 /* ------------------------------------------------------------------------- */
326 #define AhdocPHYID0     0x0022
327 
328 #define DiagnosticReg   18
329 #define DPLX_FULL       0x0800
330 #define Speed_100       0x0400
331 
332 /* 89/6/13 add, */
333 /* -------------------------------------------------------------------------- */
334 /*      Constants                                                             */
335 /* -------------------------------------------------------------------------- */
336 #define MarvellPHYID0           0x0141
337 #define LevelOnePHYID0		0x0013
338 
339 #define MII1000BaseTControlReg  9
340 #define MII1000BaseTStatusReg   10
341 #define SpecificReg		17
342 
343 /* for 1000BaseT Control Register */
344 #define PHYAbletoPerform1000FullDuplex  0x0200
345 #define PHYAbletoPerform1000HalfDuplex  0x0100
346 #define PHY1000AbilityMask              0x300
347 
348 // for phy specific status register, marvell phy.
349 #define SpeedMask       0x0c000
350 #define Speed_1000M     0x08000
351 #define Speed_100M      0x4000
352 #define Speed_10M       0
353 #define Full_Duplex     0x2000
354 
355 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
356 #define LXT1000_100M    0x08000
357 #define LXT1000_1000M   0x0c000
358 #define LXT1000_Full    0x200
359 // 89/12/29 add, for phy specific status register, levelone phy, (end)
360 
361 /* for 3-in-1 case, BMCRSR register */
362 #define LinkIsUp2	0x00040000
363 
364 /* for PHY */
365 #define LinkIsUp        0x0004
366 
367 
368 struct netdev_private {
369 	/* Descriptor rings first for alignment. */
370 	struct fealnx_desc *rx_ring;
371 	struct fealnx_desc *tx_ring;
372 
373 	dma_addr_t rx_ring_dma;
374 	dma_addr_t tx_ring_dma;
375 
376 	spinlock_t lock;
377 
378 	/* Media monitoring timer. */
379 	struct timer_list timer;
380 
381 	/* Reset timer */
382 	struct timer_list reset_timer;
383 	int reset_timer_armed;
384 	unsigned long crvalue_sv;
385 	unsigned long imrvalue_sv;
386 
387 	/* Frequently used values: keep some adjacent for cache effect. */
388 	int flags;
389 	struct pci_dev *pci_dev;
390 	unsigned long crvalue;
391 	unsigned long bcrvalue;
392 	unsigned long imrvalue;
393 	struct fealnx_desc *cur_rx;
394 	struct fealnx_desc *lack_rxbuf;
395 	int really_rx_count;
396 	struct fealnx_desc *cur_tx;
397 	struct fealnx_desc *cur_tx_copy;
398 	int really_tx_count;
399 	int free_tx_count;
400 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
401 
402 	/* These values are keep track of the transceiver/media in use. */
403 	unsigned int linkok;
404 	unsigned int line_speed;
405 	unsigned int duplexmode;
406 	unsigned int default_port:4;	/* Last dev->if_port value. */
407 	unsigned int PHYType;
408 
409 	/* MII transceiver section. */
410 	int mii_cnt;		/* MII device addresses. */
411 	unsigned char phys[2];	/* MII device addresses. */
412 	struct mii_if_info mii;
413 	void __iomem *mem;
414 };
415 
416 
417 static int mdio_read(struct net_device *dev, int phy_id, int location);
418 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419 static int netdev_open(struct net_device *dev);
420 static void getlinktype(struct net_device *dev);
421 static void getlinkstatus(struct net_device *dev);
422 static void netdev_timer(struct timer_list *t);
423 static void reset_timer(struct timer_list *t);
424 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425 static void init_ring(struct net_device *dev);
426 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427 static irqreturn_t intr_handler(int irq, void *dev_instance);
428 static int netdev_rx(struct net_device *dev);
429 static void set_rx_mode(struct net_device *dev);
430 static void __set_rx_mode(struct net_device *dev);
431 static struct net_device_stats *get_stats(struct net_device *dev);
432 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433 static const struct ethtool_ops netdev_ethtool_ops;
434 static int netdev_close(struct net_device *dev);
435 static void reset_rx_descriptors(struct net_device *dev);
436 static void reset_tx_descriptors(struct net_device *dev);
437 
stop_nic_rx(void __iomem * ioaddr,long crvalue)438 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439 {
440 	int delay = 0x1000;
441 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442 	while (--delay) {
443 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444 			break;
445 	}
446 }
447 
448 
stop_nic_rxtx(void __iomem * ioaddr,long crvalue)449 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450 {
451 	int delay = 0x1000;
452 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453 	while (--delay) {
454 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
456 			break;
457 	}
458 }
459 
460 static const struct net_device_ops netdev_ops = {
461 	.ndo_open		= netdev_open,
462 	.ndo_stop		= netdev_close,
463 	.ndo_start_xmit		= start_tx,
464 	.ndo_get_stats 		= get_stats,
465 	.ndo_set_rx_mode	= set_rx_mode,
466 	.ndo_eth_ioctl		= mii_ioctl,
467 	.ndo_tx_timeout		= fealnx_tx_timeout,
468 	.ndo_set_mac_address 	= eth_mac_addr,
469 	.ndo_validate_addr	= eth_validate_addr,
470 };
471 
fealnx_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)472 static int fealnx_init_one(struct pci_dev *pdev,
473 			   const struct pci_device_id *ent)
474 {
475 	struct netdev_private *np;
476 	int i, option, err, irq;
477 	static int card_idx = -1;
478 	char boardname[12];
479 	void __iomem *ioaddr;
480 	unsigned long len;
481 	unsigned int chip_id = ent->driver_data;
482 	struct net_device *dev;
483 	void *ring_space;
484 	dma_addr_t ring_dma;
485 	u8 addr[ETH_ALEN];
486 #ifdef USE_IO_OPS
487 	int bar = 0;
488 #else
489 	int bar = 1;
490 #endif
491 
492 	card_idx++;
493 	sprintf(boardname, "fealnx%d", card_idx);
494 
495 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
496 
497 	i = pci_enable_device(pdev);
498 	if (i) return i;
499 	pci_set_master(pdev);
500 
501 	len = pci_resource_len(pdev, bar);
502 	if (len < MIN_REGION_SIZE) {
503 		dev_err(&pdev->dev,
504 			   "region size %ld too small, aborting\n", len);
505 		return -ENODEV;
506 	}
507 
508 	i = pci_request_regions(pdev, boardname);
509 	if (i)
510 		return i;
511 
512 	irq = pdev->irq;
513 
514 	ioaddr = pci_iomap(pdev, bar, len);
515 	if (!ioaddr) {
516 		err = -ENOMEM;
517 		goto err_out_res;
518 	}
519 
520 	dev = alloc_etherdev(sizeof(struct netdev_private));
