1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
45
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
get_pageblock_migratetype(struct page * page)52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
104 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
105 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
106 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
107 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
108 NR_DIRTIED, /* page dirtyings since bootup */
109 NR_WRITTEN, /* page writings since bootup */
110 #ifdef CONFIG_NUMA
111 NUMA_HIT, /* allocated in intended node */
112 NUMA_MISS, /* allocated in non intended node */
113 NUMA_FOREIGN, /* was intended here, hit elsewhere */
114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
115 NUMA_LOCAL, /* allocation from local node */
116 NUMA_OTHER, /* allocation from other node */
117 #endif
118 NR_ANON_TRANSPARENT_HUGEPAGES,
119 NR_VM_ZONE_STAT_ITEMS };
120
121 /*
122 * We do arithmetic on the LRU lists in various places in the code,
123 * so it is important to keep the active lists LRU_ACTIVE higher in
124 * the array than the corresponding inactive lists, and to keep
125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126 *
127 * This has to be kept in sync with the statistics in zone_stat_item
128 * above and the descriptions in vmstat_text in mm/vmstat.c
129 */
130 #define LRU_BASE 0
131 #define LRU_ACTIVE 1
132 #define LRU_FILE 2
133
134 enum lru_list {
135 LRU_INACTIVE_ANON = LRU_BASE,
136 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139 LRU_UNEVICTABLE,
140 NR_LRU_LISTS
141 };
142
143 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
144
145 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
146
is_file_lru(enum lru_list lru)147 static inline int is_file_lru(enum lru_list lru)
148 {
149 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
150 }
151
is_active_lru(enum lru_list lru)152 static inline int is_active_lru(enum lru_list lru)
153 {
154 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
155 }
156
is_unevictable_lru(enum lru_list lru)157 static inline int is_unevictable_lru(enum lru_list lru)
158 {
159 return (lru == LRU_UNEVICTABLE);
160 }
161
162 struct lruvec {
163 struct list_head lists[NR_LRU_LISTS];
164 };
165
166 /* Mask used at gathering information at once (see memcontrol.c) */
167 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
168 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
169 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
170 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
171
172 /* Isolate inactive pages */
173 #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
174 /* Isolate active pages */
175 #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
176 /* Isolate clean file */
177 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
178 /* Isolate unmapped file */
179 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
180 /* Isolate for asynchronous migration */
181 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10)
182
183 /* LRU Isolation modes. */
184 typedef unsigned __bitwise__ isolate_mode_t;
185
186 enum zone_watermarks {
187 WMARK_MIN,
188 WMARK_LOW,
189 WMARK_HIGH,
190 NR_WMARK
191 };
192
193 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
194 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
195 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
196
197 struct per_cpu_pages {
198 int count; /* number of pages in the list */
199 int high; /* high watermark, emptying needed */
200 int batch; /* chunk size for buddy add/remove */
201
202 /* Lists of pages, one per migrate type stored on the pcp-lists */
203 struct list_head lists[MIGRATE_PCPTYPES];
204 };
205
206 struct per_cpu_pageset {
207 struct per_cpu_pages pcp;
208 #ifdef CONFIG_NUMA
209 s8 expire;
210 #endif
211 #ifdef CONFIG_SMP
212 s8 stat_threshold;
213 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
214 #endif
215 };
216
217 #endif /* !__GENERATING_BOUNDS.H */
218
219 enum zone_type {
220 #ifdef CONFIG_ZONE_DMA
221 /*
222 * ZONE_DMA is used when there are devices that are not able
223 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
224 * carve out the portion of memory that is needed for these devices.
225 * The range is arch specific.
226 *
227 * Some examples
228 *
229 * Architecture Limit
230 * ---------------------------
231 * parisc, ia64, sparc <4G
232 * s390 <2G
233 * arm Various
234 * alpha Unlimited or 0-16MB.
235 *
236 * i386, x86_64 and multiple other arches
237 * <16M.
238 */
239 ZONE_DMA,
240 #endif
241 #ifdef CONFIG_ZONE_DMA32
242 /*
243 * x86_64 needs two ZONE_DMAs because it supports devices that are
244 * only able to do DMA to the lower 16M but also 32 bit devices that
245 * can only do DMA areas below 4G.
