1|
2|	ssin.sa 3.3 7/29/91
3|
4|	The entry point sSIN computes the sine of an input argument
5|	sCOS computes the cosine, and sSINCOS computes both. The
6|	corresponding entry points with a "d" computes the same
7|	corresponding function values for denormalized inputs.
8|
9|	Input: Double-extended number X in location pointed to
10|		by address register a0.
11|
12|	Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
13|		COS is requested. Otherwise, for SINCOS, sin(X) is returned
14|		in Fp0, and cos(X) is returned in Fp1.
15|
16|	Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
17|
18|	Accuracy and Monotonicity: The returned result is within 1 ulp in
19|		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
20|		result is subsequently rounded to double precision. The
21|		result is provably monotonic in double precision.
22|
23|	Speed: The programs sSIN and sCOS take approximately 150 cycles for
24|		input argument X such that |X| < 15Pi, which is the usual
25|		situation. The speed for sSINCOS is approximately 190 cycles.
26|
27|	Algorithm:
28|
29|	SIN and COS:
30|	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
31|
32|	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
33|
34|	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
35|		k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
36|		k by k := k + AdjN.
37|
38|	4. If k is even, go to 6.
39|
40|	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
41|		where cos(r) is approximated by an even polynomial in r,
42|		1 + r*r*(B1+s*(B2+ ... + s*B8)),	s = r*r.
43|		Exit.
44|
45|	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
46|		where sin(r) is approximated by an odd polynomial in r
47|		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.
48|		Exit.
49|
50|	7. If |X| > 1, go to 9.
51|
52|	8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
53|
54|	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
55|
56|	SINCOS:
57|	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
58|
59|	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
60|		k = N mod 4, so in particular, k = 0,1,2,or 3.
61|
62|	3. If k is even, go to 5.
63|
64|	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
65|		j1 exclusive or with the l.s.b. of k.
66|		sgn1 := (-1)**j1, sgn2 := (-1)**j2.
67|		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
68|		sin(r) and cos(r) are computed as odd and even polynomials
69|		in r, respectively. Exit
70|
71|	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
72|		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
73|		sin(r) and cos(r) are computed as odd and even polynomials
74|		in r, respectively. Exit
75|
76|	6. If |X| > 1, go to 8.
77|
78|	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
79|
80|	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
81|
82
83|		Copyright (C) Motorola, Inc. 1990
84|			All Rights Reserved
85|
86|	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
87|	The copyright notice above does not evidence any
88|	actual or intended publication of such source code.
89
90|SSIN	idnt	2,1 | Motorola 040 Floating Point Software Package
91
92	|section	8
93
94	.include "fpsp.h"
95
96BOUNDS1:	.long 0x3FD78000,0x4004BC7E
97TWOBYPI:	.long 0x3FE45F30,0x6DC9C883
98
99SINA7:	.long 0xBD6AAA77,0xCCC994F5
100SINA6:	.long 0x3DE61209,0x7AAE8DA1
101
102SINA5:	.long 0xBE5AE645,0x2A118AE4
103SINA4:	.long 0x3EC71DE3,0xA5341531
104
105SINA3:	.long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
106
107SINA2:	.long 0x3FF80000,0x88888888,0x888859AF,0x00000000
108
109SINA1:	.long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
110
111COSB8:	.long 0x3D2AC4D0,0xD6011EE3
112COSB7:	.long 0xBDA9396F,0x9F45AC19
113
114COSB6:	.long 0x3E21EED9,0x0612C972
115COSB5:	.long 0xBE927E4F,0xB79D9FCF
116
117COSB4:	.long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
118
119COSB3:	.long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
120
121COSB2:	.long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
122COSB1:	.long 0xBF000000
123
124INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
125
126TWOPI1:	.long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
127TWOPI2:	.long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
128
129	|xref	PITBL
130
131	.set	INARG,FP_SCR4
132
133	.set	X,FP_SCR5
134	.set	XDCARE,X+2
135	.set	XFRAC,X+4
136
137	.set	RPRIME,FP_SCR1
138	.set	SPRIME,FP_SCR2
139
140	.set	POSNEG1,L_SCR1
141	.set	TWOTO63,L_SCR1
142
143	.set	ENDFLAG,L_SCR2
144	.set	N,L_SCR2
145
146	.set	ADJN,L_SCR3
147
148	| xref	t_frcinx
149	|xref	t_extdnrm
150	|xref	sto_cos
151
152	.global	ssind
153ssind:
154|--SIN(X) = X FOR DENORMALIZED X
155	bra		t_extdnrm
156
157	.global	scosd
158scosd:
159|--COS(X) = 1 FOR DENORMALIZED X
160
161	fmoves		#0x3F800000,%fp0
162|
163|	9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
164|
165	fmovel		#0,%fpsr
166|
167	bra		t_frcinx
168
169	.global	ssin
170ssin:
171|--SET ADJN TO 0
172	movel		#0,ADJN(%a6)
173	bras		SINBGN
174
175	.global	scos
176scos:
177|--SET ADJN TO 1
178	movel		#1,ADJN(%a6)
179
180SINBGN:
181|--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
182
183	fmovex		(%a0),%fp0	| ...LOAD INPUT
184
185	movel		(%a0),%d0
186	movew		4(%a0),%d0
187	fmovex		%fp0,X(%a6)
188	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X
189
190	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
191	bges		SOK1
192	bra		SINSM
193
194SOK1:
195	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
196	blts		SINMAIN
197	bra		REDUCEX
198
199SINMAIN:
200|--THIS IS THE USUAL CASE, |X| <= 15 PI.
201|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
202	fmovex		%fp0,%fp1
203	fmuld		TWOBYPI,%fp1	| ...X*2/PI
204
205|--HIDE THE NEXT THREE INSTRUCTIONS
206	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
207
208
209|--FP1 IS NOW READY
210	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER
211
212	movel		N(%a6),%d0
213	asll		#4,%d0
214	addal		%d0,%a1	| ...A1 IS THE ADDRESS OF N*PIBY2
215|				...WHICH IS IN TWO PIECES Y1 & Y2
216
217	fsubx		(%a1)+,%fp0	| ...X-Y1
218|--HIDE THE NEXT ONE
219	fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
220
221SINCONT:
222|--continuation from REDUCEX
223
224|--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
225	movel		N(%a6),%d0
226	addl		ADJN(%a6),%d0	| ...SEE IF D0 IS ODD OR EVEN
227	rorl		#1,%d0	| ...D0 WAS ODD IFF D0 IS NEGATIVE
228	cmpil		#0,%d0
229	blt		COSPOLY
230
231SINPOLY:
232|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
233|--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
234|--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
235|--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
236|--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
237|--WHERE T=S*S.
238|--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
239|--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
240	fmovex		%fp0,X(%a6)	| ...X IS R
241	fmulx		%fp0,%fp0	| ...FP0 IS S
242|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
243	fmoved		SINA7,%fp3
244	fmoved		SINA6,%fp2
245|--FP0 IS NOW READY
246	fmovex		%fp0,%fp1
247	fmulx		%fp1,%fp1	| ...FP1 IS T
248|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
249
250	rorl		#1,%d0
251	andil		#0x80000000,%d0
252|				...LEAST SIG. BIT OF D0 IN SIGN POSITION
253	eorl		%d0,X(%a6)	| ...X IS NOW R'= SGN*R
254
255	fmulx		%fp1,%fp3	| ...TA7
256	fmulx		%fp1,%fp2	| ...TA6
257
258	faddd		SINA5,%fp3 | ...A5+TA7
259	faddd		SINA4,%fp2 | ...A4+TA6
260
261	fmulx		%fp1,%fp3	| ...T(A5+TA7)
262	fmulx		%fp1,%fp2	| ...T(A4+TA6)
263
264	faddd		SINA3,%fp3 | ...A3+T(A5+TA7)
265	faddx		SINA2,%fp2 | ...A2+T(A4+TA6)
266
267	fmulx		%fp3,%fp1	| ...T(A3+T(A5+TA7))
268
269	fmulx		%fp0,%fp2	| ...S(A2+T(A4+TA6))
270	faddx		SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
271	fmulx		X(%a6),%fp0	| ...R'*S
272
273	faddx		%fp2,%fp1	| ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
274|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
275|--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
276
277
278	fmulx		%fp1,%fp0		| ...SIN(R')-R'
279|--FP1 RELEASED.
