1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/spinlock.h>
19 #include <linux/notifier.h>
20
21 /*
22 * All voltages, currents, charges, energies, time and temperatures in uV,
23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
24 * stated. It's driver's job to convert its raw values to units in which
25 * this class operates.
26 */
27
28 /*
29 * For systems where the charger determines the maximum battery capacity
30 * the min and max fields should be used to present these values to user
31 * space. Unused/unknown fields will not appear in sysfs.
32 */
33
34 enum {
35 POWER_SUPPLY_STATUS_UNKNOWN = 0,
36 POWER_SUPPLY_STATUS_CHARGING,
37 POWER_SUPPLY_STATUS_DISCHARGING,
38 POWER_SUPPLY_STATUS_NOT_CHARGING,
39 POWER_SUPPLY_STATUS_FULL,
40 };
41
42 /* What algorithm is the charger using? */
43 enum {
44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
45 POWER_SUPPLY_CHARGE_TYPE_NONE,
46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
53 };
54
55 enum {
56 POWER_SUPPLY_HEALTH_UNKNOWN = 0,
57 POWER_SUPPLY_HEALTH_GOOD,
58 POWER_SUPPLY_HEALTH_OVERHEAT,
59 POWER_SUPPLY_HEALTH_DEAD,
60 POWER_SUPPLY_HEALTH_OVERVOLTAGE,
61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
62 POWER_SUPPLY_HEALTH_COLD,
63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
65 POWER_SUPPLY_HEALTH_OVERCURRENT,
66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
67 POWER_SUPPLY_HEALTH_WARM,
68 POWER_SUPPLY_HEALTH_COOL,
69 POWER_SUPPLY_HEALTH_HOT,
70 POWER_SUPPLY_HEALTH_NO_BATTERY,
71 };
72
73 enum {
74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
75 POWER_SUPPLY_TECHNOLOGY_NiMH,
76 POWER_SUPPLY_TECHNOLOGY_LION,
77 POWER_SUPPLY_TECHNOLOGY_LIPO,
78 POWER_SUPPLY_TECHNOLOGY_LiFe,
79 POWER_SUPPLY_TECHNOLOGY_NiCd,
80 POWER_SUPPLY_TECHNOLOGY_LiMn,
81 };
82
83 enum {
84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
86 POWER_SUPPLY_CAPACITY_LEVEL_LOW,
87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
89 POWER_SUPPLY_CAPACITY_LEVEL_FULL,
90 };
91
92 enum {
93 POWER_SUPPLY_SCOPE_UNKNOWN = 0,
94 POWER_SUPPLY_SCOPE_SYSTEM,
95 POWER_SUPPLY_SCOPE_DEVICE,
96 };
97
98 enum power_supply_property {
99 /* Properties of type `int' */
100 POWER_SUPPLY_PROP_STATUS = 0,
101 POWER_SUPPLY_PROP_CHARGE_TYPE,
102 POWER_SUPPLY_PROP_HEALTH,
103 POWER_SUPPLY_PROP_PRESENT,
104 POWER_SUPPLY_PROP_ONLINE,
105 POWER_SUPPLY_PROP_AUTHENTIC,
106 POWER_SUPPLY_PROP_TECHNOLOGY,
107 POWER_SUPPLY_PROP_CYCLE_COUNT,
108 POWER_SUPPLY_PROP_VOLTAGE_MAX,
109 POWER_SUPPLY_PROP_VOLTAGE_MIN,
110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
112 POWER_SUPPLY_PROP_VOLTAGE_NOW,
113 POWER_SUPPLY_PROP_VOLTAGE_AVG,
114 POWER_SUPPLY_PROP_VOLTAGE_OCV,
115 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
116 POWER_SUPPLY_PROP_CURRENT_MAX,
117 POWER_SUPPLY_PROP_CURRENT_NOW,
118 POWER_SUPPLY_PROP_CURRENT_AVG,
119 POWER_SUPPLY_PROP_CURRENT_BOOT,
120 POWER_SUPPLY_PROP_POWER_NOW,
121 POWER_SUPPLY_PROP_POWER_AVG,
122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
124 POWER_SUPPLY_PROP_CHARGE_FULL,
125 POWER_SUPPLY_PROP_CHARGE_EMPTY,
126 POWER_SUPPLY_PROP_CHARGE_NOW,
127 POWER_SUPPLY_PROP_CHARGE_AVG,
128 POWER_SUPPLY_PROP_CHARGE_COUNTER,
129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
143 POWER_SUPPLY_PROP_ENERGY_FULL,
