1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4  * This file contains the functions and defines necessary to modify and use
5  * the ppc64 hashed page table.
6  */
7 
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/pgtable-ppc64-64k.h>
10 #else
11 #include <asm/pgtable-ppc64-4k.h>
12 #endif
13 
14 #define FIRST_USER_ADDRESS	0
15 
16 /*
17  * Size of EA range mapped by our pagetables.
18  */
19 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
20                 	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
21 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
22 
23 
24 /* Some sanity checking */
25 #if TASK_SIZE_USER64 > PGTABLE_RANGE
26 #error TASK_SIZE_USER64 exceeds pagetable range
27 #endif
28 
29 #ifdef CONFIG_PPC_STD_MMU_64
30 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
31 #error TASK_SIZE_USER64 exceeds user VSID range
32 #endif
33 #endif
34 
35 /*
36  * Define the address range of the kernel non-linear virtual area
37  */
38 
39 #ifdef CONFIG_PPC_BOOK3E
40 #define KERN_VIRT_START ASM_CONST(0x8000000000000000)
41 #else
42 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
43 #endif
44 #define KERN_VIRT_SIZE	PGTABLE_RANGE
45 
46 /*
47  * The vmalloc space starts at the beginning of that region, and
48  * occupies half of it on hash CPUs and a quarter of it on Book3E
49  * (we keep a quarter for the virtual memmap)
50  */
51 #define VMALLOC_START	KERN_VIRT_START
52 #ifdef CONFIG_PPC_BOOK3E
53 #define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
54 #else
55 #define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
56 #endif
57 #define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
58 
59 /*
60  * The second half of the kernel virtual space is used for IO mappings,
61  * it's itself carved into the PIO region (ISA and PHB IO space) and
62  * the ioremap space
63  *
64  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
65  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
66  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
67  */
68 #define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
69 #define FULL_IO_SIZE	0x80000000ul
70 #define  ISA_IO_BASE	(KERN_IO_START)
71 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
72 #define  PHB_IO_BASE	(ISA_IO_END)
73 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
74 #define IOREMAP_BASE	(PHB_IO_END)
75 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
76 
77 
78 /*
79  * Region IDs
80  */
81 #define REGION_SHIFT		60UL
82 #define REGION_MASK		(0xfUL << REGION_SHIFT)
83 #define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)
84 
85 #define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
86 #define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
87 #define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
88 #define USER_REGION_ID		(0UL)
89 
90 /*
91  * Defines the address of the vmemap area, in its own region on
92  * hash table CPUs and after the vmalloc space on Book3E
93  */
94 #ifdef CONFIG_PPC_BOOK3E
95 #define VMEMMAP_BASE		VMALLOC_END
96 #define VMEMMAP_END		KERN_IO_START
97 #else
98 #define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
99 #endif
100 #define vmemmap			((struct page *)VMEMMAP_BASE)
101 
102 
103 /*
104  * Include the PTE bits definitions
105  */
106 #ifdef CONFIG_PPC_BOOK3S
107 #include <asm/pte-hash64.h>
108 #else
109 #include <asm/pte-book3e.h>
110 #endif
111 #include <asm/pte-common.h>
112 
113 #ifdef CONFIG_PPC_MM_SLICES
114 #define HAVE_ARCH_UNMAPPED_AREA
115 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
116 #endif /* CONFIG_PPC_MM_SLICES */
117 
118 #ifndef __ASSEMBLY__
119 
120 #include <linux/stddef.h>
121 #include <asm/tlbflush.h>
122 
123 /*
124  * This is the default implementation of various PTE accessors, it's
125  * used in all cases except Book3S with 64K pages where we have a
126  * concept of sub-pages
127  */
128 #ifndef __real_pte
129 
130 #ifdef STRICT_MM_TYPECHECKS
131 #define __real_pte(e,p)		((real_pte_t){(e)})
132 #define __rpte_to_pte(r)	((r).pte)
133 #else
134 #define __real_pte(e,p)		(e)
135 #define __rpte_to_pte(r)	(__pte(r))
136 #endif
137 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)
138 
139 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
140 	do {							         \
141 		index = 0;					         \
142 		shift = mmu_psize_defs[psize].shift;		         \
143 
144 #define pte_iterate_hashed_end() } while(0)
145 
146 #ifdef CONFIG_PPC_HAS_HASH_64K
147 #define pte_pagesize_index(mm, addr, pte)	get_slice_psize(mm, addr)
148 #else
149 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
