1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 
56 	PERF_COUNT_HW_MAX,			/* non-ABI */
57 };
58 
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67 	PERF_COUNT_HW_CACHE_L1D			= 0,
68 	PERF_COUNT_HW_CACHE_L1I			= 1,
69 	PERF_COUNT_HW_CACHE_LL			= 2,
70 	PERF_COUNT_HW_CACHE_DTLB		= 3,
71 	PERF_COUNT_HW_CACHE_ITLB		= 4,
72 	PERF_COUNT_HW_CACHE_BPU			= 5,
73 
74 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
75 };
76 
77 enum perf_hw_cache_op_id {
78 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
79 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
80 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
81 
82 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
83 };
84 
85 enum perf_hw_cache_op_result_id {
86 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
87 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
88 
89 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
90 };
91 
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99 	PERF_COUNT_SW_CPU_CLOCK			= 0,
100 	PERF_COUNT_SW_TASK_CLOCK		= 1,
101 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
102 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
103 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
104 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
105 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
106 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
107 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
108 
109 	PERF_COUNT_SW_MAX,			/* non-ABI */
110 };
111 
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117 	PERF_SAMPLE_IP				= 1U << 0,
118 	PERF_SAMPLE_TID				= 1U << 1,
119 	PERF_SAMPLE_TIME			= 1U << 2,
120 	PERF_SAMPLE_ADDR			= 1U << 3,
121 	PERF_SAMPLE_READ			= 1U << 4,
122 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
123 	PERF_SAMPLE_ID				= 1U << 6,
124 	PERF_SAMPLE_CPU				= 1U << 7,
125 	PERF_SAMPLE_PERIOD			= 1U << 8,
126 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
127 	PERF_SAMPLE_RAW				= 1U << 10,
128 
129 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
130 };
131 
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *	{ u64		value;
138  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
139  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
140  *	  { u64		id;           } && PERF_FORMAT_ID
141  *	} && !PERF_FORMAT_GROUP
142  *
143  *	{ u64		nr;
144  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
145  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
146  *	  { u64		value;
147  *	    { u64	id;           } && PERF_FORMAT_ID
148  *	  }		cntr[nr];
149  *	} && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
154 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
155 	PERF_FORMAT_ID				= 1U << 2,
156 	PERF_FORMAT_GROUP			= 1U << 3,
157 
158 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
159 };
160 
161 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
162 
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167 
168 	/*
169 	 * Major type: hardware/software/tracepoint/etc.
170 	 */
171 	__u32			type;
172 
173 	/*
174 	 * Size of the attr structure, for fwd/bwd compat.
175 	 */
176 	__u32			size;
177 
178 	/*
179 	 * Type specific configuration information.
180 	 */
181 	__u64			config;
182 
183 	union {
184 		__u64		sample_period;
185 		__u64		sample_freq;
186 	};
187 
188 	__u64			sample_type;
189 	__u64			read_format;
190 
191 	__u64			disabled       :  1, /* off by default        */
192 				inherit	       :  1, /* children inherit it   */
193 				pinned	       :  1, /* must always be on PMU */
194 				exclusive      :  1, /* only group on PMU     */
195 				exclude_user   :  1, /* don't count user      */
196 				exclude_kernel :  1, /* ditto kernel          */
197 				exclude_hv     :  1, /* ditto hypervisor      */
198 				exclude_idle   :  1, /* don't count when idle */
199 				mmap           :  1, /* include mmap data     */
200 				comm	       :  1, /* include comm data     */
201 				freq           :  1, /* use freq, not period  */
202 				inherit_stat   :  1, /* per task counts       */
203 				enable_on_exec :  1, /* next exec enables     */
204 				task           :  1, /* trace fork/exit       */
205 				watermark      :  1, /* wakeup_watermark      */
206 				/*
207 				 * precise_ip:
208 				 *
209 				 *  0 - SAMPLE_IP can have arbitrary skid
210 				 *  1 - SAMPLE_IP must have constant skid
211 				 *  2 - SAMPLE_IP requested to have 0 skid
212 				 *  3 - SAMPLE_IP must have 0 skid
213 				 *
214 				 *  See also PERF_RECORD_MISC_EXACT_IP
215 				 */
216 				precise_ip     :  2, /* skid constraint       */
217 				mmap_data      :  1, /* non-exec mmap data    */
218 				sample_id_all  :  1, /* sample_type all events */
219 
220 				__reserved_1   : 45;
221 
222 	union {
223 		__u32		wakeup_events;	  /* wakeup every n events */
224 		__u32		wakeup_watermark; /* bytes before wakeup   */
225 	};
226 
227 	__u32			bp_type;
228 	union {
229 		__u64		bp_addr;
230 		__u64		config1; /* extension of config */
231 	};
232 	union {
233 		__u64		bp_len;
234 		__u64		config2; /* extension of config1 */
235 	};
236 };
237 
238 /*
239  * Ioctls that can be done on a perf event fd:
240  */
241 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
242 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
243 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
244 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
245 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
246 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
247 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
248 
249 enum perf_event_ioc_flags {
250 	PERF_IOC_FLAG_GROUP		= 1U << 0,
251 };
252 
253 /*
254  * Structure of the page that can be mapped via mmap
255  */
256 struct perf_event_mmap_page {
257 	__u32	version;		/* version number of this structure */
258 	__u32	compat_version;		/* lowest version this is compat with */
259 
260 	/*
261 	 * Bits needed to read the hw events in user-space.