144 POWER_SUPPLY_PROP_ENERGY_EMPTY,
145 POWER_SUPPLY_PROP_ENERGY_NOW,
146 POWER_SUPPLY_PROP_ENERGY_AVG,
147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
151 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
152 POWER_SUPPLY_PROP_TEMP,
153 POWER_SUPPLY_PROP_TEMP_MAX,
154 POWER_SUPPLY_PROP_TEMP_MIN,
155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
157 POWER_SUPPLY_PROP_TEMP_AMBIENT,
158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
165 POWER_SUPPLY_PROP_USB_TYPE,
166 POWER_SUPPLY_PROP_SCOPE,
167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
169 POWER_SUPPLY_PROP_CALIBRATE,
170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
172 POWER_SUPPLY_PROP_MANUFACTURE_DAY,
173 /* Properties of type `const char *' */
174 POWER_SUPPLY_PROP_MODEL_NAME,
175 POWER_SUPPLY_PROP_MANUFACTURER,
176 POWER_SUPPLY_PROP_SERIAL_NUMBER,
177 };
178
179 enum power_supply_type {
180 POWER_SUPPLY_TYPE_UNKNOWN = 0,
181 POWER_SUPPLY_TYPE_BATTERY,
182 POWER_SUPPLY_TYPE_UPS,
183 POWER_SUPPLY_TYPE_MAINS,
184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
193 };
194
195 enum power_supply_usb_type {
196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
206 };
207
208 enum power_supply_charge_behaviour {
209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
212 };
213
214 enum power_supply_notifier_events {
215 PSY_EVENT_PROP_CHANGED,
216 };
217
218 union power_supply_propval {
219 int intval;
220 const char *strval;
221 };
222
223 struct device_node;
224 struct power_supply;
225
226 /* Run-time specific power supply configuration */
227 struct power_supply_config {
228 struct device_node *of_node;
229 struct fwnode_handle *fwnode;
230
231 /* Driver private data */
232 void *drv_data;
233
234 /* Device specific sysfs attributes */
235 const struct attribute_group **attr_grp;
236
237 char **supplied_to;
238 size_t num_supplicants;
239 };
240
241 /* Description of power supply */
242 struct power_supply_desc {
243 const char *name;
244 enum power_supply_type type;
245 const enum power_supply_usb_type *usb_types;
246 size_t num_usb_types;
247 const enum power_supply_property *properties;
248 size_t num_properties;
249
250 /*
251 * Functions for drivers implementing power supply class.
252 * These shouldn't be called directly by other drivers for accessing
253 * this power supply. Instead use power_supply_*() functions (for
254 * example power_supply_get_property()).
255 */
256 int (*get_property)(struct power_supply *psy,
257 enum power_supply_property psp,
258 union power_supply_propval *val);
259 int (*set_property)(struct power_supply *psy,
260 enum power_supply_property psp,
261 const union power_supply_propval *val);
262 /*
263 * property_is_writeable() will be called during registration
264 * of power supply. If this happens during device probe then it must
265 * not access internal data of device (because probe did not end).
266 */
267 int (*property_is_writeable)(struct power_supply *psy,
268 enum power_supply_property psp);
269 void (*external_power_changed)(struct power_supply *psy);
270 void (*set_charged)(struct power_supply *psy);
271
272 /*
273 * Set if thermal zone should not be created for this power supply.
274 * For example for virtual supplies forwarding calls to actual
275 * sensors or other supplies.