280
281	fmovel		%d1,%FPCR		|restore users exceptions
282	faddx		X(%a6),%fp0		|last inst - possible exception set
283	bra		t_frcinx
284
285
286COSPOLY:
287|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
288|--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY
289|--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
290|--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
291|--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
292|--WHERE T=S*S.
293|--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
294|--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
295|--AND IS THEREFORE STORED AS SINGLE PRECISION.
296
297	fmulx		%fp0,%fp0	| ...FP0 IS S
298|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
299	fmoved		COSB8,%fp2
300	fmoved		COSB7,%fp3
301|--FP0 IS NOW READY
302	fmovex		%fp0,%fp1
303	fmulx		%fp1,%fp1	| ...FP1 IS T
304|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
305	fmovex		%fp0,X(%a6)	| ...X IS S
306	rorl		#1,%d0
307	andil		#0x80000000,%d0
308|			...LEAST SIG. BIT OF D0 IN SIGN POSITION
309
310	fmulx		%fp1,%fp2	| ...TB8
311|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
312	eorl		%d0,X(%a6)	| ...X IS NOW S'= SGN*S
313	andil		#0x80000000,%d0
314
315	fmulx		%fp1,%fp3	| ...TB7
316|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
317	oril		#0x3F800000,%d0	| ...D0 IS SGN IN SINGLE
318	movel		%d0,POSNEG1(%a6)
319
320	faddd		COSB6,%fp2 | ...B6+TB8
321	faddd		COSB5,%fp3 | ...B5+TB7
322
323	fmulx		%fp1,%fp2	| ...T(B6+TB8)
324	fmulx		%fp1,%fp3	| ...T(B5+TB7)
325
326	faddd		COSB4,%fp2 | ...B4+T(B6+TB8)
327	faddx		COSB3,%fp3 | ...B3+T(B5+TB7)
328
329	fmulx		%fp1,%fp2	| ...T(B4+T(B6+TB8))
330	fmulx		%fp3,%fp1	| ...T(B3+T(B5+TB7))
331
332	faddx		COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
333	fadds		COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
334
335	fmulx		%fp2,%fp0	| ...S(B2+T(B4+T(B6+TB8)))
336|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
337|--FP2 RELEASED.
338
339
340	faddx		%fp1,%fp0
341|--FP1 RELEASED
342
343	fmulx		X(%a6),%fp0
344
345	fmovel		%d1,%FPCR		|restore users exceptions
346	fadds		POSNEG1(%a6),%fp0	|last inst - possible exception set
347	bra		t_frcinx
348
349
350SINBORS:
351|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
352|--IF |X| < 2**(-40), RETURN X OR 1.
353	cmpil		#0x3FFF8000,%d0
354	bgts		REDUCEX
355
356
357SINSM:
358	movel		ADJN(%a6),%d0
359	cmpil		#0,%d0
360	bgts		COSTINY
361
362SINTINY:
363	movew		#0x0000,XDCARE(%a6)	| ...JUST IN CASE
364	fmovel		%d1,%FPCR		|restore users exceptions
365	fmovex		X(%a6),%fp0		|last inst - possible exception set
366	bra		t_frcinx
367
368
369COSTINY:
370	fmoves		#0x3F800000,%fp0
371
372	fmovel		%d1,%FPCR		|restore users exceptions
373	fsubs		#0x00800000,%fp0	|last inst - possible exception set
374	bra		t_frcinx
375
376
377REDUCEX:
378|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
379|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
380|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
381
382	fmovemx	%fp2-%fp5,-(%a7)	| ...save FP2 through FP5
383	movel		%d2,-(%a7)
384        fmoves         #0x00000000,%fp1
385|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
386|--there is a danger of unwanted overflow in first LOOP iteration.  In this
387|--case, reduce argument by one remainder step to make subsequent reduction
388|--safe.