262 	 *
263 	 *   u32 seq;
264 	 *   s64 count;
265 	 *
266 	 *   do {
267 	 *     seq = pc->lock;
268 	 *
269 	 *     barrier()
270 	 *     if (pc->index) {
271 	 *       count = pmc_read(pc->index - 1);
272 	 *       count += pc->offset;
273 	 *     } else
274 	 *       goto regular_read;
275 	 *
276 	 *     barrier();
277 	 *   } while (pc->lock != seq);
278 	 *
279 	 * NOTE: for obvious reason this only works on self-monitoring
280 	 *       processes.
281 	 */
282 	__u32	lock;			/* seqlock for synchronization */
283 	__u32	index;			/* hardware event identifier */
284 	__s64	offset;			/* add to hardware event value */
285 	__u64	time_enabled;		/* time event active */
286 	__u64	time_running;		/* time event on cpu */
287 
288 		/*
289 		 * Hole for extension of the self monitor capabilities
290 		 */
291 
292 	__u64	__reserved[123];	/* align to 1k */
293 
294 	/*
295 	 * Control data for the mmap() data buffer.
296 	 *
297 	 * User-space reading the @data_head value should issue an rmb(), on
298 	 * SMP capable platforms, after reading this value -- see
299 	 * perf_event_wakeup().
300 	 *
301 	 * When the mapping is PROT_WRITE the @data_tail value should be
302 	 * written by userspace to reflect the last read data. In this case
303 	 * the kernel will not over-write unread data.
304 	 */
305 	__u64   data_head;		/* head in the data section */
306 	__u64	data_tail;		/* user-space written tail */
307 };
308 
309 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
310 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
311 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
312 #define PERF_RECORD_MISC_USER			(2 << 0)
313 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
314 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
315 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
316 
317 /*
318  * Indicates that the content of PERF_SAMPLE_IP points to
319  * the actual instruction that triggered the event. See also
320  * perf_event_attr::precise_ip.
321  */
322 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
323 /*
324  * Reserve the last bit to indicate some extended misc field
325  */
326 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
327 
328 struct perf_event_header {
329 	__u32	type;
330 	__u16	misc;
331 	__u16	size;
332 };
333 
334 enum perf_event_type {
335 
336 	/*
337 	 * If perf_event_attr.sample_id_all is set then all event types will
338 	 * have the sample_type selected fields related to where/when
339 	 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
340 	 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
341 	 * the perf_event_header and the fields already present for the existing
342 	 * fields, i.e. at the end of the payload. That way a newer perf.data
343 	 * file will be supported by older perf tools, with these new optional
344 	 * fields being ignored.