521 	if (!dev) {
522 		err = -ENOMEM;
523 		goto err_out_unmap;
524 	}
525 	SET_NETDEV_DEV(dev, &pdev->dev);
526 
527 	/* read ethernet id */
528 	for (i = 0; i < 6; ++i)
529 		addr[i] = ioread8(ioaddr + PAR0 + i);
530 	eth_hw_addr_set(dev, addr);
531 
532 	/* Reset the chip to erase previous misconfiguration. */
533 	iowrite32(0x00000001, ioaddr + BCR);
534 
535 	/* Make certain the descriptor lists are aligned. */
536 	np = netdev_priv(dev);
537 	np->mem = ioaddr;
538 	spin_lock_init(&np->lock);
539 	np->pci_dev = pdev;
540 	np->flags = skel_netdrv_tbl[chip_id].flags;
541 	pci_set_drvdata(pdev, dev);
542 	np->mii.dev = dev;
543 	np->mii.mdio_read = mdio_read;
544 	np->mii.mdio_write = mdio_write;
545 	np->mii.phy_id_mask = 0x1f;
546 	np->mii.reg_num_mask = 0x1f;
547 
548 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
549 					GFP_KERNEL);
550 	if (!ring_space) {
551 		err = -ENOMEM;
552 		goto err_out_free_dev;
553 	}
554 	np->rx_ring = ring_space;
555 	np->rx_ring_dma = ring_dma;
556 
557 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
558 					GFP_KERNEL);
559 	if (!ring_space) {
560 		err = -ENOMEM;
561 		goto err_out_free_rx;
562 	}
563 	np->tx_ring = ring_space;
564 	np->tx_ring_dma = ring_dma;
565 
566 	/* find the connected MII xcvrs */
567 	if (np->flags == HAS_MII_XCVR) {
568 		int phy, phy_idx = 0;
569 
570 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
571 			       phy++) {
572 			int mii_status = mdio_read(dev, phy, 1);
573 
574 			if (mii_status != 0xffff && mii_status != 0x0000) {
575 				np->phys[phy_idx++] = phy;
576 				dev_info(&pdev->dev,
577 				       "MII PHY found at address %d, status "
578 				       "0x%4.4x.\n", phy, mii_status);
579 				/* get phy type */
580 				{
581 					unsigned int data;
582 
583 					data = mdio_read(dev, np->phys[0], 2);
584 					if (data == SeeqPHYID0)
585 						np->PHYType = SeeqPHY;
586 					else if (data == AhdocPHYID0)
587 						np->PHYType = AhdocPHY;
588 					else if (data == MarvellPHYID0)
589 						np->PHYType = MarvellPHY;
590 					else if (data == MysonPHYID0)
591 						np->PHYType = Myson981;
592 					else if (data == LevelOnePHYID0)
593 						np->PHYType = LevelOnePHY;
594 					else
595 						np->PHYType = OtherPHY;
596 				}
597 			}
598 		}
599 
600 		np->mii_cnt = phy_idx;
601 		if (phy_idx == 0)
602 			dev_warn(&pdev->dev,
603 				"MII PHY not found -- this device may "
604 			       "not operate correctly.\n");
605 	} else {
606 		np->phys[0] = 32;
607 /* 89/6/23 add, (begin) */
608 		/* get phy type */
609 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
610 			np->PHYType = MysonPHY;
611 		else
612 			np->PHYType = OtherPHY;
613 	}
614 	np->mii.phy_id = np->phys[0];
615 
616 	if (dev->mem_start)
617 		option = dev->mem_start;
618 
619 	/* The lower four bits are the media type. */
620 	if (option > 0) {
621 		if (option & 0x200)
622 			np->mii.full_duplex = 1;
623 		np->default_port = option & 15;
624 	}
625 
626 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
627 		np->mii.full_duplex = full_duplex[card_idx];
628 
629 	if (np->mii.full_duplex) {
630 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
631 /* 89/6/13 add, (begin) */
632 //      if (np->PHYType==MarvellPHY)
633 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
634 			unsigned int data;
635 
636 			data = mdio_read(dev, np->phys[0], 9);
637 			data = (data & 0xfcff) | 0x0200;
638 			mdio_write(dev, np->phys[0], 9, data);
639 		}
640 /* 89/6/13 add, (end) */
641 		if (np->flags == HAS_MII_XCVR)
642 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
643 		else
644 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
645 		np->mii.force_media = 1;
646 	}
647 
648 	dev->netdev_ops = &netdev_ops;
649 	dev->ethtool_ops = &netdev_ethtool_ops;
650 	dev->watchdog_timeo = TX_TIMEOUT;
651 
652 	err = register_netdev(dev);
653 	if (err)
654 		goto err_out_free_tx;
655 
656 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
657 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
658 	       dev->dev_addr, irq);
659 
660 	return 0;
661 
662 err_out_free_tx:
663 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
664 			  np->tx_ring_dma);
665 err_out_free_rx:
666 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
667 			  np->rx_ring_dma);
668 err_out_free_dev:
669 	free_netdev(dev);
670 err_out_unmap:
671 	pci_iounmap(pdev, ioaddr);
672 err_out_res:
673 	pci_release_regions(pdev);
674 	return err;
675 }
676 
677 
fealnx_remove_one(struct pci_dev * pdev)678 static void fealnx_remove_one(struct pci_dev *pdev)
679 {
680 	struct net_device *dev = pci_get_drvdata(pdev);
681 
682 	if (dev) {
683 		struct netdev_private *np = netdev_priv(dev);
684 
685 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
686 				  np->tx_ring_dma);
687 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
688 				  np->rx_ring_dma);
689 		unregister_netdev(dev);
690 		pci_iounmap(pdev, np->mem);
691 		free_netdev(dev);
692 		pci_release_regions(pdev);
693 	} else
694 		printk(KERN_ERR "fealnx: remove for unknown device\n");
695 }
696 
697 
m80x_send_cmd_to_phy(void __iomem * miiport,int opcode,int phyad,int regad)698 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
699 {
700 	ulong miir;
701 	int i;
702 	unsigned int mask, data;
703 
704 	/* enable MII output */
705 	miir = (ulong) ioread32(miiport);
706 	miir &= 0xfffffff0;
707 
708 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
709 
710 	/* send 32 1's preamble */
711 	for (i = 0; i < 32; i++) {
712 		/* low MDC; MDO is already high (miir) */
713 		miir &= ~MASK_MIIR_MII_MDC;
714 		iowrite32(miir, miiport);
715 
716 		/* high MDC */
717 		miir |= MASK_MIIR_MII_MDC;
718 		iowrite32(miir, miiport);
719 	}
720 
721 	/* calculate ST+OP+PHYAD+REGAD+TA */
722 	data = opcode | (phyad << 7) | (regad << 2);
723 
724 	/* sent out */
725 	mask = 0x8000;
726 	while (mask) {
727 		/* low MDC, prepare MDO */
728 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
729 		if (mask & data)
730 			miir |= MASK_MIIR_MII_MDO;
731 
732 		iowrite32(miir, miiport);
733 		/* high MDC */
734 		miir |= MASK_MIIR_MII_MDC;
735 		iowrite32(miir, miiport);
736 		udelay(30);
737 
738 		/* next */
739 		mask >>= 1;
740 		if (mask == 0x2 && opcode == OP_READ)
741 			miir &= ~MASK_MIIR_MII_WRITE;
742 	}
743 	return miir;
