1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 /* ptrace.h */
4 /* structs and defines to help the user use the ptrace system call. */
5 
6 /* has the defines to get at the registers. */
7 
8 #define PTRACE_TRACEME		   0
9 #define PTRACE_PEEKTEXT		   1
10 #define PTRACE_PEEKDATA		   2
11 #define PTRACE_PEEKUSR		   3
12 #define PTRACE_POKETEXT		   4
13 #define PTRACE_POKEDATA		   5
14 #define PTRACE_POKEUSR		   6
15 #define PTRACE_CONT		   7
16 #define PTRACE_KILL		   8
17 #define PTRACE_SINGLESTEP	   9
18 
19 #define PTRACE_ATTACH		  16
20 #define PTRACE_DETACH		  17
21 
22 #define PTRACE_SYSCALL		  24
23 
24 /* 0x4200-0x4300 are reserved for architecture-independent additions.  */
25 #define PTRACE_SETOPTIONS	0x4200
26 #define PTRACE_GETEVENTMSG	0x4201
27 #define PTRACE_GETSIGINFO	0x4202
28 #define PTRACE_SETSIGINFO	0x4203
29 
30 /*
31  * Generic ptrace interface that exports the architecture specific regsets
32  * using the corresponding NT_* types (which are also used in the core dump).
33  * Please note that the NT_PRSTATUS note type in a core dump contains a full
34  * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35  * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36  * other user_regset flavors, the user_regset layout and the ELF core dump note
37  * payload are exactly the same layout.
38  *
39  * This interface usage is as follows:
40  *	struct iovec iov = { buf, len};
41  *
42  *	ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43  *
44  * On the successful completion, iov.len will be updated by the kernel,
45  * specifying how much the kernel has written/read to/from the user's iov.buf.
46  */
47 #define PTRACE_GETREGSET	0x4204
48 #define PTRACE_SETREGSET	0x4205
49 
50 #define PTRACE_SEIZE		0x4206
51 #define PTRACE_INTERRUPT	0x4207
52 #define PTRACE_LISTEN		0x4208
53 
54 /* Wait extended result codes for the above trace options.  */
55 #define PTRACE_EVENT_FORK	1
56 #define PTRACE_EVENT_VFORK	2
57 #define PTRACE_EVENT_CLONE	3
58 #define PTRACE_EVENT_EXEC	4
59 #define PTRACE_EVENT_VFORK_DONE	5
60 #define PTRACE_EVENT_EXIT	6
61 /* Extended result codes which enabled by means other than options.  */
62 #define PTRACE_EVENT_STOP	128
63 
64 /* Options set using PTRACE_SETOPTIONS or using PTRACE_SEIZE @data param */
65 #define PTRACE_O_TRACESYSGOOD	1
66 #define PTRACE_O_TRACEFORK	(1 << PTRACE_EVENT_FORK)
67 #define PTRACE_O_TRACEVFORK	(1 << PTRACE_EVENT_VFORK)
68 #define PTRACE_O_TRACECLONE	(1 << PTRACE_EVENT_CLONE)
69 #define PTRACE_O_TRACEEXEC	(1 << PTRACE_EVENT_EXEC)
70 #define PTRACE_O_TRACEVFORKDONE	(1 << PTRACE_EVENT_VFORK_DONE)
71 #define PTRACE_O_TRACEEXIT	(1 << PTRACE_EVENT_EXIT)
72 
73 #define PTRACE_O_MASK		0x0000007f
74 
75 #include <asm/ptrace.h>
76 
77 #ifdef __KERNEL__
78 /*
79  * Ptrace flags
80  *
81  * The owner ship rules for task->ptrace which holds the ptrace
82  * flags is simple.  When a task is running it owns it's task->ptrace
83  * flags.  When the a task is stopped the ptracer owns task->ptrace.