345 	 *
346 	 * The MMAP events record the PROT_EXEC mappings so that we can
347 	 * correlate userspace IPs to code. They have the following structure:
348 	 *
349 	 * struct {
350 	 *	struct perf_event_header	header;
351 	 *
352 	 *	u32				pid, tid;
353 	 *	u64				addr;
354 	 *	u64				len;
355 	 *	u64				pgoff;
356 	 *	char				filename[];
357 	 * };
358 	 */
359 	PERF_RECORD_MMAP			= 1,
360 
361 	/*
362 	 * struct {
363 	 *	struct perf_event_header	header;
364 	 *	u64				id;
365 	 *	u64				lost;
366 	 * };
367 	 */
368 	PERF_RECORD_LOST			= 2,
369 
370 	/*
371 	 * struct {
372 	 *	struct perf_event_header	header;
373 	 *
374 	 *	u32				pid, tid;
375 	 *	char				comm[];
376 	 * };
377 	 */
378 	PERF_RECORD_COMM			= 3,
379 
380 	/*
381 	 * struct {
382 	 *	struct perf_event_header	header;
383 	 *	u32				pid, ppid;
384 	 *	u32				tid, ptid;
385 	 *	u64				time;
386 	 * };
387 	 */
388 	PERF_RECORD_EXIT			= 4,
389 
390 	/*
391 	 * struct {
392 	 *	struct perf_event_header	header;
393 	 *	u64				time;
394 	 *	u64				id;
395 	 *	u64				stream_id;
396 	 * };
397 	 */
398 	PERF_RECORD_THROTTLE			= 5,
399 	PERF_RECORD_UNTHROTTLE			= 6,
400 
401 	/*
402 	 * struct {
403 	 *	struct perf_event_header	header;
404 	 *	u32				pid, ppid;
405 	 *	u32				tid, ptid;
406 	 *	u64				time;
407 	 * };
408 	 */
409 	PERF_RECORD_FORK			= 7,
410 
411 	/*
412 	 * struct {
413 	 *	struct perf_event_header	header;
414 	 *	u32				pid, tid;
415 	 *
416 	 *	struct read_format		values;
417 	 * };
418 	 */
419 	PERF_RECORD_READ			= 8,
420 
421 	/*
422 	 * struct {
423 	 *	struct perf_event_header	header;
424 	 *
425 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
426 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
427 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
428 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
429 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
430 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
431 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
432 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
433 	 *
434 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
435 	 *
436 	 *	{ u64			nr,
437 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
438 	 *
439 	 *	#
440 	 *	# The RAW record below is opaque data wrt the ABI
441 	 *	#
442 	 *	# That is, the ABI doesn't make any promises wrt to
443 	 *	# the stability of its content, it may vary depending
444 	 *	# on event, hardware, kernel version and phase of
445 	 *	# the moon.
446 	 *	#
447 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
448 	 *	#
449 	 *
450 	 *	{ u32			size;
451 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
452 	 * };
453 	 */
454 	PERF_RECORD_SAMPLE			= 9,
455 
456 	PERF_RECORD_MAX,			/* non-ABI */
457 };
458 
459 enum perf_callchain_context {
460 	PERF_CONTEXT_HV			= (__u64)-32,
461 	PERF_CONTEXT_KERNEL		= (__u64)-128,
462 	PERF_CONTEXT_USER		= (__u64)-512,
463 
464 	PERF_CONTEXT_GUEST		= (__u64)-2048,
465 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
466 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
467 
468 	PERF_CONTEXT_MAX		= (__u64)-4095,
469 };
470 
471 #define PERF_FLAG_FD_NO_GROUP	(1U << 0)
472 #define PERF_FLAG_FD_OUTPUT	(1U << 1)
473 #define PERF_FLAG_PID_CGROUP	(1U << 2) /* pid=cgroup id, per-cpu mode only */
474 
475 #ifdef __KERNEL__
476 /*
477  * Kernel-internal data types and definitions:
478  */
479 
480 #ifdef CONFIG_PERF_EVENTS
481 # include <linux/cgroup.h>
482 # include <asm/perf_event.h>
483 # include <asm/local64.h>
484 #endif
485 
486 struct perf_guest_info_callbacks {
487 	int (*is_in_guest) (void);
488 	int (*is_user_mode) (void);
489 	unsigned long (*get_guest_ip) (void);
490 };
491 
492 #ifdef CONFIG_HAVE_HW_BREAKPOINT
493 #include <asm/hw_breakpoint.h>
494 #endif
495 
496 #include <linux/list.h>
497 #include <linux/mutex.h>
498 #include <linux/rculist.h>
499 #include <linux/rcupdate.h>
500 #include <linux/spinlock.h>
501 #include <linux/hrtimer.h>
502 #include <linux/fs.h>
503 #include <linux/pid_namespace.h>
504 #include <linux/workqueue.h>
505 #include <linux/ftrace.h>
506 #include <linux/cpu.h>
507 #include <linux/irq_work.h>
508 #include <linux/jump_label_ref.h>
509 #include <asm/atomic.h>
510 #include <asm/local.h>
511 
512 #define PERF_MAX_STACK_DEPTH		255
513 
514 struct perf_callchain_entry {
515 	__u64				nr;
516 	__u64				ip[PERF_MAX_STACK_DEPTH];
517 };
518 
519 struct perf_raw_record {
520 	u32				size;
521 	void				*data;
522 };
523 
524 struct perf_branch_entry {
525 	__u64				from;
526 	__u64				to;
527 	__u64				flags;
528 };
529 
530 struct perf_branch_stack {
531 	__u64				nr;
532 	struct perf_branch_entry	entries[0];
533 };
534 
535 struct task_struct;
536 
537 /**
538  * struct hw_perf_event - performance event hardware details:
539  */
540 struct hw_perf_event {
541 #ifdef CONFIG_PERF_EVENTS
542 	union {
543 		struct { /* hardware */
544 			u64		config;
545 			u64		last_tag;
546 			unsigned long	config_base;
547 			unsigned long	event_base;
548 			int		idx;
549 			int		last_cpu;
550 			unsigned int	extra_reg;
551 			u64		extra_config;
552 			int		extra_alloc;
553 		};
554 		struct { /* software */
555 			struct hrtimer	hrtimer;
556 		};
557 #ifdef CONFIG_HAVE_HW_BREAKPOINT
558 		struct { /* breakpoint */
559 			struct arch_hw_breakpoint	info;
560 			struct list_head		bp_list;
561 			/*
562 			 * Crufty hack to avoid the chicken and egg
563 			 * problem hw_breakpoint has with context
564 			 * creation and event initalization.