389	cmpil	#0x7ffeffff,%d0		|is argument dangerously large?
390	bnes	LOOP
391	movel	#0x7ffe0000,FP_SCR2(%a6)	|yes
392|					;create 2**16383*PI/2
393	movel	#0xc90fdaa2,FP_SCR2+4(%a6)
394	clrl	FP_SCR2+8(%a6)
395	ftstx	%fp0			|test sign of argument
396	movel	#0x7fdc0000,FP_SCR3(%a6)	|create low half of 2**16383*
397|					;PI/2 at FP_SCR3
398	movel	#0x85a308d3,FP_SCR3+4(%a6)
399	clrl   FP_SCR3+8(%a6)
400	fblt	red_neg
401	orw	#0x8000,FP_SCR2(%a6)	|positive arg
402	orw	#0x8000,FP_SCR3(%a6)
403red_neg:
404	faddx  FP_SCR2(%a6),%fp0		|high part of reduction is exact
405	fmovex  %fp0,%fp1		|save high result in fp1
406	faddx  FP_SCR3(%a6),%fp0		|low part of reduction
407	fsubx  %fp0,%fp1			|determine low component of result
408	faddx  FP_SCR3(%a6),%fp1		|fp0/fp1 are reduced argument.
409
410|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
411|--integer quotient will be stored in N
412|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
413
414LOOP:
415	fmovex		%fp0,INARG(%a6)	| ...+-2**K * F, 1 <= F < 2
416	movew		INARG(%a6),%d0
417        movel          %d0,%a1		| ...save a copy of D0
418	andil		#0x00007FFF,%d0
419	subil		#0x00003FFF,%d0	| ...D0 IS K
420	cmpil		#28,%d0
421	bles		LASTLOOP
422CONTLOOP:
423	subil		#27,%d0	 | ...D0 IS L := K-27
424	movel		#0,ENDFLAG(%a6)
425	bras		WORK
426LASTLOOP:
427	clrl		%d0		| ...D0 IS L := 0
428	movel		#1,ENDFLAG(%a6)
429
430WORK:
431|--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
432|--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.
433
434|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
435|--2**L * (PIby2_1), 2**L * (PIby2_2)
436
437	movel		#0x00003FFE,%d2	| ...BIASED EXPO OF 2/PI
438	subl		%d0,%d2		| ...BIASED EXPO OF 2**(-L)*(2/PI)
439
440	movel		#0xA2F9836E,FP_SCR1+4(%a6)
441	movel		#0x4E44152A,FP_SCR1+8(%a6)
442	movew		%d2,FP_SCR1(%a6)	| ...FP_SCR1 is 2**(-L)*(2/PI)
443
444	fmovex		%fp0,%fp2
445	fmulx		FP_SCR1(%a6),%fp2
446|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
447|--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
448|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
449|--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
450|--US THE DESIRED VALUE IN FLOATING POINT.