276 */
277 bool no_thermal;
278 /* For APM emulation, think legacy userspace. */
279 int use_for_apm;
280 };
281
282 struct power_supply {
283 const struct power_supply_desc *desc;
284
285 char **supplied_to;
286 size_t num_supplicants;
287
288 char **supplied_from;
289 size_t num_supplies;
290 struct device_node *of_node;
291
292 /* Driver private data */
293 void *drv_data;
294
295 /* private */
296 struct device dev;
297 struct work_struct changed_work;
298 struct delayed_work deferred_register_work;
299 spinlock_t changed_lock;
300 bool changed;
301 bool initialized;
302 bool removing;
303 atomic_t use_cnt;
304 #ifdef CONFIG_THERMAL
305 struct thermal_zone_device *tzd;
306 struct thermal_cooling_device *tcd;
307 #endif
308
309 #ifdef CONFIG_LEDS_TRIGGERS
310 struct led_trigger *charging_full_trig;
311 char *charging_full_trig_name;
312 struct led_trigger *charging_trig;
313 char *charging_trig_name;
314 struct led_trigger *full_trig;
315 char *full_trig_name;
316 struct led_trigger *online_trig;
317 char *online_trig_name;
318 struct led_trigger *charging_blink_full_solid_trig;
319 char *charging_blink_full_solid_trig_name;
320 #endif
321 };
322
323 /*
324 * This is recommended structure to specify static power supply parameters.
325 * Generic one, parametrizable for different power supplies. Power supply
326 * class itself does not use it, but that's what implementing most platform
327 * drivers, should try reuse for consistency.
328 */
329
330 struct power_supply_info {
331 const char *name;
332 int technology;
333 int voltage_max_design;
334 int voltage_min_design;
335 int charge_full_design;
336 int charge_empty_design;
337 int energy_full_design;
338 int energy_empty_design;
339 int use_for_apm;
340 };
341
342 struct power_supply_battery_ocv_table {
343 int ocv; /* microVolts */
344 int capacity; /* percent */
345 };
346
347 struct power_supply_resistance_temp_table {
348 int temp; /* celsius */
349 int resistance; /* internal resistance percent */
350 };
351
352 struct power_supply_vbat_ri_table {
353 int vbat_uv; /* Battery voltage in microvolt */
354 int ri_uohm; /* Internal resistance in microohm */
355 };
356
357 /**
358 * struct power_supply_maintenance_charge_table - setting for maintenace charging
359 * @charge_current_max_ua: maintenance charging current that is used to keep
360 * the charge of the battery full as current is consumed after full charging.
361 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
362 * reach this voltage the maintenance charging current is turned off. It is
363 * turned back on if we fall below this voltage.
364 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
365 * lower than the constant_charge_voltage_max_uv. We can apply this settings
366 * charge_current_max_ua until we get back up to this voltage.
367 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
368 * time in minutes. We will only use maintenance charging in this setting
369 * for a certain amount of time, then we will first move to the next
370 * maintenance charge current and voltage pair in respective array and wait
371 * for the next safety timer timeout, or, if we reached the last maintencance
372 * charging setting, disable charging until we reach
373 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
374 * These timers should be chosen to align with the typical discharge curve
375 * for the battery.
376 *
377 * When the main CC/CV charging is complete the battery can optionally be
378 * maintenance charged at the voltages from this table: a table of settings is
379 * traversed using a slightly lower current and voltage than what is used for
380 * CC/CV charging. The maintenance charging will for safety reasons not go on
381 * indefinately: we lower the current and voltage with successive maintenance
382 * settings, then disable charging completely after we reach the last one,
383 * and after that we do not restart charging until we reach
384 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
385 * ordinary CC/CV charging from there.
386 *
387 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
388 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for
389 * 60 hours, then maintenance charged at 600mA and 4100mV for 200 hours.
390 * After this the charge cycle is restarted waiting for
391 * charge_restart_voltage_uv.
392 *
393 * For most mobile electronics this type of maintenance charging is enough for
394 * the user to disconnect the device and make use of it before both maintenance
395 * charging cycles are complete.
396 */
397 struct power_supply_maintenance_charge_table {
398 int charge_current_max_ua;
399 int charge_voltage_max_uv;
400 int charge_safety_timer_minutes;
401 };
402
403 #define POWER_SUPPLY_OCV_TEMP_MAX 20
404
405 /**
406 * struct power_supply_battery_info - information about batteries
407 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
408 * @energy_full_design_uwh: energy content when fully charged in microwatt
409 * hours
410 * @charge_full_design_uah: charge content when fully charged in microampere
411 * hours
412 * @voltage_min_design_uv: minimum voltage across the poles when the battery
413 * is at minimum voltage level in microvolts. If the voltage drops below this
414 * level the battery will need precharging when using CC/CV charging.
