1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 const struct ethtool_ops *ops);
81
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
84 #define NET_RX_DROP 1 /* packet dropped */
85
86 #define MAX_NEST_DEV 8
87
88 /*
89 * Transmit return codes: transmit return codes originate from three different
90 * namespaces:
91 *
92 * - qdisc return codes
93 * - driver transmit return codes
94 * - errno values
95 *
96 * Drivers are allowed to return any one of those in their hard_start_xmit()
97 * function. Real network devices commonly used with qdiscs should only return
98 * the driver transmit return codes though - when qdiscs are used, the actual
99 * transmission happens asynchronously, so the value is not propagated to
100 * higher layers. Virtual network devices transmit synchronously; in this case
101 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102 * others are propagated to higher layers.
103 */
104
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS 0x00
107 #define NET_XMIT_DROP 0x01 /* skb dropped */
108 #define NET_XMIT_CN 0x02 /* congestion notification */
109 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
110
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112 * indicates that the device will soon be dropping packets, or already drops
113 * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK 0xf0
119
120 enum netdev_tx {
121 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
122 NETDEV_TX_OK = 0x00, /* driver took care of packet */
123 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126
127 /*
128 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130 */
dev_xmit_complete(int rc)131 static inline bool dev_xmit_complete(int rc)
132 {
133 /*
134 * Positive cases with an skb consumed by a driver:
135 * - successful transmission (rc == NETDEV_TX_OK)
136 * - error while transmitting (rc < 0)
137 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 */
139 if (likely(rc < NET_XMIT_MASK))
140 return true;
141
142 return false;
143 }
144
145 /*
146 * Compute the worst-case header length according to the protocols
147 * used.
148 */
149
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 # define LL_MAX_HEADER 128
155 # else
156 # define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168
169 /*
170 * Old network device statistics. Fields are native words
171 * (unsigned long) so they can be read and written atomically.
172 */
173
174 #define NET_DEV_STAT(FIELD) \
175 union { \
176 unsigned long FIELD; \
177 atomic_long_t __##FIELD; \
178 }
179
180 struct net_device_stats {
181 NET_DEV_STAT(rx_packets);
182 NET_DEV_STAT(tx_packets);
183 NET_DEV_STAT(rx_bytes);
184 NET_DEV_STAT(tx_bytes);
185 NET_DEV_STAT(rx_errors);
186 NET_DEV_STAT(tx_errors);
187 NET_DEV_STAT(rx_dropped);
188 NET_DEV_STAT(tx_dropped);
189 NET_DEV_STAT(multicast);
190 NET_DEV_STAT(collisions);
191 NET_DEV_STAT(rx_length_errors);
192 NET_DEV_STAT(rx_over_errors);
193 NET_DEV_STAT(rx_crc_errors);
194 NET_DEV_STAT(rx_frame_errors);
195 NET_DEV_STAT(rx_fifo_errors);
196 NET_DEV_STAT(rx_missed_errors);
197 NET_DEV_STAT(tx_aborted_errors);
198 NET_DEV_STAT(tx_carrier_errors);
199 NET_DEV_STAT(tx_fifo_errors);
200 NET_DEV_STAT(tx_heartbeat_errors);
201 NET_DEV_STAT(tx_window_errors);
202 NET_DEV_STAT(rx_compressed);
203 NET_DEV_STAT(tx_compressed);
204 };
205 #undef NET_DEV_STAT
206
207 /* per-cpu stats, allocated on demand.
208 * Try to fit them in a single cache line, for dev_get_stats() sake.
209 */
210 struct net_device_core_stats {
211 unsigned long rx_dropped;
212 unsigned long tx_dropped;
213 unsigned long rx_nohandler;
214 unsigned long rx_otherhost_dropped;
215 } __aligned(4 * sizeof(unsigned long));
216
217 #include <linux/cache.h>
218 #include <linux/skbuff.h>
219
220 #ifdef CONFIG_RPS
221 #include <linux/static_key.h>
222 extern struct static_key_false rps_needed;
223 extern struct static_key_false rfs_needed;
224 #endif
225
226 struct neighbour;
227 struct neigh_parms;
228 struct sk_buff;
229
230 struct netdev_hw_addr {
231 struct list_head list;
232 struct rb_node node;
233 unsigned char addr[MAX_ADDR_LEN];
234 unsigned char type;
235 #define NETDEV_HW_ADDR_T_LAN 1
236 #define NETDEV_HW_ADDR_T_SAN 2
237 #define NETDEV_HW_ADDR_T_UNICAST 3
238 #define NETDEV_HW_ADDR_T_MULTICAST 4
239 bool global_use;
240 int sync_cnt;
241 int refcount;
242 int synced;
243 struct rcu_head rcu_head;
244 };
245
246 struct netdev_hw_addr_list {
247 struct list_head list;
248 int count;
249
250 /* Auxiliary tree for faster lookup on addition and deletion */
251 struct rb_root tree;
252 };
253
254 #define netdev_hw_addr_list_count(l) ((l)->count)
255 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
256 #define netdev_hw_addr_list_for_each(ha, l) \
257 list_for_each_entry(ha, &(l)->list, list)
258
259 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
260 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
261 #define netdev_for_each_uc_addr(ha, dev) \
262 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
263 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
264 netdev_for_each_uc_addr((_ha), (_dev)) \
265 if ((_ha)->sync_cnt)
266
267 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
268 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
269 #define netdev_for_each_mc_addr(ha, dev) \
270 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
271 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
272 netdev_for_each_mc_addr((_ha), (_dev)) \
273 if ((_ha)->sync_cnt)
274
275 struct hh_cache {
276 unsigned int hh_len;
277 seqlock_t hh_lock;
278
279 /* cached hardware header; allow for machine alignment needs. */
280 #define HH_DATA_MOD 16
281 #define HH_DATA_OFF(__len) \
282 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
283 #define HH_DATA_ALIGN(__len) \
284 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
285 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
286 };
287
288 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
289 * Alternative is:
290 * dev->hard_header_len ? (dev->hard_header_len +
291 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
292 *
293 * We could use other alignment values, but we must maintain the
294 * relationship HH alignment <= LL alignment.
295 */
296 #define LL_RESERVED_SPACE(dev) \
297 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
298 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
299 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
300
301 struct header_ops {
302 int (*create) (struct sk_buff *skb, struct net_device *dev,
303 unsigned short type, const void *daddr,
304 const void *saddr, unsigned int len);
305 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
306 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
307 void (*cache_update)(struct hh_cache *hh,
308 const struct net_device *dev,
309 const unsigned char *haddr);
310 bool (*validate)(const char *ll_header, unsigned int len);
311 __be16 (*parse_protocol)(const struct sk_buff *skb);
312 };
313
314 /* These flag bits are private to the generic network queueing
315 * layer; they may not be explicitly referenced by any other
316 * code.
317 */
318
319 enum netdev_state_t {
320 __LINK_STATE_START,
321 __LINK_STATE_PRESENT,
322 __LINK_STATE_NOCARRIER,
323 __LINK_STATE_LINKWATCH_PENDING,
324 __LINK_STATE_DORMANT,
325 __LINK_STATE_TESTING,
326 };
327
328 struct gro_list {
329 struct list_head list;
330 int count;
331 };
332
333 /*
334 * size of gro hash buckets, must less than bit number of
335 * napi_struct::gro_bitmask
336 */
337 #define GRO_HASH_BUCKETS 8
338
339 /*
340 * Structure for NAPI scheduling similar to tasklet but with weighting
341 */
342 struct napi_struct {
343 /* The poll_list must only be managed by the entity which
344 * changes the state of the NAPI_STATE_SCHED bit. This means
345 * whoever atomically sets that bit can add this napi_struct
346 * to the per-CPU poll_list, and whoever clears that bit
347 * can remove from the list right before clearing the bit.
348 */
349 struct list_head poll_list;
350
351 unsigned long state;
352 int weight;
353 int defer_hard_irqs_count;
354 unsigned long gro_bitmask;
355 int (*poll)(struct napi_struct *, int);
356 #ifdef CONFIG_NETPOLL
357 int poll_owner;
358 #endif
359 struct net_device *dev;
360 struct gro_list gro_hash[GRO_HASH_BUCKETS];
361 struct sk_buff *skb;
362 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
363 int rx_count; /* length of rx_list */
364 struct hrtimer timer;
365 struct list_head dev_list;
366 struct hlist_node napi_hash_node;
367 unsigned int napi_id;
368 struct task_struct *thread;
369 };
370
371 enum {
372 NAPI_STATE_SCHED, /* Poll is scheduled */
373 NAPI_STATE_MISSED, /* reschedule a napi */
374 NAPI_STATE_DISABLE, /* Disable pending */
375 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
376 NAPI_STATE_LISTED, /* NAPI added to system lists */
377 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
378 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
379 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
380 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
381 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
382 };
383
384 enum {
385 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
386 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
387 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
388 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
389 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
390 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
391 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
392 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
393 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
394 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
395 };
396
397 enum gro_result {
398 GRO_MERGED,
399 GRO_MERGED_FREE,
400 GRO_HELD,
401 GRO_NORMAL,
402 GRO_CONSUMED,
403 };
404 typedef enum gro_result gro_result_t;
405
406 /*
407 * enum rx_handler_result - Possible return values for rx_handlers.
408 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
409 * further.
410 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
411 * case skb->dev was changed by rx_handler.
412 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
413 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
414 *
415 * rx_handlers are functions called from inside __netif_receive_skb(), to do
416 * special processing of the skb, prior to delivery to protocol handlers.
417 *
418 * Currently, a net_device can only have a single rx_handler registered. Trying
419 * to register a second rx_handler will return -EBUSY.
420 *
421 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
422 * To unregister a rx_handler on a net_device, use
423 * netdev_rx_handler_unregister().
424 *
425 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
426 * do with the skb.
427 *
428 * If the rx_handler consumed the skb in some way, it should return
429 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
430 * the skb to be delivered in some other way.
431 *
432 * If the rx_handler changed skb->dev, to divert the skb to another
433 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
434 * new device will be called if it exists.
435 *
436 * If the rx_handler decides the skb should be ignored, it should return
437 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
438 * are registered on exact device (ptype->dev == skb->dev).
439 *
440 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
441 * delivered, it should return RX_HANDLER_PASS.
442 *
443 * A device without a registered rx_handler will behave as if rx_handler
444 * returned RX_HANDLER_PASS.
445 */
446
447 enum rx_handler_result {
448 RX_HANDLER_CONSUMED,
449 RX_HANDLER_ANOTHER,
450 RX_HANDLER_EXACT,
451 RX_HANDLER_PASS,
452 };
453 typedef enum rx_handler_result rx_handler_result_t;
454 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
455
456 void __napi_schedule(struct napi_struct *n);
457 void __napi_schedule_irqoff(struct napi_struct *n);
458
napi_disable_pending(struct napi_struct * n)459 static inline bool napi_disable_pending(struct napi_struct *n)
460 {
461 return test_bit(NAPI_STATE_DISABLE, &n->state);
462 }
463
napi_prefer_busy_poll(struct napi_struct * n)464 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
465 {
466 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
467 }
468
469 bool napi_schedule_prep(struct napi_struct *n);
470
471 /**
472 * napi_schedule - schedule NAPI poll
473 * @n: NAPI context
474 *
475 * Schedule NAPI poll routine to be called if it is not already
476 * running.
477 */
napi_schedule(struct napi_struct * n)478 static inline void napi_schedule(struct napi_struct *n)
479 {
480 if (napi_schedule_prep(n))
481 __napi_schedule(n);
482 }
483
484 /**
485 * napi_schedule_irqoff - schedule NAPI poll
486 * @n: NAPI context
487 *
488 * Variant of napi_schedule(), assuming hard irqs are masked.
489 */
napi_schedule_irqoff(struct napi_struct * n)490 static inline void napi_schedule_irqoff(struct napi_struct *n)
491 {
492 if (napi_schedule_prep(n))
493 __napi_schedule_irqoff(n);
494 }
495
496 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)497 static inline bool napi_reschedule(struct napi_struct *napi)
498 {
499 if (napi_schedule_prep(napi)) {
500 __napi_schedule(napi);
501 return true;
502 }
503 return false;
504 }
505
506 bool napi_complete_done(struct napi_struct *n, int work_done);
507 /**
508 * napi_complete - NAPI processing complete
509 * @n: NAPI context
510 *
511 * Mark NAPI processing as complete.
512 * Consider using napi_complete_done() instead.
513 * Return false if device should avoid rearming interrupts.
514 */
napi_complete(struct napi_struct * n)515 static inline bool napi_complete(struct napi_struct *n)
516 {
517 return napi_complete_done(n, 0);
518 }
519
520 int dev_set_threaded(struct net_device *dev, bool threaded);
521
522 /**
523 * napi_disable - prevent NAPI from scheduling
524 * @n: NAPI context
525 *
526 * Stop NAPI from being scheduled on this context.
527 * Waits till any outstanding processing completes.
528 */
529 void napi_disable(struct napi_struct *n);
530
531 void napi_enable(struct napi_struct *n);
532
533 /**
534 * napi_synchronize - wait until NAPI is not running
535 * @n: NAPI context
536 *
537 * Wait until NAPI is done being scheduled on this context.
538 * Waits till any outstanding processing completes but
539 * does not disable future activations.
540 */
napi_synchronize(const struct napi_struct * n)541 static inline void napi_synchronize(const struct napi_struct *n)
542 {
543 if (IS_ENABLED(CONFIG_SMP))
544 while (test_bit(NAPI_STATE_SCHED, &n->state))
545 msleep(1);
546 else
547 barrier();
548 }
549
550 /**
551 * napi_if_scheduled_mark_missed - if napi is running, set the
552 * NAPIF_STATE_MISSED
553 * @n: NAPI context
554 *
555 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
556 * NAPI is scheduled.
557 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)558 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
559 {
560 unsigned long val, new;
561
562 val = READ_ONCE(n->state);
563 do {
564 if (val & NAPIF_STATE_DISABLE)
565 return true;
566
567 if (!(val & NAPIF_STATE_SCHED))
568 return false;
569
570 new = val | NAPIF_STATE_MISSED;
571 } while (!try_cmpxchg(&n->state, &val, new));
572
573 return true;
574 }
575
576 enum netdev_queue_state_t {
577 __QUEUE_STATE_DRV_XOFF,
578 __QUEUE_STATE_STACK_XOFF,
579 __QUEUE_STATE_FROZEN,
580 };
581
582 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
583 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
584 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
585
586 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
587 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
588 QUEUE_STATE_FROZEN)
589 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
590 QUEUE_STATE_FROZEN)
591
592 /*
593 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
594 * netif_tx_* functions below are used to manipulate this flag. The
595 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
596 * queue independently. The netif_xmit_*stopped functions below are called
597 * to check if the queue has been stopped by the driver or stack (either
598 * of the XOFF bits are set in the state). Drivers should not need to call
599 * netif_xmit*stopped functions, they should only be using netif_tx_*.
600 */
601
602 struct netdev_queue {
603 /*
604 * read-mostly part
605 */
606 struct net_device *dev;
607 netdevice_tracker dev_tracker;
608
609 struct Qdisc __rcu *qdisc;
610 struct Qdisc *qdisc_sleeping;
611 #ifdef CONFIG_SYSFS
612 struct kobject kobj;
613 #endif
614 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
615 int numa_node;
616 #endif
617 unsigned long tx_maxrate;
618 /*
619 * Number of TX timeouts for this queue
620 * (/sys/class/net/DEV/Q/trans_timeout)
621 */
622 atomic_long_t trans_timeout;
623
624 /* Subordinate device that the queue has been assigned to */
625 struct net_device *sb_dev;
626 #ifdef CONFIG_XDP_SOCKETS
627 struct xsk_buff_pool *pool;
628 #endif
629 /*
630 * write-mostly part
631 */
632 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
633 int xmit_lock_owner;
634 /*
635 * Time (in jiffies) of last Tx
636 */
637 unsigned long trans_start;
638
639 unsigned long state;
640
641 #ifdef CONFIG_BQL
642 struct dql dql;
643 #endif
644 } ____cacheline_aligned_in_smp;
645
646 extern int sysctl_fb_tunnels_only_for_init_net;
647 extern int sysctl_devconf_inherit_init_net;
648
649 /*
650 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
651 * == 1 : For initns only
652 * == 2 : For none.
