1 #ifndef _ASM_X86_PARAVIRT_TYPES_H 2 #define _ASM_X86_PARAVIRT_TYPES_H 3 4 /* Bitmask of what can be clobbered: usually at least eax. */ 5 #define CLBR_NONE 0 6 #define CLBR_EAX (1 << 0) 7 #define CLBR_ECX (1 << 1) 8 #define CLBR_EDX (1 << 2) 9 #define CLBR_EDI (1 << 3) 10 11 #ifdef CONFIG_X86_32 12 /* CLBR_ANY should match all regs platform has. For i386, that's just it */ 13 #define CLBR_ANY ((1 << 4) - 1) 14 15 #define CLBR_ARG_REGS (CLBR_EAX | CLBR_EDX | CLBR_ECX) 16 #define CLBR_RET_REG (CLBR_EAX | CLBR_EDX) 17 #define CLBR_SCRATCH (0) 18 #else 19 #define CLBR_RAX CLBR_EAX 20 #define CLBR_RCX CLBR_ECX 21 #define CLBR_RDX CLBR_EDX 22 #define CLBR_RDI CLBR_EDI 23 #define CLBR_RSI (1 << 4) 24 #define CLBR_R8 (1 << 5) 25 #define CLBR_R9 (1 << 6) 26 #define CLBR_R10 (1 << 7) 27 #define CLBR_R11 (1 << 8) 28 29 #define CLBR_ANY ((1 << 9) - 1) 30 31 #define CLBR_ARG_REGS (CLBR_RDI | CLBR_RSI | CLBR_RDX | \ 32 CLBR_RCX | CLBR_R8 | CLBR_R9) 33 #define CLBR_RET_REG (CLBR_RAX) 34 #define CLBR_SCRATCH (CLBR_R10 | CLBR_R11) 35 36 #endif /* X86_64 */ 37 38 #define CLBR_CALLEE_SAVE ((CLBR_ARG_REGS | CLBR_SCRATCH) & ~CLBR_RET_REG) 39 40 #ifndef __ASSEMBLY__ 41 42 #include <asm/desc_defs.h> 43 #include <asm/kmap_types.h> 44 #include <asm/pgtable_types.h> 45 46 struct page; 47 struct thread_struct; 48 struct desc_ptr; 49 struct tss_struct; 50 struct mm_struct; 51 struct desc_struct; 52 struct task_struct; 53 struct cpumask; 54 55 /* 56 * Wrapper type for pointers to code which uses the non-standard 57 * calling convention. See PV_CALL_SAVE_REGS_THUNK below. 58 */ 59 struct paravirt_callee_save { 60 void *func; 61 }; 62 63 /* general info */ 64 struct pv_info { 65 unsigned int kernel_rpl; 66 int shared_kernel_pmd; 67 68 #ifdef CONFIG_X86_64 69 u16 extra_user_64bit_cs; /* __USER_CS if none */ 70 #endif 71 72 int paravirt_enabled; 73 const char *name; 74 }; 75 76 struct pv_init_ops { 77 /* 78 * Patch may replace one of the defined code sequences with 79 * arbitrary code, subject to the same register constraints. 80 * This generally means the code is not free to clobber any 81 * registers other than EAX. The patch function should return 82 * the number of bytes of code generated, as we nop pad the 83 * rest in generic code. 84 */ 85 unsigned (*patch)(u8 type, u16 clobber, void *insnbuf, 86 unsigned long addr, unsigned len); 87 }; 88 89 90 struct pv_lazy_ops { 91 /* Set deferred update mode, used for batching operations. */ 92 void (*enter)(void); 93 void (*leave)(void); 94 void (*flush)(void); 95 }; 96 97 struct pv_time_ops { 98 unsigned long long (*sched_clock)(void); 99 unsigned long long (*steal_clock)(int cpu); 100 unsigned long (*get_tsc_khz)(void); 101 }; 102 103 struct pv_cpu_ops { 104 /* hooks for various privileged instructions */ 105 unsigned long (*get_debugreg)(int regno); 106 void (*set_debugreg)(int regno, unsigned long value); 107 108 void (*clts)(void); 109 110 unsigned long (*read_cr0)(void); 111 void (*write_cr0)(unsigned long); 112 113 unsigned long (*read_cr4_safe)(void); 114 unsigned long (*read_cr4)(void); 115 void (*write_cr4)(unsigned long); 116 117 #ifdef CONFIG_X86_64 118 unsigned long (*read_cr8)(void); 119 void (*write_cr8)(unsigned long); 120 #endif 121 122 /* Segment descriptor handling */ 123 void (*load_tr_desc)(void); 124 void (*load_gdt)(const struct desc_ptr *); 125 void (*load_idt)(const struct desc_ptr *); 126 void (*store_gdt)(struct desc_ptr *); 127 void (*store_idt)(struct desc_ptr *); 128 void (*set_ldt)(const void *desc, unsigned entries); 