415 * @voltage_max_design_uv: voltage across the poles when the battery is fully
416 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
417 * printed on the label of the battery.
418 * @tricklecharge_current_ua: the tricklecharge current used when trickle
419 * charging the battery in microamperes. This is the charging phase when the
420 * battery is completely empty and we need to carefully trickle in some
421 * charge until we reach the precharging voltage.
422 * @precharge_current_ua: current to use in the precharge phase in microamperes,
423 * the precharge rate is limited by limiting the current to this value.
424 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
425 * microvolts. When we pass this voltage we will nominally switch over to the
426 * CC (constant current) charging phase defined by constant_charge_current_ua
427 * and constant_charge_voltage_max_uv.
428 * @charge_term_current_ua: when the current in the CV (constant voltage)
429 * charging phase drops below this value in microamperes the charging will
430 * terminate completely and not restart until the voltage over the battery
431 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
432 * @charge_restart_voltage_uv: when the battery has been fully charged by
433 * CC/CV charging and charging has been disabled, and the voltage subsequently
434 * drops below this value in microvolts, the charging will be restarted
435 * (typically using CV charging).
436 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
437 * voltage_max_design_uv and we reach this voltage level, all charging must
438 * stop and emergency procedures take place, such as shutting down the system
439 * in some cases.
440 * @constant_charge_current_max_ua: current in microamperes to use in the CC
441 * (constant current) charging phase. The charging rate is limited
442 * by this current. This is the main charging phase and as the current is
443 * constant into the battery the voltage slowly ascends to
444 * constant_charge_voltage_max_uv.
445 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
446 * the CC (constant current) charging phase and the beginning of the CV
447 * (constant voltage) charging phase.
448 * @maintenance_charge: an array of maintenance charging settings to be used
449 * after the main CC/CV charging phase is complete.
450 * @maintenance_charge_size: the number of maintenance charging settings in
451 * maintenance_charge.
452 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
453 * enters low alert temperature, i.e. if the internal temperature is between
454 * temp_alert_min and temp_min. No matter the charging phase, this
455 * and alert_high_temp_charge_voltage_uv will be applied.
456 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
457 * but for the charging voltage.
458 * @alert_high_temp_charge_current_ua: The charging current to use if the
459 * battery enters high alert temperature, i.e. if the internal temperature is
460 * between temp_alert_max and temp_max. No matter the charging phase, this
461 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
462 * the charging current as an evasive manouver.
463 * @alert_high_temp_charge_voltage_uv: Same as
464 * alert_high_temp_charge_current_ua, but for the charging voltage.
465 * @factory_internal_resistance_uohm: the internal resistance of the battery
466 * at fabrication time, expressed in microohms. This resistance will vary
467 * depending on the lifetime and charge of the battery, so this is just a
468 * nominal ballpark figure. This internal resistance is given for the state
469 * when the battery is discharging.
470 * @factory_internal_resistance_charging_uohm: the internal resistance of the
471 * battery at fabrication time while charging, expressed in microohms.
472 * The charging process will affect the internal resistance of the battery
473 * so this value provides a better resistance under these circumstances.
474 * This resistance will vary depending on the lifetime and charge of the
475 * battery, so this is just a nominal ballpark figure.
476 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
477 * temperature indices. This is an array of temperatures in degrees Celsius
478 * indicating which capacity table to use for a certain temperature, since
479 * the capacity for reasons of chemistry will be different at different
480 * temperatures. Determining capacity is a multivariate problem and the
481 * temperature is the first variable we determine.
482 * @temp_ambient_alert_min: the battery will go outside of operating conditions
483 * when the ambient temperature goes below this temperature in degrees
484 * Celsius.
485 * @temp_ambient_alert_max: the battery will go outside of operating conditions
486 * when the ambient temperature goes above this temperature in degrees
487 * Celsius.
488 * @temp_alert_min: the battery should issue an alert if the internal
489 * temperature goes below this temperature in degrees Celsius.
490 * @temp_alert_max: the battery should issue an alert if the internal
491 * temperature goes above this temperature in degrees Celsius.