653 */
net_has_fallback_tunnels(const struct net * net)654 static inline bool net_has_fallback_tunnels(const struct net *net)
655 {
656 #if IS_ENABLED(CONFIG_SYSCTL)
657 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
658
659 return !fb_tunnels_only_for_init_net ||
660 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
661 #else
662 return true;
663 #endif
664 }
665
net_inherit_devconf(void)666 static inline int net_inherit_devconf(void)
667 {
668 #if IS_ENABLED(CONFIG_SYSCTL)
669 return READ_ONCE(sysctl_devconf_inherit_init_net);
670 #else
671 return 0;
672 #endif
673 }
674
netdev_queue_numa_node_read(const struct netdev_queue * q)675 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
676 {
677 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
678 return q->numa_node;
679 #else
680 return NUMA_NO_NODE;
681 #endif
682 }
683
netdev_queue_numa_node_write(struct netdev_queue * q,int node)684 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
685 {
686 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
687 q->numa_node = node;
688 #endif
689 }
690
691 #ifdef CONFIG_RPS
692 /*
693 * This structure holds an RPS map which can be of variable length. The
694 * map is an array of CPUs.
695 */
696 struct rps_map {
697 unsigned int len;
698 struct rcu_head rcu;
699 u16 cpus[];
700 };
701 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
702
703 /*
704 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
705 * tail pointer for that CPU's input queue at the time of last enqueue, and
706 * a hardware filter index.
707 */
708 struct rps_dev_flow {
709 u16 cpu;
710 u16 filter;
711 unsigned int last_qtail;
712 };
713 #define RPS_NO_FILTER 0xffff
714
715 /*
716 * The rps_dev_flow_table structure contains a table of flow mappings.
717 */
718 struct rps_dev_flow_table {
719 unsigned int mask;
720 struct rcu_head rcu;
721 struct rps_dev_flow flows[];
722 };
723 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
724 ((_num) * sizeof(struct rps_dev_flow)))
725
726 /*
727 * The rps_sock_flow_table contains mappings of flows to the last CPU
728 * on which they were processed by the application (set in recvmsg).
729 * Each entry is a 32bit value. Upper part is the high-order bits
730 * of flow hash, lower part is CPU number.
731 * rps_cpu_mask is used to partition the space, depending on number of
732 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
733 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
734 * meaning we use 32-6=26 bits for the hash.
735 */
736 struct rps_sock_flow_table {
737 u32 mask;
738
739 u32 ents[] ____cacheline_aligned_in_smp;
740 };
741 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
742
743 #define RPS_NO_CPU 0xffff
744
745 extern u32 rps_cpu_mask;
746 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
747
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)748 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
749 u32 hash)
750 {
751 if (table && hash) {
752 unsigned int index = hash & table->mask;
753 u32 val = hash & ~rps_cpu_mask;
754
755 /* We only give a hint, preemption can change CPU under us */
756 val |= raw_smp_processor_id();
757
758 if (table->ents[index] != val)
759 table->ents[index] = val;
760 }
761 }
762
763 #ifdef CONFIG_RFS_ACCEL
764 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
765 u16 filter_id);
766 #endif
767 #endif /* CONFIG_RPS */
768
769 /* This structure contains an instance of an RX queue. */
770 struct netdev_rx_queue {
771 struct xdp_rxq_info xdp_rxq;
772 #ifdef CONFIG_RPS
773 struct rps_map __rcu *rps_map;
774 struct rps_dev_flow_table __rcu *rps_flow_table;
775 #endif
776 struct kobject kobj;
777 struct net_device *dev;
778 netdevice_tracker dev_tracker;
779
780 #ifdef CONFIG_XDP_SOCKETS
781 struct xsk_buff_pool *pool;
782 #endif
783 } ____cacheline_aligned_in_smp;
784
785 /*
786 * RX queue sysfs structures and functions.
787 */
788 struct rx_queue_attribute {
789 struct attribute attr;
790 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
791 ssize_t (*store)(struct netdev_rx_queue *queue,
792 const char *buf, size_t len);
793 };
794
795 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
796 enum xps_map_type {
797 XPS_CPUS = 0,
798 XPS_RXQS,
799 XPS_MAPS_MAX,
800 };
801
802 #ifdef CONFIG_XPS
803 /*
804 * This structure holds an XPS map which can be of variable length. The
805 * map is an array of queues.
806 */
807 struct xps_map {
808 unsigned int len;
809 unsigned int alloc_len;
810 struct rcu_head rcu;
811 u16 queues[];
812 };
813 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
814 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
815 - sizeof(struct xps_map)) / sizeof(u16))
816
817 /*
818 * This structure holds all XPS maps for device. Maps are indexed by CPU.
819 *
820 * We keep track of the number of cpus/rxqs used when the struct is allocated,
821 * in nr_ids. This will help not accessing out-of-bound memory.
822 *
823 * We keep track of the number of traffic classes used when the struct is
824 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
825 * not crossing its upper bound, as the original dev->num_tc can be updated in
826 * the meantime.
827 */
828 struct xps_dev_maps {
829 struct rcu_head rcu;
830 unsigned int nr_ids;
831 s16 num_tc;
832 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
833 };
834
835 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
836 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
837
838 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
839 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
840
841 #endif /* CONFIG_XPS */
842
843 #define TC_MAX_QUEUE 16
844 #define TC_BITMASK 15
845 /* HW offloaded queuing disciplines txq count and offset maps */
846 struct netdev_tc_txq {
847 u16 count;
848 u16 offset;
849 };
850
851 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
852 /*
853 * This structure is to hold information about the device
854 * configured to run FCoE protocol stack.
855 */
856 struct netdev_fcoe_hbainfo {
857 char manufacturer[64];
858 char serial_number[64];
859 char hardware_version[64];
860 char driver_version[64];
861 char optionrom_version[64];
862 char firmware_version[64];
863 char model[256];
864 char model_description[256];
865 };
866 #endif
867
868 #define MAX_PHYS_ITEM_ID_LEN 32
869
870 /* This structure holds a unique identifier to identify some
871 * physical item (port for example) used by a netdevice.
872 */
873 struct netdev_phys_item_id {
874 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
875 unsigned char id_len;
876 };
877
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)878 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
879 struct netdev_phys_item_id *b)
880 {
881 return a->id_len == b->id_len &&
882 memcmp(a->id, b->id, a->id_len) == 0;
883 }
884
885 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
886 struct sk_buff *skb,
887 struct net_device *sb_dev);
888
889 enum net_device_path_type {
890 DEV_PATH_ETHERNET = 0,
891 DEV_PATH_VLAN,
892 DEV_PATH_BRIDGE,
893 DEV_PATH_PPPOE,
894 DEV_PATH_DSA,
895 DEV_PATH_MTK_WDMA,
896 };
897
898 struct net_device_path {
899 enum net_device_path_type type;
900 const struct net_device *dev;
901 union {
902 struct {
903 u16 id;
904 __be16 proto;
905 u8 h_dest[ETH_ALEN];
906 } encap;
907 struct {
908 enum {
909 DEV_PATH_BR_VLAN_KEEP,
910 DEV_PATH_BR_VLAN_TAG,
911 DEV_PATH_BR_VLAN_UNTAG,
912 DEV_PATH_BR_VLAN_UNTAG_HW,
913 } vlan_mode;
914 u16 vlan_id;
915 __be16 vlan_proto;
916 } bridge;
917 struct {
918 int port;
919 u16 proto;
920 } dsa;
921 struct {
922 u8 wdma_idx;
923 u8 queue;
924 u16 wcid;
925 u8 bss;
926 } mtk_wdma;
927 };
928 };
929
930 #define NET_DEVICE_PATH_STACK_MAX 5
931 #define NET_DEVICE_PATH_VLAN_MAX 2
932
933 struct net_device_path_stack {
934 int num_paths;
935 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
936 };
937
938 struct net_device_path_ctx {
939 const struct net_device *dev;
940 u8 daddr[ETH_ALEN];
941
942 int num_vlans;
943 struct {
944 u16 id;
945 __be16 proto;
946 } vlan[NET_DEVICE_PATH_VLAN_MAX];
947 };
948
949 enum tc_setup_type {
950 TC_QUERY_CAPS,
951 TC_SETUP_QDISC_MQPRIO,
952 TC_SETUP_CLSU32,
953 TC_SETUP_CLSFLOWER,
954 TC_SETUP_CLSMATCHALL,
955 TC_SETUP_CLSBPF,
956 TC_SETUP_BLOCK,
957 TC_SETUP_QDISC_CBS,
958 TC_SETUP_QDISC_RED,
959 TC_SETUP_QDISC_PRIO,
960 TC_SETUP_QDISC_MQ,
961 TC_SETUP_QDISC_ETF,
962 TC_SETUP_ROOT_QDISC,
963 TC_SETUP_QDISC_GRED,
964 TC_SETUP_QDISC_TAPRIO,
965 TC_SETUP_FT,
966 TC_SETUP_QDISC_ETS,
967 TC_SETUP_QDISC_TBF,
968 TC_SETUP_QDISC_FIFO,
969 TC_SETUP_QDISC_HTB,
970 TC_SETUP_ACT,
971 };
972
973 /* These structures hold the attributes of bpf state that are being passed
974 * to the netdevice through the bpf op.
975 */
976 enum bpf_netdev_command {
977 /* Set or clear a bpf program used in the earliest stages of packet
978 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
979 * is responsible for calling bpf_prog_put on any old progs that are
980 * stored. In case of error, the callee need not release the new prog
981 * reference, but on success it takes ownership and must bpf_prog_put
982 * when it is no longer used.
983 */
984 XDP_SETUP_PROG,
985 XDP_SETUP_PROG_HW,
986 /* BPF program for offload callbacks, invoked at program load time. */
987 BPF_OFFLOAD_MAP_ALLOC,
988 BPF_OFFLOAD_MAP_FREE,
989 XDP_SETUP_XSK_POOL,
990 };
991
992 struct bpf_prog_offload_ops;
993 struct netlink_ext_ack;
994 struct xdp_umem;
995 struct xdp_dev_bulk_queue;
996 struct bpf_xdp_link;
997
998 enum bpf_xdp_mode {
999 XDP_MODE_SKB = 0,
1000 XDP_MODE_DRV = 1,
1001 XDP_MODE_HW = 2,
1002 __MAX_XDP_MODE
1003 };
1004
1005 struct bpf_xdp_entity {
1006 struct bpf_prog *prog;
1007 struct bpf_xdp_link *link;
1008 };
1009
1010 struct netdev_bpf {
1011 enum bpf_netdev_command command;
1012 union {
1013 /* XDP_SETUP_PROG */
1014 struct {
1015 u32 flags;
1016 struct bpf_prog *prog;
1017 struct netlink_ext_ack *extack;
1018 };
1019 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1020 struct {
1021 struct bpf_offloaded_map *offmap;
1022 };
1023 /* XDP_SETUP_XSK_POOL */
1024 struct {
1025 struct xsk_buff_pool *pool;
1026 u16 queue_id;
1027 } xsk;
1028 };
1029 };
1030
1031 /* Flags for ndo_xsk_wakeup. */
1032 #define XDP_WAKEUP_RX (1 << 0)
1033 #define XDP_WAKEUP_TX (1 << 1)
1034
1035 #ifdef CONFIG_XFRM_OFFLOAD
1036 struct xfrmdev_ops {
1037 int (*xdo_dev_state_add) (struct xfrm_state *x);
1038 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1039 void (*xdo_dev_state_free) (struct xfrm_state *x);
1040 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1041 struct xfrm_state *x);
1042 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1043 };
1044 #endif
1045
1046 struct dev_ifalias {
1047 struct rcu_head rcuhead;
1048 char ifalias[];
1049 };
1050
1051 struct devlink;
1052 struct tlsdev_ops;
1053
1054 struct netdev_net_notifier {
1055 struct list_head list;
1056 struct notifier_block *nb;
1057 };
1058
1059 /*
1060 * This structure defines the management hooks for network devices.
1061 * The following hooks can be defined; unless noted otherwise, they are
1062 * optional and can be filled with a null pointer.
1063 *
1064 * int (*ndo_init)(struct net_device *dev);
1065 * This function is called once when a network device is registered.
1066 * The network device can use this for any late stage initialization
1067 * or semantic validation. It can fail with an error code which will
1068 * be propagated back to register_netdev.
1069 *
1070 * void (*ndo_uninit)(struct net_device *dev);
1071 * This function is called when device is unregistered or when registration
1072 * fails. It is not called if init fails.
1073 *
1074 * int (*ndo_open)(struct net_device *dev);
1075 * This function is called when a network device transitions to the up
1076 * state.
1077 *
1078 * int (*ndo_stop)(struct net_device *dev);
1079 * This function is called when a network device transitions to the down
1080 * state.
1081 *
1082 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1083 * struct net_device *dev);
1084 * Called when a packet needs to be transmitted.
1085 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1086 * the queue before that can happen; it's for obsolete devices and weird
1087 * corner cases, but the stack really does a non-trivial amount
1088 * of useless work if you return NETDEV_TX_BUSY.
1089 * Required; cannot be NULL.
1090 *
1091 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1092 * struct net_device *dev
1093 * netdev_features_t features);
1094 * Called by core transmit path to determine if device is capable of
1095 * performing offload operations on a given packet. This is to give
1096 * the device an opportunity to implement any restrictions that cannot
1097 * be otherwise expressed by feature flags. The check is called with
1098 * the set of features that the stack has calculated and it returns
1099 * those the driver believes to be appropriate.
1100 *
1101 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1102 * struct net_device *sb_dev);
1103 * Called to decide which queue to use when device supports multiple
1104 * transmit queues.
1105 *
1106 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1107 * This function is called to allow device receiver to make
1108 * changes to configuration when multicast or promiscuous is enabled.
1109 *
1110 * void (*ndo_set_rx_mode)(struct net_device *dev);
1111 * This function is called device changes address list filtering.
1112 * If driver handles unicast address filtering, it should set
1113 * IFF_UNICAST_FLT in its priv_flags.
1114 *
1115 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1116 * This function is called when the Media Access Control address
1117 * needs to be changed. If this interface is not defined, the
1118 * MAC address can not be changed.
1119 *
1120 * int (*ndo_validate_addr)(struct net_device *dev);
1121 * Test if Media Access Control address is valid for the device.
1122 *
1123 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1124 * Old-style ioctl entry point. This is used internally by the
1125 * appletalk and ieee802154 subsystems but is no longer called by
1126 * the device ioctl handler.
1127 *
1128 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1129 * Used by the bonding driver for its device specific ioctls:
1130 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1131 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1132 *
1133 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1134 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1135 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1136 *
1137 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1138 * Used to set network devices bus interface parameters. This interface
1139 * is retained for legacy reasons; new devices should use the bus
1140 * interface (PCI) for low level management.
1141 *
1142 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1143 * Called when a user wants to change the Maximum Transfer Unit
1144 * of a device.
1145 *
1146 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1147 * Callback used when the transmitter has not made any progress
1148 * for dev->watchdog ticks.
1149 *
1150 * void (*ndo_get_stats64)(struct net_device *dev,
1151 * struct rtnl_link_stats64 *storage);
1152 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1153 * Called when a user wants to get the network device usage
1154 * statistics. Drivers must do one of the following:
1155 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1156 * rtnl_link_stats64 structure passed by the caller.
1157 * 2. Define @ndo_get_stats to update a net_device_stats structure
1158 * (which should normally be dev->stats) and return a pointer to
1159 * it. The structure may be changed asynchronously only if each
1160 * field is written atomically.
1161 * 3. Update dev->stats asynchronously and atomically, and define
1162 * neither operation.
1163 *
1164 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1165 * Return true if this device supports offload stats of this attr_id.
1166 *
1167 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1168 * void *attr_data)
1169 * Get statistics for offload operations by attr_id. Write it into the
1170 * attr_data pointer.
1171 *
1172 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1173 * If device supports VLAN filtering this function is called when a
1174 * VLAN id is registered.
1175 *
1176 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1177 * If device supports VLAN filtering this function is called when a
1178 * VLAN id is unregistered.
1179 *
1180 * void (*ndo_poll_controller)(struct net_device *dev);
1181 *
1182 * SR-IOV management functions.
1183 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1184 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1185 * u8 qos, __be16 proto);
1186 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1187 * int max_tx_rate);
1188 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1189 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1190 * int (*ndo_get_vf_config)(struct net_device *dev,
1191 * int vf, struct ifla_vf_info *ivf);
1192 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1193 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1194 * struct nlattr *port[]);
1195 *
1196 * Enable or disable the VF ability to query its RSS Redirection Table and
1197 * Hash Key. This is needed since on some devices VF share this information
1198 * with PF and querying it may introduce a theoretical security risk.