246 */
247 ZONE_DMA32,
248 #endif
249 /*
250 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
251 * performed on pages in ZONE_NORMAL if the DMA devices support
252 * transfers to all addressable memory.
253 */
254 ZONE_NORMAL,
255 #ifdef CONFIG_HIGHMEM
256 /*
257 * A memory area that is only addressable by the kernel through
258 * mapping portions into its own address space. This is for example
259 * used by i386 to allow the kernel to address the memory beyond
260 * 900MB. The kernel will set up special mappings (page
261 * table entries on i386) for each page that the kernel needs to
262 * access.
263 */
264 ZONE_HIGHMEM,
265 #endif
266 ZONE_MOVABLE,
267 __MAX_NR_ZONES
268 };
269
270 #ifndef __GENERATING_BOUNDS_H
271
272 /*
273 * When a memory allocation must conform to specific limitations (such
274 * as being suitable for DMA) the caller will pass in hints to the
275 * allocator in the gfp_mask, in the zone modifier bits. These bits
276 * are used to select a priority ordered list of memory zones which
277 * match the requested limits. See gfp_zone() in include/linux/gfp.h
278 */
279
280 #if MAX_NR_ZONES < 2
281 #define ZONES_SHIFT 0
282 #elif MAX_NR_ZONES <= 2
283 #define ZONES_SHIFT 1
284 #elif MAX_NR_ZONES <= 4
285 #define ZONES_SHIFT 2
286 #else
287 #error ZONES_SHIFT -- too many zones configured adjust calculation
288 #endif
289
290 struct zone_reclaim_stat {
291 /*
292 * The pageout code in vmscan.c keeps track of how many of the
293 * mem/swap backed and file backed pages are refeferenced.
294 * The higher the rotated/scanned ratio, the more valuable
295 * that cache is.
296 *
297 * The anon LRU stats live in [0], file LRU stats in [1]
298 */
299 unsigned long recent_rotated[2];
300 unsigned long recent_scanned[2];
301 };
302
303 struct zone {
304 /* Fields commonly accessed by the page allocator */
305
306 /* zone watermarks, access with *_wmark_pages(zone) macros */
307 unsigned long watermark[NR_WMARK];
308
309 /*
310 * When free pages are below this point, additional steps are taken
311 * when reading the number of free pages to avoid per-cpu counter
312 * drift allowing watermarks to be breached
313 */
314 unsigned long percpu_drift_mark;
315
316 /*
317 * We don't know if the memory that we're going to allocate will be freeable
318 * or/and it will be released eventually, so to avoid totally wasting several
319 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
320 * to run OOM on the lower zones despite there's tons of freeable ram
321 * on the higher zones). This array is recalculated at runtime if the
322 * sysctl_lowmem_reserve_ratio sysctl changes.
323 */
324 unsigned long lowmem_reserve[MAX_NR_ZONES];
325
326 /*
327 * This is a per-zone reserve of pages that should not be
328 * considered dirtyable memory.
329 */
330 unsigned long dirty_balance_reserve;
331
332 #ifdef CONFIG_NUMA
333 int node;
334 /*
335 * zone reclaim becomes active if more unmapped pages exist.
336 */
337 unsigned long min_unmapped_pages;
338 unsigned long min_slab_pages;
339 #endif
340 struct per_cpu_pageset __percpu *pageset;
341 /*
342 * free areas of different sizes
343 */
344 spinlock_t lock;
345 int all_unreclaimable; /* All pages pinned */
346 #ifdef CONFIG_MEMORY_HOTPLUG
347 /* see spanned/present_pages for more description */
348 seqlock_t span_seqlock;
349 #endif
350 struct free_area free_area[MAX_ORDER];
351
352 #ifndef CONFIG_SPARSEMEM
353 /*
354 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
355 * In SPARSEMEM, this map is stored in struct mem_section
356 */
357 unsigned long *pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359
360 #ifdef CONFIG_COMPACTION
361 /*
362 * On compaction failure, 1<<compact_defer_shift compactions
363 * are skipped before trying again. The number attempted since
364 * last failure is tracked with compact_considered.