492 * @temp_min: the battery will go outside of operating conditions when
493 * the internal temperature goes below this temperature in degrees Celsius.
494 * Normally this means the system should shut down.
495 * @temp_max: the battery will go outside of operating conditions when
496 * the internal temperature goes above this temperature in degrees Celsius.
497 * Normally this means the system should shut down.
498 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
499 * ocv_table and a size for each entry in ocv_table_size. These arrays
500 * determine the capacity in percent in relation to the voltage in microvolts
501 * at the indexed temperature.
502 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
503 * each entry in the array of capacity arrays in ocv_table.
504 * @resist_table: this is a table that correlates a battery temperature to the
505 * expected internal resistance at this temperature. The resistance is given
506 * as a percentage of factory_internal_resistance_uohm. Knowing the
507 * resistance of the battery is usually necessary for calculating the open
508 * circuit voltage (OCV) that is then used with the ocv_table to calculate
509 * the capacity of the battery. The resist_table must be ordered descending
510 * by temperature: highest temperature with lowest resistance first, lowest
511 * temperature with highest resistance last.
512 * @resist_table_size: the number of items in the resist_table.
513 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
514 * to internal resistance (Ri). The resistance is given in microohm for the
515 * corresponding voltage in microvolts. The internal resistance is used to
516 * determine the open circuit voltage so that we can determine the capacity
517 * of the battery. These voltages to resistance tables apply when the battery
518 * is discharging. The table must be ordered descending by voltage: highest
519 * voltage first.
520 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
521 * table.
522 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
523 * when the battery is charging. Being under charge changes the battery's
524 * internal resistance characteristics so a separate table is needed.*
525 * The table must be ordered descending by voltage: highest voltage first.
526 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
527 * table.
528 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
529 * in ohms for this battery, if an identification resistor is mounted
530 * between a third battery terminal and ground. This scheme is used by a lot
531 * of mobile device batteries.
532 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
533 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
534 * tolerance is 10% we will detect a proper battery if the BTI resistance
535 * is between 6300 and 7700 Ohm.
536 *
537 * This is the recommended struct to manage static battery parameters,
538 * populated by power_supply_get_battery_info(). Most platform drivers should
539 * use these for consistency.
540 *
541 * Its field names must correspond to elements in enum power_supply_property.
542 * The default field value is -EINVAL or NULL for pointers.
543 *
544 * CC/CV CHARGING:
545 *
546 * The charging parameters here assume a CC/CV charging scheme. This method
547 * is most common with Lithium Ion batteries (other methods are possible) and
548 * looks as follows:
549 *
550 * ^ Battery voltage
551 * | --- overvoltage_limit_uv
552 * |
553 * | ...................................................
554 * | .. constant_charge_voltage_max_uv
555 * | ..
556 * | .
557 * | .
558 * | .
559 * | .
560 * | .
561 * | .. precharge_voltage_max_uv
562 * | ..
563 * |. (trickle charging)
564 * +------------------------------------------------------------------> time
565 *
566 * ^ Current into the battery
567 * |
568 * | ............. constant_charge_current_max_ua
569 * | . .
570 * | . .
571 * | . .
572 * | . .
573 * | . ..
574 * | . ....
575 * | . .....
576 * | ... precharge_current_ua ....... charge_term_current_ua
577 * | . .
578 * | . .
579 * |.... tricklecharge_current_ua .
580 * | .
581 * +-----------------------------------------------------------------> time
582 *
583 * These diagrams are synchronized on time and the voltage and current
584 * follow each other.
585 *
586 * With CC/CV charging commence over time like this for an empty battery:
587 *
588 * 1. When the battery is completely empty it may need to be charged with
589 * an especially small current so that electrons just "trickle in",
590 * this is the tricklecharge_current_ua.
591 *
592 * 2. Next a small initial pre-charge current (precharge_current_ua)
593 * is applied if the voltage is below precharge_voltage_max_uv until we
594 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
595 * to as "trickle charging" but the use in the Linux kernel is different
596 * see below!
597 *
598 * 3. Then the main charging current is applied, which is called the constant
599 * current (CC) phase. A current regulator is set up to allow
600 * constant_charge_current_max_ua of current to flow into the battery.
