1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55
56 PERF_COUNT_HW_MAX, /* non-ABI */
57 };
58
59 /*
60 * Generalized hardware cache events:
61 *
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
65 */
66 enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
73
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
75 };
76
77 enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
83 };
84
85 enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
90 };
91
92 /*
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
97 */
98 enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
108
109 PERF_COUNT_SW_MAX, /* non-ABI */
110 };
111
112 /*
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
115 */
116 enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
128
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130 };
131
132 /*
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
135 *
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
142 *
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
151 */
152 enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
157
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
159 };
160
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
162
163 /*
164 * Hardware event_id to monitor via a performance monitoring event:
165 */
166 struct perf_event_attr {
167
168 /*
169 * Major type: hardware/software/tracepoint/etc.
170 */
171 __u32 type;
172
173 /*
174 * Size of the attr structure, for fwd/bwd compat.
175 */
176 __u32 size;
177
178 /*
179 * Type specific configuration information.
180 */
181 __u64 config;
182
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
186 };
187
188 __u64 sample_type;
189 __u64 read_format;
190
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
206 /*
207 * precise_ip:
208 *
209 * 0 - SAMPLE_IP can have arbitrary skid
210 * 1 - SAMPLE_IP must have constant skid
211 * 2 - SAMPLE_IP requested to have 0 skid
212 * 3 - SAMPLE_IP must have 0 skid
213 *
214 * See also PERF_RECORD_MISC_EXACT_IP
215 */
216 precise_ip : 2, /* skid constraint */
217 mmap_data : 1, /* non-exec mmap data */
218 sample_id_all : 1, /* sample_type all events */
219
220 __reserved_1 : 45;
221
222 union {
223 __u32 wakeup_events; /* wakeup every n events */
224 __u32 wakeup_watermark; /* bytes before wakeup */
225 };
226
227 __u32 bp_type;
228 union {
229 __u64 bp_addr;
230 __u64 config1; /* extension of config */
231 };
232 union {
233 __u64 bp_len;
234 __u64 config2; /* extension of config1 */
235 };
236 };
237
238 /*
239 * Ioctls that can be done on a perf event fd:
240 */
241 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
242 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
243 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
244 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
245 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
246 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
247 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
248
249 enum perf_event_ioc_flags {
250 PERF_IOC_FLAG_GROUP = 1U << 0,
251 };
252
253 /*
254 * Structure of the page that can be mapped via mmap
255 */
256 struct perf_event_mmap_page {
257 __u32 version; /* version number of this structure */
258 __u32 compat_version; /* lowest version this is compat with */
259
260 /*
261 * Bits needed to read the hw events in user-space.
262 *
263 * u32 seq;
264 * s64 count;
265 *
266 * do {
267 * seq = pc->lock;
268 *
269 * barrier()
270 * if (pc->index) {
271 * count = pmc_read(pc->index - 1);
272 * count += pc->offset;
273 * } else
274 * goto regular_read;
275 *
276 * barrier();
277 * } while (pc->lock != seq);
278 *
279 * NOTE: for obvious reason this only works on self-monitoring
280 * processes.
281 */
282 __u32 lock; /* seqlock for synchronization */
283 __u32 index; /* hardware event identifier */
284 __s64 offset; /* add to hardware event value */
285 __u64 time_enabled; /* time event active */
286 __u64 time_running; /* time event on cpu */
287
288 /*
289 * Hole for extension of the self monitor capabilities
290 */
291
292 __u64 __reserved[123]; /* align to 1k */
293
294 /*
295 * Control data for the mmap() data buffer.
296 *
297 * User-space reading the @data_head value should issue an rmb(), on
298 * SMP capable platforms, after reading this value -- see
299 * perf_event_wakeup().
300 *
301 * When the mapping is PROT_WRITE the @data_tail value should be
302 * written by userspace to reflect the last read data. In this case
303 * the kernel will not over-write unread data.