744 }
745 
746 
mdio_read(struct net_device * dev,int phyad,int regad)747 static int mdio_read(struct net_device *dev, int phyad, int regad)
748 {
749 	struct netdev_private *np = netdev_priv(dev);
750 	void __iomem *miiport = np->mem + MANAGEMENT;
751 	ulong miir;
752 	unsigned int mask, data;
753 
754 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
755 
756 	/* read data */
757 	mask = 0x8000;
758 	data = 0;
759 	while (mask) {
760 		/* low MDC */
761 		miir &= ~MASK_MIIR_MII_MDC;
762 		iowrite32(miir, miiport);
763 
764 		/* read MDI */
765 		miir = ioread32(miiport);
766 		if (miir & MASK_MIIR_MII_MDI)
767 			data |= mask;
768 
769 		/* high MDC, and wait */
770 		miir |= MASK_MIIR_MII_MDC;
771 		iowrite32(miir, miiport);
772 		udelay(30);
773 
774 		/* next */
775 		mask >>= 1;
776 	}
777 
778 	/* low MDC */
779 	miir &= ~MASK_MIIR_MII_MDC;
780 	iowrite32(miir, miiport);
781 
782 	return data & 0xffff;
783 }
784 
785 
mdio_write(struct net_device * dev,int phyad,int regad,int data)786 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
787 {
788 	struct netdev_private *np = netdev_priv(dev);
789 	void __iomem *miiport = np->mem + MANAGEMENT;
790 	ulong miir;
791 	unsigned int mask;
792 
793 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
794 
795 	/* write data */
796 	mask = 0x8000;
797 	while (mask) {
798 		/* low MDC, prepare MDO */
799 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
800 		if (mask & data)
801 			miir |= MASK_MIIR_MII_MDO;
802 		iowrite32(miir, miiport);
803 
804 		/* high MDC */
805 		miir |= MASK_MIIR_MII_MDC;
806 		iowrite32(miir, miiport);
807 
808 		/* next */
809 		mask >>= 1;
810 	}
811 
812 	/* low MDC */
813 	miir &= ~MASK_MIIR_MII_MDC;
814 	iowrite32(miir, miiport);
815 }
816 
817 
netdev_open(struct net_device * dev)818 static int netdev_open(struct net_device *dev)
819 {
820 	struct netdev_private *np = netdev_priv(dev);
821 	void __iomem *ioaddr = np->mem;
822 	const int irq = np->pci_dev->irq;
823 	int rc, i;
824 
825 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
826 
827 	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
828 	if (rc)
829 		return -EAGAIN;
830 
831 	for (i = 0; i < 3; i++)
832 		iowrite16(((const unsigned short *)dev->dev_addr)[i],
833 				ioaddr + PAR0 + i*2);
834 
835 	init_ring(dev);
836 
837 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
838 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
839 
840 	/* Initialize other registers. */
841 	/* Configure the PCI bus bursts and FIFO thresholds.
842 	   486: Set 8 longword burst.
843 	   586: no burst limit.
844 	   Burst length 5:3
845 	   0 0 0   1
846 	   0 0 1   4
847 	   0 1 0   8
848 	   0 1 1   16
849 	   1 0 0   32
850 	   1 0 1   64
851 	   1 1 0   128
852 	   1 1 1   256
853 	   Wait the specified 50 PCI cycles after a reset by initializing
854 	   Tx and Rx queues and the address filter list.
855 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
856 
857 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
858 #ifdef __BIG_ENDIAN
859 	np->bcrvalue |= 0x04;	/* big-endian */
860 #endif
861 
862 #if defined(__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
863 	if (boot_cpu_data.x86 <= 4)
864 		np->crvalue = 0xa00;
865 	else
866 #endif
867 		np->crvalue = 0xe00;	/* rx 128 burst length */
868 
869 
870 // 89/12/29 add,
871 // 90/1/16 modify,
872 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
873 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
874 	if (np->pci_dev->device == 0x891) {
875 		np->bcrvalue |= 0x200;	/* set PROG bit */
876 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
877 		np->imrvalue |= ETI;
878 	}
879 	iowrite32(np->bcrvalue, ioaddr + BCR);
880 
881 	if (dev->if_port == 0)
882 		dev->if_port = np->default_port;
883 
884 	iowrite32(0, ioaddr + RXPDR);
885 // 89/9/1 modify,
886 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
887 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
888 	np->mii.full_duplex = np->mii.force_media;
889 	getlinkstatus(dev);
890 	if (np->linkok)
891 		getlinktype(dev);
892 	__set_rx_mode(dev);
893 
894 	netif_start_queue(dev);
895 
896 	/* Clear and Enable interrupts by setting the interrupt mask. */
897 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
898 	iowrite32(np->imrvalue, ioaddr + IMR);
899 
900 	if (debug)
901 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
902 
903 	/* Set the timer to check for link beat. */
904 	timer_setup(&np->timer, netdev_timer, 0);
905 	np->timer.expires = RUN_AT(3 * HZ);
906 
907 	/* timer handler */
908 	add_timer(&np->timer);
909 
910 	timer_setup(&np->reset_timer, reset_timer, 0);
911 	np->reset_timer_armed = 0;
912 	return rc;
913 }
914 
915 
getlinkstatus(struct net_device * dev)916 static void getlinkstatus(struct net_device *dev)
917 /* function: Routine will read MII Status Register to get link status.       */
918 /* input   : dev... pointer to the adapter block.                            */
919 /* output  : none.                                                           */
920 {
921 	struct netdev_private *np = netdev_priv(dev);
922 	unsigned int i, DelayTime = 0x1000;
923 
924 	np->linkok = 0;
925 
926 	if (np->PHYType == MysonPHY) {
927 		for (i = 0; i < DelayTime; ++i) {
928 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
929 				np->linkok = 1;
930 				return;
931 			}
932 			udelay(100);
933 		}
934 	} else {
935 		for (i = 0; i < DelayTime; ++i) {
936 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
937 				np->linkok = 1;
938 				return;
939 			}
940 			udelay(100);
941 		}
942 	}
943 }
944 
945 
getlinktype(struct net_device * dev)946 static void getlinktype(struct net_device *dev)
947 {
948 	struct netdev_private *np = netdev_priv(dev);
949 
950 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
951 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
952 			np->duplexmode = 2;	/* full duplex */
953 		else
954 			np->duplexmode = 1;	/* half duplex */
955 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
956 			np->line_speed = 1;	/* 10M */
957 		else
958 			np->line_speed = 2;	/* 100M */
959 	} else {
960 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
961 			unsigned int data;
962 
963 			data = mdio_read(dev, np->phys[0], MIIRegister18);
964 			if (data & SPD_DET_100)