365 */
366 unsigned int compact_considered;
367 unsigned int compact_defer_shift;
368 int compact_order_failed;
369 #endif
370
371 ZONE_PADDING(_pad1_)
372
373 /* Fields commonly accessed by the page reclaim scanner */
374 spinlock_t lru_lock;
375 struct lruvec lruvec;
376
377 struct zone_reclaim_stat reclaim_stat;
378
379 unsigned long pages_scanned; /* since last reclaim */
380 unsigned long flags; /* zone flags, see below */
381
382 /* Zone statistics */
383 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
384
385 /*
386 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
387 * this zone's LRU. Maintained by the pageout code.
388 */
389 unsigned int inactive_ratio;
390
391
392 ZONE_PADDING(_pad2_)
393 /* Rarely used or read-mostly fields */
394
395 /*
396 * wait_table -- the array holding the hash table
397 * wait_table_hash_nr_entries -- the size of the hash table array
398 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
399 *
400 * The purpose of all these is to keep track of the people
401 * waiting for a page to become available and make them
402 * runnable again when possible. The trouble is that this
403 * consumes a lot of space, especially when so few things
404 * wait on pages at a given time. So instead of using
405 * per-page waitqueues, we use a waitqueue hash table.
406 *
407 * The bucket discipline is to sleep on the same queue when
408 * colliding and wake all in that wait queue when removing.
409 * When something wakes, it must check to be sure its page is
410 * truly available, a la thundering herd. The cost of a
411 * collision is great, but given the expected load of the
412 * table, they should be so rare as to be outweighed by the
413 * benefits from the saved space.
414 *
415 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
416 * primary users of these fields, and in mm/page_alloc.c
417 * free_area_init_core() performs the initialization of them.
418 */
419 wait_queue_head_t * wait_table;
420 unsigned long wait_table_hash_nr_entries;
421 unsigned long wait_table_bits;
422
423 /*
424 * Discontig memory support fields.
425 */
426 struct pglist_data *zone_pgdat;
427 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
428 unsigned long zone_start_pfn;
429
430 /*
431 * zone_start_pfn, spanned_pages and present_pages are all
432 * protected by span_seqlock. It is a seqlock because it has
433 * to be read outside of zone->lock, and it is done in the main
434 * allocator path. But, it is written quite infrequently.
435 *
436 * The lock is declared along with zone->lock because it is
437 * frequently read in proximity to zone->lock. It's good to
438 * give them a chance of being in the same cacheline.
439 */
440 unsigned long spanned_pages; /* total size, including holes */
441 unsigned long present_pages; /* amount of memory (excluding holes) */
442
443 /*
444 * rarely used fields:
445 */
446 const char *name;
447 } ____cacheline_internodealigned_in_smp;
448
449 typedef enum {
450 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
451 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
452 ZONE_CONGESTED, /* zone has many dirty pages backed by
453 * a congested BDI
454 */
455 } zone_flags_t;
456
zone_set_flag(struct zone * zone,zone_flags_t flag)457 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
458 {
459 set_bit(flag, &zone->flags);
460 }
461
zone_test_and_set_flag(struct zone * zone,zone_flags_t flag)462 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
463 {
464 return test_and_set_bit(flag, &zone->flags);
465 }
466
zone_clear_flag(struct zone * zone,zone_flags_t flag)467 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
468 {
469 clear_bit(flag, &zone->flags);
470 }
471
zone_is_reclaim_congested(const struct zone * zone)472 static inline int zone_is_reclaim_congested(const struct zone *zone)
473 {
474 return test_bit(ZONE_CONGESTED, &zone->flags);
475 }
476
zone_is_reclaim_locked(const struct zone * zone)477 static inline int zone_is_reclaim_locked(const struct zone *zone)
478 {
479 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
480 }
481
zone_is_oom_locked(const struct zone * zone)482 static inline int zone_is_oom_locked(const struct zone *zone)
483 {
484 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
485 }
486
487 /*
488 * The "priority" of VM scanning is how much of the queues we will scan in one
489 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
490 * queues ("queue_length >> 12") during an aging round.
491 */
492 #define DEF_PRIORITY 12
493
494 /* Maximum number of zones on a zonelist */
495 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
496
497 #ifdef CONFIG_NUMA
498
499 /*
500 * The NUMA zonelists are doubled because we need zonelists that restrict the
501 * allocations to a single node for GFP_THISNODE.