451
452|--HIDE SIX CYCLES OF INSTRUCTION
453        movel		%a1,%d2
454        swap		%d2
455	andil		#0x80000000,%d2
456	oril		#0x5F000000,%d2	| ...D2 IS SIGN(INARG)*2**63 IN SGL
457	movel		%d2,TWOTO63(%a6)
458
459	movel		%d0,%d2
460	addil		#0x00003FFF,%d2	| ...BIASED EXPO OF 2**L * (PI/2)
461
462|--FP2 IS READY
463	fadds		TWOTO63(%a6),%fp2	| ...THE FRACTIONAL PART OF FP1 IS ROUNDED
464
465|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
466        movew		%d2,FP_SCR2(%a6)
467	clrw           FP_SCR2+2(%a6)
468	movel		#0xC90FDAA2,FP_SCR2+4(%a6)
469	clrl		FP_SCR2+8(%a6)		| ...FP_SCR2 is  2**(L) * Piby2_1
470
471|--FP2 IS READY
472	fsubs		TWOTO63(%a6),%fp2		| ...FP2 is N
473
474	addil		#0x00003FDD,%d0
475        movew		%d0,FP_SCR3(%a6)
476	clrw           FP_SCR3+2(%a6)
477	movel		#0x85A308D3,FP_SCR3+4(%a6)
478	clrl		FP_SCR3+8(%a6)		| ...FP_SCR3 is 2**(L) * Piby2_2
479
480	movel		ENDFLAG(%a6),%d0
481
482|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
483|--P2 = 2**(L) * Piby2_2
484	fmovex		%fp2,%fp4
485	fmulx		FP_SCR2(%a6),%fp4		| ...W = N*P1
486	fmovex		%fp2,%fp5
487	fmulx		FP_SCR3(%a6),%fp5		| ...w = N*P2
488	fmovex		%fp4,%fp3
489|--we want P+p = W+w  but  |p| <= half ulp of P
490|--Then, we need to compute  A := R-P   and  a := r-p
491	faddx		%fp5,%fp3			| ...FP3 is P
492	fsubx		%fp3,%fp4			| ...W-P
493
494	fsubx		%fp3,%fp0			| ...FP0 is A := R - P
495        faddx		%fp5,%fp4			| ...FP4 is p = (W-P)+w
496
497	fmovex		%fp0,%fp3			| ...FP3 A
498	fsubx		%fp4,%fp1			| ...FP1 is a := r - p
499
500|--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
501|--|r| <= half ulp of R.
502	faddx		%fp1,%fp0			| ...FP0 is R := A+a
503|--No need to calculate r if this is the last loop
504	cmpil		#0,%d0
505	bgt		RESTORE
506
507|--Need to calculate r
508	fsubx		%fp0,%fp3			| ...A-R
509	faddx		%fp3,%fp1			| ...FP1 is r := (A-R)+a
510	bra		LOOP
511
512RESTORE:
513        fmovel		%fp2,N(%a6)
514	movel		(%a7)+,%d2
515	fmovemx	(%a7)+,%fp2-%fp5
516
517
518	movel		ADJN(%a6),%d0
519	cmpil		#4,%d0
520
521	blt		SINCONT
522	bras		SCCONT
523
524	.global	ssincosd
525ssincosd:
526|--SIN AND COS OF X FOR DENORMALIZED X
527
528	fmoves		#0x3F800000,%fp1
529	bsr		sto_cos		|store cosine result
530	bra		t_extdnrm
531
532	.global	ssincos
533ssincos:
534|--SET ADJN TO 4
535	movel		#4,ADJN(%a6)
536
537	fmovex		(%a0),%fp0	| ...LOAD INPUT
538
539	movel		(%a0),%d0
540	movew		4(%a0),%d0
541	fmovex		%fp0,X(%a6)
542	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X
543
544	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
545	bges		SCOK1
546	bra		SCSM
547
548SCOK1:
549	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
550	blts		SCMAIN
551	bra		REDUCEX
552
553
554SCMAIN:
555|--THIS IS THE USUAL CASE, |X| <= 15 PI.
556|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
557	fmovex		%fp0,%fp1
558	fmuld		TWOBYPI,%fp1	| ...X*2/PI
559
560|--HIDE THE NEXT THREE INSTRUCTIONS
561	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
562
563
564|--FP1 IS NOW READY
565	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER
566
567	movel		N(%a6),%d0
568	asll		#4,%d0
569	addal		%d0,%a1		| ...ADDRESS OF N*PIBY2, IN Y1, Y2
570
571	fsubx		(%a1)+,%fp0	| ...X-Y1
572        fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
573
574SCCONT:
575|--continuation point from REDUCEX
576
577|--HIDE THE NEXT TWO
578	movel		N(%a6),%d0
579	rorl		#1,%d0
580
581	cmpil		#0,%d0		| ...D0 < 0 IFF N IS ODD
582	bge		NEVEN
583
584NODD:
585|--REGISTERS SAVED SO FAR: D0, A0, FP2.