1199 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1200 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1201 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1202 * void *type_data);
1203 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1204 * This is always called from the stack with the rtnl lock held and netif
1205 * tx queues stopped. This allows the netdevice to perform queue
1206 * management safely.
1207 *
1208 * Fiber Channel over Ethernet (FCoE) offload functions.
1209 * int (*ndo_fcoe_enable)(struct net_device *dev);
1210 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1211 * so the underlying device can perform whatever needed configuration or
1212 * initialization to support acceleration of FCoE traffic.
1213 *
1214 * int (*ndo_fcoe_disable)(struct net_device *dev);
1215 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1216 * so the underlying device can perform whatever needed clean-ups to
1217 * stop supporting acceleration of FCoE traffic.
1218 *
1219 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1220 * struct scatterlist *sgl, unsigned int sgc);
1221 * Called when the FCoE Initiator wants to initialize an I/O that
1222 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1223 * perform necessary setup and returns 1 to indicate the device is set up
1224 * successfully to perform DDP on this I/O, otherwise this returns 0.
1225 *
1226 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1227 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1228 * indicated by the FC exchange id 'xid', so the underlying device can
1229 * clean up and reuse resources for later DDP requests.
1230 *
1231 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1232 * struct scatterlist *sgl, unsigned int sgc);
1233 * Called when the FCoE Target wants to initialize an I/O that
1234 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1235 * perform necessary setup and returns 1 to indicate the device is set up
1236 * successfully to perform DDP on this I/O, otherwise this returns 0.
1237 *
1238 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1239 * struct netdev_fcoe_hbainfo *hbainfo);
1240 * Called when the FCoE Protocol stack wants information on the underlying
1241 * device. This information is utilized by the FCoE protocol stack to
1242 * register attributes with Fiber Channel management service as per the
1243 * FC-GS Fabric Device Management Information(FDMI) specification.
1244 *
1245 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1246 * Called when the underlying device wants to override default World Wide
1247 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1248 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1249 * protocol stack to use.
1250 *
1251 * RFS acceleration.
1252 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1253 * u16 rxq_index, u32 flow_id);
1254 * Set hardware filter for RFS. rxq_index is the target queue index;
1255 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1256 * Return the filter ID on success, or a negative error code.
1257 *
1258 * Slave management functions (for bridge, bonding, etc).
1259 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1260 * Called to make another netdev an underling.
1261 *
1262 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1263 * Called to release previously enslaved netdev.
1264 *
1265 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1266 * struct sk_buff *skb,
1267 * bool all_slaves);
1268 * Get the xmit slave of master device. If all_slaves is true, function
1269 * assume all the slaves can transmit.
1270 *
1271 * Feature/offload setting functions.
1272 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1273 * netdev_features_t features);
1274 * Adjusts the requested feature flags according to device-specific
1275 * constraints, and returns the resulting flags. Must not modify
1276 * the device state.
1277 *
1278 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1279 * Called to update device configuration to new features. Passed
1280 * feature set might be less than what was returned by ndo_fix_features()).
1281 * Must return >0 or -errno if it changed dev->features itself.
1282 *
1283 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1284 * struct net_device *dev,
1285 * const unsigned char *addr, u16 vid, u16 flags,
1286 * struct netlink_ext_ack *extack);
1287 * Adds an FDB entry to dev for addr.
1288 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1289 * struct net_device *dev,
1290 * const unsigned char *addr, u16 vid)
1291 * Deletes the FDB entry from dev coresponding to addr.
1292 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1293 * struct net_device *dev,
1294 * u16 vid,
1295 * struct netlink_ext_ack *extack);
1296 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1297 * struct net_device *dev, struct net_device *filter_dev,
1298 * int *idx)
1299 * Used to add FDB entries to dump requests. Implementers should add
1300 * entries to skb and update idx with the number of entries.
1301 *
1302 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1303 * u16 flags, struct netlink_ext_ack *extack)
1304 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1305 * struct net_device *dev, u32 filter_mask,
1306 * int nlflags)
1307 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1308 * u16 flags);
1309 *
1310 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1311 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1312 * which do not represent real hardware may define this to allow their
1313 * userspace components to manage their virtual carrier state. Devices
1314 * that determine carrier state from physical hardware properties (eg
1315 * network cables) or protocol-dependent mechanisms (eg
1316 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1317 *
1318 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1319 * struct netdev_phys_item_id *ppid);
1320 * Called to get ID of physical port of this device. If driver does
1321 * not implement this, it is assumed that the hw is not able to have
1322 * multiple net devices on single physical port.
1323 *
1324 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1325 * struct netdev_phys_item_id *ppid)
1326 * Called to get the parent ID of the physical port of this device.
1327 *
1328 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1329 * struct net_device *dev)
1330 * Called by upper layer devices to accelerate switching or other
1331 * station functionality into hardware. 'pdev is the lowerdev
1332 * to use for the offload and 'dev' is the net device that will
1333 * back the offload. Returns a pointer to the private structure
1334 * the upper layer will maintain.
1335 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1336 * Called by upper layer device to delete the station created
1337 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1338 * the station and priv is the structure returned by the add
1339 * operation.
1340 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1341 * int queue_index, u32 maxrate);
1342 * Called when a user wants to set a max-rate limitation of specific
1343 * TX queue.
1344 * int (*ndo_get_iflink)(const struct net_device *dev);
1345 * Called to get the iflink value of this device.
1346 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1347 * This function is used to get egress tunnel information for given skb.
1348 * This is useful for retrieving outer tunnel header parameters while
1349 * sampling packet.
1350 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1351 * This function is used to specify the headroom that the skb must
1352 * consider when allocation skb during packet reception. Setting
1353 * appropriate rx headroom value allows avoiding skb head copy on
1354 * forward. Setting a negative value resets the rx headroom to the
1355 * default value.
1356 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1357 * This function is used to set or query state related to XDP on the
1358 * netdevice and manage BPF offload. See definition of
1359 * enum bpf_netdev_command for details.
1360 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1361 * u32 flags);
1362 * This function is used to submit @n XDP packets for transmit on a
1363 * netdevice. Returns number of frames successfully transmitted, frames
1364 * that got dropped are freed/returned via xdp_return_frame().
1365 * Returns negative number, means general error invoking ndo, meaning
1366 * no frames were xmit'ed and core-caller will free all frames.
1367 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1368 * struct xdp_buff *xdp);
1369 * Get the xmit slave of master device based on the xdp_buff.
1370 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1371 * This function is used to wake up the softirq, ksoftirqd or kthread
1372 * responsible for sending and/or receiving packets on a specific
1373 * queue id bound to an AF_XDP socket. The flags field specifies if
1374 * only RX, only Tx, or both should be woken up using the flags
1375 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1376 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1377 * Get devlink port instance associated with a given netdev.
1378 * Called with a reference on the netdevice and devlink locks only,
1379 * rtnl_lock is not held.
1380 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1381 * int cmd);
1382 * Add, change, delete or get information on an IPv4 tunnel.
1383 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1384 * If a device is paired with a peer device, return the peer instance.
1385 * The caller must be under RCU read context.
1386 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1387 * Get the forwarding path to reach the real device from the HW destination address
1388 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1389 * const struct skb_shared_hwtstamps *hwtstamps,
1390 * bool cycles);
1391 * Get hardware timestamp based on normal/adjustable time or free running
1392 * cycle counter. This function is required if physical clock supports a
1393 * free running cycle counter.
1394 */
1395 struct net_device_ops {
1396 int (*ndo_init)(struct net_device *dev);
1397 void (*ndo_uninit)(struct net_device *dev);
1398 int (*ndo_open)(struct net_device *dev);
1399 int (*ndo_stop)(struct net_device *dev);
1400 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1401 struct net_device *dev);
1402 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1403 struct net_device *dev,
1404 netdev_features_t features);
1405 u16 (*ndo_select_queue)(struct net_device *dev,
1406 struct sk_buff *skb,
1407 struct net_device *sb_dev);
1408 void (*ndo_change_rx_flags)(struct net_device *dev,
1409 int flags);
1410 void (*ndo_set_rx_mode)(struct net_device *dev);
1411 int (*ndo_set_mac_address)(struct net_device *dev,
1412 void *addr);
1413 int (*ndo_validate_addr)(struct net_device *dev);
1414 int (*ndo_do_ioctl)(struct net_device *dev,
1415 struct ifreq *ifr, int cmd);
1416 int (*ndo_eth_ioctl)(struct net_device *dev,
1417 struct ifreq *ifr, int cmd);
1418 int (*ndo_siocbond)(struct net_device *dev,
1419 struct ifreq *ifr, int cmd);
1420 int (*ndo_siocwandev)(struct net_device *dev,
1421 struct if_settings *ifs);
1422 int (*ndo_siocdevprivate)(struct net_device *dev,
1423 struct ifreq *ifr,
1424 void __user *data, int cmd);
1425 int (*ndo_set_config)(struct net_device *dev,
1426 struct ifmap *map);
1427 int (*ndo_change_mtu)(struct net_device *dev,
1428 int new_mtu);
1429 int (*ndo_neigh_setup)(struct net_device *dev,
1430 struct neigh_parms *);
1431 void (*ndo_tx_timeout) (struct net_device *dev,
1432 unsigned int txqueue);
1433
1434 void (*ndo_get_stats64)(struct net_device *dev,
1435 struct rtnl_link_stats64 *storage);
1436 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1437 int (*ndo_get_offload_stats)(int attr_id,
1438 const struct net_device *dev,
1439 void *attr_data);
1440 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1441
1442 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1443 __be16 proto, u16 vid);
1444 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1445 __be16 proto, u16 vid);
1446 #ifdef CONFIG_NET_POLL_CONTROLLER
1447 void (*ndo_poll_controller)(struct net_device *dev);
1448 int (*ndo_netpoll_setup)(struct net_device *dev,
1449 struct netpoll_info *info);
1450 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1451 #endif
1452 int (*ndo_set_vf_mac)(struct net_device *dev,
1453 int queue, u8 *mac);
1454 int (*ndo_set_vf_vlan)(struct net_device *dev,
1455 int queue, u16 vlan,
1456 u8 qos, __be16 proto);
1457 int (*ndo_set_vf_rate)(struct net_device *dev,
1458 int vf, int min_tx_rate,
1459 int max_tx_rate);
1460 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1461 int vf, bool setting);
1462 int (*ndo_set_vf_trust)(struct net_device *dev,
1463 int vf, bool setting);
1464 int (*ndo_get_vf_config)(struct net_device *dev,
1465 int vf,
1466 struct ifla_vf_info *ivf);
1467 int (*ndo_set_vf_link_state)(struct net_device *dev,
1468 int vf, int link_state);
1469 int (*ndo_get_vf_stats)(struct net_device *dev,
1470 int vf,
1471 struct ifla_vf_stats
1472 *vf_stats);
1473 int (*ndo_set_vf_port)(struct net_device *dev,
1474 int vf,
1475 struct nlattr *port[]);
1476 int (*ndo_get_vf_port)(struct net_device *dev,
1477 int vf, struct sk_buff *skb);
1478 int (*ndo_get_vf_guid)(struct net_device *dev,
1479 int vf,
1480 struct ifla_vf_guid *node_guid,
1481 struct ifla_vf_guid *port_guid);
1482 int (*ndo_set_vf_guid)(struct net_device *dev,
1483 int vf, u64 guid,
1484 int guid_type);
1485 int (*ndo_set_vf_rss_query_en)(
1486 struct net_device *dev,
1487 int vf, bool setting);
1488 int (*ndo_setup_tc)(struct net_device *dev,
1489 enum tc_setup_type type,
1490 void *type_data);
1491 #if IS_ENABLED(CONFIG_FCOE)
1492 int (*ndo_fcoe_enable)(struct net_device *dev);
1493 int (*ndo_fcoe_disable)(struct net_device *dev);
1494 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1495 u16 xid,
1496 struct scatterlist *sgl,
1497 unsigned int sgc);
1498 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1499 u16 xid);
1500 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1501 u16 xid,
1502 struct scatterlist *sgl,
1503 unsigned int sgc);
1504 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1505 struct netdev_fcoe_hbainfo *hbainfo);
1506 #endif
1507
1508 #if IS_ENABLED(CONFIG_LIBFCOE)
1509 #define NETDEV_FCOE_WWNN 0
1510 #define NETDEV_FCOE_WWPN 1
1511 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1512 u64 *wwn, int type);
1513 #endif
1514
1515 #ifdef CONFIG_RFS_ACCEL
1516 int (*ndo_rx_flow_steer)(struct net_device *dev,
1517 const struct sk_buff *skb,
1518 u16 rxq_index,
1519 u32 flow_id);
1520 #endif
1521 int (*ndo_add_slave)(struct net_device *dev,
1522 struct net_device *slave_dev,
1523 struct netlink_ext_ack *extack);
1524 int (*ndo_del_slave)(struct net_device *dev,
1525 struct net_device *slave_dev);
1526 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1527 struct sk_buff *skb,
1528 bool all_slaves);
1529 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1530 struct sock *sk);
1531 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1532 netdev_features_t features);
1533 int (*ndo_set_features)(struct net_device *dev,
1534 netdev_features_t features);
1535 int (*ndo_neigh_construct)(struct net_device *dev,
1536 struct neighbour *n);
1537 void (*ndo_neigh_destroy)(struct net_device *dev,
1538 struct neighbour *n);
1539
1540 int (*ndo_fdb_add)(struct ndmsg *ndm,
1541 struct nlattr *tb[],
1542 struct net_device *dev,
1543 const unsigned char *addr,
1544 u16 vid,
1545 u16 flags,
1546 struct netlink_ext_ack *extack);
1547 int (*ndo_fdb_del)(struct ndmsg *ndm,
1548 struct nlattr *tb[],
1549 struct net_device *dev,
1550 const unsigned char *addr,
1551 u16 vid, struct netlink_ext_ack *extack);
1552 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1553 struct nlattr *tb[],
1554 struct net_device *dev,
1555 u16 vid,
1556 struct netlink_ext_ack *extack);
1557 int (*ndo_fdb_dump)(struct sk_buff *skb,
1558 struct netlink_callback *cb,
1559 struct net_device *dev,
1560 struct net_device *filter_dev,
1561 int *idx);
1562 int (*ndo_fdb_get)(struct sk_buff *skb,
1563 struct nlattr *tb[],
1564 struct net_device *dev,
1565 const unsigned char *addr,
1566 u16 vid, u32 portid, u32 seq,
1567 struct netlink_ext_ack *extack);
1568 int (*ndo_bridge_setlink)(struct net_device *dev,
1569 struct nlmsghdr *nlh,
1570 u16 flags,
1571 struct netlink_ext_ack *extack);
1572 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1573 u32 pid, u32 seq,
1574 struct net_device *dev,
1575 u32 filter_mask,
1576 int nlflags);
1577 int (*ndo_bridge_dellink)(struct net_device *dev,
1578 struct nlmsghdr *nlh,
1579 u16 flags);
1580 int (*ndo_change_carrier)(struct net_device *dev,
1581 bool new_carrier);
1582 int (*ndo_get_phys_port_id)(struct net_device *dev,
1583 struct netdev_phys_item_id *ppid);
1584 int (*ndo_get_port_parent_id)(struct net_device *dev,
1585 struct netdev_phys_item_id *ppid);
1586 int (*ndo_get_phys_port_name)(struct net_device *dev,
1587 char *name, size_t len);
1588 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1589 struct net_device *dev);
1590 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1591 void *priv);
1592
1593 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1594 int queue_index,
1595 u32 maxrate);
1596 int (*ndo_get_iflink)(const struct net_device *dev);
1597 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1598 struct sk_buff *skb);
1599 void (*ndo_set_rx_headroom)(struct net_device *dev,
1600 int needed_headroom);
1601 int (*ndo_bpf)(struct net_device *dev,
1602 struct netdev_bpf *bpf);
1603 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1604 struct xdp_frame **xdp,
1605 u32 flags);
1606 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1607 struct xdp_buff *xdp);
1608 int (*ndo_xsk_wakeup)(struct net_device *dev,
1609 u32 queue_id, u32 flags);
1610 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1611 int (*ndo_tunnel_ctl)(struct net_device *dev,
1612 struct ip_tunnel_parm *p, int cmd);
1613 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1614 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1615 struct net_device_path *path);
1616 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1617 const struct skb_shared_hwtstamps *hwtstamps,
1618 bool cycles);
1619 };
1620
1621 /**
1622 * enum netdev_priv_flags - &struct net_device priv_flags
1623 *
1624 * These are the &struct net_device, they are only set internally
1625 * by drivers and used in the kernel. These flags are invisible to
1626 * userspace; this means that the order of these flags can change
1627 * during any kernel release.