502 *
503 * [0] : Zonelist with fallback
504 * [1] : No fallback (GFP_THISNODE)
505 */
506 #define MAX_ZONELISTS 2
507
508
509 /*
510 * We cache key information from each zonelist for smaller cache
511 * footprint when scanning for free pages in get_page_from_freelist().
512 *
513 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
514 * up short of free memory since the last time (last_fullzone_zap)
515 * we zero'd fullzones.
516 * 2) The array z_to_n[] maps each zone in the zonelist to its node
517 * id, so that we can efficiently evaluate whether that node is
518 * set in the current tasks mems_allowed.
519 *
520 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
521 * indexed by a zones offset in the zonelist zones[] array.
522 *
523 * The get_page_from_freelist() routine does two scans. During the
524 * first scan, we skip zones whose corresponding bit in 'fullzones'
525 * is set or whose corresponding node in current->mems_allowed (which
526 * comes from cpusets) is not set. During the second scan, we bypass
527 * this zonelist_cache, to ensure we look methodically at each zone.
528 *
529 * Once per second, we zero out (zap) fullzones, forcing us to
530 * reconsider nodes that might have regained more free memory.
531 * The field last_full_zap is the time we last zapped fullzones.
532 *
533 * This mechanism reduces the amount of time we waste repeatedly
534 * reexaming zones for free memory when they just came up low on
535 * memory momentarilly ago.
536 *
537 * The zonelist_cache struct members logically belong in struct
538 * zonelist. However, the mempolicy zonelists constructed for
539 * MPOL_BIND are intentionally variable length (and usually much
540 * shorter). A general purpose mechanism for handling structs with
541 * multiple variable length members is more mechanism than we want
542 * here. We resort to some special case hackery instead.
543 *
544 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
545 * part because they are shorter), so we put the fixed length stuff
546 * at the front of the zonelist struct, ending in a variable length
547 * zones[], as is needed by MPOL_BIND.
548 *
549 * Then we put the optional zonelist cache on the end of the zonelist
550 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
551 * the fixed length portion at the front of the struct. This pointer
552 * both enables us to find the zonelist cache, and in the case of
553 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
554 * to know that the zonelist cache is not there.
555 *
556 * The end result is that struct zonelists come in two flavors:
557 * 1) The full, fixed length version, shown below, and
558 * 2) The custom zonelists for MPOL_BIND.
559 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
560 *
561 * Even though there may be multiple CPU cores on a node modifying
562 * fullzones or last_full_zap in the same zonelist_cache at the same
563 * time, we don't lock it. This is just hint data - if it is wrong now
564 * and then, the allocator will still function, perhaps a bit slower.
565 */
566
567
568 struct zonelist_cache {
569 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
570 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
571 unsigned long last_full_zap; /* when last zap'd (jiffies) */
572 };
573 #else
574 #define MAX_ZONELISTS 1
575 struct zonelist_cache;
576 #endif
577
578 /*
579 * This struct contains information about a zone in a zonelist. It is stored
580 * here to avoid dereferences into large structures and lookups of tables
581 */
582 struct zoneref {
583 struct zone *zone; /* Pointer to actual zone */
584 int zone_idx; /* zone_idx(zoneref->zone) */
585 };
586
587 /*
588 * One allocation request operates on a zonelist. A zonelist
589 * is a list of zones, the first one is the 'goal' of the
590 * allocation, the other zones are fallback zones, in decreasing
591 * priority.
592 *
593 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
594 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
595 * *
596 * To speed the reading of the zonelist, the zonerefs contain the zone index
597 * of the entry being read. Helper functions to access information given
598 * a struct zoneref are
599 *
600 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
601 * zonelist_zone_idx() - Return the index of the zone for an entry
602 * zonelist_node_idx() - Return the index of the node for an entry
603 */
604 struct zonelist {
605 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
606 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
607 #ifdef CONFIG_NUMA
608 struct zonelist_cache zlcache; // optional ...