129 unsigned long (*store_tr)(void); 130 void (*load_tls)(struct thread_struct *t, unsigned int cpu); 131 #ifdef CONFIG_X86_64 132 void (*load_gs_index)(unsigned int idx); 133 #endif 134 void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum, 135 const void *desc); 136 void (*write_gdt_entry)(struct desc_struct *, 137 int entrynum, const void *desc, int size); 138 void (*write_idt_entry)(gate_desc *, 139 int entrynum, const gate_desc *gate); 140 void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries); 141 void (*free_ldt)(struct desc_struct *ldt, unsigned entries); 142 143 void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t); 144 145 void (*set_iopl_mask)(unsigned mask); 146 147 void (*wbinvd)(void); 148 void (*io_delay)(void); 149 150 /* cpuid emulation, mostly so that caps bits can be disabled */ 151 void (*cpuid)(unsigned int *eax, unsigned int *ebx, 152 unsigned int *ecx, unsigned int *edx); 153 154 /* MSR, PMC and TSR operations. 155 err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */ 156 u64 (*read_msr)(unsigned int msr, int *err); 157 int (*rdmsr_regs)(u32 *regs); 158 int (*write_msr)(unsigned int msr, unsigned low, unsigned high); 159 int (*wrmsr_regs)(u32 *regs); 160 161 u64 (*read_tsc)(void); 162 u64 (*read_pmc)(int counter); 163 unsigned long long (*read_tscp)(unsigned int *aux); 164 165 /* 166 * Atomically enable interrupts and return to userspace. This 167 * is only ever used to return to 32-bit processes; in a 168 * 64-bit kernel, it's used for 32-on-64 compat processes, but 169 * never native 64-bit processes. (Jump, not call.) 170 */ 171 void (*irq_enable_sysexit)(void); 172 173 /* 174 * Switch to usermode gs and return to 64-bit usermode using 175 * sysret. Only used in 64-bit kernels to return to 64-bit 176 * processes. Usermode register state, including %rsp, must 177 * already be restored. 178 */ 179 void (*usergs_sysret64)(void); 180 181 /* 182 * Switch to usermode gs and return to 32-bit usermode using 183 * sysret. Used to return to 32-on-64 compat processes. 184 * Other usermode register state, including %esp, must already 185 * be restored. 186 */ 187 void (*usergs_sysret32)(void); 188 189 /* Normal iret. Jump to this with the standard iret stack 190 frame set up. */ 191 void (*iret)(void); 192 193 void (*swapgs)(void); 194 195 void (*start_context_switch)(struct task_struct *prev); 196 void (*end_context_switch)(struct task_struct *next); 197 }; 198 199 struct pv_irq_ops { 200 /* 201 * Get/set interrupt state. save_fl and restore_fl are only 202 * expected to use X86_EFLAGS_IF; all other bits 203 * returned from save_fl are undefined, and may be ignored by 204 * restore_fl. 205 * 206 * NOTE: These functions callers expect the callee to preserve 207 * more registers than the standard C calling convention. 208 */ 209 struct paravirt_callee_save save_fl; 210 struct paravirt_callee_save restore_fl; 211 struct paravirt_callee_save irq_disable; 212 struct paravirt_callee_save irq_enable; 213 214 void (*safe_halt)(void); 215 void (*halt)(void); 216 217 #ifdef CONFIG_X86_64 218 void (*adjust_exception_frame)(void); 219 #endif 220 }; 221 222 struct pv_apic_ops { 223 #ifdef CONFIG_X86_LOCAL_APIC 224 void (*startup_ipi_hook)(int phys_apicid, 225 unsigned long start_eip, 226 unsigned long start_esp); 227 #endif 228 }; 229 230 struct pv_mmu_ops { 231 unsigned long (*read_cr2)(void); 232 void (*write_cr2)(unsigned long); 233 234 unsigned long (*read_cr3)(void); 235 void (*write_cr3)(unsigned long); 236 237 /* 238 * Hooks for intercepting the creation/use/destruction of an 239 * mm_struct. 