601 * The chemical reaction in the battery will make the voltage go up as
602 * charge goes into the battery. This current is applied until we reach
603 * the constant_charge_voltage_max_uv voltage.
604 *
605 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
606 * means we allow current to go into the battery, but we keep the voltage
607 * fixed. This current will continue to charge the battery while keeping
608 * the voltage the same. A chemical reaction in the battery goes on
609 * storing energy without affecting the voltage. Over time the current
610 * will slowly drop and when we reach charge_term_current_ua we will
611 * end the constant voltage phase.
612 *
613 * After this the battery is fully charged, and if we do not support maintenance
614 * charging, the charging will not restart until power dissipation makes the
615 * voltage fall so that we reach charge_restart_voltage_uv and at this point
616 * we restart charging at the appropriate phase, usually this will be inside
617 * the CV phase.
618 *
619 * If we support maintenance charging the voltage is however kept high after
620 * the CV phase with a very low current. This is meant to let the same charge
621 * go in for usage while the charger is still connected, mainly for
622 * dissipation for the power consuming entity while connected to the
623 * charger.
624 *
625 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
626 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
627 * explosions.
628 *
629 * DETERMINING BATTERY CAPACITY:
630 *
631 * Several members of the struct deal with trying to determine the remaining
632 * capacity in the battery, usually as a percentage of charge. In practice
633 * many chargers uses a so-called fuel gauge or coloumb counter that measure
634 * how much charge goes into the battery and how much goes out (+/- leak
635 * consumption). This does not help if we do not know how much capacity the
636 * battery has to begin with, such as when it is first used or was taken out
637 * and charged in a separate charger. Therefore many capacity algorithms use
638 * the open circuit voltage with a look-up table to determine the rough
639 * capacity of the battery. The open circuit voltage can be conceptualized
640 * with an ideal voltage source (V) in series with an internal resistance (Ri)
641 * like this:
642 *
643 * +-------> IBAT >----------------+
644 * | ^ |
645 * [ ] Ri | |
646 * | | VBAT |
647 * o <---------- | |
648 * +| ^ | [ ] Rload
649 * .---. | | |
650 * | V | | OCV | |
651 * '---' | | |
652 * | | | |
653 * GND +-------------------------------+
654 *
655 * If we disconnect the load (here simplified as a fixed resistance Rload)
656 * and measure VBAT with a infinite impedance voltage meter we will get
657 * VBAT = OCV and this assumption is sometimes made even under load, assuming
658 * Rload is insignificant. However this will be of dubious quality because the
659 * load is rarely that small and Ri is strongly nonlinear depending on
660 * temperature and how much capacity is left in the battery due to the
661 * chemistry involved.
662 *
663 * In many practical applications we cannot just disconnect the battery from
664 * the load, so instead we often try to measure the instantaneous IBAT (the
665 * current out from the battery), estimate the Ri and thus calculate the
666 * voltage drop over Ri and compensate like this:
667 *
668 * OCV = VBAT - (IBAT * Ri)
669 *
670 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
671 * (by interpolation) the Ri from the VBAT under load. These curves are highly
672 * nonlinear and may need many datapoints but can be found in datasheets for
673 * some batteries. This gives the compensated open circuit voltage (OCV) for
674 * the battery even under load. Using this method will also compensate for
675 * temperature changes in the environment: this will also make the internal
676 * resistance change, and it will affect the VBAT under load, so correlating
677 * VBAT to Ri takes both remaining capacity and temperature into consideration.
678 *
679 * Alternatively a manufacturer can specify how the capacity of the battery
680 * is dependent on the battery temperature which is the main factor affecting
681 * Ri. As we know all checmical reactions are faster when it is warm and slower
682 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
683 * voltage drops too low for example. This effect is also highly nonlinear and
684 * the purpose of the table resist_table: this will take a temperature and
685 * tell us how big percentage of Ri the specified temperature correlates to.
686 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
687 * Celsius.
688 *
689 * The power supply class itself doesn't use this struct as of now.