150 #endif
151 
152 #endif /* __real_pte */
153 
154 
155 /* pte_clear moved to later in this file */
156 
157 #define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
158 #define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
159 
160 #define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval))
161 #define pmd_none(pmd)		(!pmd_val(pmd))
162 #define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
163 				 || (pmd_val(pmd) & PMD_BAD_BITS))
164 #define	pmd_present(pmd)	(pmd_val(pmd) != 0)
165 #define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0)
166 #define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
167 #define pmd_page(pmd)		virt_to_page(pmd_page_vaddr(pmd))
168 
169 #define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval))
170 #define pud_none(pud)		(!pud_val(pud))
171 #define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
172 				 || (pud_val(pud) & PUD_BAD_BITS))
173 #define pud_present(pud)	(pud_val(pud) != 0)
174 #define pud_clear(pudp)		(pud_val(*(pudp)) = 0)
175 #define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)
176 #define pud_page(pud)		virt_to_page(pud_page_vaddr(pud))
177 
178 #define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
179 
180 /*
181  * Find an entry in a page-table-directory.  We combine the address region
182  * (the high order N bits) and the pgd portion of the address.
183  */
184 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
185 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
186 
187 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
188 
189 #define pmd_offset(pudp,addr) \
190   (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
191 
192 #define pte_offset_kernel(dir,addr) \
193   (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
194 
195 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
196 #define pte_unmap(pte)			do { } while(0)
197 
198 /* to find an entry in a kernel page-table-directory */
199 /* This now only contains the vmalloc pages */
200 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
201 
202 
203 /* Atomic PTE updates */
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,int huge)204 static inline unsigned long pte_update(struct mm_struct *mm,
205 				       unsigned long addr,
206 				       pte_t *ptep, unsigned long clr,
207 				       int huge)
208 {
209 #ifdef PTE_ATOMIC_UPDATES
210 	unsigned long old, tmp;
211 
212 	__asm__ __volatile__(
213 	"1:	ldarx	%0,0,%3		# pte_update\n\
214 	andi.	%1,%0,%6\n\
215 	bne-	1b \n\
216 	andc	%1,%0,%4 \n\
217 	stdcx.	%1,0,%3 \n\
218 	bne-	1b"
219 	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
220 	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
221 	: "cc" );
222 #else
223 	unsigned long old = pte_val(*ptep);
224 	*ptep = __pte(old & ~clr);
225 #endif
226 	/* huge pages use the old page table lock */
227 	if (!huge)
228 		assert_pte_locked(mm, addr);
229 
230 #ifdef CONFIG_PPC_STD_MMU_64
231 	if (old & _PAGE_HASHPTE)
232 		hpte_need_flush(mm, addr, ptep, old, huge);
233 #endif
234 
235 	return old;
236 }
237 
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)238 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
239 					      unsigned long addr, pte_t *ptep)
240 {
241 	unsigned long old;
242 
243        	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
244 		return 0;
245 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
246 	return (old & _PAGE_ACCESSED) != 0;
247 }
248 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
249 #define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
250 ({									   \
251 	int __r;							   \
252 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
253 	__r;								   \
254 })
255 
256 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)257 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
258 				      pte_t *ptep)
259 {
260 	unsigned long old;
261 
262        	if ((pte_val(*ptep) & _PAGE_RW) == 0)
263        		return;
264 	old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
265 }
266 
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)267 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
268 					   unsigned long addr, pte_t *ptep)
269 {
270 	unsigned long old;
271 
272 	if ((pte_val(*ptep) & _PAGE_RW) == 0)
273 		return;
274 	old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
275 }
276 
277 /*
278  * We currently remove entries from the hashtable regardless of whether
279  * the entry was young or dirty. The generic routines only flush if the
280  * entry was young or dirty which is not good enough.