965 				np->line_speed = 2;	/* 100M */
966 			else
967 				np->line_speed = 1;	/* 10M */
968 			if (data & DPLX_DET_FULL)
969 				np->duplexmode = 2;	/* full duplex mode */
970 			else
971 				np->duplexmode = 1;	/* half duplex mode */
972 		} else if (np->PHYType == AhdocPHY) {
973 			unsigned int data;
974 
975 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
976 			if (data & Speed_100)
977 				np->line_speed = 2;	/* 100M */
978 			else
979 				np->line_speed = 1;	/* 10M */
980 			if (data & DPLX_FULL)
981 				np->duplexmode = 2;	/* full duplex mode */
982 			else
983 				np->duplexmode = 1;	/* half duplex mode */
984 		}
985 /* 89/6/13 add, (begin) */
986 		else if (np->PHYType == MarvellPHY) {
987 			unsigned int data;
988 
989 			data = mdio_read(dev, np->phys[0], SpecificReg);
990 			if (data & Full_Duplex)
991 				np->duplexmode = 2;	/* full duplex mode */
992 			else
993 				np->duplexmode = 1;	/* half duplex mode */
994 			data &= SpeedMask;
995 			if (data == Speed_1000M)
996 				np->line_speed = 3;	/* 1000M */
997 			else if (data == Speed_100M)
998 				np->line_speed = 2;	/* 100M */
999 			else
1000 				np->line_speed = 1;	/* 10M */
1001 		}
1002 /* 89/6/13 add, (end) */
1003 /* 89/7/27 add, (begin) */
1004 		else if (np->PHYType == Myson981) {
1005 			unsigned int data;
1006 
1007 			data = mdio_read(dev, np->phys[0], StatusRegister);
1008 
1009 			if (data & SPEED100)
1010 				np->line_speed = 2;
1011 			else
1012 				np->line_speed = 1;
1013 
1014 			if (data & FULLMODE)
1015 				np->duplexmode = 2;
1016 			else
1017 				np->duplexmode = 1;
1018 		}
1019 /* 89/7/27 add, (end) */
1020 /* 89/12/29 add */
1021 		else if (np->PHYType == LevelOnePHY) {
1022 			unsigned int data;
1023 
1024 			data = mdio_read(dev, np->phys[0], SpecificReg);
1025 			if (data & LXT1000_Full)
1026 				np->duplexmode = 2;	/* full duplex mode */
1027 			else
1028 				np->duplexmode = 1;	/* half duplex mode */
1029 			data &= SpeedMask;
1030 			if (data == LXT1000_1000M)
1031 				np->line_speed = 3;	/* 1000M */
1032 			else if (data == LXT1000_100M)
1033 				np->line_speed = 2;	/* 100M */
1034 			else
1035 				np->line_speed = 1;	/* 10M */
1036 		}
1037 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1038 		if (np->line_speed == 1)
1039 			np->crvalue |= CR_W_PS10;
1040 		else if (np->line_speed == 3)
1041 			np->crvalue |= CR_W_PS1000;
1042 		if (np->duplexmode == 2)
1043 			np->crvalue |= CR_W_FD;
1044 	}
1045 }
1046 
1047 
1048 /* Take lock before calling this */
allocate_rx_buffers(struct net_device * dev)1049 static void allocate_rx_buffers(struct net_device *dev)
1050 {
1051 	struct netdev_private *np = netdev_priv(dev);
1052 
1053 	/*  allocate skb for rx buffers */
1054 	while (np->really_rx_count != RX_RING_SIZE) {
1055 		struct sk_buff *skb;
1056 
1057 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1058 		if (skb == NULL)
1059 			break;	/* Better luck next round. */
1060 
1061 		while (np->lack_rxbuf->skbuff)
1062 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1063 
1064 		np->lack_rxbuf->skbuff = skb;
1065 		np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1066 							skb->data,
1067 							np->rx_buf_sz,
1068 							DMA_FROM_DEVICE);
1069 		np->lack_rxbuf->status = RXOWN;
1070 		++np->really_rx_count;
1071 	}
1072 }
1073 
1074 
netdev_timer(struct timer_list * t)1075 static void netdev_timer(struct timer_list *t)
1076 {
1077 	struct netdev_private *np = from_timer(np, t, timer);
1078 	struct net_device *dev = np->mii.dev;
1079 	void __iomem *ioaddr = np->mem;
1080 	int old_crvalue = np->crvalue;
1081 	unsigned int old_linkok = np->linkok;
1082 	unsigned long flags;
1083 
1084 	if (debug)
1085 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1086 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1087 		       ioread32(ioaddr + TCRRCR));
1088 
1089 	spin_lock_irqsave(&np->lock, flags);
1090 
1091 	if (np->flags == HAS_MII_XCVR) {
1092 		getlinkstatus(dev);
1093 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1094 			getlinktype(dev);
1095 			if (np->crvalue != old_crvalue) {
1096 				stop_nic_rxtx(ioaddr, np->crvalue);
1097 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1098 			}
1099 		}
1100 	}
1101 
1102 	allocate_rx_buffers(dev);
1103 
1104 	spin_unlock_irqrestore(&np->lock, flags);
1105 
1106 	np->timer.expires = RUN_AT(10 * HZ);
1107 	add_timer(&np->timer);
1108 }
1109 
1110 
1111 /* Take lock before calling */
1112 /* Reset chip and disable rx, tx and interrupts */
reset_and_disable_rxtx(struct net_device * dev)1113 static void reset_and_disable_rxtx(struct net_device *dev)
1114 {
1115 	struct netdev_private *np = netdev_priv(dev);
1116 	void __iomem *ioaddr = np->mem;
1117 	int delay=51;
1118 
1119 	/* Reset the chip's Tx and Rx processes. */
1120 	stop_nic_rxtx(ioaddr, 0);
1121 
1122 	/* Disable interrupts by clearing the interrupt mask. */
1123 	iowrite32(0, ioaddr + IMR);
1124 
1125 	/* Reset the chip to erase previous misconfiguration. */
1126 	iowrite32(0x00000001, ioaddr + BCR);
1127 
1128 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1129 	   We surely wait too long (address+data phase). Who cares? */
1130 	while (--delay) {
1131 		ioread32(ioaddr + BCR);
1132 		rmb();
1133 	}
1134 }
1135 
1136 
1137 /* Take lock before calling */
1138 /* Restore chip after reset */
enable_rxtx(struct net_device * dev)1139 static void enable_rxtx(struct net_device *dev)
1140 {
1141 	struct netdev_private *np = netdev_priv(dev);
1142 	void __iomem *ioaddr = np->mem;
1143 
1144 	reset_rx_descriptors(dev);
1145 
1146 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1147 		ioaddr + TXLBA);
1148 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1149 		ioaddr + RXLBA);
1150 
1151 	iowrite32(np->bcrvalue, ioaddr + BCR);
1152 
1153 	iowrite32(0, ioaddr + RXPDR);
1154 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1155 
1156 	/* Clear and Enable interrupts by setting the interrupt mask. */
1157 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1158 	iowrite32(np->imrvalue, ioaddr + IMR);
1159 
1160 	iowrite32(0, ioaddr + TXPDR);
1161 }
1162 
1163 
reset_timer(struct timer_list * t)1164 static void reset_timer(struct timer_list *t)
1165 {
1166 	struct netdev_private *np = from_timer(np, t, reset_timer);
1167 	struct net_device *dev = np->mii.dev;
1168 	unsigned long flags;