240 */ 241 void (*activate_mm)(struct mm_struct *prev, 242 struct mm_struct *next); 243 void (*dup_mmap)(struct mm_struct *oldmm, 244 struct mm_struct *mm); 245 void (*exit_mmap)(struct mm_struct *mm); 246 247 248 /* TLB operations */ 249 void (*flush_tlb_user)(void); 250 void (*flush_tlb_kernel)(void); 251 void (*flush_tlb_single)(unsigned long addr); 252 void (*flush_tlb_others)(const struct cpumask *cpus, 253 struct mm_struct *mm, 254 unsigned long va); 255 256 /* Hooks for allocating and freeing a pagetable top-level */ 257 int (*pgd_alloc)(struct mm_struct *mm); 258 void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd); 259 260 /* 261 * Hooks for allocating/releasing pagetable pages when they're 262 * attached to a pagetable 263 */ 264 void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn); 265 void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn); 266 void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn); 267 void (*release_pte)(unsigned long pfn); 268 void (*release_pmd)(unsigned long pfn); 269 void (*release_pud)(unsigned long pfn); 270 271 /* Pagetable manipulation functions */ 272 void (*set_pte)(pte_t *ptep, pte_t pteval); 273 void (*set_pte_at)(struct mm_struct *mm, unsigned long addr, 274 pte_t *ptep, pte_t pteval); 275 void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval); 276 void (*set_pmd_at)(struct mm_struct *mm, unsigned long addr, 277 pmd_t *pmdp, pmd_t pmdval); 278 void (*pte_update)(struct mm_struct *mm, unsigned long addr, 279 pte_t *ptep); 280 void (*pte_update_defer)(struct mm_struct *mm, 281 unsigned long addr, pte_t *ptep); 282 void (*pmd_update)(struct mm_struct *mm, unsigned long addr, 283 pmd_t *pmdp); 284 void (*pmd_update_defer)(struct mm_struct *mm, 285 unsigned long addr, pmd_t *pmdp); 286 287 pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr, 288 pte_t *ptep); 289 void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr, 290 pte_t *ptep, pte_t pte); 291 292 struct paravirt_callee_save pte_val; 293 struct paravirt_callee_save make_pte; 294 295 struct paravirt_callee_save pgd_val; 296 struct paravirt_callee_save make_pgd; 297 298 #if PAGETABLE_LEVELS >= 3 299 #ifdef CONFIG_X86_PAE 300 void (*set_pte_atomic)(pte_t *ptep, pte_t pteval); 301 void (*pte_clear)(struct mm_struct *mm, unsigned long addr, 302 pte_t *ptep); 303 void (*pmd_clear)(pmd_t *pmdp); 304 305 #endif /* CONFIG_X86_PAE */ 306 307 void (*set_pud)(pud_t *pudp, pud_t pudval); 308 309 struct paravirt_callee_save pmd_val; 310 struct paravirt_callee_save make_pmd; 311 312 #if PAGETABLE_LEVELS == 4 313 struct paravirt_callee_save pud_val; 314 struct paravirt_callee_save make_pud; 315 316 void (*set_pgd)(pgd_t *pudp, pgd_t pgdval); 317 #endif /* PAGETABLE_LEVELS == 4 */ 318 #endif /* PAGETABLE_LEVELS >= 3 */ 319 320 struct pv_lazy_ops lazy_mode; 321 322 /* dom0 ops */ 323 324 /* Sometimes the physical address is a pfn, and sometimes its 325 an mfn. We can tell which is which from the index. */ 326 void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx, 327 phys_addr_t phys, pgprot_t flags); 328 }; 329 330 struct arch_spinlock; 331 struct pv_lock_ops { 332 int (*spin_is_locked)(struct arch_spinlock *lock); 333 int (*spin_is_contended)(struct arch_spinlock *lock); 334 void (*spin_lock)(struct arch_spinlock *lock); 335 void (*spin_lock_flags)(struct arch_spinlock *lock, unsigned long flags); 336 int (*spin_trylock)(struct arch_spinlock *lock); 337 void (*spin_unlock)(struct