281  *
282  * We should be more intelligent about this but for the moment we override
283  * these functions and force a tlb flush unconditionally
284  */
285 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
286 #define ptep_clear_flush_young(__vma, __address, __ptep)		\
287 ({									\
288 	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
289 						  __ptep);		\
290 	__young;							\
291 })
292 
293 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)294 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
295 				       unsigned long addr, pte_t *ptep)
296 {
297 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
298 	return __pte(old);
299 }
300 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)301 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
302 			     pte_t * ptep)
303 {
304 	pte_update(mm, addr, ptep, ~0UL, 0);
305 }
306 
307 
308 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
309  * function doesn't need to flush the hash entry
310  */
__ptep_set_access_flags(pte_t * ptep,pte_t entry)311 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
312 {
313 	unsigned long bits = pte_val(entry) &
314 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
315 
316 #ifdef PTE_ATOMIC_UPDATES
317 	unsigned long old, tmp;
318 
319 	__asm__ __volatile__(
320 	"1:	ldarx	%0,0,%4\n\
321 		andi.	%1,%0,%6\n\
322 		bne-	1b \n\
323 		or	%0,%3,%0\n\
324 		stdcx.	%0,0,%4\n\
325 		bne-	1b"
326 	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
327 	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
328 	:"cc");
329 #else
330 	unsigned long old = pte_val(*ptep);
331 	*ptep = __pte(old | bits);
332 #endif
333 }
334 
335 #define __HAVE_ARCH_PTE_SAME
336 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
337 
338 #define pte_ERROR(e) \
339 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
340 #define pmd_ERROR(e) \
341 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
342 #define pgd_ERROR(e) \
343 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
344 
345 /* Encode and de-code a swap entry */
346 #define __swp_type(entry)	(((entry).val >> 1) & 0x3f)
347 #define __swp_offset(entry)	((entry).val >> 8)
348 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
349 #define __pte_to_swp_entry(pte)	((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
350 #define __swp_entry_to_pte(x)	((pte_t) { (x).val << PTE_RPN_SHIFT })
351 #define pte_to_pgoff(pte)	(pte_val(pte) >> PTE_RPN_SHIFT)
352 #define pgoff_to_pte(off)	((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
353 #define PTE_FILE_MAX_BITS	(BITS_PER_LONG - PTE_RPN_SHIFT)
354 
355 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
356 void pgtable_cache_init(void);
357 
358 /*
359  * find_linux_pte returns the address of a linux pte for a given
360  * effective address and directory.  If not found, it returns zero.
find_linux_pte(pgd_t * pgdir,unsigned long ea)361  */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
362 {
363 	pgd_t *pg;
364 	pud_t *pu;
365 	pmd_t *pm;
366 	pte_t *pt = NULL;
367 
368 	pg = pgdir + pgd_index(ea);
369 	if (!pgd_none(*pg)) {
370 		pu = pud_offset(pg, ea);
371 		if (!pud_none(*pu)) {
372 			pm = pmd_offset(pu, ea);
373 			if (pmd_present(*pm))
374 				pt = pte_offset_kernel(pm, ea);
375 		}
376 	}
377 	return pt;
378 }
379 
380 #ifdef CONFIG_HUGETLB_PAGE
381 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
382 				 unsigned *shift);
383 #else
find_linux_pte_or_hugepte(pgd_t * pgdir,unsigned long ea,unsigned * shift)384 static inline pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
385 					       unsigned *shift)
386 {
387 	if (shift)
388 		*shift = 0;
389 	return find_linux_pte(pgdir, ea);
390 }
391 #endif /* !CONFIG_HUGETLB_PAGE */
392 
393 #endif /* __ASSEMBLY__ */
394 
395 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
396