565 			 */
566 			struct task_struct		*bp_target;
567 		};
568 #endif
569 	};
570 	int				state;
571 	local64_t			prev_count;
572 	u64				sample_period;
573 	u64				last_period;
574 	local64_t			period_left;
575 	u64				interrupts;
576 
577 	u64				freq_time_stamp;
578 	u64				freq_count_stamp;
579 #endif
580 };
581 
582 /*
583  * hw_perf_event::state flags
584  */
585 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
586 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
587 #define PERF_HES_ARCH		0x04
588 
589 struct perf_event;
590 
591 /*
592  * Common implementation detail of pmu::{start,commit,cancel}_txn
593  */
594 #define PERF_EVENT_TXN 0x1
595 
596 /**
597  * struct pmu - generic performance monitoring unit
598  */
599 struct pmu {
600 	struct list_head		entry;
601 
602 	struct device			*dev;
603 	char				*name;
604 	int				type;
605 
606 	int * __percpu			pmu_disable_count;
607 	struct perf_cpu_context * __percpu pmu_cpu_context;
608 	int				task_ctx_nr;
609 
610 	/*
611 	 * Fully disable/enable this PMU, can be used to protect from the PMI
612 	 * as well as for lazy/batch writing of the MSRs.
613 	 */
614 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
615 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
616 
617 	/*
618 	 * Try and initialize the event for this PMU.
619 	 * Should return -ENOENT when the @event doesn't match this PMU.
620 	 */
621 	int (*event_init)		(struct perf_event *event);
622 
623 #define PERF_EF_START	0x01		/* start the counter when adding    */
624 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
625 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
626 
627 	/*
628 	 * Adds/Removes a counter to/from the PMU, can be done inside
629 	 * a transaction, see the ->*_txn() methods.
630 	 */
631 	int  (*add)			(struct perf_event *event, int flags);
632 	void (*del)			(struct perf_event *event, int flags);
633 
634 	/*
635 	 * Starts/Stops a counter present on the PMU. The PMI handler
636 	 * should stop the counter when perf_event_overflow() returns
637 	 * !0. ->start() will be used to continue.
638 	 */
639 	void (*start)			(struct perf_event *event, int flags);
640 	void (*stop)			(struct perf_event *event, int flags);
641 
642 	/*
643 	 * Updates the counter value of the event.
644 	 */
645 	void (*read)			(struct perf_event *event);
646 
647 	/*
648 	 * Group events scheduling is treated as a transaction, add
649 	 * group events as a whole and perform one schedulability test.
650 	 * If the test fails, roll back the whole group
651 	 *
652 	 * Start the transaction, after this ->add() doesn't need to
653 	 * do schedulability tests.
654 	 */
655 	void (*start_txn)	(struct pmu *pmu); /* optional */
656 	/*
657 	 * If ->start_txn() disabled the ->add() schedulability test
658 	 * then ->commit_txn() is required to perform one. On success
659 	 * the transaction is closed. On error the transaction is kept
660 	 * open until ->cancel_txn() is called.
661 	 */
662 	int  (*commit_txn)	(struct pmu *pmu); /* optional */
663 	/*
664 	 * Will cancel the transaction, assumes ->del() is called
665 	 * for each successful ->add() during the transaction.