609 #endif
610 };
611
612 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
613 struct node_active_region {
614 unsigned long start_pfn;
615 unsigned long end_pfn;
616 int nid;
617 };
618 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
619
620 #ifndef CONFIG_DISCONTIGMEM
621 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
622 extern struct page *mem_map;
623 #endif
624
625 /*
626 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
627 * (mostly NUMA machines?) to denote a higher-level memory zone than the
628 * zone denotes.
629 *
630 * On NUMA machines, each NUMA node would have a pg_data_t to describe
631 * it's memory layout.
632 *
633 * Memory statistics and page replacement data structures are maintained on a
634 * per-zone basis.
635 */
636 struct bootmem_data;
637 typedef struct pglist_data {
638 struct zone node_zones[MAX_NR_ZONES];
639 struct zonelist node_zonelists[MAX_ZONELISTS];
640 int nr_zones;
641 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
642 struct page *node_mem_map;
643 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
644 struct page_cgroup *node_page_cgroup;
645 #endif
646 #endif
647 #ifndef CONFIG_NO_BOOTMEM
648 struct bootmem_data *bdata;
649 #endif
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 /*
652 * Must be held any time you expect node_start_pfn, node_present_pages
653 * or node_spanned_pages stay constant. Holding this will also
654 * guarantee that any pfn_valid() stays that way.
655 *
656 * Nests above zone->lock and zone->size_seqlock.
657 */
658 spinlock_t node_size_lock;
659 #endif
660 unsigned long node_start_pfn;
661 unsigned long node_present_pages; /* total number of physical pages */
662 unsigned long node_spanned_pages; /* total size of physical page
663 range, including holes */
664 int node_id;
665 wait_queue_head_t kswapd_wait;
666 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
667 int kswapd_max_order;
668 enum zone_type classzone_idx;
669 } pg_data_t;
670
671 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
672 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
673 #ifdef CONFIG_FLAT_NODE_MEM_MAP
674 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
675 #else
676 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
677 #endif
678 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
679
680 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
681
682 #define node_end_pfn(nid) ({\
683 pg_data_t *__pgdat = NODE_DATA(nid);\
684 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
685 })
686
687 #include <linux/memory_hotplug.h>
688
689 extern struct mutex zonelists_mutex;
690 void build_all_zonelists(void *data);
691 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
692 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
693 int classzone_idx, int alloc_flags);
694 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
695 int classzone_idx, int alloc_flags);
696 enum memmap_context {
697 MEMMAP_EARLY,
698 MEMMAP_HOTPLUG,
699 };
700 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
701 unsigned long size,
702 enum memmap_context context);
703
704 #ifdef CONFIG_HAVE_MEMORY_PRESENT
705 void memory_present(int nid, unsigned long start, unsigned long end);
706 #else
memory_present(int nid,unsigned long start,unsigned long end)707 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
708 #endif
709
710 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
711 int local_memory_node(int node_id);
712 #else
local_memory_node(int node_id)713 static inline int local_memory_node(int node_id) { return node_id; };
714 #endif
715
716 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
717 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
718 #endif
719
720 /*
721 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
722 */
723 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
724
populated_zone(struct zone * zone)725 static inline int populated_zone(struct zone *zone)
726 {
727 return (!!zone->present_pages);
728 }
729
730 extern int movable_zone;
731
zone_movable_is_highmem(void)732 static inline int zone_movable_is_highmem(void)
733 {
734 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
735 return movable_zone == ZONE_HIGHMEM;
736 #else
737 return 0;
738 #endif
739 }
740
is_highmem_idx(enum zone_type idx)741 static inline int is_highmem_idx(enum zone_type idx)
742 {
743 #ifdef CONFIG_HIGHMEM
744 return (idx == ZONE_HIGHMEM ||
745 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
746 #else
747 return 0;
748 #endif
749 }
750
is_normal_idx(enum zone_type idx)751 static inline int is_normal_idx(enum zone_type idx)
752 {
753 return (idx == ZONE_NORMAL);
754 }