1169 
1170 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1171 
1172 	spin_lock_irqsave(&np->lock, flags);
1173 	np->crvalue = np->crvalue_sv;
1174 	np->imrvalue = np->imrvalue_sv;
1175 
1176 	reset_and_disable_rxtx(dev);
1177 	/* works for me without this:
1178 	reset_tx_descriptors(dev); */
1179 	enable_rxtx(dev);
1180 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1181 
1182 	np->reset_timer_armed = 0;
1183 
1184 	spin_unlock_irqrestore(&np->lock, flags);
1185 }
1186 
1187 
fealnx_tx_timeout(struct net_device * dev,unsigned int txqueue)1188 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1189 {
1190 	struct netdev_private *np = netdev_priv(dev);
1191 	void __iomem *ioaddr = np->mem;
1192 	unsigned long flags;
1193 	int i;
1194 
1195 	printk(KERN_WARNING
1196 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1197 	       dev->name, ioread32(ioaddr + ISR));
1198 
1199 	{
1200 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1201 		for (i = 0; i < RX_RING_SIZE; i++)
1202 			printk(KERN_CONT " %8.8x",
1203 			       (unsigned int) np->rx_ring[i].status);
1204 		printk(KERN_CONT "\n");
1205 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1206 		for (i = 0; i < TX_RING_SIZE; i++)
1207 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1208 		printk(KERN_CONT "\n");
1209 	}
1210 
1211 	spin_lock_irqsave(&np->lock, flags);
1212 
1213 	reset_and_disable_rxtx(dev);
1214 	reset_tx_descriptors(dev);
1215 	enable_rxtx(dev);
1216 
1217 	spin_unlock_irqrestore(&np->lock, flags);
1218 
1219 	netif_trans_update(dev); /* prevent tx timeout */
1220 	dev->stats.tx_errors++;
1221 	netif_wake_queue(dev); /* or .._start_.. ?? */
1222 }
1223 
1224 
1225 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1226 static void init_ring(struct net_device *dev)
1227 {
1228 	struct netdev_private *np = netdev_priv(dev);
1229 	int i;
1230 
1231 	/* initialize rx variables */
1232 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1233 	np->cur_rx = &np->rx_ring[0];
1234 	np->lack_rxbuf = np->rx_ring;
1235 	np->really_rx_count = 0;
1236 
1237 	/* initial rx descriptors. */
1238 	for (i = 0; i < RX_RING_SIZE; i++) {
1239 		np->rx_ring[i].status = 0;
1240 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1241 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1242 			(i + 1)*sizeof(struct fealnx_desc);
1243 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1244 		np->rx_ring[i].skbuff = NULL;
1245 	}
1246 
1247 	/* for the last rx descriptor */
1248 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1249 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1250 
1251 	/* allocate skb for rx buffers */
1252 	for (i = 0; i < RX_RING_SIZE; i++) {
1253 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1254 
1255 		if (skb == NULL) {
1256 			np->lack_rxbuf = &np->rx_ring[i];
1257 			break;
1258 		}
1259 
1260 		++np->really_rx_count;
1261 		np->rx_ring[i].skbuff = skb;
1262 		np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1263 						       skb->data,
1264 						       np->rx_buf_sz,
1265 						       DMA_FROM_DEVICE);
1266 		np->rx_ring[i].status = RXOWN;
1267 		np->rx_ring[i].control |= RXIC;
1268 	}
1269 
1270 	/* initialize tx variables */
1271 	np->cur_tx = &np->tx_ring[0];
1272 	np->cur_tx_copy = &np->tx_ring[0];
1273 	np->really_tx_count = 0;
1274 	np->free_tx_count = TX_RING_SIZE;
1275 
1276 	for (i = 0; i < TX_RING_SIZE; i++) {
1277 		np->tx_ring[i].status = 0;
1278 		/* do we need np->tx_ring[i].control = XXX; ?? */
1279 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1280 			(i + 1)*sizeof(struct fealnx_desc);
1281 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1282 		np->tx_ring[i].skbuff = NULL;
1283 	}
1284 
1285 	/* for the last tx descriptor */
1286 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1287 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1288 }
1289 
1290 
start_tx(struct sk_buff * skb,struct net_device * dev)1291 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1292 {
1293 	struct netdev_private *np = netdev_priv(dev);
1294 	unsigned long flags;
1295 
1296 	spin_lock_irqsave(&np->lock, flags);
1297 
1298 	np->cur_tx_copy->skbuff = skb;
1299 
1300 #define one_buffer
1301 #define BPT 1022
1302 #if defined(one_buffer)
1303 	np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1304 						 skb->len, DMA_TO_DEVICE);
1305 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1306 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1307 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1308 // 89/12/29 add,
1309 	if (np->pci_dev->device == 0x891)
1310 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1311 	np->cur_tx_copy->status = TXOWN;
1312 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1313 	--np->free_tx_count;
1314 #elif defined(two_buffer)
1315 	if (skb->len > BPT) {
1316 		struct fealnx_desc *next;
1317 
1318 		/* for the first descriptor */
1319 		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1320 							 skb->data, BPT,
1321 							 DMA_TO_DEVICE);
1322 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1323 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1324 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1325 
1326 		/* for the last descriptor */
1327 		next = np->cur_tx_copy->next_desc_logical;
1328 		next->skbuff = skb;
1329 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1330 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1331 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1332 // 89/12/29 add,
1333 		if (np->pci_dev->device == 0x891)
1334 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1335 		next->buffer = dma_map_single(&ep->pci_dev->dev,
1336 					      skb->data + BPT, skb->len - BPT,
1337 					      DMA_TO_DEVICE);
1338 
1339 		next->status = TXOWN;
1340 		np->cur_tx_copy->status = TXOWN;
1341 
1342 		np->cur_tx_copy = next->next_desc_logical;
1343 		np->free_tx_count -= 2;
1344 	} else {
1345 		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1346 							 skb->data, skb->len,
1347 							 DMA_TO_DEVICE);
1348 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1349 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1350 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1351 // 89/12/29 add,
1352 		if (np->pci_dev->device == 0x891)