666 	 */
667 	void (*cancel_txn)	(struct pmu *pmu); /* optional */
668 };
669 
670 /**
671  * enum perf_event_active_state - the states of a event
672  */
673 enum perf_event_active_state {
674 	PERF_EVENT_STATE_ERROR		= -2,
675 	PERF_EVENT_STATE_OFF		= -1,
676 	PERF_EVENT_STATE_INACTIVE	=  0,
677 	PERF_EVENT_STATE_ACTIVE		=  1,
678 };
679 
680 struct file;
681 
682 #define PERF_BUFFER_WRITABLE		0x01
683 
684 struct perf_buffer {
685 	atomic_t			refcount;
686 	struct rcu_head			rcu_head;
687 #ifdef CONFIG_PERF_USE_VMALLOC
688 	struct work_struct		work;
689 	int				page_order;	/* allocation order  */
690 #endif
691 	int				nr_pages;	/* nr of data pages  */
692 	int				writable;	/* are we writable   */
693 
694 	atomic_t			poll;		/* POLL_ for wakeups */
695 
696 	local_t				head;		/* write position    */
697 	local_t				nest;		/* nested writers    */
698 	local_t				events;		/* event limit       */
699 	local_t				wakeup;		/* wakeup stamp      */
700 	local_t				lost;		/* nr records lost   */
701 
702 	long				watermark;	/* wakeup watermark  */
703 
704 	struct perf_event_mmap_page	*user_page;
705 	void				*data_pages[0];
706 };
707 
708 struct perf_sample_data;
709 
710 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
711 					struct perf_sample_data *,
712 					struct pt_regs *regs);
713 
714 enum perf_group_flag {
715 	PERF_GROUP_SOFTWARE = 0x1,
716 };
717 
718 #define SWEVENT_HLIST_BITS	8
719 #define SWEVENT_HLIST_SIZE	(1 << SWEVENT_HLIST_BITS)
720 
721 struct swevent_hlist {
722 	struct hlist_head	heads[SWEVENT_HLIST_SIZE];
723 	struct rcu_head		rcu_head;
724 };
725 
726 #define PERF_ATTACH_CONTEXT	0x01
727 #define PERF_ATTACH_GROUP	0x02
728 #define PERF_ATTACH_TASK	0x04
729 
730 #ifdef CONFIG_CGROUP_PERF
731 /*
732  * perf_cgroup_info keeps track of time_enabled for a cgroup.
733  * This is a per-cpu dynamically allocated data structure.
734  */
735 struct perf_cgroup_info {
736 	u64 time;
737 	u64 timestamp;
738 };
739 
740 struct perf_cgroup {
741 	struct cgroup_subsys_state css;
742 	struct perf_cgroup_info *info;	/* timing info, one per cpu */
743 };
744 #endif
745 
746 /**
747  * struct perf_event - performance event kernel representation:
748  */
749 struct perf_event {
750 #ifdef CONFIG_PERF_EVENTS
751 	struct list_head		group_entry;
752 	struct list_head		event_entry;
753 	struct list_head		sibling_list;
754 	struct hlist_node		hlist_entry;
755 	int				nr_siblings;
756 	int				group_flags;
757 	struct perf_event		*group_leader;
758 	struct pmu			*pmu;
759 
760 	enum perf_event_active_state	state;
761 	unsigned int			attach_state;
762 	local64_t			count;
763 	atomic64_t			child_count;
764 
765 	/*
766 	 * These are the total time in nanoseconds that the event
767 	 * has been enabled (i.e. eligible to run, and the task has
768 	 * been scheduled in, if this is a per-task event)
769 	 * and running (scheduled onto the CPU), respectively.
770 	 *
771 	 * They are computed from tstamp_enabled, tstamp_running and
772 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
773 	 */
774 	u64				total_time_enabled;
775 	u64				total_time_running;
776 
777 	/*
778 	 * These are timestamps used for computing total_time_enabled
779 	 * and total_time_running when the event is in INACTIVE or
780 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
781 	 * in time.
782 	 * tstamp_enabled: the notional time when the event was enabled
783 	 * tstamp_running: the notional time when the event was scheduled on
784 	 * tstamp_stopped: in INACTIVE state, the notional time when the
785 	 *	event was scheduled off.
786 	 */
787 	u64				tstamp_enabled;
788 	u64				tstamp_running;
789 	u64				tstamp_stopped;
790 
791 	/*
792 	 * timestamp shadows the actual context timing but it can
793 	 * be safely used in NMI interrupt context. It reflects the
794 	 * context time as it was when the event was last scheduled in.
795 	 *
796 	 * ctx_time already accounts for ctx->timestamp. Therefore to
797 	 * compute ctx_time for a sample, simply add perf_clock().
798 	 */
799 	u64				shadow_ctx_time;
800 
801 	struct perf_event_attr		attr;
802 	u16				header_size;
803 	u16				id_header_size;
804 	u16				read_size;
805 	struct hw_perf_event		hw;
806 
807 	struct perf_event_context	*ctx;
808 	struct file			*filp;
809 
810 	/*
811 	 * These accumulate total time (in nanoseconds) that children
812 	 * events have been enabled and running, respectively.