304 */
305 __u64 data_head; /* head in the data section */
306 __u64 data_tail; /* user-space written tail */
307 };
308
309 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
310 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
311 #define PERF_RECORD_MISC_KERNEL (1 << 0)
312 #define PERF_RECORD_MISC_USER (2 << 0)
313 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
314 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
315 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
316
317 /*
318 * Indicates that the content of PERF_SAMPLE_IP points to
319 * the actual instruction that triggered the event. See also
320 * perf_event_attr::precise_ip.
321 */
322 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
323 /*
324 * Reserve the last bit to indicate some extended misc field
325 */
326 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
327
328 struct perf_event_header {
329 __u32 type;
330 __u16 misc;
331 __u16 size;
332 };
333
334 enum perf_event_type {
335
336 /*
337 * If perf_event_attr.sample_id_all is set then all event types will
338 * have the sample_type selected fields related to where/when
339 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
340 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
341 * the perf_event_header and the fields already present for the existing
342 * fields, i.e. at the end of the payload. That way a newer perf.data
343 * file will be supported by older perf tools, with these new optional
344 * fields being ignored.
345 *
346 * The MMAP events record the PROT_EXEC mappings so that we can
347 * correlate userspace IPs to code. They have the following structure:
348 *
349 * struct {
350 * struct perf_event_header header;
351 *
352 * u32 pid, tid;
353 * u64 addr;
354 * u64 len;
355 * u64 pgoff;
356 * char filename[];
357 * };
358 */
359 PERF_RECORD_MMAP = 1,
360
361 /*
362 * struct {
363 * struct perf_event_header header;
364 * u64 id;
365 * u64 lost;
366 * };
367 */
368 PERF_RECORD_LOST = 2,
369
370 /*
371 * struct {
372 * struct perf_event_header header;
373 *
374 * u32 pid, tid;
375 * char comm[];
376 * };
377 */
378 PERF_RECORD_COMM = 3,
379
380 /*
381 * struct {
382 * struct perf_event_header header;
383 * u32 pid, ppid;
384 * u32 tid, ptid;
385 * u64 time;
386 * };
387 */
388 PERF_RECORD_EXIT = 4,
389
390 /*
391 * struct {
392 * struct perf_event_header header;
393 * u64 time;
394 * u64 id;
395 * u64 stream_id;
396 * };
397 */
398 PERF_RECORD_THROTTLE = 5,
399 PERF_RECORD_UNTHROTTLE = 6,
400
401 /*
402 * struct {
403 * struct perf_event_header header;
404 * u32 pid, ppid;
405 * u32 tid, ptid;
406 * u64 time;
407 * };
408 */
409 PERF_RECORD_FORK = 7,
410
411 /*
412 * struct {
413 * struct perf_event_header header;
414 * u32 pid, tid;
415 *
416 * struct read_format values;
417 * };
418 */
419 PERF_RECORD_READ = 8,
420
421 /*
422 * struct {
423 * struct perf_event_header header;
424 *
425 * { u64 ip; } && PERF_SAMPLE_IP
426 * { u32 pid, tid; } && PERF_SAMPLE_TID
427 * { u64 time; } && PERF_SAMPLE_TIME
428 * { u64 addr; } && PERF_SAMPLE_ADDR
429 * { u64 id; } && PERF_SAMPLE_ID
430 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
431 * { u32 cpu, res; } && PERF_SAMPLE_CPU
432 * { u64 period; } && PERF_SAMPLE_PERIOD
433 *
434 * { struct read_format values; } && PERF_SAMPLE_READ
435 *
436 * { u64 nr,
437 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
438 *
439 * #
440 * # The RAW record below is opaque data wrt the ABI
441 * #
442 * # That is, the ABI doesn't make any promises wrt to
443 * # the stability of its content, it may vary depending
444 * # on event, hardware, kernel version and phase of
445 * # the moon.