586
587	fmovex		%fp0,RPRIME(%a6)
588	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
589	fmoved		SINA7,%fp1	| ...A7
590	fmoved		COSB8,%fp2	| ...B8
591	fmulx		%fp0,%fp1	 | ...SA7
592	movel		%d2,-(%a7)
593	movel		%d0,%d2
594	fmulx		%fp0,%fp2	 | ...SB8
595	rorl		#1,%d2
596	andil		#0x80000000,%d2
597
598	faddd		SINA6,%fp1	| ...A6+SA7
599	eorl		%d0,%d2
600	andil		#0x80000000,%d2
601	faddd		COSB7,%fp2	| ...B7+SB8
602
603	fmulx		%fp0,%fp1	 | ...S(A6+SA7)
604	eorl		%d2,RPRIME(%a6)
605	movel		(%a7)+,%d2
606	fmulx		%fp0,%fp2	 | ...S(B7+SB8)
607	rorl		#1,%d0
608	andil		#0x80000000,%d0
609
610	faddd		SINA5,%fp1	| ...A5+S(A6+SA7)
611	movel		#0x3F800000,POSNEG1(%a6)
612	eorl		%d0,POSNEG1(%a6)
613	faddd		COSB6,%fp2	| ...B6+S(B7+SB8)
614
615	fmulx		%fp0,%fp1	 | ...S(A5+S(A6+SA7))
616	fmulx		%fp0,%fp2	 | ...S(B6+S(B7+SB8))
617	fmovex		%fp0,SPRIME(%a6)
618
619	faddd		SINA4,%fp1	| ...A4+S(A5+S(A6+SA7))
620	eorl		%d0,SPRIME(%a6)
621	faddd		COSB5,%fp2	| ...B5+S(B6+S(B7+SB8))
622
623	fmulx		%fp0,%fp1	 | ...S(A4+...)
624	fmulx		%fp0,%fp2	 | ...S(B5+...)
625
626	faddd		SINA3,%fp1	| ...A3+S(A4+...)
627	faddd		COSB4,%fp2	| ...B4+S(B5+...)
628
629	fmulx		%fp0,%fp1	 | ...S(A3+...)
630	fmulx		%fp0,%fp2	 | ...S(B4+...)
631
632	faddx		SINA2,%fp1	| ...A2+S(A3+...)
633	faddx		COSB3,%fp2	| ...B3+S(B4+...)
634
635	fmulx		%fp0,%fp1	 | ...S(A2+...)
636	fmulx		%fp0,%fp2	 | ...S(B3+...)
637
638	faddx		SINA1,%fp1	| ...A1+S(A2+...)
639	faddx		COSB2,%fp2	| ...B2+S(B3+...)
640
641	fmulx		%fp0,%fp1	 | ...S(A1+...)
642	fmulx		%fp2,%fp0	 | ...S(B2+...)
643
644
645
646	fmulx		RPRIME(%a6),%fp1	| ...R'S(A1+...)
647	fadds		COSB1,%fp0	| ...B1+S(B2...)
648	fmulx		SPRIME(%a6),%fp0	| ...S'(B1+S(B2+...))
649
650	movel		%d1,-(%sp)	|restore users mode & precision
651	andil		#0xff,%d1		|mask off all exceptions
652	fmovel		%d1,%FPCR
653	faddx		RPRIME(%a6),%fp1	| ...COS(X)
654	bsr		sto_cos		|store cosine result
655	fmovel		(%sp)+,%FPCR	|restore users exceptions
656	fadds		POSNEG1(%a6),%fp0	| ...SIN(X)
657
658	bra		t_frcinx
659
660
661NEVEN:
662|--REGISTERS SAVED SO FAR: FP2.