813 	 */
814 	atomic64_t			child_total_time_enabled;
815 	atomic64_t			child_total_time_running;
816 
817 	/*
818 	 * Protect attach/detach and child_list:
819 	 */
820 	struct mutex			child_mutex;
821 	struct list_head		child_list;
822 	struct perf_event		*parent;
823 
824 	int				oncpu;
825 	int				cpu;
826 
827 	struct list_head		owner_entry;
828 	struct task_struct		*owner;
829 
830 	/* mmap bits */
831 	struct mutex			mmap_mutex;
832 	atomic_t			mmap_count;
833 	int				mmap_locked;
834 	struct user_struct		*mmap_user;
835 	struct perf_buffer		*buffer;
836 
837 	/* poll related */
838 	wait_queue_head_t		waitq;
839 	struct fasync_struct		*fasync;
840 
841 	/* delayed work for NMIs and such */
842 	int				pending_wakeup;
843 	int				pending_kill;
844 	int				pending_disable;
845 	struct irq_work			pending;
846 
847 	atomic_t			event_limit;
848 
849 	void (*destroy)(struct perf_event *);
850 	struct rcu_head			rcu_head;
851 
852 	struct pid_namespace		*ns;
853 	u64				id;
854 
855 	perf_overflow_handler_t		overflow_handler;
856 
857 #ifdef CONFIG_EVENT_TRACING
858 	struct ftrace_event_call	*tp_event;
859 	struct event_filter		*filter;
860 #endif
861 
862 #ifdef CONFIG_CGROUP_PERF
863 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
864 	int				cgrp_defer_enabled;
865 #endif
866 
867 #endif /* CONFIG_PERF_EVENTS */
868 };
869 
870 enum perf_event_context_type {
871 	task_context,
872 	cpu_context,
873 };
874 
875 /**
876  * struct perf_event_context - event context structure
877  *
878  * Used as a container for task events and CPU events as well:
879  */
880 struct perf_event_context {
881 	struct pmu			*pmu;
882 	enum perf_event_context_type	type;
883 	/*
884 	 * Protect the states of the events in the list,
885 	 * nr_active, and the list:
886 	 */
887 	raw_spinlock_t			lock;
888 	/*
889 	 * Protect the list of events.  Locking either mutex or lock
890 	 * is sufficient to ensure the list doesn't change; to change
891 	 * the list you need to lock both the mutex and the spinlock.
892 	 */
893 	struct mutex			mutex;
894 
895 	struct list_head		pinned_groups;
896 	struct list_head		flexible_groups;
897 	struct list_head		event_list;
898 	int				nr_events;
899 	int				nr_active;
900 	int				is_active;
901 	int				nr_stat;
902 	int				rotate_disable;
903 	atomic_t			refcount;
904 	struct task_struct		*task;
905 
906 	/*
907 	 * Context clock, runs when context enabled.
908 	 */
909 	u64				time;
910 	u64				timestamp;
911 
912 	/*
913 	 * These fields let us detect when two contexts have both
914 	 * been cloned (inherited) from a common ancestor.
915 	 */
916 	struct perf_event_context	*parent_ctx;
917 	u64				parent_gen;
918 	u64				generation;
919 	int				pin_count;
920 	struct rcu_head			rcu_head;
921 	int				nr_cgroups; /* cgroup events present */
922 };
923 
924 /*
925  * Number of contexts where an event can trigger:
926  * 	task, softirq, hardirq, nmi.