1628 *
1629 * You should have a pretty good reason to be extending these flags.
1630 *
1631 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1632 * @IFF_EBRIDGE: Ethernet bridging device
1633 * @IFF_BONDING: bonding master or slave
1634 * @IFF_ISATAP: ISATAP interface (RFC4214)
1635 * @IFF_WAN_HDLC: WAN HDLC device
1636 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1637 * release skb->dst
1638 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1639 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1640 * @IFF_MACVLAN_PORT: device used as macvlan port
1641 * @IFF_BRIDGE_PORT: device used as bridge port
1642 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1643 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1644 * @IFF_UNICAST_FLT: Supports unicast filtering
1645 * @IFF_TEAM_PORT: device used as team port
1646 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1647 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1648 * change when it's running
1649 * @IFF_MACVLAN: Macvlan device
1650 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1651 * underlying stacked devices
1652 * @IFF_L3MDEV_MASTER: device is an L3 master device
1653 * @IFF_NO_QUEUE: device can run without qdisc attached
1654 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1655 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1656 * @IFF_TEAM: device is a team device
1657 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1658 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1659 * entity (i.e. the master device for bridged veth)
1660 * @IFF_MACSEC: device is a MACsec device
1661 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1662 * @IFF_FAILOVER: device is a failover master device
1663 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1664 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1665 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1666 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1667 * skb_headlen(skb) == 0 (data starts from frag0)
1668 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1669 */
1670 enum netdev_priv_flags {
1671 IFF_802_1Q_VLAN = 1<<0,
1672 IFF_EBRIDGE = 1<<1,
1673 IFF_BONDING = 1<<2,
1674 IFF_ISATAP = 1<<3,
1675 IFF_WAN_HDLC = 1<<4,
1676 IFF_XMIT_DST_RELEASE = 1<<5,
1677 IFF_DONT_BRIDGE = 1<<6,
1678 IFF_DISABLE_NETPOLL = 1<<7,
1679 IFF_MACVLAN_PORT = 1<<8,
1680 IFF_BRIDGE_PORT = 1<<9,
1681 IFF_OVS_DATAPATH = 1<<10,
1682 IFF_TX_SKB_SHARING = 1<<11,
1683 IFF_UNICAST_FLT = 1<<12,
1684 IFF_TEAM_PORT = 1<<13,
1685 IFF_SUPP_NOFCS = 1<<14,
1686 IFF_LIVE_ADDR_CHANGE = 1<<15,
1687 IFF_MACVLAN = 1<<16,
1688 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1689 IFF_L3MDEV_MASTER = 1<<18,
1690 IFF_NO_QUEUE = 1<<19,
1691 IFF_OPENVSWITCH = 1<<20,
1692 IFF_L3MDEV_SLAVE = 1<<21,
1693 IFF_TEAM = 1<<22,
1694 IFF_RXFH_CONFIGURED = 1<<23,
1695 IFF_PHONY_HEADROOM = 1<<24,
1696 IFF_MACSEC = 1<<25,
1697 IFF_NO_RX_HANDLER = 1<<26,
1698 IFF_FAILOVER = 1<<27,
1699 IFF_FAILOVER_SLAVE = 1<<28,
1700 IFF_L3MDEV_RX_HANDLER = 1<<29,
1701 IFF_LIVE_RENAME_OK = 1<<30,
1702 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1703 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1704 };
1705
1706 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1707 #define IFF_EBRIDGE IFF_EBRIDGE
1708 #define IFF_BONDING IFF_BONDING
1709 #define IFF_ISATAP IFF_ISATAP
1710 #define IFF_WAN_HDLC IFF_WAN_HDLC
1711 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1712 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1713 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1714 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1715 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1716 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1717 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1718 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1719 #define IFF_TEAM_PORT IFF_TEAM_PORT
1720 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1721 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1722 #define IFF_MACVLAN IFF_MACVLAN
1723 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1724 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1725 #define IFF_NO_QUEUE IFF_NO_QUEUE
1726 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1727 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1728 #define IFF_TEAM IFF_TEAM
1729 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1730 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1731 #define IFF_MACSEC IFF_MACSEC
1732 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1733 #define IFF_FAILOVER IFF_FAILOVER
1734 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1735 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1736 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1737 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1738
1739 /* Specifies the type of the struct net_device::ml_priv pointer */
1740 enum netdev_ml_priv_type {
1741 ML_PRIV_NONE,
1742 ML_PRIV_CAN,
1743 };
1744
1745 /**
1746 * struct net_device - The DEVICE structure.
1747 *
1748 * Actually, this whole structure is a big mistake. It mixes I/O
1749 * data with strictly "high-level" data, and it has to know about
1750 * almost every data structure used in the INET module.
1751 *
1752 * @name: This is the first field of the "visible" part of this structure
1753 * (i.e. as seen by users in the "Space.c" file). It is the name
1754 * of the interface.
1755 *
1756 * @name_node: Name hashlist node
1757 * @ifalias: SNMP alias
1758 * @mem_end: Shared memory end
1759 * @mem_start: Shared memory start
1760 * @base_addr: Device I/O address
1761 * @irq: Device IRQ number
1762 *
1763 * @state: Generic network queuing layer state, see netdev_state_t
1764 * @dev_list: The global list of network devices
1765 * @napi_list: List entry used for polling NAPI devices
1766 * @unreg_list: List entry when we are unregistering the
1767 * device; see the function unregister_netdev
1768 * @close_list: List entry used when we are closing the device
1769 * @ptype_all: Device-specific packet handlers for all protocols
1770 * @ptype_specific: Device-specific, protocol-specific packet handlers
1771 *
1772 * @adj_list: Directly linked devices, like slaves for bonding
1773 * @features: Currently active device features
1774 * @hw_features: User-changeable features
1775 *
1776 * @wanted_features: User-requested features
1777 * @vlan_features: Mask of features inheritable by VLAN devices
1778 *
1779 * @hw_enc_features: Mask of features inherited by encapsulating devices
1780 * This field indicates what encapsulation
1781 * offloads the hardware is capable of doing,
1782 * and drivers will need to set them appropriately.
1783 *
1784 * @mpls_features: Mask of features inheritable by MPLS
1785 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1786 *
1787 * @ifindex: interface index
1788 * @group: The group the device belongs to
1789 *
1790 * @stats: Statistics struct, which was left as a legacy, use
1791 * rtnl_link_stats64 instead
1792 *
1793 * @core_stats: core networking counters,
1794 * do not use this in drivers
1795 * @carrier_up_count: Number of times the carrier has been up
1796 * @carrier_down_count: Number of times the carrier has been down
1797 *
1798 * @wireless_handlers: List of functions to handle Wireless Extensions,
1799 * instead of ioctl,
1800 * see <net/iw_handler.h> for details.
1801 * @wireless_data: Instance data managed by the core of wireless extensions
1802 *
1803 * @netdev_ops: Includes several pointers to callbacks,
1804 * if one wants to override the ndo_*() functions
1805 * @ethtool_ops: Management operations
1806 * @l3mdev_ops: Layer 3 master device operations
1807 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1808 * discovery handling. Necessary for e.g. 6LoWPAN.
1809 * @xfrmdev_ops: Transformation offload operations
1810 * @tlsdev_ops: Transport Layer Security offload operations
1811 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1812 * of Layer 2 headers.
1813 *
1814 * @flags: Interface flags (a la BSD)
1815 * @priv_flags: Like 'flags' but invisible to userspace,
1816 * see if.h for the definitions
1817 * @gflags: Global flags ( kept as legacy )
1818 * @padded: How much padding added by alloc_netdev()
1819 * @operstate: RFC2863 operstate
1820 * @link_mode: Mapping policy to operstate
1821 * @if_port: Selectable AUI, TP, ...
1822 * @dma: DMA channel
1823 * @mtu: Interface MTU value
1824 * @min_mtu: Interface Minimum MTU value
1825 * @max_mtu: Interface Maximum MTU value
1826 * @type: Interface hardware type
1827 * @hard_header_len: Maximum hardware header length.
1828 * @min_header_len: Minimum hardware header length
1829 *
1830 * @needed_headroom: Extra headroom the hardware may need, but not in all
1831 * cases can this be guaranteed
1832 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1833 * cases can this be guaranteed. Some cases also use
1834 * LL_MAX_HEADER instead to allocate the skb
1835 *
1836 * interface address info:
1837 *
1838 * @perm_addr: Permanent hw address
1839 * @addr_assign_type: Hw address assignment type
1840 * @addr_len: Hardware address length
1841 * @upper_level: Maximum depth level of upper devices.
1842 * @lower_level: Maximum depth level of lower devices.
1843 * @neigh_priv_len: Used in neigh_alloc()
1844 * @dev_id: Used to differentiate devices that share
1845 * the same link layer address
1846 * @dev_port: Used to differentiate devices that share
1847 * the same function
1848 * @addr_list_lock: XXX: need comments on this one
1849 * @name_assign_type: network interface name assignment type
1850 * @uc_promisc: Counter that indicates promiscuous mode
1851 * has been enabled due to the need to listen to
1852 * additional unicast addresses in a device that
1853 * does not implement ndo_set_rx_mode()
1854 * @uc: unicast mac addresses
1855 * @mc: multicast mac addresses
1856 * @dev_addrs: list of device hw addresses
1857 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1858 * @promiscuity: Number of times the NIC is told to work in
1859 * promiscuous mode; if it becomes 0 the NIC will
1860 * exit promiscuous mode
1861 * @allmulti: Counter, enables or disables allmulticast mode
1862 *
1863 * @vlan_info: VLAN info
1864 * @dsa_ptr: dsa specific data
1865 * @tipc_ptr: TIPC specific data
1866 * @atalk_ptr: AppleTalk link
1867 * @ip_ptr: IPv4 specific data
1868 * @ip6_ptr: IPv6 specific data
1869 * @ax25_ptr: AX.25 specific data
1870 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1871 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1872 * device struct
1873 * @mpls_ptr: mpls_dev struct pointer
1874 * @mctp_ptr: MCTP specific data
1875 *
1876 * @dev_addr: Hw address (before bcast,
1877 * because most packets are unicast)
1878 *
1879 * @_rx: Array of RX queues
1880 * @num_rx_queues: Number of RX queues
1881 * allocated at register_netdev() time
1882 * @real_num_rx_queues: Number of RX queues currently active in device
1883 * @xdp_prog: XDP sockets filter program pointer
1884 * @gro_flush_timeout: timeout for GRO layer in NAPI
1885 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1886 * allow to avoid NIC hard IRQ, on busy queues.
1887 *
1888 * @rx_handler: handler for received packets
1889 * @rx_handler_data: XXX: need comments on this one
1890 * @miniq_ingress: ingress/clsact qdisc specific data for
1891 * ingress processing
1892 * @ingress_queue: XXX: need comments on this one
1893 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1894 * @broadcast: hw bcast address
1895 *
1896 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1897 * indexed by RX queue number. Assigned by driver.
1898 * This must only be set if the ndo_rx_flow_steer
1899 * operation is defined
1900 * @index_hlist: Device index hash chain
1901 *
1902 * @_tx: Array of TX queues
1903 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1904 * @real_num_tx_queues: Number of TX queues currently active in device
1905 * @qdisc: Root qdisc from userspace point of view
1906 * @tx_queue_len: Max frames per queue allowed
1907 * @tx_global_lock: XXX: need comments on this one
1908 * @xdp_bulkq: XDP device bulk queue
1909 * @xps_maps: all CPUs/RXQs maps for XPS device
1910 *
1911 * @xps_maps: XXX: need comments on this one
1912 * @miniq_egress: clsact qdisc specific data for
1913 * egress processing
1914 * @nf_hooks_egress: netfilter hooks executed for egress packets
1915 * @qdisc_hash: qdisc hash table
1916 * @watchdog_timeo: Represents the timeout that is used by
1917 * the watchdog (see dev_watchdog())
1918 * @watchdog_timer: List of timers
1919 *
1920 * @proto_down_reason: reason a netdev interface is held down
1921 * @pcpu_refcnt: Number of references to this device
1922 * @dev_refcnt: Number of references to this device
1923 * @refcnt_tracker: Tracker directory for tracked references to this device
1924 * @todo_list: Delayed register/unregister
1925 * @link_watch_list: XXX: need comments on this one
1926 *
1927 * @reg_state: Register/unregister state machine
1928 * @dismantle: Device is going to be freed
1929 * @rtnl_link_state: This enum represents the phases of creating
1930 * a new link
1931 *
1932 * @needs_free_netdev: Should unregister perform free_netdev?
1933 * @priv_destructor: Called from unregister
1934 * @npinfo: XXX: need comments on this one
1935 * @nd_net: Network namespace this network device is inside
1936 *
1937 * @ml_priv: Mid-layer private
1938 * @ml_priv_type: Mid-layer private type
1939 * @lstats: Loopback statistics
1940 * @tstats: Tunnel statistics
1941 * @dstats: Dummy statistics
1942 * @vstats: Virtual ethernet statistics
1943 *
1944 * @garp_port: GARP
1945 * @mrp_port: MRP
1946 *
1947 * @dm_private: Drop monitor private
1948 *
1949 * @dev: Class/net/name entry
1950 * @sysfs_groups: Space for optional device, statistics and wireless
1951 * sysfs groups
1952 *
1953 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1954 * @rtnl_link_ops: Rtnl_link_ops
1955 *
1956 * @gso_max_size: Maximum size of generic segmentation offload
1957 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1958 * @gso_max_segs: Maximum number of segments that can be passed to the
1959 * NIC for GSO
1960 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1961 *
1962 * @dcbnl_ops: Data Center Bridging netlink ops
1963 * @num_tc: Number of traffic classes in the net device
1964 * @tc_to_txq: XXX: need comments on this one
1965 * @prio_tc_map: XXX: need comments on this one
1966 *
1967 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1968 *
1969 * @priomap: XXX: need comments on this one
1970 * @phydev: Physical device may attach itself
1971 * for hardware timestamping
1972 * @sfp_bus: attached &struct sfp_bus structure.
1973 *
1974 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1975 *
1976 * @proto_down: protocol port state information can be sent to the
1977 * switch driver and used to set the phys state of the
1978 * switch port.
1979 *
1980 * @wol_enabled: Wake-on-LAN is enabled
1981 *
1982 * @threaded: napi threaded mode is enabled
1983 *
1984 * @net_notifier_list: List of per-net netdev notifier block
1985 * that follow this device when it is moved
1986 * to another network namespace.
1987 *
1988 * @macsec_ops: MACsec offloading ops
1989 *
1990 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1991 * offload capabilities of the device
1992 * @udp_tunnel_nic: UDP tunnel offload state
1993 * @xdp_state: stores info on attached XDP BPF programs
1994 *
1995 * @nested_level: Used as a parameter of spin_lock_nested() of
1996 * dev->addr_list_lock.
1997 * @unlink_list: As netif_addr_lock() can be called recursively,
1998 * keep a list of interfaces to be deleted.
1999 * @gro_max_size: Maximum size of aggregated packet in generic
2000 * receive offload (GRO)
2001 *
2002 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2003 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2004 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2005 * @dev_registered_tracker: tracker for reference held while
2006 * registered
2007 * @offload_xstats_l3: L3 HW stats for this netdevice.
2008 *
2009 * FIXME: cleanup struct net_device such that network protocol info
2010 * moves out.
2011 */
2012
2013 struct net_device {
2014 char name[IFNAMSIZ];
2015 struct netdev_name_node *name_node;
2016 struct dev_ifalias __rcu *ifalias;
2017 /*
2018 * I/O specific fields
2019 * FIXME: Merge these and struct ifmap into one
2020 */
2021 unsigned long mem_end;
2022 unsigned long mem_start;
2023 unsigned long base_addr;
2024
2025 /*
2026 * Some hardware also needs these fields (state,dev_list,
2027 * napi_list,unreg_list,close_list) but they are not
2028 * part of the usual set specified in Space.c.
