1 #ifndef _ASM_ARCH_IRQ_H
2 #define _ASM_ARCH_IRQ_H
3 
4 #include <hwregs/intr_vect.h>
5 
6 /* Number of non-cpu interrupts. */
7 #define NR_IRQS NBR_INTR_VECT /* Exceptions + IRQs */
8 #define FIRST_IRQ 0x31 /* Exception number for first IRQ */
9 #define NR_REAL_IRQS (NBR_INTR_VECT - FIRST_IRQ) /* IRQs */
10 #if NR_REAL_IRQS > 32
11 #define MACH_IRQS 64
12 #else
13 #define MACH_IRQS 32
14 #endif
15 
16 #ifndef __ASSEMBLY__
17 /* Global IRQ vector. */
18 typedef void (*irqvectptr)(void);
19 
20 struct etrax_interrupt_vector {
21 	irqvectptr v[256];
22 };
23 
24 extern struct etrax_interrupt_vector *etrax_irv;	/* head.S */
25 
26 void crisv32_mask_irq(int irq);
27 void crisv32_unmask_irq(int irq);
28 
29 void set_exception_vector(int n, irqvectptr addr);
30 
31 /* Save registers so that they match pt_regs. */
32 #define SAVE_ALL \
33 	"subq 12,$sp\n\t"	\
34 	"move $erp,[$sp]\n\t"	\
35 	"subq 4,$sp\n\t"	\
36 	"move $srp,[$sp]\n\t"	\
37 	"subq 4,$sp\n\t"	\
38 	"move $ccs,[$sp]\n\t"	\
39 	"subq 4,$sp\n\t"	\
40 	"move $spc,[$sp]\n\t"	\
41 	"subq 4,$sp\n\t"	\
42 	"move $mof,[$sp]\n\t"	\
43 	"subq 4,$sp\n\t"	\
44 	"move $srs,[$sp]\n\t"	\
45 	"subq 4,$sp\n\t"	\
46 	"move.d $acr,[$sp]\n\t"	\
47 	"subq 14*4,$sp\n\t"	\
48 	"movem $r13,[$sp]\n\t"	\
49 	"subq 4,$sp\n\t"	\
50 	"move.d $r10,[$sp]\n"
51 
52 #define STR2(x) #x
53 #define STR(x) STR2(x)
54 
55 #define IRQ_NAME2(nr) nr##_interrupt(void)
56 #define IRQ_NAME(nr) IRQ_NAME2(IRQ##nr)
57 
58 /*
59  * The reason for setting the S-bit when debugging the kernel is that we want
60  * hardware breakpoints to remain active while we are in an exception handler.
61  * Note that we cannot simply copy S1, since we may come here from user-space,
62  * or any context where the S-bit wasn't set.
63  */
64 #ifdef CONFIG_ETRAX_KGDB
65 #define KGDB_FIXUP \
66 	"move $ccs, $r10\n\t"		\
67 	"or.d (1<<9), $r10\n\t"		\
68 	"move $r10, $ccs\n\t"
69 #else
70 #define KGDB_FIXUP ""
71 #endif
72 
73 /*
74  * Make sure the causing IRQ is blocked, then call do_IRQ. After that, unblock
75  * and jump to ret_from_intr which is found in entry.S.
76  *
77  * The reason for blocking the IRQ is to allow an sti() before the handler,
78  * which will acknowledge the interrupt, is run. The actual blocking is made
79  * by crisv32_do_IRQ.
80  */
81 #define BUILD_IRQ(nr)		        \
82 void IRQ_NAME(nr);			\
83 __asm__ (				\
84 	".text\n\t"			\
85 	"IRQ" #nr "_interrupt:\n\t" 	\
86 	SAVE_ALL			\
87 	KGDB_FIXUP                      \
88 	"move.d "#nr",$r10\n\t"		\
89 	"move.d $sp, $r12\n\t"          \
90 	"jsr crisv32_do_IRQ\n\t"       	\
91 	"moveq 1, $r11\n\t"		\
92 	"jump ret_from_intr\n\t"	\
93 	"nop\n\t");
94 /*
95  * This is subtle. The timer interrupt is crucial and it should not be disabled
96  * for too long. However, if it had been a normal interrupt as per BUILD_IRQ, it
97  * would have been BLOCK'ed, and then softirq's are run before we return here to
98  * UNBLOCK. If the softirq's take too much time to run, the timer irq won't run
99  * and the watchdog will kill us.
100  *
101  * Furthermore, if a lot of other irq's occur before we return here, the
102  * multiple_irq handler is run and it prioritizes the timer interrupt. However
103  * if we had BLOCK'edit here, we would not get the multiple_irq at all.
104  *
105  * The non-blocking here is based on the knowledge that the timer interrupt is
106  * registred as a fast interrupt (IRQF_DISABLED) so that we _know_ there will not
107  * be an sti() before the timer irq handler is run to acknowledge the interrupt.
108  */
109 #define BUILD_TIMER_IRQ(nr, mask) 	\
110 void IRQ_NAME(nr);			\
111 __asm__ (				\
112 	".text\n\t"			\
113 	"IRQ" #nr "_interrupt:\n\t"	\
114 	SAVE_ALL			\
115         KGDB_FIXUP                      \
116 	"move.d "#nr",$r10\n\t"		\
117 	"move.d $sp,$r12\n\t"		\
118 	"jsr crisv32_do_IRQ\n\t"	\
119 	"moveq 0,$r11\n\t"		\
120 	"jump ret_from_intr\n\t"	\
121 	"nop\n\t");
122 
123 #endif /* __ASSEMBLY__ */
124 #endif /* _ASM_ARCH_IRQ_H */
125