arch_spinlock *lock); 338 }; 339 340 /* This contains all the paravirt structures: we get a convenient 341 * number for each function using the offset which we use to indicate 342 * what to patch. */ 343 struct paravirt_patch_template { 344 struct pv_init_ops pv_init_ops; 345 struct pv_time_ops pv_time_ops; 346 struct pv_cpu_ops pv_cpu_ops; 347 struct pv_irq_ops pv_irq_ops; 348 struct pv_apic_ops pv_apic_ops; 349 struct pv_mmu_ops pv_mmu_ops; 350 struct pv_lock_ops pv_lock_ops; 351 }; 352 353 extern struct pv_info pv_info; 354 extern struct pv_init_ops pv_init_ops; 355 extern struct pv_time_ops pv_time_ops; 356 extern struct pv_cpu_ops pv_cpu_ops; 357 extern struct pv_irq_ops pv_irq_ops; 358 extern struct pv_apic_ops pv_apic_ops; 359 extern struct pv_mmu_ops pv_mmu_ops; 360 extern struct pv_lock_ops pv_lock_ops; 361 362 #define PARAVIRT_PATCH(x) \ 363 (offsetof(struct paravirt_patch_template, x) / sizeof(void *)) 364 365 #define paravirt_type(op) \ 366 [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \ 367 [paravirt_opptr] "i" (&(op)) 368 #define paravirt_clobber(clobber) \ 369 [paravirt_clobber] "i" (clobber) 370 371 /* 372 * Generate some code, and mark it as patchable by the 373 * apply_paravirt() alternate instruction patcher. 374 */ 375 #define _paravirt_alt(insn_string, type, clobber) \ 376 "771:\n\t" insn_string "\n" "772:\n" \ 377 ".pushsection .parainstructions,\"a\"\n" \ 378 _ASM_ALIGN "\n" \ 379 _ASM_PTR " 771b\n" \ 380 " .byte " type "\n" \ 381 " .byte 772b-771b\n" \ 382 " .short " clobber "\n" \ 383 ".popsection\n" 384 385 /* Generate patchable code, with the default asm parameters. */ 386 #define paravirt_alt(insn_string) \ 387 _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]") 388 389 /* Simple instruction patching code. */ 390 #define DEF_NATIVE(ops, name, code) \ 391 extern const char start_##ops##_##name[], end_##ops##_##name[]; \ 392 asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":") 393 394 unsigned paravirt_patch_nop(void); 395 unsigned paravirt_patch_ident_32(void *insnbuf, unsigned len); 396 unsigned paravirt_patch_ident_64(void *insnbuf, unsigned len); 397 unsigned paravirt_patch_ignore(unsigned len); 398 unsigned paravirt_patch_call(void *insnbuf, 399 const void *target, u16 tgt_clobbers, 400 unsigned long addr, u16 site_clobbers, 401 unsigned len); 402 unsigned paravirt_patch_jmp(void *insnbuf, const void *target, 403 unsigned long addr, unsigned len); 404 unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf, 405 unsigned long addr, unsigned len); 406 407 unsigned paravirt_patch_insns(void *insnbuf, unsigned len, 408 const char *start, const char *end); 409 410 unsigned native_patch(u8 type, u16 clobbers, void *ibuf, 411 unsigned long addr, unsigned len); 412 413 int paravirt_disable_iospace(void); 414 415 /* 416 * This generates an indirect call based on the operation type number. 417 * The type number, computed in PARAVIRT_PATCH, is derived from the 418 * offset into the paravirt_patch_template structure, and can therefore be 419 * freely converted back into a structure offset. 420 */ 421 #define PARAVIRT_CALL "call *%c[paravirt_opptr];" 422 423 /* 424 * These macros are intended to wrap calls through one of the paravirt 425 * ops structs, so that they can be later identified and patched at 426 * runtime. 427 * 428 * Normally, a call to a pv_op function is a simple indirect call: 429 * (pv_op_struct.operations)(args...). 