446 * #
447 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
448 * #
449 *
450 * { u32 size;
451 * char data[size];}&& PERF_SAMPLE_RAW
452 * };
453 */
454 PERF_RECORD_SAMPLE = 9,
455
456 PERF_RECORD_MAX, /* non-ABI */
457 };
458
459 enum perf_callchain_context {
460 PERF_CONTEXT_HV = (__u64)-32,
461 PERF_CONTEXT_KERNEL = (__u64)-128,
462 PERF_CONTEXT_USER = (__u64)-512,
463
464 PERF_CONTEXT_GUEST = (__u64)-2048,
465 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
466 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
467
468 PERF_CONTEXT_MAX = (__u64)-4095,
469 };
470
471 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
472 #define PERF_FLAG_FD_OUTPUT (1U << 1)
473 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
474
475 #ifdef __KERNEL__
476 /*
477 * Kernel-internal data types and definitions:
478 */
479
480 #ifdef CONFIG_PERF_EVENTS
481 # include <linux/cgroup.h>
482 # include <asm/perf_event.h>
483 # include <asm/local64.h>
484 #endif
485
486 struct perf_guest_info_callbacks {
487 int (*is_in_guest) (void);
488 int (*is_user_mode) (void);
489 unsigned long (*get_guest_ip) (void);
490 };
491
492 #ifdef CONFIG_HAVE_HW_BREAKPOINT
493 #include <asm/hw_breakpoint.h>
494 #endif
495
496 #include <linux/list.h>
497 #include <linux/mutex.h>
498 #include <linux/rculist.h>
499 #include <linux/rcupdate.h>
500 #include <linux/spinlock.h>
501 #include <linux/hrtimer.h>
502 #include <linux/fs.h>
503 #include <linux/pid_namespace.h>
504 #include <linux/workqueue.h>
505 #include <linux/ftrace.h>
506 #include <linux/cpu.h>
507 #include <linux/irq_work.h>
508 #include <linux/jump_label_ref.h>
509 #include <asm/atomic.h>
510 #include <asm/local.h>
511
512 #define PERF_MAX_STACK_DEPTH 255
513
514 struct perf_callchain_entry {
515 __u64 nr;
516 __u64 ip[PERF_MAX_STACK_DEPTH];
517 };
518
519 struct perf_raw_record {
520 u32 size;
521 void *data;
522 };
523
524 struct perf_branch_entry {
525 __u64 from;
526 __u64 to;
527 __u64 flags;
528 };
529
530 struct perf_branch_stack {
531 __u64 nr;
532 struct perf_branch_entry entries[0];
533 };
534
535 struct task_struct;
536
537 /**
538 * struct hw_perf_event - performance event hardware details:
539 */
540 struct hw_perf_event {
541 #ifdef CONFIG_PERF_EVENTS
542 union {
543 struct { /* hardware */
544 u64 config;
545 u64 last_tag;
546 unsigned long config_base;
547 unsigned long event_base;
548 int idx;
549 int last_cpu;
550 unsigned int extra_reg;
551 u64 extra_config;
552 int extra_alloc;
553 };
554 struct { /* software */
555 struct hrtimer hrtimer;
556 };
557 #ifdef CONFIG_HAVE_HW_BREAKPOINT
558 struct { /* breakpoint */
559 struct arch_hw_breakpoint info;
560 struct list_head bp_list;
561 /*
562 * Crufty hack to avoid the chicken and egg
563 * problem hw_breakpoint has with context
564 * creation and event initalization.
565 */
566 struct task_struct *bp_target;
567 };
568 #endif
569 };
570 int state;
571 local64_t prev_count;
572 u64 sample_period;
573 u64 last_period;
574 local64_t period_left;
575 u64 interrupts;
576
577 u64 freq_time_stamp;
578 u64 freq_count_stamp;
579 #endif
580 };
581
582 /*
583 * hw_perf_event::state flags
584 */
585 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
586 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
587 #define PERF_HES_ARCH 0x04
588
589 struct perf_event;
590
591 /*
592 * Common implementation detail of pmu::{start,commit,cancel}_txn
593 */
594 #define PERF_EVENT_TXN 0x1
595
596 /**
597 * struct pmu - generic performance monitoring unit
598 */
599 struct pmu {
600 struct list_head entry;
601
602 struct device *dev;
603 char *name;
604 int type;
605
606 int * __percpu pmu_disable_count;
607 struct perf_cpu_context * __percpu pmu_cpu_context;
608 int task_ctx_nr;
609
610 /*
611 * Fully disable/enable this PMU, can be used to protect from the PMI
612 * as well as for lazy/batch writing of the MSRs.