84  */
85 
86 #define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
87 #define PT_PTRACED	0x00000001
88 #define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
89 #define PT_PTRACE_CAP	0x00000004	/* ptracer can follow suid-exec */
90 
91 #define PT_OPT_FLAG_SHIFT	3
92 /* PT_TRACE_* event enable flags */
93 #define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
94 #define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
95 #define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
96 #define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
97 #define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
98 #define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
99 #define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
100 #define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
101 
102 /* single stepping state bits (used on ARM and PA-RISC) */
103 #define PT_SINGLESTEP_BIT	31
104 #define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
105 #define PT_BLOCKSTEP_BIT	30
106 #define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
107 
108 #include <linux/compiler.h>		/* For unlikely.  */
109 #include <linux/sched.h>		/* For struct task_struct.  */
110 #include <linux/err.h>			/* for IS_ERR_VALUE */
111 #include <linux/bug.h>			/* For BUG_ON.  */
112 
113 
114 extern long arch_ptrace(struct task_struct *child, long request,
115 			unsigned long addr, unsigned long data);
116 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
117 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
118 extern void ptrace_disable(struct task_struct *);
119 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
120 extern int ptrace_request(struct task_struct *child, long request,
121 			  unsigned long addr, unsigned long data);
122 extern void ptrace_notify(int exit_code);
123 extern void __ptrace_link(struct task_struct *child,
124 			  struct task_struct *new_parent);
125 extern void __ptrace_unlink(struct task_struct *child);
126 extern void exit_ptrace(struct task_struct *tracer);
127 #define PTRACE_MODE_READ	0x01
128 #define PTRACE_MODE_ATTACH	0x02
129 #define PTRACE_MODE_NOAUDIT	0x04
130 /* Returns 0 on success, -errno on denial. */
131 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
132 /* Returns true on success, false on denial. */
133 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
134 
ptrace_reparented(struct task_struct * child)135 static inline int ptrace_reparented(struct task_struct *child)
136 {
137 	return !same_thread_group(child->real_parent, child->parent);
138 }
139 
ptrace_unlink(struct task_struct * child)140 static inline void ptrace_unlink(struct task_struct *child)
141 {
142 	if (unlikely(child->ptrace))
143 		__ptrace_unlink(child);
144 }
145 
146 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
147 			    unsigned long data);
148 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
149 			    unsigned long data);
150 
151 /**
152  * ptrace_parent - return the task that is tracing the given task
153  * @task: task to consider
154  *
155  * Returns %NULL if no one is tracing @task, or the &struct task_struct
156  * pointer to its tracer.
157  *
158  * Must called under rcu_read_lock().  The pointer returned might be kept
159  * live only by RCU.  During exec, this may be called with task_lock() held
160  * on @task, still held from when check_unsafe_exec() was called.
161  */
ptrace_parent(struct task_struct * task)162 static inline struct task_struct *ptrace_parent(struct task_struct *task)
163 {
164 	if (unlikely(task->ptrace))
165 		return rcu_dereference(task->parent);
166 	return NULL;
167 }
168 
169 /**
170  * ptrace_event_enabled - test whether a ptrace event is enabled
171  * @task: ptracee of interest
172  * @event: %PTRACE_EVENT_* to test
173  *
174  * Test whether @event is enabled for ptracee @task.
175  *
176  * Returns %true if @event is enabled, %false otherwise.
177  */
ptrace_event_enabled(struct task_struct * task,int event)178 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
179 {
180 	return task->ptrace & PT_EVENT_FLAG(event);
181 }
182 
183 /**
184  * ptrace_event - possibly stop for a ptrace event notification
185  * @event:	%PTRACE_EVENT_* value to report
186  * @message:	value for %PTRACE_GETEVENTMSG to return
187  *
188  * Check whether @event is enabled and, if so, report @event and @message
189  * to the ptrace parent.
190  *
191  * Called without locks.
192  */
ptrace_event(int event,unsigned long message)193 static inline void ptrace_event(int event, unsigned long message)
194 {
195 	if (unlikely(ptrace_event_enabled(current, event))) {
196 		current->ptrace_message = message;
197 		ptrace_notify((event << 8) | SIGTRAP);
198 	} else if (event == PTRACE_EVENT_EXEC) {
199 		/* legacy EXEC report via SIGTRAP */
200 		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
201 			send_sig(SIGTRAP, current, 0);
202 	}
203 }
204 
205 /**
206  * ptrace_init_task - initialize ptrace state for a new child
207  * @child:		new child task
208  * @ptrace:		true if child should be ptrace'd by parent's tracer
209  *
210  * This is called immediately after adding @child to its parent's children
211  * list.  @ptrace is false in the normal case, and true to ptrace @child.