1353 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1354 		np->cur_tx_copy->status = TXOWN;
1355 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1356 		--np->free_tx_count;
1357 	}
1358 #endif
1359 
1360 	if (np->free_tx_count < 2)
1361 		netif_stop_queue(dev);
1362 	++np->really_tx_count;
1363 	iowrite32(0, np->mem + TXPDR);
1364 
1365 	spin_unlock_irqrestore(&np->lock, flags);
1366 	return NETDEV_TX_OK;
1367 }
1368 
1369 
1370 /* Take lock before calling */
1371 /* Chip probably hosed tx ring. Clean up. */
reset_tx_descriptors(struct net_device * dev)1372 static void reset_tx_descriptors(struct net_device *dev)
1373 {
1374 	struct netdev_private *np = netdev_priv(dev);
1375 	struct fealnx_desc *cur;
1376 	int i;
1377 
1378 	/* initialize tx variables */
1379 	np->cur_tx = &np->tx_ring[0];
1380 	np->cur_tx_copy = &np->tx_ring[0];
1381 	np->really_tx_count = 0;
1382 	np->free_tx_count = TX_RING_SIZE;
1383 
1384 	for (i = 0; i < TX_RING_SIZE; i++) {
1385 		cur = &np->tx_ring[i];
1386 		if (cur->skbuff) {
1387 			dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1388 					 cur->skbuff->len, DMA_TO_DEVICE);
1389 			dev_kfree_skb_any(cur->skbuff);
1390 			cur->skbuff = NULL;
1391 		}
1392 		cur->status = 0;
1393 		cur->control = 0;	/* needed? */
1394 		/* probably not needed. We do it for purely paranoid reasons */
1395 		cur->next_desc = np->tx_ring_dma +
1396 			(i + 1)*sizeof(struct fealnx_desc);
1397 		cur->next_desc_logical = &np->tx_ring[i + 1];
1398 	}
1399 	/* for the last tx descriptor */
1400 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1401 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1402 }
1403 
1404 
1405 /* Take lock and stop rx before calling this */
reset_rx_descriptors(struct net_device * dev)1406 static void reset_rx_descriptors(struct net_device *dev)
1407 {
1408 	struct netdev_private *np = netdev_priv(dev);
1409 	struct fealnx_desc *cur = np->cur_rx;
1410 	int i;
1411 
1412 	allocate_rx_buffers(dev);
1413 
1414 	for (i = 0; i < RX_RING_SIZE; i++) {
1415 		if (cur->skbuff)
1416 			cur->status = RXOWN;
1417 		cur = cur->next_desc_logical;
1418 	}
1419 
1420 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1421 		np->mem + RXLBA);
1422 }
1423 
1424 
1425 /* The interrupt handler does all of the Rx thread work and cleans up
1426    after the Tx thread. */
intr_handler(int irq,void * dev_instance)1427 static irqreturn_t intr_handler(int irq, void *dev_instance)
1428 {
1429 	struct net_device *dev = (struct net_device *) dev_instance;
1430 	struct netdev_private *np = netdev_priv(dev);
1431 	void __iomem *ioaddr = np->mem;
1432 	long boguscnt = max_interrupt_work;
1433 	unsigned int num_tx = 0;
1434 	int handled = 0;
1435 
1436 	spin_lock(&np->lock);
1437 
1438 	iowrite32(0, ioaddr + IMR);
1439 
1440 	do {
1441 		u32 intr_status = ioread32(ioaddr + ISR);
1442 
1443 		/* Acknowledge all of the current interrupt sources ASAP. */
1444 		iowrite32(intr_status, ioaddr + ISR);
1445 
1446 		if (debug)
1447 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1448 			       intr_status);
1449 
1450 		if (!(intr_status & np->imrvalue))
1451 			break;
1452 
1453 		handled = 1;
1454 
1455 // 90/1/16 delete,
1456 //
1457 //      if (intr_status & FBE)
1458 //      {   /* fatal error */
1459 //          stop_nic_tx(ioaddr, 0);
1460 //          stop_nic_rx(ioaddr, 0);
1461 //          break;
1462 //      };
1463 
1464 		if (intr_status & TUNF)
1465 			iowrite32(0, ioaddr + TXPDR);
1466 
1467 		if (intr_status & CNTOVF) {
1468 			/* missed pkts */
1469 			dev->stats.rx_missed_errors +=
1470 				ioread32(ioaddr + TALLY) & 0x7fff;
1471 
1472 			/* crc error */
1473 			dev->stats.rx_crc_errors +=
1474 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1475 		}
1476 
1477 		if (intr_status & (RI | RBU)) {
1478 			if (intr_status & RI)
1479 				netdev_rx(dev);
1480 			else {
1481 				stop_nic_rx(ioaddr, np->crvalue);
1482 				reset_rx_descriptors(dev);
1483 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1484 			}
1485 		}
1486 
1487 		while (np->really_tx_count) {
1488 			long tx_status = np->cur_tx->status;
1489 			long tx_control = np->cur_tx->control;
1490 
1491 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1492 				struct fealnx_desc *next;
1493 
1494 				next = np->cur_tx->next_desc_logical;
1495 				tx_status = next->status;
1496 				tx_control = next->control;
1497 			}
1498 
1499 			if (tx_status & TXOWN)
1500 				break;
1501 
1502 			if (!(np->crvalue & CR_W_ENH)) {
1503 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1504 					dev->stats.tx_errors++;
1505 					if (tx_status & EC)
1506 						dev->stats.tx_aborted_errors++;
1507 					if (tx_status & CSL)
1508 						dev->stats.tx_carrier_errors++;
1509 					if (tx_status & LC)
1510 						dev->stats.tx_window_errors++;
1511 					if (tx_status & UDF)
1512 						dev->stats.tx_fifo_errors++;
1513 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1514 						dev->stats.tx_heartbeat_errors++;
1515 
1516 				} else {
1517 					dev->stats.tx_bytes +=
1518 					    ((tx_control & PKTSMask) >> PKTSShift);
1519 
1520 					dev->stats.collisions +=
1521 					    ((tx_status & NCRMask) >> NCRShift);
1522 					dev->stats.tx_packets++;
1523 				}
1524 			} else {
1525 				dev->stats.tx_bytes +=
1526 				    ((tx_control & PKTSMask) >> PKTSShift);
1527 				dev->stats.tx_packets++;
1528 			}
1529 
1530 			/* Free the original skb. */
1531 			dma_unmap_single(&np->pci_dev->dev,
1532 					 np->cur_tx->buffer,
1533 					 np->cur_tx->skbuff->len,
1534 					 DMA_TO_DEVICE);
1535 			dev_consume_skb_irq(np->cur_tx->skbuff);
1536 			np->cur_tx->skbuff = NULL;
1537 			--np->really_tx_count;
1538 			if (np->cur_tx->control & TXLD) {
1539 				np->cur_tx = np->cur_tx->next_desc_logical;
1540 				++np->free_tx_count;
1541 			} else {
1542 				np->cur_tx = np->cur_tx->next_desc_logical;
1543 				np->cur_tx = np->cur_tx->next_desc_logical;
1544 				np->free_tx_count += 2;
1545 			}
1546 			num_tx++;
1547 		}		/* end of for loop */
1548 
1549 		if (num_tx && np->free_tx_count >= 2)
1550 			netif_wake_queue(dev);
1551 
1552 		/* read transmit status for enhanced mode only */
1553 		if (np->crvalue & CR_W_ENH) {
1554 			long data;
1555 
1556 			data = ioread32(ioaddr + TSR);
1557 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1558 			dev->stats.tx_aborted_errors +=