613 */
614 void (*pmu_enable) (struct pmu *pmu); /* optional */
615 void (*pmu_disable) (struct pmu *pmu); /* optional */
616
617 /*
618 * Try and initialize the event for this PMU.
619 * Should return -ENOENT when the @event doesn't match this PMU.
620 */
621 int (*event_init) (struct perf_event *event);
622
623 #define PERF_EF_START 0x01 /* start the counter when adding */
624 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
625 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
626
627 /*
628 * Adds/Removes a counter to/from the PMU, can be done inside
629 * a transaction, see the ->*_txn() methods.
630 */
631 int (*add) (struct perf_event *event, int flags);
632 void (*del) (struct perf_event *event, int flags);
633
634 /*
635 * Starts/Stops a counter present on the PMU. The PMI handler
636 * should stop the counter when perf_event_overflow() returns
637 * !0. ->start() will be used to continue.
638 */
639 void (*start) (struct perf_event *event, int flags);
640 void (*stop) (struct perf_event *event, int flags);
641
642 /*
643 * Updates the counter value of the event.
644 */
645 void (*read) (struct perf_event *event);
646
647 /*
648 * Group events scheduling is treated as a transaction, add
649 * group events as a whole and perform one schedulability test.
650 * If the test fails, roll back the whole group
651 *
652 * Start the transaction, after this ->add() doesn't need to
653 * do schedulability tests.
654 */
655 void (*start_txn) (struct pmu *pmu); /* optional */
656 /*
657 * If ->start_txn() disabled the ->add() schedulability test
658 * then ->commit_txn() is required to perform one. On success
659 * the transaction is closed. On error the transaction is kept
660 * open until ->cancel_txn() is called.
661 */
662 int (*commit_txn) (struct pmu *pmu); /* optional */
663 /*
664 * Will cancel the transaction, assumes ->del() is called
665 * for each successful ->add() during the transaction.
666 */
667 void (*cancel_txn) (struct pmu *pmu); /* optional */
668 };
669
670 /**
671 * enum perf_event_active_state - the states of a event
672 */
673 enum perf_event_active_state {
674 PERF_EVENT_STATE_ERROR = -2,
675 PERF_EVENT_STATE_OFF = -1,
676 PERF_EVENT_STATE_INACTIVE = 0,
677 PERF_EVENT_STATE_ACTIVE = 1,
678 };
679
680 struct file;
681
682 #define PERF_BUFFER_WRITABLE 0x01
683
684 struct perf_buffer {
685 atomic_t refcount;
686 struct rcu_head rcu_head;
687 #ifdef CONFIG_PERF_USE_VMALLOC
688 struct work_struct work;
689 int page_order; /* allocation order */
690 #endif
691 int nr_pages; /* nr of data pages */
692 int writable; /* are we writable */
693
694 atomic_t poll; /* POLL_ for wakeups */
695
696 local_t head; /* write position */
697 local_t nest; /* nested writers */
698 local_t events; /* event limit */
699 local_t wakeup; /* wakeup stamp */
700 local_t lost; /* nr records lost */
701
702 long watermark; /* wakeup watermark */
703
704 struct perf_event_mmap_page *user_page;
705 void *data_pages[0];
706 };
707
708 struct perf_sample_data;
709
710 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
711 struct perf_sample_data *,
712 struct pt_regs *regs);
713
714 enum perf_group_flag {
715 PERF_GROUP_SOFTWARE = 0x1,
716 };
717
718 #define SWEVENT_HLIST_BITS 8
719 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
720
721 struct swevent_hlist {
722 struct hlist_head heads[SWEVENT_HLIST_SIZE];
723 struct rcu_head rcu_head;
724 };
725
726 #define PERF_ATTACH_CONTEXT 0x01
727 #define PERF_ATTACH_GROUP 0x02
728 #define PERF_ATTACH_TASK 0x04
729
730 #ifdef CONFIG_CGROUP_PERF
731 /*
732 * perf_cgroup_info keeps track of time_enabled for a cgroup.