430 * 431 * Unfortunately, this is a relatively slow operation for modern CPUs, 432 * because it cannot necessarily determine what the destination 433 * address is. In this case, the address is a runtime constant, so at 434 * the very least we can patch the call to e a simple direct call, or 435 * ideally, patch an inline implementation into the callsite. (Direct 436 * calls are essentially free, because the call and return addresses 437 * are completely predictable.) 438 * 439 * For i386, these macros rely on the standard gcc "regparm(3)" calling 440 * convention, in which the first three arguments are placed in %eax, 441 * %edx, %ecx (in that order), and the remaining arguments are placed 442 * on the stack. All caller-save registers (eax,edx,ecx) are expected 443 * to be modified (either clobbered or used for return values). 444 * X86_64, on the other hand, already specifies a register-based calling 445 * conventions, returning at %rax, with parameteres going on %rdi, %rsi, 446 * %rdx, and %rcx. Note that for this reason, x86_64 does not need any 447 * special handling for dealing with 4 arguments, unlike i386. 448 * However, x86_64 also have to clobber all caller saved registers, which 449 * unfortunately, are quite a bit (r8 - r11) 450 * 451 * The call instruction itself is marked by placing its start address 452 * and size into the .parainstructions section, so that 453 * apply_paravirt() in arch/i386/kernel/alternative.c can do the 454 * appropriate patching under the control of the backend pv_init_ops 455 * implementation. 456 * 457 * Unfortunately there's no way to get gcc to generate the args setup 458 * for the call, and then allow the call itself to be generated by an 459 * inline asm. Because of this, we must do the complete arg setup and 460 * return value handling from within these macros. This is fairly 461 * cumbersome. 462 * 463 * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments. 464 * It could be extended to more arguments, but there would be little 465 * to be gained from that. For each number of arguments, there are 466 * the two VCALL and CALL variants for void and non-void functions. 467 * 468 * When there is a return value, the invoker of the macro must specify 469 * the return type. The macro then uses sizeof() on that type to 470 * determine whether its a 32 or 64 bit value, and places the return 471 * in the right register(s) (just %eax for 32-bit, and %edx:%eax for 472 * 64-bit). For x86_64 machines, it just returns at %rax regardless of 473 * the return value size. 474 * 475 * 64-bit arguments are passed as a pair of adjacent 32-bit arguments 476 * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments 477 * in low,high order 478 * 479 * Small structures are passed and returned in registers. The macro 480 * calling convention can't directly deal with this, so the wrapper 481 * functions must do this. 482 * 483 * These PVOP_* macros are only defined within this header. This 484 * means that all uses must be wrapped in inline functions. This also 485 * makes sure the incoming and outgoing types are always correct. 