755
756 /**
757 * is_highmem - helper function to quickly check if a struct zone is a
758 * highmem zone or not. This is an attempt to keep references
759 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
760 * @zone - pointer to struct zone variable
761 */
is_highmem(struct zone * zone)762 static inline int is_highmem(struct zone *zone)
763 {
764 #ifdef CONFIG_HIGHMEM
765 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
766 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
767 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
768 zone_movable_is_highmem());
769 #else
770 return 0;
771 #endif
772 }
773
is_normal(struct zone * zone)774 static inline int is_normal(struct zone *zone)
775 {
776 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
777 }
778
is_dma32(struct zone * zone)779 static inline int is_dma32(struct zone *zone)
780 {
781 #ifdef CONFIG_ZONE_DMA32
782 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
783 #else
784 return 0;
785 #endif
786 }
787
is_dma(struct zone * zone)788 static inline int is_dma(struct zone *zone)
789 {
790 #ifdef CONFIG_ZONE_DMA
791 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
792 #else
793 return 0;
794 #endif
795 }
796
797 /* These two functions are used to setup the per zone pages min values */
798 struct ctl_table;
799 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
800 void __user *, size_t *, loff_t *);
801 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
802 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
803 void __user *, size_t *, loff_t *);
804 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
805 void __user *, size_t *, loff_t *);
806 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
807 void __user *, size_t *, loff_t *);
808 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
809 void __user *, size_t *, loff_t *);
810
811 extern int numa_zonelist_order_handler(struct ctl_table *, int,
812 void __user *, size_t *, loff_t *);
813 extern char numa_zonelist_order[];
814 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
815
816 #ifndef CONFIG_NEED_MULTIPLE_NODES
817
818 extern struct pglist_data contig_page_data;
819 #define NODE_DATA(nid) (&contig_page_data)
820 #define NODE_MEM_MAP(nid) mem_map
821
822 #else /* CONFIG_NEED_MULTIPLE_NODES */
823
824 #include <asm/mmzone.h>
825
826 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
827
828 extern struct pglist_data *first_online_pgdat(void);
829 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
830 extern struct zone *next_zone(struct zone *zone);
831
832 /**
833 * for_each_online_pgdat - helper macro to iterate over all online nodes
834 * @pgdat - pointer to a pg_data_t variable
835 */
836 #define for_each_online_pgdat(pgdat) \
837 for (pgdat = first_online_pgdat(); \
838 pgdat; \
839 pgdat = next_online_pgdat(pgdat))
840 /**
841 * for_each_zone - helper macro to iterate over all memory zones
842 * @zone - pointer to struct zone variable
843 *
844 * The user only needs to declare the zone variable, for_each_zone
845 * fills it in.
846 */
847 #define for_each_zone(zone) \
848 for (zone = (first_online_pgdat())->node_zones; \
849 zone; \
850 zone = next_zone(zone))
851
852 #define for_each_populated_zone(zone) \
853 for (zone = (first_online_pgdat())->node_zones; \
854 zone; \
855 zone = next_zone(zone)) \
856 if (!populated_zone(zone)) \
857 ; /* do nothing */ \
858 else
859
zonelist_zone(struct zoneref * zoneref)860 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
861 {
862 return zoneref->zone;
863 }
864
zonelist_zone_idx(struct zoneref * zoneref)865 static inline int zonelist_zone_idx(struct zoneref *zoneref)
866 {
867 return zoneref->zone_idx;
868 }
869
zonelist_node_idx(struct zoneref * zoneref)870 static inline int zonelist_node_idx(struct zoneref *zoneref)
871 {
872 #ifdef CONFIG_NUMA
873 /* zone_to_nid not available in this context */
874 return zoneref->zone->node;
875 #else
876 return 0;
877 #endif /* CONFIG_NUMA */
878 }
879
880 /**
881 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
882 * @z - The cursor used as a starting point for the search
883 * @highest_zoneidx - The zone index of the highest zone to return
884 * @nodes - An optional nodemask to filter the zonelist with
885 * @zone - The first suitable zone found is returned via this parameter
886 *
887 * This function returns the next zone at or below a given zone index that is
888 * within the allowed nodemask using a cursor as the starting point for the
889 * search. The zoneref returned is a cursor that represents the current zone
890 * being examined. It should be advanced by one before calling
891 * next_zones_zonelist again.