733 * This is a per-cpu dynamically allocated data structure.
734 */
735 struct perf_cgroup_info {
736 u64 time;
737 u64 timestamp;
738 };
739
740 struct perf_cgroup {
741 struct cgroup_subsys_state css;
742 struct perf_cgroup_info *info; /* timing info, one per cpu */
743 };
744 #endif
745
746 /**
747 * struct perf_event - performance event kernel representation:
748 */
749 struct perf_event {
750 #ifdef CONFIG_PERF_EVENTS
751 struct list_head group_entry;
752 struct list_head event_entry;
753 struct list_head sibling_list;
754 struct hlist_node hlist_entry;
755 int nr_siblings;
756 int group_flags;
757 struct perf_event *group_leader;
758 struct pmu *pmu;
759
760 enum perf_event_active_state state;
761 unsigned int attach_state;
762 local64_t count;
763 atomic64_t child_count;
764
765 /*
766 * These are the total time in nanoseconds that the event
767 * has been enabled (i.e. eligible to run, and the task has
768 * been scheduled in, if this is a per-task event)
769 * and running (scheduled onto the CPU), respectively.
770 *
771 * They are computed from tstamp_enabled, tstamp_running and
772 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
773 */
774 u64 total_time_enabled;
775 u64 total_time_running;
776
777 /*
778 * These are timestamps used for computing total_time_enabled
779 * and total_time_running when the event is in INACTIVE or
780 * ACTIVE state, measured in nanoseconds from an arbitrary point
781 * in time.
782 * tstamp_enabled: the notional time when the event was enabled
783 * tstamp_running: the notional time when the event was scheduled on
784 * tstamp_stopped: in INACTIVE state, the notional time when the
785 * event was scheduled off.
786 */
787 u64 tstamp_enabled;
788 u64 tstamp_running;
789 u64 tstamp_stopped;
790
791 /*
792 * timestamp shadows the actual context timing but it can
793 * be safely used in NMI interrupt context. It reflects the
794 * context time as it was when the event was last scheduled in.
795 *
796 * ctx_time already accounts for ctx->timestamp. Therefore to
797 * compute ctx_time for a sample, simply add perf_clock().
798 */
799 u64 shadow_ctx_time;
800
801 struct perf_event_attr attr;
802 u16 header_size;
803 u16 id_header_size;
804 u16 read_size;
805 struct hw_perf_event hw;
806
807 struct perf_event_context *ctx;
808 struct file *filp;
809
810 /*
811 * These accumulate total time (in nanoseconds) that children
812 * events have been enabled and running, respectively.