486 */ 487 #ifdef CONFIG_X86_32 488 #define PVOP_VCALL_ARGS \ 489 unsigned long __eax = __eax, __edx = __edx, __ecx = __ecx 490 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS 491 492 #define PVOP_CALL_ARG1(x) "a" ((unsigned long)(x)) 493 #define PVOP_CALL_ARG2(x) "d" ((unsigned long)(x)) 494 #define PVOP_CALL_ARG3(x) "c" ((unsigned long)(x)) 495 496 #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \ 497 "=c" (__ecx) 498 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS 499 500 #define PVOP_VCALLEE_CLOBBERS "=a" (__eax), "=d" (__edx) 501 #define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS 502 503 #define EXTRA_CLOBBERS 504 #define VEXTRA_CLOBBERS 505 #else /* CONFIG_X86_64 */ 506 /* [re]ax isn't an arg, but the return val */ 507 #define PVOP_VCALL_ARGS \ 508 unsigned long __edi = __edi, __esi = __esi, \ 509 __edx = __edx, __ecx = __ecx, __eax = __eax 510 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS 511 512 #define PVOP_CALL_ARG1(x) "D" ((unsigned long)(x)) 513 #define PVOP_CALL_ARG2(x) "S" ((unsigned long)(x)) 514 #define PVOP_CALL_ARG3(x) "d" ((unsigned long)(x)) 515 #define PVOP_CALL_ARG4(x) "c" ((unsigned long)(x)) 516 517 #define PVOP_VCALL_CLOBBERS "=D" (__edi), \ 518 "=S" (__esi), "=d" (__edx), \ 519 "=c" (__ecx) 520 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax) 521 522 /* void functions are still allowed [re]ax for scratch */ 523 #define PVOP_VCALLEE_CLOBBERS "=a" (__eax) 524 #define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS 525 526 #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11" 527 #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11" 528 #endif /* CONFIG_X86_32 */ 529 530 #ifdef CONFIG_PARAVIRT_DEBUG 531 #define PVOP_TEST_NULL(op) BUG_ON(op == NULL) 532 #else 533 #define PVOP_TEST_NULL(op) ((void)op) 534 #endif 535 536 #define ____PVOP_CALL(rettype, op, clbr, call_clbr, extra_clbr, \ 537 pre, post, ...) \ 538 ({ \ 539 rettype __ret; \ 540 PVOP_CALL_ARGS; \ 541 PVOP_TEST_NULL(op); \ 542 /* This is 32-bit specific, but is okay in 64-bit */ \ 543 /* since this condition will never hold */ \ 544 if (sizeof(rettype) > sizeof(unsigned long)) { \ 545 asm volatile(pre \ 546 paravirt_alt(PARAVIRT_CALL) \ 547 post \ 548 : call_clbr \ 549 : paravirt_type(op), \ 550 paravirt_clobber(clbr), \ 551 ##__VA_ARGS__ \ 552 : "memory", "cc" extra_clbr); \ 553 __ret = (rettype)((((u64)__edx) << 32) | __eax); \ 554 } else { \ 555 asm volatile(pre \ 556 paravirt_alt(PARAVIRT_CALL) \ 557 post \ 558 : call_clbr \ 559 : paravirt_type(op), \ 560 paravirt_clobber(clbr), \ 561 ##__VA_ARGS__ \ 562 : "memory", "cc" extra_clbr); \ 563 __ret = (rettype)__eax; \ 564 } \ 565 __ret; \ 566 }) 567 568 #define __PVOP_CALL(rettype, op, pre, post, ...) \ 569 ____PVOP_CALL(rettype, op, CLBR_ANY, PVOP_CALL_CLOBBERS, \ 570 EXTRA_CLOBBERS, pre, post, ##__VA_ARGS__) 571 572 #define __PVOP_CALLEESAVE(rettype, op, pre, post, ...) \ 573 ____PVOP_CALL(rettype, op.func, CLBR_RET_REG, \ 574 PVOP_CALLEE_CLOBBERS, , \ 575 pre, post, ##__VA_ARGS__) 576 577 578 #define ____PVOP_VCALL(op, clbr, call_clbr, extra_clbr, pre, post, ...) \ 579 ({ \ 580 PVOP_VCALL_ARGS; \ 581 PVOP_TEST_NULL(op); \ 582 asm volatile(pre \ 583 paravirt_alt(PARAVIRT_CALL) \ 584 post \ 585 : call_clbr \ 586 : paravirt_type(op), \ 587 paravirt_clobber(clbr), \ 588 ##__VA_ARGS__ \ 589 : "memory", "cc" extra_clbr); \ 590 }) 591 592 #define __PVOP_VCALL(op, pre, post, ...) \ 593 ____PVOP_VCALL(op, CLBR_ANY, PVOP_VCALL_CLOBBERS, \ 594 VEXTRA_CLOBBERS, \ 595 pre, post, ##__VA_ARGS__) 596 597 #define __PVOP_VCALLEESAVE(op, pre, post, ...) \ 598 ____PVOP_VCALL(op.func, CLBR_RET_REG, \ 599 PVOP_VCALLEE_CLOBBERS, , \ 600 pre, post, ##__VA_ARGS__) 601 602 603 604 #define PVOP_CALL0(rettype, op) \ 605 __PVOP_CALL(rettype, op, "", "") 606 #define PVOP_VCALL0(op) \ 607 __PVOP_VCALL(op, "", "") 608 609 #define PVOP_CALLEE0(rettype, op) \ 610 __PVOP_CALLEESAVE(rettype, op, "", "") 611 #define PVOP_VCALLEE0(op) \ 612 __PVOP_VCALLEESAVE(op, "", "") 613 614 615 #define