2029 */
2030
2031 unsigned long state;
2032
2033 struct list_head dev_list;
2034 struct list_head napi_list;
2035 struct list_head unreg_list;
2036 struct list_head close_list;
2037 struct list_head ptype_all;
2038 struct list_head ptype_specific;
2039
2040 struct {
2041 struct list_head upper;
2042 struct list_head lower;
2043 } adj_list;
2044
2045 /* Read-mostly cache-line for fast-path access */
2046 unsigned int flags;
2047 unsigned long long priv_flags;
2048 const struct net_device_ops *netdev_ops;
2049 int ifindex;
2050 unsigned short gflags;
2051 unsigned short hard_header_len;
2052
2053 /* Note : dev->mtu is often read without holding a lock.
2054 * Writers usually hold RTNL.
2055 * It is recommended to use READ_ONCE() to annotate the reads,
2056 * and to use WRITE_ONCE() to annotate the writes.
2057 */
2058 unsigned int mtu;
2059 unsigned short needed_headroom;
2060 unsigned short needed_tailroom;
2061
2062 netdev_features_t features;
2063 netdev_features_t hw_features;
2064 netdev_features_t wanted_features;
2065 netdev_features_t vlan_features;
2066 netdev_features_t hw_enc_features;
2067 netdev_features_t mpls_features;
2068 netdev_features_t gso_partial_features;
2069
2070 unsigned int min_mtu;
2071 unsigned int max_mtu;
2072 unsigned short type;
2073 unsigned char min_header_len;
2074 unsigned char name_assign_type;
2075
2076 int group;
2077
2078 struct net_device_stats stats; /* not used by modern drivers */
2079
2080 struct net_device_core_stats __percpu *core_stats;
2081
2082 /* Stats to monitor link on/off, flapping */
2083 atomic_t carrier_up_count;
2084 atomic_t carrier_down_count;
2085
2086 #ifdef CONFIG_WIRELESS_EXT
2087 const struct iw_handler_def *wireless_handlers;
2088 struct iw_public_data *wireless_data;
2089 #endif
2090 const struct ethtool_ops *ethtool_ops;
2091 #ifdef CONFIG_NET_L3_MASTER_DEV
2092 const struct l3mdev_ops *l3mdev_ops;
2093 #endif
2094 #if IS_ENABLED(CONFIG_IPV6)
2095 const struct ndisc_ops *ndisc_ops;
2096 #endif
2097
2098 #ifdef CONFIG_XFRM_OFFLOAD
2099 const struct xfrmdev_ops *xfrmdev_ops;
2100 #endif
2101
2102 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2103 const struct tlsdev_ops *tlsdev_ops;
2104 #endif
2105
2106 const struct header_ops *header_ops;
2107
2108 unsigned char operstate;
2109 unsigned char link_mode;
2110
2111 unsigned char if_port;
2112 unsigned char dma;
2113
2114 /* Interface address info. */
2115 unsigned char perm_addr[MAX_ADDR_LEN];
2116 unsigned char addr_assign_type;
2117 unsigned char addr_len;
2118 unsigned char upper_level;
2119 unsigned char lower_level;
2120
2121 unsigned short neigh_priv_len;
2122 unsigned short dev_id;
2123 unsigned short dev_port;
2124 unsigned short padded;
2125
2126 spinlock_t addr_list_lock;
2127 int irq;
2128
2129 struct netdev_hw_addr_list uc;
2130 struct netdev_hw_addr_list mc;
2131 struct netdev_hw_addr_list dev_addrs;
2132
2133 #ifdef CONFIG_SYSFS
2134 struct kset *queues_kset;
2135 #endif
2136 #ifdef CONFIG_LOCKDEP
2137 struct list_head unlink_list;
2138 #endif
2139 unsigned int promiscuity;
2140 unsigned int allmulti;
2141 bool uc_promisc;
2142 #ifdef CONFIG_LOCKDEP
2143 unsigned char nested_level;
2144 #endif
2145
2146
2147 /* Protocol-specific pointers */
2148
2149 struct in_device __rcu *ip_ptr;
2150 struct inet6_dev __rcu *ip6_ptr;
2151 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2152 struct vlan_info __rcu *vlan_info;
2153 #endif
2154 #if IS_ENABLED(CONFIG_NET_DSA)
2155 struct dsa_port *dsa_ptr;
2156 #endif
2157 #if IS_ENABLED(CONFIG_TIPC)
2158 struct tipc_bearer __rcu *tipc_ptr;
2159 #endif
2160 #if IS_ENABLED(CONFIG_ATALK)
2161 void *atalk_ptr;
2162 #endif
2163 #if IS_ENABLED(CONFIG_AX25)
2164 void *ax25_ptr;
2165 #endif
2166 #if IS_ENABLED(CONFIG_CFG80211)
2167 struct wireless_dev *ieee80211_ptr;
2168 #endif
2169 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2170 struct wpan_dev *ieee802154_ptr;
2171 #endif
2172 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2173 struct mpls_dev __rcu *mpls_ptr;
2174 #endif
2175 #if IS_ENABLED(CONFIG_MCTP)
2176 struct mctp_dev __rcu *mctp_ptr;
2177 #endif
2178
2179 /*
2180 * Cache lines mostly used on receive path (including eth_type_trans())
2181 */
2182 /* Interface address info used in eth_type_trans() */
2183 const unsigned char *dev_addr;
2184
2185 struct netdev_rx_queue *_rx;
2186 unsigned int num_rx_queues;
2187 unsigned int real_num_rx_queues;
2188
2189 struct bpf_prog __rcu *xdp_prog;
2190 unsigned long gro_flush_timeout;
2191 int napi_defer_hard_irqs;
2192 #define GRO_LEGACY_MAX_SIZE 65536u
2193 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2194 * and shinfo->gso_segs is a 16bit field.
2195 */
2196 #define GRO_MAX_SIZE (8 * 65535u)
2197 unsigned int gro_max_size;
2198 rx_handler_func_t __rcu *rx_handler;
2199 void __rcu *rx_handler_data;
2200
2201 #ifdef CONFIG_NET_CLS_ACT
2202 struct mini_Qdisc __rcu *miniq_ingress;
2203 #endif
2204 struct netdev_queue __rcu *ingress_queue;
2205 #ifdef CONFIG_NETFILTER_INGRESS
2206 struct nf_hook_entries __rcu *nf_hooks_ingress;
2207 #endif
2208
2209 unsigned char broadcast[MAX_ADDR_LEN];
2210 #ifdef CONFIG_RFS_ACCEL
2211 struct cpu_rmap *rx_cpu_rmap;
2212 #endif
2213 struct hlist_node index_hlist;
2214
2215 /*
2216 * Cache lines mostly used on transmit path
2217 */
2218 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2219 unsigned int num_tx_queues;
2220 unsigned int real_num_tx_queues;
2221 struct Qdisc __rcu *qdisc;
2222 unsigned int tx_queue_len;
2223 spinlock_t tx_global_lock;
2224
2225 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2226
2227 #ifdef CONFIG_XPS
2228 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2229 #endif
2230 #ifdef CONFIG_NET_CLS_ACT
2231 struct mini_Qdisc __rcu *miniq_egress;
2232 #endif
2233 #ifdef CONFIG_NETFILTER_EGRESS
2234 struct nf_hook_entries __rcu *nf_hooks_egress;
2235 #endif
2236
2237 #ifdef CONFIG_NET_SCHED
2238 DECLARE_HASHTABLE (qdisc_hash, 4);
2239 #endif
2240 /* These may be needed for future network-power-down code. */
2241 struct timer_list watchdog_timer;
2242 int watchdog_timeo;
2243
2244 u32 proto_down_reason;
2245
2246 struct list_head todo_list;
2247
2248 #ifdef CONFIG_PCPU_DEV_REFCNT
2249 int __percpu *pcpu_refcnt;
2250 #else
2251 refcount_t dev_refcnt;
2252 #endif
2253 struct ref_tracker_dir refcnt_tracker;
2254
2255 struct list_head link_watch_list;
2256
2257 enum { NETREG_UNINITIALIZED=0,
2258 NETREG_REGISTERED, /* completed register_netdevice */
2259 NETREG_UNREGISTERING, /* called unregister_netdevice */
2260 NETREG_UNREGISTERED, /* completed unregister todo */
2261 NETREG_RELEASED, /* called free_netdev */
2262 NETREG_DUMMY, /* dummy device for NAPI poll */
2263 } reg_state:8;
2264
2265 bool dismantle;
2266
2267 enum {
2268 RTNL_LINK_INITIALIZED,
2269 RTNL_LINK_INITIALIZING,
2270 } rtnl_link_state:16;
2271
2272 bool needs_free_netdev;
2273 void (*priv_destructor)(struct net_device *dev);
2274
2275 #ifdef CONFIG_NETPOLL
2276 struct netpoll_info __rcu *npinfo;
2277 #endif
2278
2279 possible_net_t nd_net;
2280
2281 /* mid-layer private */
2282 void *ml_priv;
2283 enum netdev_ml_priv_type ml_priv_type;
2284
2285 union {
2286 struct pcpu_lstats __percpu *lstats;
2287 struct pcpu_sw_netstats __percpu *tstats;
2288 struct pcpu_dstats __percpu *dstats;
2289 };
2290
2291 #if IS_ENABLED(CONFIG_GARP)
2292 struct garp_port __rcu *garp_port;
2293 #endif
2294 #if IS_ENABLED(CONFIG_MRP)
2295 struct mrp_port __rcu *mrp_port;
2296 #endif
2297 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2298 struct dm_hw_stat_delta __rcu *dm_private;
2299 #endif
2300 struct device dev;
2301 const struct attribute_group *sysfs_groups[4];
2302 const struct attribute_group *sysfs_rx_queue_group;
2303
2304 const struct rtnl_link_ops *rtnl_link_ops;
2305
2306 /* for setting kernel sock attribute on TCP connection setup */
2307 #define GSO_MAX_SEGS 65535u
2308 #define GSO_LEGACY_MAX_SIZE 65536u
2309 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2310 * and shinfo->gso_segs is a 16bit field.
2311 */
2312 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2313
2314 unsigned int gso_max_size;
2315 #define TSO_LEGACY_MAX_SIZE 65536
2316 #define TSO_MAX_SIZE UINT_MAX
2317 unsigned int tso_max_size;
2318 u16 gso_max_segs;
2319 #define TSO_MAX_SEGS U16_MAX
2320 u16 tso_max_segs;
2321
2322 #ifdef CONFIG_DCB
2323 const struct dcbnl_rtnl_ops *dcbnl_ops;
2324 #endif
2325 s16 num_tc;
2326 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2327 u8 prio_tc_map[TC_BITMASK + 1];
2328
2329 #if IS_ENABLED(CONFIG_FCOE)
2330 unsigned int fcoe_ddp_xid;
2331 #endif
2332 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2333 struct netprio_map __rcu *priomap;
2334 #endif
2335 struct phy_device *phydev;
2336 struct sfp_bus *sfp_bus;
2337 struct lock_class_key *qdisc_tx_busylock;
2338 bool proto_down;
2339 unsigned wol_enabled:1;
2340 unsigned threaded:1;
2341
2342 struct list_head net_notifier_list;
2343
2344 #if IS_ENABLED(CONFIG_MACSEC)
2345 /* MACsec management functions */
2346 const struct macsec_ops *macsec_ops;
2347 #endif
2348 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2349 struct udp_tunnel_nic *udp_tunnel_nic;
2350
2351 /* protected by rtnl_lock */
2352 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2353
2354 u8 dev_addr_shadow[MAX_ADDR_LEN];
2355 netdevice_tracker linkwatch_dev_tracker;
2356 netdevice_tracker watchdog_dev_tracker;
2357 netdevice_tracker dev_registered_tracker;
2358 struct rtnl_hw_stats64 *offload_xstats_l3;
2359 };
2360 #define to_net_dev(d) container_of(d, struct net_device, dev)
2361
netif_elide_gro(const struct net_device * dev)2362 static inline bool netif_elide_gro(const struct net_device *dev)
2363 {
2364 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2365 return true;
2366 return false;
2367 }
2368
2369 #define NETDEV_ALIGN 32
2370
2371 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2372 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2373 {
2374 return dev->prio_tc_map[prio & TC_BITMASK];
2375 }
2376
2377 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2378 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2379 {
2380 if (tc >= dev->num_tc)
2381 return -EINVAL;
2382
2383 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2384 return 0;
2385 }
2386
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2388 void netdev_reset_tc(struct net_device *dev);
2389 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2390 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2391
2392 static inline
netdev_get_num_tc(struct net_device * dev)2393 int netdev_get_num_tc(struct net_device *dev)
2394 {
2395 return dev->num_tc;
2396 }
2397
net_prefetch(void * p)2398 static inline void net_prefetch(void *p)
2399 {
2400 prefetch(p);
2401 #if L1_CACHE_BYTES < 128
2402 prefetch((u8 *)p + L1_CACHE_BYTES);
2403 #endif
2404 }
2405
net_prefetchw(void * p)2406 static inline void net_prefetchw(void *p)
2407 {
2408 prefetchw(p);
2409 #if L1_CACHE_BYTES < 128
2410 prefetchw((u8 *)p + L1_CACHE_BYTES);
2411 #endif
2412 }
2413
2414 void netdev_unbind_sb_channel(struct net_device *dev,
2415 struct net_device *sb_dev);
2416 int netdev_bind_sb_channel_queue(struct net_device *dev,
2417 struct net_device *sb_dev,
2418 u8 tc, u16 count, u16 offset);
2419 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2420 static inline int netdev_get_sb_channel(struct net_device *dev)
2421 {
2422 return max_t(int, -dev->num_tc, 0);
2423 }
2424
2425 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2426 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2427 unsigned int index)
2428 {
2429 return &dev->_tx[index];
2430 }
2431
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2432 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2433 const struct sk_buff *skb)
2434 {
2435 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2436 }
2437
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2438 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2439 void (*f)(struct net_device *,
2440 struct netdev_queue *,
2441 void *),
2442 void *arg)
2443 {
2444 unsigned int i;
2445
2446 for (i = 0; i < dev->num_tx_queues; i++)
2447 f(dev, &dev->_tx[i], arg);
2448 }
2449
2450 #define netdev_lockdep_set_classes(dev) \
2451 { \
2452 static struct lock_class_key qdisc_tx_busylock_key; \
2453 static struct lock_class_key qdisc_xmit_lock_key; \
2454 static struct lock_class_key dev_addr_list_lock_key; \
2455 unsigned int i; \
2456 \
2457 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2458 lockdep_set_class(&(dev)->addr_list_lock, \
2459 &dev_addr_list_lock_key); \
2460 for (i = 0; i < (dev)->num_tx_queues; i++) \
2461 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2462 &qdisc_xmit_lock_key); \
2463 }
2464
2465 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2466 struct net_device *sb_dev);
2467 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2468 struct sk_buff *skb,
2469 struct net_device *sb_dev);
2470
2471 /* returns the headroom that the master device needs to take in account
2472 * when forwarding to this dev
2473 */
netdev_get_fwd_headroom(struct net_device * dev)2474 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2475 {
2476 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2477 }
2478
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2479 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2480 {
2481 if (dev->netdev_ops->ndo_set_rx_headroom)
2482 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2483 }
2484
2485 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2486 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2487 {
2488 netdev_set_rx_headroom(dev, -1);
2489 }
2490
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2491 static inline void *netdev_get_ml_priv(struct net_device *dev,
2492 enum netdev_ml_priv_type type)
2493 {
2494 if (dev->ml_priv_type != type)
2495 return NULL;
2496
2497 return dev->ml_priv;
2498 }
2499
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2500 static inline void netdev_set_ml_priv(struct net_device *dev,
2501 void *ml_priv,
2502 enum netdev_ml_priv_type type)
2503 {
2504 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2505 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2506 dev->ml_priv_type, type);
2507 WARN(!dev->ml_priv_type && dev->ml_priv,
2508 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2509
2510 dev->ml_priv = ml_priv;
2511 dev->ml_priv_type = type;
2512 }
2513
2514 /*
2515 * Net namespace inlines
2516 */
2517 static inline
dev_net(const struct net_device * dev)2518 struct net *dev_net(const struct net_device *dev)
2519 {
2520 return read_pnet(&dev->nd_net);
2521 }
2522
2523 static inline
dev_net_set(struct net_device * dev,struct net * net)2524 void dev_net_set(struct net_device *dev, struct net *net)
2525 {
2526 write_pnet(&dev->nd_net, net);
2527 }
2528
2529 /**
2530 * netdev_priv - access network device private data
2531 * @dev: network device
2532 *
2533 * Get network device private data
2534 */
netdev_priv(const struct net_device * dev)2535 static inline void *netdev_priv(const struct net_device *dev)
2536 {
2537 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2538 }
2539
2540 /* Set the sysfs physical device reference for the network logical device
2541 * if set prior to registration will cause a symlink during initialization.