813 */
814 atomic64_t child_total_time_enabled;
815 atomic64_t child_total_time_running;
816
817 /*
818 * Protect attach/detach and child_list:
819 */
820 struct mutex child_mutex;
821 struct list_head child_list;
822 struct perf_event *parent;
823
824 int oncpu;
825 int cpu;
826
827 struct list_head owner_entry;
828 struct task_struct *owner;
829
830 /* mmap bits */
831 struct mutex mmap_mutex;
832 atomic_t mmap_count;
833 int mmap_locked;
834 struct user_struct *mmap_user;
835 struct perf_buffer *buffer;
836
837 /* poll related */
838 wait_queue_head_t waitq;
839 struct fasync_struct *fasync;
840
841 /* delayed work for NMIs and such */
842 int pending_wakeup;
843 int pending_kill;
844 int pending_disable;
845 struct irq_work pending;
846
847 atomic_t event_limit;
848
849 void (*destroy)(struct perf_event *);
850 struct rcu_head rcu_head;
851
852 struct pid_namespace *ns;
853 u64 id;
854
855 perf_overflow_handler_t overflow_handler;
856
857 #ifdef CONFIG_EVENT_TRACING
858 struct ftrace_event_call *tp_event;
859 struct event_filter *filter;
860 #endif
861
862 #ifdef CONFIG_CGROUP_PERF
863 struct perf_cgroup *cgrp; /* cgroup event is attach to */
864 int cgrp_defer_enabled;
865 #endif
866
867 #endif /* CONFIG_PERF_EVENTS */
868 };
869
870 enum perf_event_context_type {
871 task_context,
872 cpu_context,
873 };
874
875 /**
876 * struct perf_event_context - event context structure
877 *
878 * Used as a container for task events and CPU events as well:
879 */
880 struct perf_event_context {
881 struct pmu *pmu;
882 enum perf_event_context_type type;
883 /*
884 * Protect the states of the events in the list,
885 * nr_active, and the list:
886 */
887 raw_spinlock_t lock;
888 /*
889 * Protect the list of events. Locking either mutex or lock
890 * is sufficient to ensure the list doesn't change; to change
891 * the list you need to lock both the mutex and the spinlock.
892 */
893 struct mutex mutex;
894
895 struct list_head pinned_groups;
896 struct list_head flexible_groups;
897 struct list_head event_list;
898 int nr_events;
899 int nr_active;
900 int is_active;
901 int nr_stat;
902 int rotate_disable;
903 atomic_t refcount;
904 struct task_struct *task;
905
906 /*
907 * Context clock, runs when context enabled.
908 */
909 u64 time;
910 u64 timestamp;
911
912 /*
913 * These fields let us detect when two contexts have both
914 * been cloned (inherited) from a common ancestor.
915 */
916 struct perf_event_context *parent_ctx;
917 u64 parent_gen;
918 u64 generation;
919 int pin_count;
920 struct rcu_head rcu_head;
921 int nr_cgroups; /* cgroup events present */
922 };
923
924 /*
925 * Number of contexts where an event can trigger:
926 * task, softirq, hardirq, nmi.
927 */
928 #define PERF_NR_CONTEXTS 4
929
930 /**
931 * struct perf_event_cpu_context - per cpu event context structure
932 */
933 struct perf_cpu_context {
934 struct perf_event_context ctx;
935 struct perf_event_context *task_ctx;
936 int active_oncpu;
937 int exclusive;
938 struct list_head rotation_list;
939 int jiffies_interval;
940 struct pmu *active_pmu;
941 struct perf_cgroup *cgrp;
942 };
943
944 struct perf_output_handle {
945 struct perf_event *event;
946 struct perf_buffer *buffer;
947 unsigned long wakeup;
948 unsigned long size;
949 void *addr;
950 int page;
951 int nmi;
952 int sample;
953 };
954
955 #ifdef CONFIG_PERF_EVENTS
956
957 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
958 extern void perf_pmu_unregister(struct pmu *pmu);
959
960 extern int perf_num_counters(void);
961 extern const char *perf_pmu_name(void);
962 extern void __perf_event_task_sched_in(struct task_struct *task);
963 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
964 extern int perf_event_init_task(struct task_struct *child);
965 extern void perf_event_exit_task(struct task_struct *child);
966 extern void perf_event_free_task(struct task_struct *task);
967 extern void perf_event_delayed_put(struct task_struct *task);
968 extern void perf_event_print_debug(void);
969 extern void perf_pmu_disable(struct pmu *pmu);
970 extern void perf_pmu_enable(struct pmu *pmu);
971 extern int perf_event_task_disable(void);
972 extern int perf_event_task_enable(void);
973 extern void perf_event_update_userpage(struct perf_event *event);
974 extern int perf_event_release_kernel(struct perf_event *event);
975 extern struct perf_event *
976 perf_event_create_kernel_counter(struct perf_event_attr *attr,
977 int cpu,
978 struct task_struct *task,