690 */
691
692 struct power_supply_battery_info {
693 unsigned int technology;
694 int energy_full_design_uwh;
695 int charge_full_design_uah;
696 int voltage_min_design_uv;
697 int voltage_max_design_uv;
698 int tricklecharge_current_ua;
699 int precharge_current_ua;
700 int precharge_voltage_max_uv;
701 int charge_term_current_ua;
702 int charge_restart_voltage_uv;
703 int overvoltage_limit_uv;
704 int constant_charge_current_max_ua;
705 int constant_charge_voltage_max_uv;
706 struct power_supply_maintenance_charge_table *maintenance_charge;
707 int maintenance_charge_size;
708 int alert_low_temp_charge_current_ua;
709 int alert_low_temp_charge_voltage_uv;
710 int alert_high_temp_charge_current_ua;
711 int alert_high_temp_charge_voltage_uv;
712 int factory_internal_resistance_uohm;
713 int factory_internal_resistance_charging_uohm;
714 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
715 int temp_ambient_alert_min;
716 int temp_ambient_alert_max;
717 int temp_alert_min;
718 int temp_alert_max;
719 int temp_min;
720 int temp_max;
721 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
722 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
723 struct power_supply_resistance_temp_table *resist_table;
724 int resist_table_size;
725 struct power_supply_vbat_ri_table *vbat2ri_discharging;
726 int vbat2ri_discharging_size;
727 struct power_supply_vbat_ri_table *vbat2ri_charging;
728 int vbat2ri_charging_size;
729 int bti_resistance_ohm;
730 int bti_resistance_tolerance;
731 };
732
733 extern struct atomic_notifier_head power_supply_notifier;
734 extern int power_supply_reg_notifier(struct notifier_block *nb);
735 extern void power_supply_unreg_notifier(struct notifier_block *nb);
736 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
737 extern struct power_supply *power_supply_get_by_name(const char *name);
738 extern void power_supply_put(struct power_supply *psy);
739 #else
power_supply_put(struct power_supply * psy)740 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)741 static inline struct power_supply *power_supply_get_by_name(const char *name)
742 { return NULL; }
743 #endif
744 #ifdef CONFIG_OF
745 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
746 const char *property);
747 extern struct power_supply *devm_power_supply_get_by_phandle(
748 struct device *dev, const char *property);
749 #else /* !CONFIG_OF */
750 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)751 power_supply_get_by_phandle(struct device_node *np, const char *property)
752 { return NULL; }
753 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)754 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
755 { return NULL; }
756 #endif /* CONFIG_OF */
757
758 extern int power_supply_get_battery_info(struct power_supply *psy,
759 struct power_supply_battery_info **info_out);
760 extern void power_supply_put_battery_info(struct power_supply *psy,
761 struct power_supply_battery_info *info);
762 extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
763 int table_len, int ocv);
764 extern struct power_supply_battery_ocv_table *
765 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
766 int temp, int *table_len);
767 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
768 int ocv, int temp);
769 extern int
770 power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
771 int table_len, int temp);
772 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
773 int vbat_uv, bool charging);
774 extern struct power_supply_maintenance_charge_table *
775 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
776 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
777 int resistance);
778 extern void power_supply_changed(struct power_supply *psy);
779 extern int power_supply_am_i_supplied(struct power_supply *psy);
780 int power_supply_get_property_from_supplier(struct power_supply *psy,
781 enum power_supply_property psp,
782 union power_supply_propval *val);
783 extern int power_supply_set_battery_charged(struct power_supply *psy);
784
785 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)786 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
787 {
788 struct power_supply_maintenance_charge_table *mt;
789
790 mt = power_supply_get_maintenance_charging_setting(info, 0);
791
792 return (mt != NULL);
793 }
794
795 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)796 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
797 {
798 return ((info->vbat2ri_discharging != NULL) &&
799 info->vbat2ri_discharging_size > 0);
800 }
801
802 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)803 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
804 {
805 return ((info->resist_table != NULL) &&
806 info->resist_table_size > 0);
807 }
808
809 #ifdef CONFIG_POWER_SUPPLY
810 extern int power_supply_is_system_supplied(void);
811 #else
power_supply_is_system_supplied(void)812 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
813 #endif
814
815 extern int power_supply_get_property(struct power_supply *psy,
816 enum power_supply_property psp,
817 union power_supply_propval *val);