2542 */
2543 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2544
2545 /* Set the sysfs device type for the network logical device to allow
2546 * fine-grained identification of different network device types. For
2547 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2548 */
2549 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2550
2551 /* Default NAPI poll() weight
2552 * Device drivers are strongly advised to not use bigger value
2553 */
2554 #define NAPI_POLL_WEIGHT 64
2555
2556 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2557 int (*poll)(struct napi_struct *, int), int weight);
2558
2559 /**
2560 * netif_napi_add() - initialize a NAPI context
2561 * @dev: network device
2562 * @napi: NAPI context
2563 * @poll: polling function
2564 *
2565 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2566 * *any* of the other NAPI-related functions.
2567 */
2568 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2569 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2570 int (*poll)(struct napi_struct *, int))
2571 {
2572 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2573 }
2574
2575 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2576 netif_napi_add_tx_weight(struct net_device *dev,
2577 struct napi_struct *napi,
2578 int (*poll)(struct napi_struct *, int),
2579 int weight)
2580 {
2581 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2582 netif_napi_add_weight(dev, napi, poll, weight);
2583 }
2584
2585 /**
2586 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2587 * @dev: network device
2588 * @napi: NAPI context
2589 * @poll: polling function
2590 *
2591 * This variant of netif_napi_add() should be used from drivers using NAPI
2592 * to exclusively poll a TX queue.
2593 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2594 */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2595 static inline void netif_napi_add_tx(struct net_device *dev,
2596 struct napi_struct *napi,
2597 int (*poll)(struct napi_struct *, int))
2598 {
2599 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2600 }
2601
2602 /**
2603 * __netif_napi_del - remove a NAPI context
2604 * @napi: NAPI context
2605 *
2606 * Warning: caller must observe RCU grace period before freeing memory
2607 * containing @napi. Drivers might want to call this helper to combine
2608 * all the needed RCU grace periods into a single one.
2609 */
2610 void __netif_napi_del(struct napi_struct *napi);
2611
2612 /**
2613 * netif_napi_del - remove a NAPI context
2614 * @napi: NAPI context
2615 *
2616 * netif_napi_del() removes a NAPI context from the network device NAPI list
2617 */
netif_napi_del(struct napi_struct * napi)2618 static inline void netif_napi_del(struct napi_struct *napi)
2619 {
2620 __netif_napi_del(napi);
2621 synchronize_net();
2622 }
2623
2624 struct packet_type {
2625 __be16 type; /* This is really htons(ether_type). */
2626 bool ignore_outgoing;
2627 struct net_device *dev; /* NULL is wildcarded here */
2628 netdevice_tracker dev_tracker;
2629 int (*func) (struct sk_buff *,
2630 struct net_device *,
2631 struct packet_type *,
2632 struct net_device *);
2633 void (*list_func) (struct list_head *,
2634 struct packet_type *,
2635 struct net_device *);
2636 bool (*id_match)(struct packet_type *ptype,
2637 struct sock *sk);
2638 struct net *af_packet_net;
2639 void *af_packet_priv;
2640 struct list_head list;
2641 };
2642
2643 struct offload_callbacks {
2644 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2645 netdev_features_t features);
2646 struct sk_buff *(*gro_receive)(struct list_head *head,
2647 struct sk_buff *skb);
2648 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2649 };
2650
2651 struct packet_offload {
2652 __be16 type; /* This is really htons(ether_type). */
2653 u16 priority;
2654 struct offload_callbacks callbacks;
2655 struct list_head list;
2656 };
2657
2658 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2659 struct pcpu_sw_netstats {
2660 u64_stats_t rx_packets;
2661 u64_stats_t rx_bytes;
2662 u64_stats_t tx_packets;
2663 u64_stats_t tx_bytes;
2664 struct u64_stats_sync syncp;
2665 } __aligned(4 * sizeof(u64));
2666
2667 struct pcpu_lstats {
2668 u64_stats_t packets;
2669 u64_stats_t bytes;
2670 struct u64_stats_sync syncp;
2671 } __aligned(2 * sizeof(u64));
2672
2673 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2674
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2675 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2676 {
2677 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2678
2679 u64_stats_update_begin(&tstats->syncp);
2680 u64_stats_add(&tstats->rx_bytes, len);
2681 u64_stats_inc(&tstats->rx_packets);
2682 u64_stats_update_end(&tstats->syncp);
2683 }
2684
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2685 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2686 unsigned int packets,
2687 unsigned int len)
2688 {
2689 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2690
2691 u64_stats_update_begin(&tstats->syncp);
2692 u64_stats_add(&tstats->tx_bytes, len);
2693 u64_stats_add(&tstats->tx_packets, packets);
2694 u64_stats_update_end(&tstats->syncp);
2695 }
2696
dev_lstats_add(struct net_device * dev,unsigned int len)2697 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2698 {
2699 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2700
2701 u64_stats_update_begin(&lstats->syncp);
2702 u64_stats_add(&lstats->bytes, len);
2703 u64_stats_inc(&lstats->packets);
2704 u64_stats_update_end(&lstats->syncp);
2705 }
2706
2707 #define __netdev_alloc_pcpu_stats(type, gfp) \
2708 ({ \
2709 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2710 if (pcpu_stats) { \
2711 int __cpu; \
2712 for_each_possible_cpu(__cpu) { \
2713 typeof(type) *stat; \
2714 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2715 u64_stats_init(&stat->syncp); \
2716 } \
2717 } \
2718 pcpu_stats; \
2719 })
2720
2721 #define netdev_alloc_pcpu_stats(type) \
2722 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2723
2724 #define devm_netdev_alloc_pcpu_stats(dev, type) \
2725 ({ \
2726 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2727 if (pcpu_stats) { \
2728 int __cpu; \
2729 for_each_possible_cpu(__cpu) { \
2730 typeof(type) *stat; \
2731 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2732 u64_stats_init(&stat->syncp); \
2733 } \
2734 } \
2735 pcpu_stats; \
2736 })
2737
2738 enum netdev_lag_tx_type {
2739 NETDEV_LAG_TX_TYPE_UNKNOWN,
2740 NETDEV_LAG_TX_TYPE_RANDOM,
2741 NETDEV_LAG_TX_TYPE_BROADCAST,
2742 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2743 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2744 NETDEV_LAG_TX_TYPE_HASH,
2745 };
2746
2747 enum netdev_lag_hash {
2748 NETDEV_LAG_HASH_NONE,
2749 NETDEV_LAG_HASH_L2,
2750 NETDEV_LAG_HASH_L34,
2751 NETDEV_LAG_HASH_L23,
2752 NETDEV_LAG_HASH_E23,
2753 NETDEV_LAG_HASH_E34,
2754 NETDEV_LAG_HASH_VLAN_SRCMAC,
2755 NETDEV_LAG_HASH_UNKNOWN,
2756 };
2757
2758 struct netdev_lag_upper_info {
2759 enum netdev_lag_tx_type tx_type;
2760 enum netdev_lag_hash hash_type;
2761 };
2762
2763 struct netdev_lag_lower_state_info {
2764 u8 link_up : 1,
2765 tx_enabled : 1;
2766 };
2767
2768 #include <linux/notifier.h>
2769
2770 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2771 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2772 * adding new types.
2773 */
2774 enum netdev_cmd {
2775 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2776 NETDEV_DOWN,
2777 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2778 detected a hardware crash and restarted
2779 - we can use this eg to kick tcp sessions
2780 once done */
2781 NETDEV_CHANGE, /* Notify device state change */
2782 NETDEV_REGISTER,
2783 NETDEV_UNREGISTER,
2784 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2785 NETDEV_CHANGEADDR, /* notify after the address change */
2786 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2787 NETDEV_GOING_DOWN,
2788 NETDEV_CHANGENAME,
2789 NETDEV_FEAT_CHANGE,
2790 NETDEV_BONDING_FAILOVER,
2791 NETDEV_PRE_UP,
2792 NETDEV_PRE_TYPE_CHANGE,
2793 NETDEV_POST_TYPE_CHANGE,
2794 NETDEV_POST_INIT,
2795 NETDEV_RELEASE,
2796 NETDEV_NOTIFY_PEERS,
2797 NETDEV_JOIN,
2798 NETDEV_CHANGEUPPER,
2799 NETDEV_RESEND_IGMP,
2800 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2801 NETDEV_CHANGEINFODATA,
2802 NETDEV_BONDING_INFO,
2803 NETDEV_PRECHANGEUPPER,
2804 NETDEV_CHANGELOWERSTATE,
2805 NETDEV_UDP_TUNNEL_PUSH_INFO,
2806 NETDEV_UDP_TUNNEL_DROP_INFO,
2807 NETDEV_CHANGE_TX_QUEUE_LEN,
2808 NETDEV_CVLAN_FILTER_PUSH_INFO,
2809 NETDEV_CVLAN_FILTER_DROP_INFO,
2810 NETDEV_SVLAN_FILTER_PUSH_INFO,
2811 NETDEV_SVLAN_FILTER_DROP_INFO,
2812 NETDEV_OFFLOAD_XSTATS_ENABLE,
2813 NETDEV_OFFLOAD_XSTATS_DISABLE,
2814 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2815 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2816 };
2817 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2818
2819 int register_netdevice_notifier(struct notifier_block *nb);
2820 int unregister_netdevice_notifier(struct notifier_block *nb);
2821 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2822 int unregister_netdevice_notifier_net(struct net *net,
2823 struct notifier_block *nb);
2824 int register_netdevice_notifier_dev_net(struct net_device *dev,
2825 struct notifier_block *nb,
2826 struct netdev_net_notifier *nn);
2827 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2828 struct notifier_block *nb,
2829 struct netdev_net_notifier *nn);
2830
2831 struct netdev_notifier_info {
2832 struct net_device *dev;
2833 struct netlink_ext_ack *extack;
2834 };
2835
2836 struct netdev_notifier_info_ext {
2837 struct netdev_notifier_info info; /* must be first */
2838 union {
2839 u32 mtu;
2840 } ext;
2841 };
2842
2843 struct netdev_notifier_change_info {
2844 struct netdev_notifier_info info; /* must be first */
2845 unsigned int flags_changed;
2846 };
2847
2848 struct netdev_notifier_changeupper_info {
2849 struct netdev_notifier_info info; /* must be first */
2850 struct net_device *upper_dev; /* new upper dev */
2851 bool master; /* is upper dev master */
2852 bool linking; /* is the notification for link or unlink */
2853 void *upper_info; /* upper dev info */
2854 };
2855
2856 struct netdev_notifier_changelowerstate_info {
2857 struct netdev_notifier_info info; /* must be first */
2858 void *lower_state_info; /* is lower dev state */
2859 };
2860
2861 struct netdev_notifier_pre_changeaddr_info {
2862 struct netdev_notifier_info info; /* must be first */
2863 const unsigned char *dev_addr;
2864 };
2865
2866 enum netdev_offload_xstats_type {
2867 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2868 };
2869
2870 struct netdev_notifier_offload_xstats_info {
2871 struct netdev_notifier_info info; /* must be first */
2872 enum netdev_offload_xstats_type type;
2873
2874 union {
2875 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2876 struct netdev_notifier_offload_xstats_rd *report_delta;
2877 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2878 struct netdev_notifier_offload_xstats_ru *report_used;
2879 };
2880 };
2881
2882 int netdev_offload_xstats_enable(struct net_device *dev,
2883 enum netdev_offload_xstats_type type,
2884 struct netlink_ext_ack *extack);
2885 int netdev_offload_xstats_disable(struct net_device *dev,
2886 enum netdev_offload_xstats_type type);
2887 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2888 enum netdev_offload_xstats_type type);
2889 int netdev_offload_xstats_get(struct net_device *dev,
2890 enum netdev_offload_xstats_type type,
2891 struct rtnl_hw_stats64 *stats, bool *used,
2892 struct netlink_ext_ack *extack);
2893 void
2894 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2895 const struct rtnl_hw_stats64 *stats);
2896 void
2897 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2898 void netdev_offload_xstats_push_delta(struct net_device *dev,
2899 enum netdev_offload_xstats_type type,
2900 const struct rtnl_hw_stats64 *stats);
2901
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2902 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2903 struct net_device *dev)
2904 {
2905 info->dev = dev;
2906 info->extack = NULL;
2907 }
2908
2909 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2910 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2911 {
2912 return info->dev;
2913 }
2914
2915 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2916 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2917 {
2918 return info->extack;
2919 }
2920
2921 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2922
2923
2924 extern rwlock_t dev_base_lock; /* Device list lock */
2925
2926 #define for_each_netdev(net, d) \
2927 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2928 #define for_each_netdev_reverse(net, d) \
2929 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2930 #define for_each_netdev_rcu(net, d) \
2931 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2932 #define for_each_netdev_safe(net, d, n) \
2933 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2934 #define for_each_netdev_continue(net, d) \
2935 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2936 #define for_each_netdev_continue_reverse(net, d) \
2937 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2938 dev_list)
2939 #define for_each_netdev_continue_rcu(net, d) \
2940 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2941 #define for_each_netdev_in_bond_rcu(bond, slave) \
2942 for_each_netdev_rcu(&init_net, slave) \
2943 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2944 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2945
next_net_device(struct net_device * dev)2946 static inline struct net_device *next_net_device(struct net_device *dev)
2947 {
2948 struct list_head *lh;
2949 struct net *net;
2950
2951 net = dev_net(dev);
2952 lh = dev->dev_list.next;
2953 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2954 }
2955
next_net_device_rcu(struct net_device * dev)2956 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2957 {
2958 struct list_head *lh;
2959 struct net *net;
2960
2961 net = dev_net(dev);
2962 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2963 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2964 }
2965
first_net_device(struct net * net)2966 static inline struct net_device *first_net_device(struct net *net)
2967 {
2968 return list_empty(&net->dev_base_head) ? NULL :
2969 net_device_entry(net->dev_base_head.next);
2970 }
2971
first_net_device_rcu(struct net * net)2972 static inline struct net_device *first_net_device_rcu(struct net *net)
2973 {
2974 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2975
2976 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2977 }
2978
2979 int netdev_boot_setup_check(struct net_device *dev);
2980 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2981 const char *hwaddr);
2982 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2983 void dev_add_pack(struct packet_type *pt);
2984 void dev_remove_pack(struct packet_type *pt);
2985 void __dev_remove_pack(struct packet_type *pt);
2986 void dev_add_offload(struct packet_offload *po);
2987 void dev_remove_offload(struct packet_offload *po);
2988
2989 int dev_get_iflink(const struct net_device *dev);
2990 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2991 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2992 struct net_device_path_stack *stack);
2993 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2994 unsigned short mask);
2995 struct net_device *dev_get_by_name(struct net *net, const char *name);
2996 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2997 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2998 bool netdev_name_in_use(struct net *net, const char *name);
2999 int dev_alloc_name(struct net_device *dev, const char *name);
3000 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3001 void dev_close(struct net_device *dev);
3002 void dev_close_many(struct list_head *head, bool unlink);
3003 void dev_disable_lro(struct net_device *dev);
3004 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3005 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3006 struct net_device *sb_dev);
3007 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3008 struct net_device *sb_dev);
3009
3010 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3011 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3012
dev_queue_xmit(struct sk_buff * skb)3013 static inline int dev_queue_xmit(struct sk_buff *skb)
3014 {
3015 return __dev_queue_xmit(skb, NULL);
3016 }
3017
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3018 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3019 struct net_device *sb_dev)
3020 {
3021 return __dev_queue_xmit(skb, sb_dev);
3022 }
3023
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3024 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3025 {
3026 int ret;
3027
3028 ret = __dev_direct_xmit(skb, queue_id);
3029 if (!dev_xmit_complete(ret))
3030 kfree_skb(skb);
3031 return ret;
3032 }
3033
3034 int register_netdevice(struct net_device *dev);
3035 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3036 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3037 static inline void unregister_netdevice(struct net_device *dev)
3038 {
3039 unregister_netdevice_queue(dev, NULL);
3040 }
3041
3042 int netdev_refcnt_read(const struct net_device *dev);
3043 void free_netdev(struct net_device *dev);
3044 void netdev_freemem(struct net_device *dev);
3045 int init_dummy_netdev(struct net_device *dev);
3046
3047 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3048 struct sk_buff *skb,
3049 bool all_slaves);
3050 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3051 struct sock *sk);
3052 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3053 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3054 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3055 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3056 int dev_restart(struct net_device *dev);
3057
3058
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3059 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3060 unsigned short type,
3061 const void *daddr, const void *saddr,
3062 unsigned int len)
3063 {
3064 if (!dev->header_ops || !dev->header_ops->create)
3065 return 0;
3066
3067 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3068 }
3069
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3070 static inline int dev_parse_header(const struct sk_buff *skb,
3071 unsigned char *haddr)
3072 {
3073 const struct net_device *dev = skb->dev;
3074
3075 if (!dev->header_ops || !dev->header_ops->parse)
3076 return 0;
3077 return dev->header_ops->parse(skb, haddr);
3078 }
3079
dev_parse_header_protocol(const struct sk_buff * skb)3080 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3081 {
3082 const struct net_device *dev = skb->dev;
3083
3084 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3085 return 0;
3086 return dev->header_ops->parse_protocol(skb);
3087 }
3088
3089 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3090 static inline bool dev_validate_header(const struct net_device *dev,
3091 char *ll_header, int len)
3092 {
3093 if (likely(len >= dev->hard_header_len))
3094 return true;
3095 if (len < dev->min_header_len)
3096 return false;
3097
3098 if (capable(CAP_SYS_RAWIO)) {
3099 memset(ll_header + len, 0, dev->hard_header_len - len);
3100 return true;
3101 }
3102
3103 if (dev->header_ops && dev->header_ops->validate)
3104 return dev->header_ops->validate(ll_header, len);
3105
3106 return false;
3107 }
3108
dev_has_header(const struct net_device * dev)3109 static inline bool dev_has_header(const struct net_device *dev)
3110 {
3111 return dev->header_ops && dev->header_ops->create;
3112 }
3113
3114 /*
3115 * Incoming packets are placed on per-CPU queues
3116 */
3117 struct softnet_data {
3118 struct list_head poll_list;
3119 struct sk_buff_head process_queue;
3120
3121 /* stats */
3122 unsigned int processed;
3123 unsigned int time_squeeze;
3124 unsigned int received_rps;
3125 #ifdef CONFIG_RPS
3126 struct softnet_data *rps_ipi_list;
3127 #endif
3128 #ifdef CONFIG_NET_FLOW_LIMIT
3129 struct sd_flow_limit __rcu *flow_limit;
3130 #endif
3131 struct Qdisc *output_queue;
3132 struct Qdisc **output_queue_tailp;
3133 struct sk_buff *completion_queue;
3134 #ifdef CONFIG_XFRM_OFFLOAD
3135 struct sk_buff_head xfrm_backlog;
3136 #endif
3137 /* written and read only by owning cpu: */
3138 struct {
3139 u16 recursion;
3140 u8 more;
3141 #ifdef CONFIG_NET_EGRESS
3142 u8 skip_txqueue;
3143 #endif
3144 } xmit;
3145 #ifdef CONFIG_RPS
3146 /* input_queue_head should be written by cpu owning this struct,
3147 * and only read by other cpus. Worth using a cache line.