979 perf_overflow_handler_t callback);
980 extern u64 perf_event_read_value(struct perf_event *event,
981 u64 *enabled, u64 *running);
982
983 struct perf_sample_data {
984 u64 type;
985
986 u64 ip;
987 struct {
988 u32 pid;
989 u32 tid;
990 } tid_entry;
991 u64 time;
992 u64 addr;
993 u64 id;
994 u64 stream_id;
995 struct {
996 u32 cpu;
997 u32 reserved;
998 } cpu_entry;
999 u64 period;
1000 struct perf_callchain_entry *callchain;
1001 struct perf_raw_record *raw;
1002 };
1003
1004 static inline
perf_sample_data_init(struct perf_sample_data * data,u64 addr)1005 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1006 {
1007 data->addr = addr;
1008 data->raw = NULL;
1009 }
1010
1011 extern void perf_output_sample(struct perf_output_handle *handle,
1012 struct perf_event_header *header,
1013 struct perf_sample_data *data,
1014 struct perf_event *event);
1015 extern void perf_prepare_sample(struct perf_event_header *header,
1016 struct perf_sample_data *data,
1017 struct perf_event *event,
1018 struct pt_regs *regs);
1019
1020 extern int perf_event_overflow(struct perf_event *event, int nmi,
1021 struct perf_sample_data *data,
1022 struct pt_regs *regs);
1023
is_sampling_event(struct perf_event * event)1024 static inline bool is_sampling_event(struct perf_event *event)
1025 {
1026 return event->attr.sample_period != 0;
1027 }
1028
1029 /*
1030 * Return 1 for a software event, 0 for a hardware event
1031 */
is_software_event(struct perf_event * event)1032 static inline int is_software_event(struct perf_event *event)
1033 {
1034 return event->pmu->task_ctx_nr == perf_sw_context;
1035 }
1036
1037 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
1038
1039 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
1040
1041 #ifndef perf_arch_fetch_caller_regs
1042 static inline void
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1043 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1044 #endif
1045
1046 /*
1047 * Take a snapshot of the regs. Skip ip and frame pointer to
1048 * the nth caller. We only need a few of the regs:
1049 * - ip for PERF_SAMPLE_IP
1050 * - cs for user_mode() tests
1051 * - bp for callchains
1052 * - eflags, for future purposes, just in case
1053 */
perf_fetch_caller_regs(struct pt_regs * regs)1054 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1055 {
1056 memset(regs, 0, sizeof(*regs));
1057
1058 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1059 }
1060
1061 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1062 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1063 {
1064 struct pt_regs hot_regs;
1065
1066 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event);
1067 return;
1068
1069 have_event:
1070 if (!regs) {
1071 perf_fetch_caller_regs(&hot_regs);
1072 regs = &hot_regs;
1073 }
1074 __perf_sw_event(event_id, nr, nmi, regs, addr);
1075 }
1076
1077 extern atomic_t perf_sched_events;
1078
perf_event_task_sched_in(struct task_struct * task)1079 static inline void perf_event_task_sched_in(struct task_struct *task)
1080 {
1081 COND_STMT(&perf_sched_events, __perf_event_task_sched_in(task));
1082 }
1083
1084 static inline
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1085 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1086 {
1087 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1088
1089 __perf_event_task_sched_out(task, next);
1090 }
1091
1092 extern void perf_event_mmap(struct vm_area_struct *vma);
1093 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1094 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1095 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1096
1097 extern void perf_event_comm(struct task_struct *tsk);
1098 extern void perf_event_fork(struct task_struct *tsk);
1099
1100 /* Callchains */
1101 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1102
1103 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1104 struct pt_regs *regs);
1105 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1106 struct pt_regs *regs);
1107
1108
1109 static inline void
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)1110 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1111 {
1112 if (entry->nr < PERF_MAX_STACK_DEPTH)
1113 entry->ip[entry->nr++] = ip;
1114 }
1115
1116 extern int sysctl_perf_event_paranoid;
1117 extern int sysctl_perf_event_mlock;
1118 extern int sysctl_perf_event_sample_rate;
1119
1120 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1121 void __user *buffer, size_t *lenp,
1122 loff_t *ppos);
1123