1559 				(data & 0xff000000) >> 24;
1560 			dev->stats.tx_window_errors +=
1561 				(data & 0x00ff0000) >> 16;
1562 			dev->stats.collisions += (data & 0x0000ffff);
1563 		}
1564 
1565 		if (--boguscnt < 0) {
1566 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1567 			       "status=0x%4.4x.\n", dev->name, intr_status);
1568 			if (!np->reset_timer_armed) {
1569 				np->reset_timer_armed = 1;
1570 				np->reset_timer.expires = RUN_AT(HZ/2);
1571 				add_timer(&np->reset_timer);
1572 				stop_nic_rxtx(ioaddr, 0);
1573 				netif_stop_queue(dev);
1574 				/* or netif_tx_disable(dev); ?? */
1575 				/* Prevent other paths from enabling tx,rx,intrs */
1576 				np->crvalue_sv = np->crvalue;
1577 				np->imrvalue_sv = np->imrvalue;
1578 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1579 				np->imrvalue = 0;
1580 			}
1581 
1582 			break;
1583 		}
1584 	} while (1);
1585 
1586 	/* read the tally counters */
1587 	/* missed pkts */
1588 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1589 
1590 	/* crc error */
1591 	dev->stats.rx_crc_errors +=
1592 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1593 
1594 	if (debug)
1595 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1596 		       dev->name, ioread32(ioaddr + ISR));
1597 
1598 	iowrite32(np->imrvalue, ioaddr + IMR);
1599 
1600 	spin_unlock(&np->lock);
1601 
1602 	return IRQ_RETVAL(handled);
1603 }
1604 
1605 
1606 /* This routine is logically part of the interrupt handler, but separated
1607    for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1608 static int netdev_rx(struct net_device *dev)
1609 {
1610 	struct netdev_private *np = netdev_priv(dev);
1611 	void __iomem *ioaddr = np->mem;
1612 
1613 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1614 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1615 		s32 rx_status = np->cur_rx->status;
1616 
1617 		if (np->really_rx_count == 0)
1618 			break;
1619 
1620 		if (debug)
1621 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1622 
1623 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1624 		    (rx_status & ErrorSummary)) {
1625 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1626 				if (debug)
1627 					printk(KERN_DEBUG
1628 					       "%s: Receive error, Rx status %8.8x.\n",
1629 					       dev->name, rx_status);
1630 
1631 				dev->stats.rx_errors++;	/* end of a packet. */
1632 				if (rx_status & (LONGPKT | RUNTPKT))
1633 					dev->stats.rx_length_errors++;
1634 				if (rx_status & RXER)
1635 					dev->stats.rx_frame_errors++;
1636 				if (rx_status & CRC)
1637 					dev->stats.rx_crc_errors++;
1638 			} else {
1639 				int need_to_reset = 0;
1640 				int desno = 0;
1641 
1642 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1643 					struct fealnx_desc *cur;
1644 
1645 					/* check this packet is received completely? */
1646 					cur = np->cur_rx;
1647 					while (desno <= np->really_rx_count) {
1648 						++desno;
1649 						if ((!(cur->status & RXOWN)) &&
1650 						    (cur->status & RXLSD))
1651 							break;
1652 						/* goto next rx descriptor */
1653 						cur = cur->next_desc_logical;
1654 					}
1655 					if (desno > np->really_rx_count)
1656 						need_to_reset = 1;
1657 				} else	/* RXLSD did not find, something error */
1658 					need_to_reset = 1;
1659 
1660 				if (need_to_reset == 0) {
1661 					int i;
1662 
1663 					dev->stats.rx_length_errors++;
1664 
1665 					/* free all rx descriptors related this long pkt */
1666 					for (i = 0; i < desno; ++i) {
1667 						if (!np->cur_rx->skbuff) {
1668 							printk(KERN_DEBUG
1669 								"%s: I'm scared\n", dev->name);
1670 							break;
1671 						}
1672 						np->cur_rx->status = RXOWN;
1673 						np->cur_rx = np->cur_rx->next_desc_logical;
1674 					}
1675 					continue;
1676 				} else {        /* rx error, need to reset this chip */
1677 					stop_nic_rx(ioaddr, np->crvalue);
1678 					reset_rx_descriptors(dev);
1679 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1680 				}
1681 				break;	/* exit the while loop */
1682 			}
1683 		} else {	/* this received pkt is ok */
1684 
1685 			struct sk_buff *skb;
1686 			/* Omit the four octet CRC from the length. */
1687 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1688 
1689 #ifndef final_version
1690 			if (debug)
1691 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1692 				       " status %x.\n", pkt_len, rx_status);
1693 #endif
1694 
1695 			/* Check if the packet is long enough to accept without copying
1696 			   to a minimally-sized skbuff. */
1697 			if (pkt_len < rx_copybreak &&
1698 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1699 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1700 				dma_sync_single_for_cpu(&np->pci_dev->dev,
1701 							np->cur_rx->buffer,
1702 							np->rx_buf_sz,
1703 							DMA_FROM_DEVICE);
1704 				/* Call copy + cksum if available. */
1705 
1706 #if ! defined(__alpha__)
1707 				skb_copy_to_linear_data(skb,
1708 					np->cur_rx->skbuff->data, pkt_len);
1709 				skb_put(skb, pkt_len);
1710 #else
1711 				skb_put_data(skb, np->cur_rx->skbuff->data,
1712 					     pkt_len);
1713 #endif
1714 				dma_sync_single_for_device(&np->pci_dev->dev,
1715 							   np->cur_rx->buffer,
1716 							   np->rx_buf_sz,
1717 							   DMA_FROM_DEVICE);
1718 			} else {
1719 				dma_unmap_single(&np->pci_dev->dev,
1720 						 np->cur_rx->buffer,
1721 						 np->rx_buf_sz,
1722 						 DMA_FROM_DEVICE);
1723 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1724 				np->cur_rx->skbuff = NULL;
1725 				--np->really_rx_count;
1726 			}
1727 			skb->protocol = eth_type_trans(skb, dev);
1728 			netif_rx(skb);
1729 			dev->stats.rx_packets++;
1730 			dev->stats.rx_bytes += pkt_len;
1731 		}
1732 
1733 		np->cur_rx = np->cur_rx->next_desc_logical;
1734 	}			/* end of while loop */
1735 
1736 	/*  allocate skb for rx buffers */
1737 	allocate_rx_buffers(dev);
1738 
1739 	return 0;
1740 }
1741 
1742 
get_stats(struct net_device * dev)1743 static struct net_device_stats *get_stats(struct net_device *dev)
1744 {
1745 	struct netdev_private *np = netdev_priv(dev);
1746 	void __iomem *ioaddr = np->mem;
1747 
1748 	/* The chip only need report frame silently dropped. */
1749 	if (netif_running(dev)) {
1750 		dev->stats.rx_missed_errors +=
1751 			ioread32(ioaddr + TALLY) & 0x7fff;
1752 		dev->stats.rx_crc_errors +=