3148 */
3149 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3150
3151 /* Elements below can be accessed between CPUs for RPS/RFS */
3152 call_single_data_t csd ____cacheline_aligned_in_smp;
3153 struct softnet_data *rps_ipi_next;
3154 unsigned int cpu;
3155 unsigned int input_queue_tail;
3156 #endif
3157 unsigned int dropped;
3158 struct sk_buff_head input_pkt_queue;
3159 struct napi_struct backlog;
3160
3161 /* Another possibly contended cache line */
3162 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3163 int defer_count;
3164 int defer_ipi_scheduled;
3165 struct sk_buff *defer_list;
3166 call_single_data_t defer_csd;
3167 };
3168
input_queue_head_incr(struct softnet_data * sd)3169 static inline void input_queue_head_incr(struct softnet_data *sd)
3170 {
3171 #ifdef CONFIG_RPS
3172 sd->input_queue_head++;
3173 #endif
3174 }
3175
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3176 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3177 unsigned int *qtail)
3178 {
3179 #ifdef CONFIG_RPS
3180 *qtail = ++sd->input_queue_tail;
3181 #endif
3182 }
3183
3184 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3185
dev_recursion_level(void)3186 static inline int dev_recursion_level(void)
3187 {
3188 return this_cpu_read(softnet_data.xmit.recursion);
3189 }
3190
3191 #define XMIT_RECURSION_LIMIT 8
dev_xmit_recursion(void)3192 static inline bool dev_xmit_recursion(void)
3193 {
3194 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3195 XMIT_RECURSION_LIMIT);
3196 }
3197
dev_xmit_recursion_inc(void)3198 static inline void dev_xmit_recursion_inc(void)
3199 {
3200 __this_cpu_inc(softnet_data.xmit.recursion);
3201 }
3202
dev_xmit_recursion_dec(void)3203 static inline void dev_xmit_recursion_dec(void)
3204 {
3205 __this_cpu_dec(softnet_data.xmit.recursion);
3206 }
3207
3208 void __netif_schedule(struct Qdisc *q);
3209 void netif_schedule_queue(struct netdev_queue *txq);
3210
netif_tx_schedule_all(struct net_device * dev)3211 static inline void netif_tx_schedule_all(struct net_device *dev)
3212 {
3213 unsigned int i;
3214
3215 for (i = 0; i < dev->num_tx_queues; i++)
3216 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3217 }
3218
netif_tx_start_queue(struct netdev_queue * dev_queue)3219 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3220 {
3221 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3222 }
3223
3224 /**
3225 * netif_start_queue - allow transmit
3226 * @dev: network device
3227 *
3228 * Allow upper layers to call the device hard_start_xmit routine.
3229 */
netif_start_queue(struct net_device * dev)3230 static inline void netif_start_queue(struct net_device *dev)
3231 {
3232 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3233 }
3234
netif_tx_start_all_queues(struct net_device * dev)3235 static inline void netif_tx_start_all_queues(struct net_device *dev)
3236 {
3237 unsigned int i;
3238
3239 for (i = 0; i < dev->num_tx_queues; i++) {
3240 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3241 netif_tx_start_queue(txq);
3242 }
3243 }
3244
3245 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3246
3247 /**
3248 * netif_wake_queue - restart transmit
3249 * @dev: network device
3250 *
3251 * Allow upper layers to call the device hard_start_xmit routine.
3252 * Used for flow control when transmit resources are available.
3253 */
netif_wake_queue(struct net_device * dev)3254 static inline void netif_wake_queue(struct net_device *dev)
3255 {
3256 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3257 }
3258
netif_tx_wake_all_queues(struct net_device * dev)3259 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3260 {
3261 unsigned int i;
3262
3263 for (i = 0; i < dev->num_tx_queues; i++) {
3264 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3265 netif_tx_wake_queue(txq);
3266 }
3267 }
3268
netif_tx_stop_queue(struct netdev_queue * dev_queue)3269 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3270 {
3271 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3272 }
3273
3274 /**
3275 * netif_stop_queue - stop transmitted packets
3276 * @dev: network device
3277 *
3278 * Stop upper layers calling the device hard_start_xmit routine.
3279 * Used for flow control when transmit resources are unavailable.
3280 */
netif_stop_queue(struct net_device * dev)3281 static inline void netif_stop_queue(struct net_device *dev)
3282 {
3283 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3284 }
3285
3286 void netif_tx_stop_all_queues(struct net_device *dev);
3287
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3288 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3289 {
3290 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3291 }
3292
3293 /**
3294 * netif_queue_stopped - test if transmit queue is flowblocked
3295 * @dev: network device
3296 *
3297 * Test if transmit queue on device is currently unable to send.
3298 */
netif_queue_stopped(const struct net_device * dev)3299 static inline bool netif_queue_stopped(const struct net_device *dev)
3300 {
3301 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3302 }
3303
netif_xmit_stopped(const struct netdev_queue * dev_queue)3304 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3305 {
3306 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3307 }
3308
3309 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3310 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3311 {
3312 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3313 }
3314
3315 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3316 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3317 {
3318 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3319 }
3320
3321 /**
3322 * netdev_queue_set_dql_min_limit - set dql minimum limit
3323 * @dev_queue: pointer to transmit queue
3324 * @min_limit: dql minimum limit
3325 *
3326 * Forces xmit_more() to return true until the minimum threshold
3327 * defined by @min_limit is reached (or until the tx queue is
3328 * empty). Warning: to be use with care, misuse will impact the
3329 * latency.
3330 */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3331 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3332 unsigned int min_limit)
3333 {
3334 #ifdef CONFIG_BQL
3335 dev_queue->dql.min_limit = min_limit;
3336 #endif
3337 }
3338
3339 /**
3340 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3341 * @dev_queue: pointer to transmit queue
3342 *
3343 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3344 * to give appropriate hint to the CPU.
3345 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3346 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3347 {
3348 #ifdef CONFIG_BQL
3349 prefetchw(&dev_queue->dql.num_queued);
3350 #endif
3351 }
3352
3353 /**
3354 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3355 * @dev_queue: pointer to transmit queue
3356 *
3357 * BQL enabled drivers might use this helper in their TX completion path,
3358 * to give appropriate hint to the CPU.
3359 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3360 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3361 {
3362 #ifdef CONFIG_BQL
3363 prefetchw(&dev_queue->dql.limit);
3364 #endif
3365 }
3366
3367 /**
3368 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3369 * @dev_queue: network device queue
3370 * @bytes: number of bytes queued to the device queue
3371 *
3372 * Report the number of bytes queued for sending/completion to the network
3373 * device hardware queue. @bytes should be a good approximation and should
3374 * exactly match netdev_completed_queue() @bytes.
3375 * This is typically called once per packet, from ndo_start_xmit().
3376 */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3377 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3378 unsigned int bytes)
3379 {
3380 #ifdef CONFIG_BQL
3381 dql_queued(&dev_queue->dql, bytes);
3382
3383 if (likely(dql_avail(&dev_queue->dql) >= 0))
3384 return;
3385
3386 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3387
3388 /*
3389 * The XOFF flag must be set before checking the dql_avail below,
3390 * because in netdev_tx_completed_queue we update the dql_completed
3391 * before checking the XOFF flag.
3392 */
3393 smp_mb();
3394
3395 /* check again in case another CPU has just made room avail */
3396 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3397 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3398 #endif
3399 }
3400
3401 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3402 * that they should not test BQL status themselves.
3403 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3404 * skb of a batch.
3405 * Returns true if the doorbell must be used to kick the NIC.
3406 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3407 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3408 unsigned int bytes,
3409 bool xmit_more)
3410 {
3411 if (xmit_more) {
3412 #ifdef CONFIG_BQL
3413 dql_queued(&dev_queue->dql, bytes);
3414 #endif
3415 return netif_tx_queue_stopped(dev_queue);
3416 }
3417 netdev_tx_sent_queue(dev_queue, bytes);
3418 return true;
3419 }
3420
3421 /**
3422 * netdev_sent_queue - report the number of bytes queued to hardware
3423 * @dev: network device
3424 * @bytes: number of bytes queued to the hardware device queue
3425 *
3426 * Report the number of bytes queued for sending/completion to the network
3427 * device hardware queue#0. @bytes should be a good approximation and should
3428 * exactly match netdev_completed_queue() @bytes.
3429 * This is typically called once per packet, from ndo_start_xmit().
3430 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3431 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3432 {
3433 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3434 }
3435
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3436 static inline bool __netdev_sent_queue(struct net_device *dev,
3437 unsigned int bytes,
3438 bool xmit_more)
3439 {
3440 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3441 xmit_more);
3442 }
3443
3444 /**
3445 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3446 * @dev_queue: network device queue
3447 * @pkts: number of packets (currently ignored)
3448 * @bytes: number of bytes dequeued from the device queue
3449 *
3450 * Must be called at most once per TX completion round (and not per
3451 * individual packet), so that BQL can adjust its limits appropriately.
3452 */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3453 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3454 unsigned int pkts, unsigned int bytes)
3455 {
3456 #ifdef CONFIG_BQL
3457 if (unlikely(!bytes))
3458 return;
3459
3460 dql_completed(&dev_queue->dql, bytes);
3461
3462 /*
3463 * Without the memory barrier there is a small possiblity that
3464 * netdev_tx_sent_queue will miss the update and cause the queue to
3465 * be stopped forever
3466 */
3467 smp_mb();
3468
3469 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3470 return;
3471
3472 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3473 netif_schedule_queue(dev_queue);
3474 #endif
3475 }
3476
3477 /**
3478 * netdev_completed_queue - report bytes and packets completed by device
3479 * @dev: network device
3480 * @pkts: actual number of packets sent over the medium
3481 * @bytes: actual number of bytes sent over the medium
3482 *
3483 * Report the number of bytes and packets transmitted by the network device
3484 * hardware queue over the physical medium, @bytes must exactly match the
3485 * @bytes amount passed to netdev_sent_queue()
3486 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3487 static inline void netdev_completed_queue(struct net_device *dev,
3488 unsigned int pkts, unsigned int bytes)
3489 {
3490 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3491 }
3492
netdev_tx_reset_queue(struct netdev_queue * q)3493 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3494 {
3495 #ifdef CONFIG_BQL
3496 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3497 dql_reset(&q->dql);
3498 #endif
3499 }
3500
3501 /**
3502 * netdev_reset_queue - reset the packets and bytes count of a network device
3503 * @dev_queue: network device
3504 *
3505 * Reset the bytes and packet count of a network device and clear the
3506 * software flow control OFF bit for this network device
3507 */
netdev_reset_queue(struct net_device * dev_queue)3508 static inline void netdev_reset_queue(struct net_device *dev_queue)
3509 {
3510 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3511 }
3512
3513 /**
3514 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3515 * @dev: network device
3516 * @queue_index: given tx queue index
3517 *
3518 * Returns 0 if given tx queue index >= number of device tx queues,
3519 * otherwise returns the originally passed tx queue index.
3520 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3521 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3522 {
3523 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3524 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3525 dev->name, queue_index,
3526 dev->real_num_tx_queues);
3527 return 0;
3528 }
3529
3530 return queue_index;
3531 }
3532
3533 /**
3534 * netif_running - test if up
3535 * @dev: network device
3536 *
3537 * Test if the device has been brought up.
3538 */
netif_running(const struct net_device * dev)3539 static inline bool netif_running(const struct net_device *dev)
3540 {
3541 return test_bit(__LINK_STATE_START, &dev->state);
3542 }
3543
3544 /*
3545 * Routines to manage the subqueues on a device. We only need start,
3546 * stop, and a check if it's stopped. All other device management is
3547 * done at the overall netdevice level.
3548 * Also test the device if we're multiqueue.
3549 */
3550
3551 /**
3552 * netif_start_subqueue - allow sending packets on subqueue
3553 * @dev: network device
3554 * @queue_index: sub queue index
3555 *
3556 * Start individual transmit queue of a device with multiple transmit queues.
3557 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3558 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3559 {
3560 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3561
3562 netif_tx_start_queue(txq);
3563 }
3564
3565 /**
3566 * netif_stop_subqueue - stop sending packets on subqueue
3567 * @dev: network device
3568 * @queue_index: sub queue index
3569 *
3570 * Stop individual transmit queue of a device with multiple transmit queues.
3571 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3572 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3573 {
3574 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575 netif_tx_stop_queue(txq);
3576 }
3577
3578 /**
3579 * __netif_subqueue_stopped - test status of subqueue
3580 * @dev: network device
3581 * @queue_index: sub queue index
3582 *
3583 * Check individual transmit queue of a device with multiple transmit queues.
3584 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3585 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3586 u16 queue_index)
3587 {
3588 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3589
3590 return netif_tx_queue_stopped(txq);
3591 }
3592
3593 /**
3594 * netif_subqueue_stopped - test status of subqueue
3595 * @dev: network device
3596 * @skb: sub queue buffer pointer
3597 *
3598 * Check individual transmit queue of a device with multiple transmit queues.
3599 */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3600 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3601 struct sk_buff *skb)
3602 {
3603 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3604 }
3605
3606 /**
3607 * netif_wake_subqueue - allow sending packets on subqueue
3608 * @dev: network device
3609 * @queue_index: sub queue index
3610 *
3611 * Resume individual transmit queue of a device with multiple transmit queues.