212  *
213  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
214  */
ptrace_init_task(struct task_struct * child,bool ptrace)215 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
216 {
217 	INIT_LIST_HEAD(&child->ptrace_entry);
218 	INIT_LIST_HEAD(&child->ptraced);
219 #ifdef CONFIG_HAVE_HW_BREAKPOINT
220 	atomic_set(&child->ptrace_bp_refcnt, 1);
221 #endif
222 	child->jobctl = 0;
223 	child->ptrace = 0;
224 	child->parent = child->real_parent;
225 
226 	if (unlikely(ptrace) && current->ptrace) {
227 		child->ptrace = current->ptrace;
228 		__ptrace_link(child, current->parent);
229 
230 		if (child->ptrace & PT_SEIZED)
231 			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
232 		else
233 			sigaddset(&child->pending.signal, SIGSTOP);
234 
235 		set_tsk_thread_flag(child, TIF_SIGPENDING);
236 	}
237 }
238 
239 /**
240  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
241  * @task:	task in %EXIT_DEAD state
242  *
243  * Called with write_lock(&tasklist_lock) held.
244  */
ptrace_release_task(struct task_struct * task)245 static inline void ptrace_release_task(struct task_struct *task)
246 {
247 	BUG_ON(!list_empty(&task->ptraced));
248 	ptrace_unlink(task);
249 	BUG_ON(!list_empty(&task->ptrace_entry));
250 }
251 
252 #ifndef force_successful_syscall_return
253 /*
254  * System call handlers that, upon successful completion, need to return a
255  * negative value should call force_successful_syscall_return() right before
256  * returning.  On architectures where the syscall convention provides for a
257  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
258  * others), this macro can be used to ensure that the error flag will not get
259  * set.  On architectures which do not support a separate error flag, the macro
260  * is a no-op and the spurious error condition needs to be filtered out by some
261  * other means (e.g., in user-level, by passing an extra argument to the
262  * syscall handler, or something along those lines).
263  */
264 #define force_successful_syscall_return() do { } while (0)
265 #endif
266 
267 #ifndef is_syscall_success
268 /*
269  * On most systems we can tell if a syscall is a success based on if the retval
270  * is an error value.  On some systems like ia64 and powerpc they have different
271  * indicators of success/failure and must define their own.
272  */
273 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
274 #endif
275 
276 /*
277  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
278  *
279  * These do-nothing inlines are used when the arch does not
280  * implement single-step.  The kerneldoc comments are here
281  * to document the interface for all arch definitions.
282  */
283 
284 #ifndef arch_has_single_step
285 /**
286  * arch_has_single_step - does this CPU support user-mode single-step?
287  *
288  * If this is defined, then there must be function declarations or
289  * inlines for user_enable_single_step() and user_disable_single_step().
290  * arch_has_single_step() should evaluate to nonzero iff the machine
291  * supports instruction single-step for user mode.
292  * It can be a constant or it can test a CPU feature bit.
293  */
294 #define arch_has_single_step()		(0)
295 
296 /**
297  * user_enable_single_step - single-step in user-mode task
298  * @task: either current or a task stopped in %TASK_TRACED
299  *
300  * This can only be called when arch_has_single_step() has returned nonzero.
301  * Set @task so that when it returns to user mode, it will trap after the
302  * next single instruction executes.  If arch_has_block_step() is defined,
303  * this must clear the effects of user_enable_block_step() too.
304  */
user_enable_single_step(struct task_struct * task)305 static inline void user_enable_single_step(struct task_struct *task)
306 {
307 	BUG();			/* This can never be called.  */
308 }
309 
310 /**
311  * user_disable_single_step - cancel user-mode single-step
312  * @task: either current or a task stopped in %TASK_TRACED
313  *
314  * Clear @task of the effects of user_enable_single_step() and
315  * user_enable_block_step().  This can be called whether or not either
316  * of those was ever called on @task, and even if arch_has_single_step()
317  * returned zero.