1753 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1754 	}
1755 
1756 	return &dev->stats;
1757 }
1758 
1759 
1760 /* for dev->set_multicast_list */
set_rx_mode(struct net_device * dev)1761 static void set_rx_mode(struct net_device *dev)
1762 {
1763 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1764 	unsigned long flags;
1765 	spin_lock_irqsave(lp, flags);
1766 	__set_rx_mode(dev);
1767 	spin_unlock_irqrestore(lp, flags);
1768 }
1769 
1770 
1771 /* Take lock before calling */
__set_rx_mode(struct net_device * dev)1772 static void __set_rx_mode(struct net_device *dev)
1773 {
1774 	struct netdev_private *np = netdev_priv(dev);
1775 	void __iomem *ioaddr = np->mem;
1776 	u32 mc_filter[2];	/* Multicast hash filter */
1777 	u32 rx_mode;
1778 
1779 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1780 		memset(mc_filter, 0xff, sizeof(mc_filter));
1781 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1782 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1783 		   (dev->flags & IFF_ALLMULTI)) {
1784 		/* Too many to match, or accept all multicasts. */
1785 		memset(mc_filter, 0xff, sizeof(mc_filter));
1786 		rx_mode = CR_W_AB | CR_W_AM;
1787 	} else {
1788 		struct netdev_hw_addr *ha;
1789 
1790 		memset(mc_filter, 0, sizeof(mc_filter));
1791 		netdev_for_each_mc_addr(ha, dev) {
1792 			unsigned int bit;
1793 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1794 			mc_filter[bit >> 5] |= (1 << bit);
1795 		}
1796 		rx_mode = CR_W_AB | CR_W_AM;
1797 	}
1798 
1799 	stop_nic_rxtx(ioaddr, np->crvalue);
1800 
1801 	iowrite32(mc_filter[0], ioaddr + MAR0);
1802 	iowrite32(mc_filter[1], ioaddr + MAR1);
1803 	np->crvalue &= ~CR_W_RXMODEMASK;
1804 	np->crvalue |= rx_mode;
1805 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1806 }
1807 
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1808 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1809 {
1810 	struct netdev_private *np = netdev_priv(dev);
1811 
1812 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1813 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1814 }
1815 
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1816 static int netdev_get_link_ksettings(struct net_device *dev,
1817 				     struct ethtool_link_ksettings *cmd)
1818 {
1819 	struct netdev_private *np = netdev_priv(dev);
1820 
1821 	spin_lock_irq(&np->lock);
1822 	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1823 	spin_unlock_irq(&np->lock);
1824 
1825 	return 0;
1826 }
1827 
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1828 static int netdev_set_link_ksettings(struct net_device *dev,
1829 				     const struct ethtool_link_ksettings *cmd)
1830 {
1831 	struct netdev_private *np = netdev_priv(dev);
1832 	int rc;
1833 
1834 	spin_lock_irq(&np->lock);
1835 	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1836 	spin_unlock_irq(&np->lock);
1837 
1838 	return rc;
1839 }
1840 
netdev_nway_reset(struct net_device * dev)1841 static int netdev_nway_reset(struct net_device *dev)
1842 {
1843 	struct netdev_private *np = netdev_priv(dev);
1844 	return mii_nway_restart(&np->mii);
1845 }
1846 
netdev_get_link(struct net_device * dev)1847 static u32 netdev_get_link(struct net_device *dev)
1848 {
1849 	struct netdev_private *np = netdev_priv(dev);
1850 	return mii_link_ok(&np->mii);
1851 }
1852 
netdev_get_msglevel(struct net_device * dev)1853 static u32 netdev_get_msglevel(struct net_device *dev)
1854 {
1855 	return debug;
1856 }
1857 
netdev_set_msglevel(struct net_device * dev,u32 value)1858 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1859 {
1860 	debug = value;
1861 }
1862 
1863 static const struct ethtool_ops netdev_ethtool_ops = {
1864 	.get_drvinfo		= netdev_get_drvinfo,
1865 	.nway_reset		= netdev_nway_reset,
1866 	.get_link		= netdev_get_link,
1867 	.get_msglevel		= netdev_get_msglevel,
1868 	.set_msglevel		= netdev_set_msglevel,
1869 	.get_link_ksettings	= netdev_get_link_ksettings,
1870 	.set_link_ksettings	= netdev_set_link_ksettings,
1871 };
1872 
mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1873 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874 {
1875 	struct netdev_private *np = netdev_priv(dev);
1876 	int rc;
1877 
1878 	if (!netif_running(dev))
1879 		return -EINVAL;
1880 
1881 	spin_lock_irq(&np->lock);
1882 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1883 	spin_unlock_irq(&np->lock);
1884 
1885 	return rc;
1886 }
1887 
1888 
netdev_close(struct net_device * dev)1889 static int netdev_close(struct net_device *dev)
1890 {
1891 	struct netdev_private *np = netdev_priv(dev);
1892 	void __iomem *ioaddr = np->mem;
1893 	int i;
1894 
1895 	netif_stop_queue(dev);
1896 
1897 	/* Disable interrupts by clearing the interrupt mask. */
1898 	iowrite32(0x0000, ioaddr + IMR);
1899 
1900 	/* Stop the chip's Tx and Rx processes. */
1901 	stop_nic_rxtx(ioaddr, 0);
1902 
1903 	del_timer_sync(&np->timer);
1904 	del_timer_sync(&np->reset_timer);
1905 
1906 	free_irq(np->pci_dev->irq, dev);
1907 
1908 	/* Free all the skbuffs in the Rx queue. */
1909 	for (i = 0; i < RX_RING_SIZE; i++) {
1910 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1911 
1912 		np->rx_ring[i].status = 0;
1913 		if (skb) {
1914 			dma_unmap_single(&np->pci_dev->dev,
1915 					 np->rx_ring[i].buffer, np->rx_buf_sz,
1916 					 DMA_FROM_DEVICE);
1917 			dev_kfree_skb(skb);
1918 			np->rx_ring[i].skbuff = NULL;
1919 		}
1920 	}
1921 
1922 	for (i = 0; i < TX_RING_SIZE; i++) {
1923 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1924 
1925 		if (skb) {
1926 			dma_unmap_single(&np->pci_dev->dev,
1927 					 np->tx_ring[i].buffer, skb->len,
1928 					 DMA_TO_DEVICE);
1929 			dev_kfree_skb(skb);
1930 			np->tx_ring[i].skbuff = NULL;
1931 		}
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 static const struct pci_device_id fealnx_pci_tbl[] = {
1938 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1939 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1940 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1941 	{} /* terminate list */
1942 };
1943 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1944 
1945 
1946 static struct pci_driver fealnx_driver = {
1947 	.name		= "fealnx",
1948 	.id_table	= fealnx_pci_tbl,
1949 	.probe		= fealnx_init_one,
1950 	.remove		= fealnx_remove_one,
1951 };
1952 
1953 module_pci_driver(fealnx_driver);
1954