663
664	fmovex		%fp0,RPRIME(%a6)
665	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
666	fmoved		COSB8,%fp1			| ...B8
667	fmoved		SINA7,%fp2			| ...A7
668	fmulx		%fp0,%fp1	 | ...SB8
669	fmovex		%fp0,SPRIME(%a6)
670	fmulx		%fp0,%fp2	 | ...SA7
671	rorl		#1,%d0
672	andil		#0x80000000,%d0
673	faddd		COSB7,%fp1	| ...B7+SB8
674	faddd		SINA6,%fp2	| ...A6+SA7
675	eorl		%d0,RPRIME(%a6)
676	eorl		%d0,SPRIME(%a6)
677	fmulx		%fp0,%fp1	 | ...S(B7+SB8)
678	oril		#0x3F800000,%d0
679	movel		%d0,POSNEG1(%a6)
680	fmulx		%fp0,%fp2	 | ...S(A6+SA7)
681
682	faddd		COSB6,%fp1	| ...B6+S(B7+SB8)
683	faddd		SINA5,%fp2	| ...A5+S(A6+SA7)
684
685	fmulx		%fp0,%fp1	 | ...S(B6+S(B7+SB8))
686	fmulx		%fp0,%fp2	 | ...S(A5+S(A6+SA7))
687
688	faddd		COSB5,%fp1	| ...B5+S(B6+S(B7+SB8))
689	faddd		SINA4,%fp2	| ...A4+S(A5+S(A6+SA7))
690
691	fmulx		%fp0,%fp1	 | ...S(B5+...)
692	fmulx		%fp0,%fp2	 | ...S(A4+...)
693
694	faddd		COSB4,%fp1	| ...B4+S(B5+...)
695	faddd		SINA3,%fp2	| ...A3+S(A4+...)
696
697	fmulx		%fp0,%fp1	 | ...S(B4+...)
698	fmulx		%fp0,%fp2	 | ...S(A3+...)
699
700	faddx		COSB3,%fp1	| ...B3+S(B4+...)
701	faddx		SINA2,%fp2	| ...A2+S(A3+...)
702
703	fmulx		%fp0,%fp1	 | ...S(B3+...)
704	fmulx		%fp0,%fp2	 | ...S(A2+...)
705
706	faddx		COSB2,%fp1	| ...B2+S(B3+...)
707	faddx		SINA1,%fp2	| ...A1+S(A2+...)
708
709	fmulx		%fp0,%fp1	 | ...S(B2+...)
710	fmulx		%fp2,%fp0	 | ...s(a1+...)
711
712
713
714	fadds		COSB1,%fp1	| ...B1+S(B2...)
715	fmulx		RPRIME(%a6),%fp0	| ...R'S(A1+...)
716	fmulx		SPRIME(%a6),%fp1	| ...S'(B1+S(B2+...))
717
718	movel		%d1,-(%sp)	|save users mode & precision
719	andil		#0xff,%d1		|mask off all exceptions
720	fmovel		%d1,%FPCR
721	fadds		POSNEG1(%a6),%fp1	| ...COS(X)
722	bsr		sto_cos		|store cosine result
723	fmovel		(%sp)+,%FPCR	|restore users exceptions
724	faddx		RPRIME(%a6),%fp0	| ...SIN(X)
725
726	bra		t_frcinx
727
728SCBORS:
729	cmpil		#0x3FFF8000,%d0
730	bgt		REDUCEX
731
732
733SCSM:
734	movew		#0x0000,XDCARE(%a6)
735	fmoves		#0x3F800000,%fp1
736
737	movel		%d1,-(%sp)	|save users mode & precision
738	andil		#0xff,%d1		|mask off all exceptions
739	fmovel		%d1,%FPCR
740	fsubs		#0x00800000,%fp1
741	bsr		sto_cos		|store cosine result
742	fmovel		(%sp)+,%FPCR	|restore users exceptions
743	fmovex		X(%a6),%fp0
744	bra		t_frcinx
745
746	|end
747