892 */
893 struct zoneref *next_zones_zonelist(struct zoneref *z,
894 enum zone_type highest_zoneidx,
895 nodemask_t *nodes,
896 struct zone **zone);
897
898 /**
899 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
900 * @zonelist - The zonelist to search for a suitable zone
901 * @highest_zoneidx - The zone index of the highest zone to return
902 * @nodes - An optional nodemask to filter the zonelist with
903 * @zone - The first suitable zone found is returned via this parameter
904 *
905 * This function returns the first zone at or below a given zone index that is
906 * within the allowed nodemask. The zoneref returned is a cursor that can be
907 * used to iterate the zonelist with next_zones_zonelist by advancing it by
908 * one before calling.
909 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes,struct zone ** zone)910 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
911 enum zone_type highest_zoneidx,
912 nodemask_t *nodes,
913 struct zone **zone)
914 {
915 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
916 zone);
917 }
918
919 /**
920 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
921 * @zone - The current zone in the iterator
922 * @z - The current pointer within zonelist->zones being iterated
923 * @zlist - The zonelist being iterated
924 * @highidx - The zone index of the highest zone to return
925 * @nodemask - Nodemask allowed by the allocator
926 *
927 * This iterator iterates though all zones at or below a given zone index and
928 * within a given nodemask
929 */
930 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
931 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
932 zone; \
933 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
934
935 /**
936 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
937 * @zone - The current zone in the iterator
938 * @z - The current pointer within zonelist->zones being iterated
939 * @zlist - The zonelist being iterated
940 * @highidx - The zone index of the highest zone to return
941 *
942 * This iterator iterates though all zones at or below a given zone index.
943 */
944 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
945 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
946
947 #ifdef CONFIG_SPARSEMEM
948 #include <asm/sparsemem.h>
949 #endif
950
951 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
952 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)953 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
954 {
955 return 0;
956 }
957 #endif
958
959 #ifdef CONFIG_FLATMEM
960 #define pfn_to_nid(pfn) (0)
961 #endif
962
963 #ifdef CONFIG_SPARSEMEM
964
965 /*
966 * SECTION_SHIFT #bits space required to store a section #
967 *
968 * PA_SECTION_SHIFT physical address to/from section number
969 * PFN_SECTION_SHIFT pfn to/from section number
970 */
971 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
972
973 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
974 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
975
976 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
977
978 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
979 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
980
981 #define SECTION_BLOCKFLAGS_BITS \
982 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
983
984 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
985 #error Allocator MAX_ORDER exceeds SECTION_SIZE
986 #endif
987
988 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
989 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
990
991 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
992 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
993
994 struct page;
995 struct page_cgroup;
996 struct mem_section {
997 /*
998 * This is, logically, a pointer to an array of struct
999 * pages. However, it is stored with some other magic.
1000 * (see sparse.c::sparse_init_one_section())
1001 *
1002 * Additionally during early boot we encode node id of
1003 * the location of the section here to guide allocation.
1004 * (see sparse.c::memory_present())
1005 *
1006 * Making it a UL at least makes someone do a cast
1007 * before using it wrong.
1008 */
1009 unsigned long section_mem_map;
1010
1011 /* See declaration of similar field in struct zone */
1012 unsigned long *pageblock_flags;
1013 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1014 /*
1015 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1016 * section. (see memcontrol.h/page_cgroup.h about this.)
1017 */
1018 struct page_cgroup *page_cgroup;
1019 unsigned long pad;
1020 #endif
1021 };
1022
1023 #ifdef CONFIG_SPARSEMEM_EXTREME
1024 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1025 #else
1026 #define SECTIONS_PER_ROOT 1
1027 #endif
1028
1029 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1030 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1031 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1032
1033 #ifdef CONFIG_SPARSEMEM_EXTREME
1034 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1035 #else
1036 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1037 #endif
1038
__nr_to_section(unsigned long nr)1039 static inline struct mem_section *__nr_to_section(unsigned long nr)
1040 {
1041 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1042 return NULL;
1043 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1044 }
1045 extern int __section_nr(struct mem_section* ms);
1046 extern unsigned long usemap_size(void);
1047
1048 /*
1049 * We use the lower bits of the mem_map pointer to store
1050 * a little bit of information. There should be at least
1051 * 3 bits here due to 32-bit alignment.