927  */
928 #define PERF_NR_CONTEXTS	4
929 
930 /**
931  * struct perf_event_cpu_context - per cpu event context structure
932  */
933 struct perf_cpu_context {
934 	struct perf_event_context	ctx;
935 	struct perf_event_context	*task_ctx;
936 	int				active_oncpu;
937 	int				exclusive;
938 	struct list_head		rotation_list;
939 	int				jiffies_interval;
940 	struct pmu			*active_pmu;
941 	struct perf_cgroup		*cgrp;
942 };
943 
944 struct perf_output_handle {
945 	struct perf_event		*event;
946 	struct perf_buffer		*buffer;
947 	unsigned long			wakeup;
948 	unsigned long			size;
949 	void				*addr;
950 	int				page;
951 	int				nmi;
952 	int				sample;
953 };
954 
955 #ifdef CONFIG_PERF_EVENTS
956 
957 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
958 extern void perf_pmu_unregister(struct pmu *pmu);
959 
960 extern int perf_num_counters(void);
961 extern const char *perf_pmu_name(void);
962 extern void __perf_event_task_sched_in(struct task_struct *task);
963 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
964 extern int perf_event_init_task(struct task_struct *child);
965 extern void perf_event_exit_task(struct task_struct *child);
966 extern void perf_event_free_task(struct task_struct *task);
967 extern void perf_event_delayed_put(struct task_struct *task);
968 extern void perf_event_print_debug(void);
969 extern void perf_pmu_disable(struct pmu *pmu);
970 extern void perf_pmu_enable(struct pmu *pmu);
971 extern int perf_event_task_disable(void);
972 extern int perf_event_task_enable(void);
973 extern void perf_event_update_userpage(struct perf_event *event);
974 extern int perf_event_release_kernel(struct perf_event *event);
975 extern struct perf_event *
976 perf_event_create_kernel_counter(struct perf_event_attr *attr,
977 				int cpu,
978 				struct task_struct *task,
979 				perf_overflow_handler_t callback);
980 extern u64 perf_event_read_value(struct perf_event *event,
981 				 u64 *enabled, u64 *running);
982 
983 struct perf_sample_data {
984 	u64				type;
985 
986 	u64				ip;
987 	struct {
988 		u32	pid;
989 		u32	tid;
990 	}				tid_entry;
991 	u64				time;
992 	u64				addr;
993 	u64				id;
994 	u64				stream_id;
995 	struct {
996 		u32	cpu;
997 		u32	reserved;
998 	}				cpu_entry;
999 	u64				period;
1000 	struct perf_callchain_entry	*callchain;
1001 	struct perf_raw_record		*raw;
1002 };
1003 
1004 static inline
perf_sample_data_init(struct perf_sample_data * data,u64 addr)1005 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1006 {
1007 	data->addr = addr;
1008 	data->raw  = NULL;
1009 }
1010 
1011 extern void perf_output_sample(struct perf_output_handle *handle,
1012 			       struct perf_event_header *header,
1013 			       struct perf_sample_data *data,
1014 			       struct perf_event *event);
1015 extern void perf_prepare_sample(struct perf_event_header *header,
1016 				struct perf_sample_data *data,
1017 				struct perf_event *event,
1018 				struct pt_regs *regs);
1019 
1020 extern int perf_event_overflow(struct perf_event *event, int nmi,
1021 				 struct perf_sample_data *data,
1022 				 struct pt_regs *regs);
1023 
is_sampling_event(struct perf_event * event)1024 static inline bool is_sampling_event(struct perf_event *event)
1025 {
1026 	return event->attr.sample_period != 0;
1027 }
1028 
1029 /*
1030  * Return 1 for a software event, 0 for a hardware event
1031  */
is_software_event(struct perf_event * event)1032 static inline int is_software_event(struct perf_event *event)
1033 {
1034 	return event->pmu->task_ctx_nr == perf_sw_context;
1035 }
1036 
1037 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
1038 
1039 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
1040 
1041 #ifndef perf_arch_fetch_caller_regs
1042 static inline void
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1043 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1044 #endif
1045 
1046 /*
1047  * Take a snapshot of the regs. Skip ip and frame pointer to
1048  * the nth caller. We only need a few of the regs:
1049  * - ip for PERF_SAMPLE_IP
1050  * - cs for user_mode() tests
1051  * - bp for callchains
1052  * - eflags, for future purposes, just in case
1053  */
perf_fetch_caller_regs(struct pt_regs * regs)1054 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1055 {
1056 	memset(regs, 0, sizeof(*regs));
1057 
1058 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1059 }
1060 
1061 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1062 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1063 {
1064 	struct pt_regs hot_regs;
1065 
1066 	JUMP_LABEL(&perf_swevent_enabled[event_id], have_event);
1067 	return;
1068 
1069 have_event:
1070 	if (!regs) {
1071 		perf_fetch_caller_regs(&hot_regs);
1072 		regs = &hot_regs;
1073 	}
1074 	__perf_sw_event(event_id, nr, nmi, regs, addr);
1075 }
1076 
1077 extern atomic_t perf_sched_events;
1078 
perf_event_task_sched_in(struct task_struct * task)1079 static inline void perf_event_task_sched_in(struct task_struct *task)
1080 {
1081 	COND_STMT(&perf_sched_events, __perf_event_task_sched_in(task));
1082 }
1083 
1084 static inline
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1085 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1086 {
1087 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1088 
1089 	__perf_event_task_sched_out(task, next);
1090 }
1091 
1092 extern void perf_event_mmap(struct vm_area_struct *vma);
1093 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1094 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1095 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1096 