perf_paranoid_tracepoint_raw(void)1124 static inline bool perf_paranoid_tracepoint_raw(void)
1125 {
1126 return sysctl_perf_event_paranoid > -1;
1127 }
1128
perf_paranoid_cpu(void)1129 static inline bool perf_paranoid_cpu(void)
1130 {
1131 return sysctl_perf_event_paranoid > 0;
1132 }
1133
perf_paranoid_kernel(void)1134 static inline bool perf_paranoid_kernel(void)
1135 {
1136 return sysctl_perf_event_paranoid > 1;
1137 }
1138
1139 extern void perf_event_init(void);
1140 extern void perf_tp_event(u64 addr, u64 count, void *record,
1141 int entry_size, struct pt_regs *regs,
1142 struct hlist_head *head, int rctx);
1143 extern void perf_bp_event(struct perf_event *event, void *data);
1144
1145 #ifndef perf_misc_flags
1146 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1147 PERF_RECORD_MISC_KERNEL)
1148 #define perf_instruction_pointer(regs) instruction_pointer(regs)
1149 #endif
1150
1151 extern int perf_output_begin(struct perf_output_handle *handle,
1152 struct perf_event *event, unsigned int size,
1153 int nmi, int sample);
1154 extern void perf_output_end(struct perf_output_handle *handle);
1155 extern void perf_output_copy(struct perf_output_handle *handle,
1156 const void *buf, unsigned int len);
1157 extern int perf_swevent_get_recursion_context(void);
1158 extern void perf_swevent_put_recursion_context(int rctx);
1159 extern void perf_event_enable(struct perf_event *event);
1160 extern void perf_event_disable(struct perf_event *event);
1161 extern void perf_event_task_tick(void);
1162 #else
1163 static inline void
perf_event_task_sched_in(struct task_struct * task)1164 perf_event_task_sched_in(struct task_struct *task) { }
1165 static inline void
perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)1166 perf_event_task_sched_out(struct task_struct *task,
1167 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1168 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1169 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1170 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1171 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_print_debug(void)1172 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1173 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1174 static inline int perf_event_task_enable(void) { return -EINVAL; }
1175
1176 static inline void
perf_sw_event(u32 event_id,u64 nr,int nmi,struct pt_regs * regs,u64 addr)1177 perf_sw_event(u32 event_id, u64 nr, int nmi,
1178 struct pt_regs *regs, u64 addr) { }
1179 static inline void
perf_bp_event(struct perf_event * event,void * data)1180 perf_bp_event(struct perf_event *event, void *data) { }
1181
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1182 static inline int perf_register_guest_info_callbacks
1183 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1184 static inline int perf_unregister_guest_info_callbacks
1185 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1186
perf_event_mmap(struct vm_area_struct * vma)1187 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
perf_event_comm(struct task_struct * tsk)1188 static inline void perf_event_comm(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1189 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)1190 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1191 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1192 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_event_enable(struct perf_event * event)1193 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1194 static inline void perf_event_disable(struct perf_event *event) { }
perf_event_task_tick(void)1195 static inline void perf_event_task_tick(void) { }
1196 #endif
1197
1198 #define perf_output_put(handle, x) \
1199 perf_output_copy((handle), &(x), sizeof(x))
1200
1201 /*
1202 * This has to have a higher priority than migration_notifier in sched.c.
1203 */
1204 #define perf_cpu_notifier(fn) \
1205 do { \
1206 static struct notifier_block fn##_nb __cpuinitdata = \
1207 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1208 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1209 (void *)(unsigned long)smp_processor_id()); \
1210 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1211 (void *)(unsigned long)smp_processor_id()); \
1212 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1213 (void *)(unsigned long)smp_processor_id()); \
1214 register_cpu_notifier(&fn##_nb); \
1215 } while (0)
1216
1217 #endif /* __KERNEL__ */
1218 #endif /* _LINUX_PERF_EVENT_H */
1219