1052 */
1053 #define SECTION_MARKED_PRESENT (1UL<<0)
1054 #define SECTION_HAS_MEM_MAP (1UL<<1)
1055 #define SECTION_MAP_LAST_BIT (1UL<<2)
1056 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1057 #define SECTION_NID_SHIFT 2
1058
__section_mem_map_addr(struct mem_section * section)1059 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1060 {
1061 unsigned long map = section->section_mem_map;
1062 map &= SECTION_MAP_MASK;
1063 return (struct page *)map;
1064 }
1065
present_section(struct mem_section * section)1066 static inline int present_section(struct mem_section *section)
1067 {
1068 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1069 }
1070
present_section_nr(unsigned long nr)1071 static inline int present_section_nr(unsigned long nr)
1072 {
1073 return present_section(__nr_to_section(nr));
1074 }
1075
valid_section(struct mem_section * section)1076 static inline int valid_section(struct mem_section *section)
1077 {
1078 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1079 }
1080
valid_section_nr(unsigned long nr)1081 static inline int valid_section_nr(unsigned long nr)
1082 {
1083 return valid_section(__nr_to_section(nr));
1084 }
1085
__pfn_to_section(unsigned long pfn)1086 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1087 {
1088 return __nr_to_section(pfn_to_section_nr(pfn));
1089 }
1090
1091 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1092 static inline int pfn_valid(unsigned long pfn)
1093 {
1094 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1095 return 0;
1096 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1097 }
1098 #endif
1099
pfn_present(unsigned long pfn)1100 static inline int pfn_present(unsigned long pfn)
1101 {
1102 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1103 return 0;
1104 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1105 }
1106
1107 /*
1108 * These are _only_ used during initialisation, therefore they
1109 * can use __initdata ... They could have names to indicate
1110 * this restriction.
1111 */
1112 #ifdef CONFIG_NUMA
1113 #define pfn_to_nid(pfn) \
1114 ({ \
1115 unsigned long __pfn_to_nid_pfn = (pfn); \
1116 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1117 })
1118 #else
1119 #define pfn_to_nid(pfn) (0)
1120 #endif
1121
1122 #define early_pfn_valid(pfn) pfn_valid(pfn)
1123 void sparse_init(void);
1124 #else
1125 #define sparse_init() do {} while (0)
1126 #define sparse_index_init(_sec, _nid) do {} while (0)
1127 #endif /* CONFIG_SPARSEMEM */
1128
1129 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1130 bool early_pfn_in_nid(unsigned long pfn, int nid);
1131 #else
1132 #define early_pfn_in_nid(pfn, nid) (1)
1133 #endif
1134
1135 #ifndef early_pfn_valid
1136 #define early_pfn_valid(pfn) (1)
1137 #endif
1138
1139 void memory_present(int nid, unsigned long start, unsigned long end);
1140 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1141
1142 /*
1143 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1144 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1145 * pfn_valid_within() should be used in this case; we optimise this away
1146 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1147 */
1148 #ifdef CONFIG_HOLES_IN_ZONE
1149 #define pfn_valid_within(pfn) pfn_valid(pfn)
1150 #else
1151 #define pfn_valid_within(pfn) (1)
1152 #endif
1153
1154 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1155 /*
1156 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1157 * associated with it or not. In FLATMEM, it is expected that holes always
1158 * have valid memmap as long as there is valid PFNs either side of the hole.
1159 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1160 * entire section.
1161 *
1162 * However, an ARM, and maybe other embedded architectures in the future
1163 * free memmap backing holes to save memory on the assumption the memmap is
1164 * never used. The page_zone linkages are then broken even though pfn_valid()
1165 * returns true. A walker of the full memmap must then do this additional
1166 * check to ensure the memmap they are looking at is sane by making sure
1167 * the zone and PFN linkages are still valid. This is expensive, but walkers
1168 * of the full memmap are extremely rare.
1169 */
1170 int memmap_valid_within(unsigned long pfn,
1171 struct page *page, struct zone *zone);
1172 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1173 static inline int memmap_valid_within(unsigned long pfn,
1174 struct page *page, struct zone *zone)
1175 {
1176 return 1;
1177 }
1178 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1179
1180 #endif /* !__GENERATING_BOUNDS.H */
1181 #endif /* !__ASSEMBLY__ */
1182 #endif /* _LINUX_MMZONE_H */
1183