818 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
819 extern int power_supply_set_property(struct power_supply *psy,
820 enum power_supply_property psp,
821 const union power_supply_propval *val);
822 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)823 static inline int power_supply_set_property(struct power_supply *psy,
824 enum power_supply_property psp,
825 const union power_supply_propval *val)
826 { return 0; }
827 #endif
828 extern int power_supply_property_is_writeable(struct power_supply *psy,
829 enum power_supply_property psp);
830 extern void power_supply_external_power_changed(struct power_supply *psy);
831
832 extern struct power_supply *__must_check
833 power_supply_register(struct device *parent,
834 const struct power_supply_desc *desc,
835 const struct power_supply_config *cfg);
836 extern struct power_supply *__must_check
837 power_supply_register_no_ws(struct device *parent,
838 const struct power_supply_desc *desc,
839 const struct power_supply_config *cfg);
840 extern struct power_supply *__must_check
841 devm_power_supply_register(struct device *parent,
842 const struct power_supply_desc *desc,
843 const struct power_supply_config *cfg);
844 extern struct power_supply *__must_check
845 devm_power_supply_register_no_ws(struct device *parent,
846 const struct power_supply_desc *desc,
847 const struct power_supply_config *cfg);
848 extern void power_supply_unregister(struct power_supply *psy);
849 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
850
851 #define to_power_supply(device) container_of(device, struct power_supply, dev)
852
853 extern void *power_supply_get_drvdata(struct power_supply *psy);
854 /* For APM emulation, think legacy userspace. */
855 extern struct class *power_supply_class;
856
power_supply_is_amp_property(enum power_supply_property psp)857 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
858 {
859 switch (psp) {
860 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
861 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
862 case POWER_SUPPLY_PROP_CHARGE_FULL:
863 case POWER_SUPPLY_PROP_CHARGE_EMPTY:
864 case POWER_SUPPLY_PROP_CHARGE_NOW:
865 case POWER_SUPPLY_PROP_CHARGE_AVG:
866 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
867 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
868 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
869 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
870 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
871 case POWER_SUPPLY_PROP_CURRENT_MAX:
872 case POWER_SUPPLY_PROP_CURRENT_NOW:
873 case POWER_SUPPLY_PROP_CURRENT_AVG:
874 case POWER_SUPPLY_PROP_CURRENT_BOOT:
875 return true;
876 default:
877 break;
878 }
879
880 return false;
881 }
882
power_supply_is_watt_property(enum power_supply_property psp)883 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
884 {
885 switch (psp) {
886 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
887 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
888 case POWER_SUPPLY_PROP_ENERGY_FULL:
889 case POWER_SUPPLY_PROP_ENERGY_EMPTY:
890 case POWER_SUPPLY_PROP_ENERGY_NOW:
891 case POWER_SUPPLY_PROP_ENERGY_AVG:
892 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
893 case POWER_SUPPLY_PROP_VOLTAGE_MIN:
894 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
895 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
896 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
897 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
898 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
899 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
900 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
901 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
902 case POWER_SUPPLY_PROP_POWER_NOW:
903 return true;
904 default:
905 break;
906 }
907
908 return false;
909 }
910
911 #ifdef CONFIG_POWER_SUPPLY_HWMON
912 int power_supply_add_hwmon_sysfs(struct power_supply *psy);
913 void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
914 #else
power_supply_add_hwmon_sysfs(struct power_supply * psy)915 static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
916 {
917 return 0;
918 }
919
920 static inline
power_supply_remove_hwmon_sysfs(struct power_supply * psy)921 void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
922 #endif
923
924 #ifdef CONFIG_SYSFS
925 ssize_t power_supply_charge_behaviour_show(struct device *dev,
926 unsigned int available_behaviours,
927 enum power_supply_charge_behaviour behaviour,
928 char *buf);
929
930 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
931 #else
932 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)933 ssize_t power_supply_charge_behaviour_show(struct device *dev,
934 unsigned int available_behaviours,
935 enum power_supply_charge_behaviour behaviour,
936 char *buf)
937 {
938 return -EOPNOTSUPP;
939 }
940
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)941 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
942 const char *buf)
943 {
944 return -EOPNOTSUPP;
945 }
946 #endif
947
948 #endif /* __LINUX_POWER_SUPPLY_H__ */
949