1097 extern void perf_event_comm(struct task_struct *tsk);
1098 extern void perf_event_fork(struct task_struct *tsk);
1099 
1100 /* Callchains */
1101 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1102 
1103 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1104 				struct pt_regs *regs);
1105 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1106 				  struct pt_regs *regs);
1107 
1108 
1109 static inline void
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)1110 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1111 {
1112 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1113 		entry->ip[entry->nr++] = ip;
1114 }
1115 
1116 extern int sysctl_perf_event_paranoid;
1117 extern int sysctl_perf_event_mlock;
1118 extern int sysctl_perf_event_sample_rate;
1119 
1120 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1121 		void __user *buffer, size_t *lenp,
1122 		loff_t *ppos);
1123 
perf_paranoid_tracepoint_raw(void)1124 static inline bool perf_paranoid_tracepoint_raw(void)
1125 {
1126 	return sysctl_perf_event_paranoid > -1;
1127 }
1128 
perf_paranoid_cpu(void)1129 static inline bool perf_paranoid_cpu(void)
1130 {
1131 	return sysctl_perf_event_paranoid > 0;
1132 }
1133 
perf_paranoid_kernel(void)1134 static inline bool perf_paranoid_kernel(void)
1135 {
1136 	return sysctl_perf_event_paranoid > 1;
1137 }
1138 
1139 extern void perf_event_init(void);
1140 extern void perf_tp_event(u64 addr, u64 count, void *record,
1141 			  int entry_size, struct pt_regs *regs,
1142 			  struct hlist_head *head, int rctx);
1143 extern void perf_bp_event(struct perf_event *event, void *data);
1144 
1145 #ifndef perf_misc_flags
1146 #define perf_misc_flags(regs)	(user_mode(regs) ? PERF_RECORD_MISC_USER : \
1147 				 PERF_RECORD_MISC_KERNEL)
1148 #define perf_instruction_pointer(regs)	instruction_pointer(regs)
1149 #endif
1150 
1151 extern int perf_output_begin(struct perf_output_handle *handle,
1152 			     struct perf_event *event, unsigned int size,
1153 			     int nmi, int sample);
1154 extern void perf_output_end(struct perf_output_handle *handle);
1155 extern void perf_output_copy(struct perf_output_handle *handle,
1156 			     const void *buf, unsigned int len);
1157 extern int perf_swevent_get_recursion_context(void);
1158 extern void perf_swevent_put_recursion_context(int rctx);
1159 extern void perf_event_enable(struct perf_event *event);
1160 extern void perf_event_disable(struct perf_event *event);
1161 extern void perf_event_task_tick(void);
1162 #else
1163 static inline void
perf_event_task_sched_in(struct task_struct * task)1164 perf_event_task_sched_in(struct task_struct *task)			{ }
1165 static inline void
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1166 perf_event_task_sched_out(struct task_struct *task,
1167 			    struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1168 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1169 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1170 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1171 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_print_debug(void)1172 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1173 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1174 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1175 
1176 static inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1177 perf_sw_event(u32 event_id, u64 nr, int nmi,
1178 		     struct pt_regs *regs, u64 addr)			{ }
1179 static inline void
perf_bp_event(struct perf_event * event,void * data)1180 perf_bp_event(struct perf_event *event, void *data)			{ }
1181 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1182 static inline int perf_register_guest_info_callbacks
1183 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1184 static inline int perf_unregister_guest_info_callbacks
1185 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1186 
perf_event_mmap(struct vm_area_struct * vma)1187 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_comm(struct task_struct * tsk)1188 static inline void perf_event_comm(struct task_struct *tsk)		{ }
perf_event_fork(struct task_struct * tsk)1189 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1190 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1191 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1192 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_event_enable(struct perf_event * event)1193 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1194 static inline void perf_event_disable(struct perf_event *event)		{ }
perf_event_task_tick(void)1195 static inline void perf_event_task_tick(void)				{ }
1196 #endif
1197 
1198 #define perf_output_put(handle, x) \
1199 	perf_output_copy((handle), &(x), sizeof(x))
1200 
1201 /*
1202  * This has to have a higher priority than migration_notifier in sched.c.
1203  */
1204 #define perf_cpu_notifier(fn)					\
1205 do {								\
1206 	static struct notifier_block fn##_nb __cpuinitdata =	\
1207 		{ .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1208 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,		\
1209 		(void *)(unsigned long)smp_processor_id());	\
1210 	fn(&fn##_nb, (unsigned long)CPU_STARTING,		\
1211 		(void *)(unsigned long)smp_processor_id());	\
1212 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,			\
1213 		(void *)(unsigned long)smp_processor_id());	\
1214 	register_cpu_notifier(&fn##_nb);			\
1215 } while (0)
1216 
1217 #endif /* __KERNEL__ */
1218 #endif /* _LINUX_PERF_EVENT_H */
1219