PVOP_CALL1(rettype, op, arg1) \ 616 __PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1)) 617 #define PVOP_VCALL1(op, arg1) \ 618 __PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1)) 619 620 #define PVOP_CALLEE1(rettype, op, arg1) \ 621 __PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1)) 622 #define PVOP_VCALLEE1(op, arg1) \ 623 __PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1)) 624 625 626 #define PVOP_CALL2(rettype, op, arg1, arg2) \ 627 __PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \ 628 PVOP_CALL_ARG2(arg2)) 629 #define PVOP_VCALL2(op, arg1, arg2) \ 630 __PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \ 631 PVOP_CALL_ARG2(arg2)) 632 633 #define PVOP_CALLEE2(rettype, op, arg1, arg2) \ 634 __PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \ 635 PVOP_CALL_ARG2(arg2)) 636 #define PVOP_VCALLEE2(op, arg1, arg2) \ 637 __PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1), \ 638 PVOP_CALL_ARG2(arg2)) 639 640 641 #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \ 642 __PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \ 643 PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3)) 644 #define PVOP_VCALL3(op, arg1, arg2, arg3) \ 645 __PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \ 646 PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3)) 647 648 /* This is the only difference in x86_64. We can make it much simpler */ 649 #ifdef CONFIG_X86_32 650 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ 651 __PVOP_CALL(rettype, op, \ 652 "push %[_arg4];", "lea 4(%%esp),%%esp;", \ 653 PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \ 654 PVOP_CALL_ARG3(arg3), [_arg4] "mr" ((u32)(arg4))) 655 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ 656 __PVOP_VCALL(op, \ 657 "push %[_arg4];", "lea 4(%%esp),%%esp;", \ 658 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \ 659 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4))) 660 #else 661 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ 662 __PVOP_CALL(rettype, op, "", "", \ 663 PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \ 664 PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4)) 665 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ 666 __PVOP_VCALL(op, "", "", \ 667 PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \ 668 PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4)) 669 #endif 670 671 /* Lazy mode for batching updates / context switch */ 672 enum paravirt_lazy_mode { 673 PARAVIRT_LAZY_NONE, 674 PARAVIRT_LAZY_MMU, 675 PARAVIRT_LAZY_CPU, 676 }; 677 678 enum paravirt_lazy_mode paravirt_get_lazy_mode(void); 679 void paravirt_start_context_switch(struct task_struct *prev); 680 void paravirt_end_context_switch(struct task_struct *next); 681 682 void paravirt_enter_lazy_mmu(void); 683 void paravirt_leave_lazy_mmu(void); 684 void paravirt_flush_lazy_mmu(void); 685 686 void _paravirt_nop(void); 687 u32 _paravirt_ident_32(u32); 688 u64 _paravirt_ident_64(u64); 689 690 #define paravirt_nop ((void *)_paravirt_nop) 691 692 /* These all sit in the .parainstructions section to tell us what to patch. */ 693 struct paravirt_patch_site { 694 u8 *instr; /* original instructions */ 695 u8 instrtype; /* type of this instruction */ 696 u8 len; /* length of original instruction */ 697 u16 clobbers; /* what registers you may clobber */ 698 }; 699 700 extern struct paravirt_patch_site __parainstructions[], 701 __parainstructions_end[]; 702 703 #endif /* __ASSEMBLY__ */ 704 705 #endif /* _ASM_X86_PARAVIRT_TYPES_H */ 706