318  */
user_disable_single_step(struct task_struct * task)319 static inline void user_disable_single_step(struct task_struct *task)
320 {
321 }
322 #else
323 extern void user_enable_single_step(struct task_struct *);
324 extern void user_disable_single_step(struct task_struct *);
325 #endif	/* arch_has_single_step */
326 
327 #ifndef arch_has_block_step
328 /**
329  * arch_has_block_step - does this CPU support user-mode block-step?
330  *
331  * If this is defined, then there must be a function declaration or inline
332  * for user_enable_block_step(), and arch_has_single_step() must be defined
333  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
334  * supports step-until-branch for user mode.  It can be a constant or it
335  * can test a CPU feature bit.
336  */
337 #define arch_has_block_step()		(0)
338 
339 /**
340  * user_enable_block_step - step until branch in user-mode task
341  * @task: either current or a task stopped in %TASK_TRACED
342  *
343  * This can only be called when arch_has_block_step() has returned nonzero,
344  * and will never be called when single-instruction stepping is being used.
345  * Set @task so that when it returns to user mode, it will trap after the
346  * next branch or trap taken.
347  */
user_enable_block_step(struct task_struct * task)348 static inline void user_enable_block_step(struct task_struct *task)
349 {
350 	BUG();			/* This can never be called.  */
351 }
352 #else
353 extern void user_enable_block_step(struct task_struct *);
354 #endif	/* arch_has_block_step */
355 
356 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
357 extern void user_single_step_siginfo(struct task_struct *tsk,
358 				struct pt_regs *regs, siginfo_t *info);
359 #else
user_single_step_siginfo(struct task_struct * tsk,struct pt_regs * regs,siginfo_t * info)360 static inline void user_single_step_siginfo(struct task_struct *tsk,
361 				struct pt_regs *regs, siginfo_t *info)
362 {
363 	memset(info, 0, sizeof(*info));
364 	info->si_signo = SIGTRAP;
365 }
366 #endif
367 
368 #ifndef arch_ptrace_stop_needed
369 /**
370  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
371  * @code:	current->exit_code value ptrace will stop with
372  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
373  *
374  * This is called with the siglock held, to decide whether or not it's
375  * necessary to release the siglock and call arch_ptrace_stop() with the
376  * same @code and @info arguments.  It can be defined to a constant if
377  * arch_ptrace_stop() is never required, or always is.  On machines where
378  * this makes sense, it should be defined to a quick test to optimize out
379  * calling arch_ptrace_stop() when it would be superfluous.  For example,
380  * if the thread has not been back to user mode since the last stop, the
381  * thread state might indicate that nothing needs to be done.
382  *
383  * This is guaranteed to be invoked once before a task stops for ptrace and
384  * may include arch-specific operations necessary prior to a ptrace stop.
385  */
386 #define arch_ptrace_stop_needed(code, info)	(0)
387 #endif
388 
389 #ifndef arch_ptrace_stop
390 /**
391  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
392  * @code:	current->exit_code value ptrace will stop with
393  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
394  *
395  * This is called with no locks held when arch_ptrace_stop_needed() has
396  * just returned nonzero.  It is allowed to block, e.g. for user memory
397  * access.  The arch can have machine-specific work to be done before
398  * ptrace stops.  On ia64, register backing store gets written back to user
399  * memory here.  Since this can be costly (requires dropping the siglock),
400  * we only do it when the arch requires it for this particular stop, as
401  * indicated by arch_ptrace_stop_needed().
402  */
403 #define arch_ptrace_stop(code, info)		do { } while (0)
404 #endif
405 
406 extern int task_current_syscall(struct task_struct *target, long *callno,
407 				unsigned long args[6], unsigned int maxargs,
408 				unsigned long *sp, unsigned long *pc);
409 
410 #ifdef CONFIG_HAVE_HW_BREAKPOINT
411 extern int ptrace_get_breakpoints(struct task_struct *tsk);
412 extern void ptrace_put_breakpoints(struct task_struct *tsk);
413 #else
ptrace_put_breakpoints(struct task_struct * tsk)414 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
415 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
416 
417 #endif /* __KERNEL */
418 
419 #endif
420