3612 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3613 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3614 {
3615 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3616
3617 netif_tx_wake_queue(txq);
3618 }
3619
3620 #ifdef CONFIG_XPS
3621 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3622 u16 index);
3623 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3624 u16 index, enum xps_map_type type);
3625
3626 /**
3627 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3628 * @j: CPU/Rx queue index
3629 * @mask: bitmask of all cpus/rx queues
3630 * @nr_bits: number of bits in the bitmask
3631 *
3632 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3633 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3634 static inline bool netif_attr_test_mask(unsigned long j,
3635 const unsigned long *mask,
3636 unsigned int nr_bits)
3637 {
3638 cpu_max_bits_warn(j, nr_bits);
3639 return test_bit(j, mask);
3640 }
3641
3642 /**
3643 * netif_attr_test_online - Test for online CPU/Rx queue
3644 * @j: CPU/Rx queue index
3645 * @online_mask: bitmask for CPUs/Rx queues that are online
3646 * @nr_bits: number of bits in the bitmask
3647 *
3648 * Returns true if a CPU/Rx queue is online.
3649 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3650 static inline bool netif_attr_test_online(unsigned long j,
3651 const unsigned long *online_mask,
3652 unsigned int nr_bits)
3653 {
3654 cpu_max_bits_warn(j, nr_bits);
3655
3656 if (online_mask)
3657 return test_bit(j, online_mask);
3658
3659 return (j < nr_bits);
3660 }
3661
3662 /**
3663 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3664 * @n: CPU/Rx queue index
3665 * @srcp: the cpumask/Rx queue mask pointer
3666 * @nr_bits: number of bits in the bitmask
3667 *
3668 * Returns >= nr_bits if no further CPUs/Rx queues set.
3669 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3670 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3671 unsigned int nr_bits)
3672 {
3673 /* -1 is a legal arg here. */
3674 if (n != -1)
3675 cpu_max_bits_warn(n, nr_bits);
3676
3677 if (srcp)
3678 return find_next_bit(srcp, nr_bits, n + 1);
3679
3680 return n + 1;
3681 }
3682
3683 /**
3684 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3685 * @n: CPU/Rx queue index
3686 * @src1p: the first CPUs/Rx queues mask pointer
3687 * @src2p: the second CPUs/Rx queues mask pointer
3688 * @nr_bits: number of bits in the bitmask
3689 *
3690 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3691 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3692 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3693 const unsigned long *src2p,
3694 unsigned int nr_bits)
3695 {
3696 /* -1 is a legal arg here. */
3697 if (n != -1)
3698 cpu_max_bits_warn(n, nr_bits);
3699
3700 if (src1p && src2p)
3701 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3702 else if (src1p)
3703 return find_next_bit(src1p, nr_bits, n + 1);
3704 else if (src2p)
3705 return find_next_bit(src2p, nr_bits, n + 1);
3706
3707 return n + 1;
3708 }
3709 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3710 static inline int netif_set_xps_queue(struct net_device *dev,
3711 const struct cpumask *mask,
3712 u16 index)
3713 {
3714 return 0;
3715 }
3716
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3717 static inline int __netif_set_xps_queue(struct net_device *dev,
3718 const unsigned long *mask,
3719 u16 index, enum xps_map_type type)
3720 {
3721 return 0;
3722 }
3723 #endif
3724
3725 /**
3726 * netif_is_multiqueue - test if device has multiple transmit queues
3727 * @dev: network device
3728 *
3729 * Check if device has multiple transmit queues
3730 */
netif_is_multiqueue(const struct net_device * dev)3731 static inline bool netif_is_multiqueue(const struct net_device *dev)
3732 {
3733 return dev->num_tx_queues > 1;
3734 }
3735
3736 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3737
3738 #ifdef CONFIG_SYSFS
3739 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3740 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3741 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3742 unsigned int rxqs)
3743 {
3744 dev->real_num_rx_queues = rxqs;
3745 return 0;
3746 }
3747 #endif
3748 int netif_set_real_num_queues(struct net_device *dev,
3749 unsigned int txq, unsigned int rxq);
3750
3751 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3752 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3753 {
3754 return dev->_rx + rxq;
3755 }
3756
3757 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3758 static inline unsigned int get_netdev_rx_queue_index(
3759 struct netdev_rx_queue *queue)
3760 {
3761 struct net_device *dev = queue->dev;
3762 int index = queue - dev->_rx;
3763
3764 BUG_ON(index >= dev->num_rx_queues);
3765 return index;
3766 }
3767 #endif
3768
3769 int netif_get_num_default_rss_queues(void);
3770
3771 enum skb_free_reason {
3772 SKB_REASON_CONSUMED,
3773 SKB_REASON_DROPPED,
3774 };
3775
3776 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3777 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3778
3779 /*
3780 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3781 * interrupt context or with hardware interrupts being disabled.
3782 * (in_hardirq() || irqs_disabled())
3783 *
3784 * We provide four helpers that can be used in following contexts :
3785 *
3786 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3787 * replacing kfree_skb(skb)
3788 *
3789 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3790 * Typically used in place of consume_skb(skb) in TX completion path
3791 *
3792 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3793 * replacing kfree_skb(skb)
3794 *
3795 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3796 * and consumed a packet. Used in place of consume_skb(skb)
3797 */
dev_kfree_skb_irq(struct sk_buff * skb)3798 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3799 {
3800 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3801 }
3802
dev_consume_skb_irq(struct sk_buff * skb)3803 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3804 {
3805 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3806 }
3807
dev_kfree_skb_any(struct sk_buff * skb)3808 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3809 {
3810 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3811 }
3812
dev_consume_skb_any(struct sk_buff * skb)3813 static inline void dev_consume_skb_any(struct sk_buff *skb)
3814 {
3815 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3816 }
3817
3818 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3819 struct bpf_prog *xdp_prog);
3820 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3821 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3822 int netif_rx(struct sk_buff *skb);
3823 int __netif_rx(struct sk_buff *skb);
3824
3825 int netif_receive_skb(struct sk_buff *skb);
3826 int netif_receive_skb_core(struct sk_buff *skb);
3827 void netif_receive_skb_list_internal(struct list_head *head);
3828 void netif_receive_skb_list(struct list_head *head);
3829 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3830 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3831 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3832 void napi_get_frags_check(struct napi_struct *napi);
3833 gro_result_t napi_gro_frags(struct napi_struct *napi);
3834 struct packet_offload *gro_find_receive_by_type(__be16 type);
3835 struct packet_offload *gro_find_complete_by_type(__be16 type);
3836
napi_free_frags(struct napi_struct * napi)3837 static inline void napi_free_frags(struct napi_struct *napi)
3838 {
3839 kfree_skb(napi->skb);
3840 napi->skb = NULL;
3841 }
3842
3843 bool netdev_is_rx_handler_busy(struct net_device *dev);
3844 int netdev_rx_handler_register(struct net_device *dev,
3845 rx_handler_func_t *rx_handler,
3846 void *rx_handler_data);
3847 void netdev_rx_handler_unregister(struct net_device *dev);
3848
3849 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3850 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3851 {
3852 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3853 }
3854 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3855 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3856 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3857 void __user *data, bool *need_copyout);
3858 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3859 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3860 unsigned int dev_get_flags(const struct net_device *);
3861 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3862 struct netlink_ext_ack *extack);
3863 int dev_change_flags(struct net_device *dev, unsigned int flags,
3864 struct netlink_ext_ack *extack);
3865 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3866 unsigned int gchanges);
3867 int dev_set_alias(struct net_device *, const char *, size_t);
3868 int dev_get_alias(const struct net_device *, char *, size_t);
3869 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3870 const char *pat, int new_ifindex);
3871 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3872 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3873 const char *pat)
3874 {
3875 return __dev_change_net_namespace(dev, net, pat, 0);
3876 }
3877 int __dev_set_mtu(struct net_device *, int);
3878 int dev_set_mtu(struct net_device *, int);
3879 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3880 struct netlink_ext_ack *extack);
3881 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3882 struct netlink_ext_ack *extack);
3883 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3884 struct netlink_ext_ack *extack);
3885 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3886 int dev_get_port_parent_id(struct net_device *dev,
3887 struct netdev_phys_item_id *ppid, bool recurse);
3888 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3889 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3890 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3891 struct netdev_queue *txq, int *ret);
3892
3893 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3894 u8 dev_xdp_prog_count(struct net_device *dev);
3895 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3896
3897 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3898 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3899 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3900 bool is_skb_forwardable(const struct net_device *dev,
3901 const struct sk_buff *skb);
3902
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)3903 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3904 const struct sk_buff *skb,
3905 const bool check_mtu)
3906 {
3907 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3908 unsigned int len;
3909
3910 if (!(dev->flags & IFF_UP))
3911 return false;
3912
3913 if (!check_mtu)
3914 return true;
3915
3916 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3917 if (skb->len <= len)
3918 return true;
3919
3920 /* if TSO is enabled, we don't care about the length as the packet
3921 * could be forwarded without being segmented before
3922 */
3923 if (skb_is_gso(skb))
3924 return true;
3925
3926 return false;
3927 }
3928
3929 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3930
dev_core_stats(struct net_device * dev)3931 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3932 {
3933 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3934 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3935
3936 if (likely(p))
3937 return p;
3938
3939 return netdev_core_stats_alloc(dev);
3940 }
3941
3942 #define DEV_CORE_STATS_INC(FIELD) \
3943 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
3944 { \
3945 struct net_device_core_stats __percpu *p; \
3946 \
3947 p = dev_core_stats(dev); \
3948 if (p) \
3949 this_cpu_inc(p->FIELD); \
3950 }
3951 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)3952 DEV_CORE_STATS_INC(tx_dropped)
3953 DEV_CORE_STATS_INC(rx_nohandler)
3954 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3955
3956 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3957 struct sk_buff *skb,
3958 const bool check_mtu)
3959 {
3960 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3961 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3962 dev_core_stats_rx_dropped_inc(dev);
3963 kfree_skb(skb);
3964 return NET_RX_DROP;
3965 }
3966
3967 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3968 skb->priority = 0;
3969 return 0;
3970 }
3971
3972 bool dev_nit_active(struct net_device *dev);
3973 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3974
__dev_put(struct net_device * dev)3975 static inline void __dev_put(struct net_device *dev)
3976 {
3977 if (dev) {
3978 #ifdef CONFIG_PCPU_DEV_REFCNT
3979 this_cpu_dec(*dev->pcpu_refcnt);
3980 #else
3981 refcount_dec(&dev->dev_refcnt);
3982 #endif
3983 }
3984 }
3985
__dev_hold(struct net_device * dev)3986 static inline void __dev_hold(struct net_device *dev)
3987 {
3988 if (dev) {
3989 #ifdef CONFIG_PCPU_DEV_REFCNT
3990 this_cpu_inc(*dev->pcpu_refcnt);
3991 #else
3992 refcount_inc(&dev->dev_refcnt);
3993 #endif
3994 }
3995 }
3996
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)3997 static inline void __netdev_tracker_alloc(struct net_device *dev,
3998 netdevice_tracker *tracker,
3999 gfp_t gfp)
4000 {
4001 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4002 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4003 #endif
4004 }
4005
4006 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4007 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4008 */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4009 static inline void netdev_tracker_alloc(struct net_device *dev,
4010 netdevice_tracker *tracker, gfp_t gfp)
4011 {
4012 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4013 refcount_dec(&dev->refcnt_tracker.no_tracker);
4014 __netdev_tracker_alloc(dev, tracker, gfp);
4015 #endif
4016 }
4017
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4018 static inline void netdev_tracker_free(struct net_device *dev,
4019 netdevice_tracker *tracker)
4020 {
4021 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4022 ref_tracker_free(&dev->refcnt_tracker, tracker);
4023 #endif
4024 }
4025
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4026 static inline void netdev_hold(struct net_device *dev,
4027 netdevice_tracker *tracker, gfp_t gfp)
4028 {
4029 if (dev) {
4030 __dev_hold(dev);
4031 __netdev_tracker_alloc(dev, tracker, gfp);
4032 }
4033 }
4034
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4035 static inline void netdev_put(struct net_device *dev,
4036 netdevice_tracker *tracker)
4037 {
4038 if (dev) {
4039 netdev_tracker_free(dev, tracker);
4040 __dev_put(dev);
4041 }
4042 }
4043
4044 /**
4045 * dev_hold - get reference to device
4046 * @dev: network device
4047 *
4048 * Hold reference to device to keep it from being freed.
4049 * Try using netdev_hold() instead.
4050 */
dev_hold(struct net_device * dev)4051 static inline void dev_hold(struct net_device *dev)
4052 {
4053 netdev_hold(dev, NULL, GFP_ATOMIC);
4054 }
4055
4056 /**
4057 * dev_put - release reference to device
4058 * @dev: network device
4059 *
4060 * Release reference to device to allow it to be freed.
4061 * Try using netdev_put() instead.
4062 */
dev_put(struct net_device * dev)4063 static inline void dev_put(struct net_device *dev)
4064 {
4065 netdev_put(dev, NULL);
4066 }
4067
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4068 static inline void netdev_ref_replace(struct net_device *odev,
4069 struct net_device *ndev,
4070 netdevice_tracker *tracker,
4071 gfp_t gfp)
4072 {
4073 if (odev)
4074 netdev_tracker_free(odev, tracker);
4075
4076 __dev_hold(ndev);
4077 __dev_put(odev);
4078
4079 if (ndev)
4080 __netdev_tracker_alloc(ndev, tracker, gfp);
4081 }
4082
4083 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4084 * and _off may be called from IRQ context, but it is caller
4085 * who is responsible for serialization of these calls.
4086 *
4087 * The name carrier is inappropriate, these functions should really be
4088 * called netif_lowerlayer_*() because they represent the state of any
4089 * kind of lower layer not just hardware media.
4090 */
4091 void linkwatch_fire_event(struct net_device *dev);
4092
4093 /**
4094 * netif_carrier_ok - test if carrier present
4095 * @dev: network device
4096 *
4097 * Check if carrier is present on device
4098 */
netif_carrier_ok(const struct net_device * dev)4099 static inline bool netif_carrier_ok(const struct net_device *dev)
4100 {
4101 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4102 }
4103
4104 unsigned long dev_trans_start(struct net_device *dev);
4105
4106 void __netdev_watchdog_up(struct net_device *dev);
4107
4108 void netif_carrier_on(struct net_device *dev);
4109 void netif_carrier_off(struct net_device *dev);
4110 void netif_carrier_event(struct net_device *dev);
4111
4112 /**
4113 * netif_dormant_on - mark device as dormant.
4114 * @dev: network device
4115 *
4116 * Mark device as dormant (as per RFC2863).
4117 *
4118 * The dormant state indicates that the relevant interface is not
4119 * actually in a condition to pass packets (i.e., it is not 'up') but is
4120 * in a "pending" state, waiting for some external event. For "on-
4121 * demand" interfaces, this new state identifies the situation where the
4122 * interface is waiting for events to place it in the up state.
4123 */
netif_dormant_on(struct net_device * dev)4124 static inline void netif_dormant_on(struct net_device *dev)
4125 {
4126 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4127 linkwatch_fire_event(dev);
4128 }
4129
4130 /**
4131 * netif_dormant_off - set device as not dormant.
4132 * @dev: network device
4133 *
4134 * Device is not in dormant state.
4135 */
netif_dormant_off(struct net_device * dev)4136 static inline void netif_dormant_off(struct net_device *dev)
4137 {
4138 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4139 linkwatch_fire_event(dev);
4140 }
4141
4142 /**
4143 * netif_dormant - test if device is dormant
4144 * @dev: network device
4145 *
4146 * Check if device is dormant.
4147 */
netif_dormant(const struct net_device * dev)4148 static inline bool netif_dormant(const struct net_device *dev)
4149 {
4150 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4151 }
4152
4153
4154 /**
4155 * netif_testing_on - mark device as under test.
4156 * @dev: network device
4157 *
4158 * Mark device as under test (as per RFC2863).
4159 *
4160 * The testing state indicates that some test(s) must be performed on
4161 * the interface. After completion, of the test, the interface state
4162 * will change to up, dormant, or down, as appropriate.
4163 */
netif_testing_on(struct net_device * dev)4164 static inline void netif_testing_on(struct net_device *dev)
4165 {
4166 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4167 linkwatch_fire_event(dev);
4168 }
4169
4170 /**
4171 * netif_testing_off - set device as not under test.
4172 * @dev: network device
4173 *
4174 * Device is not in testing state.
4175 */
netif_testing_off(struct net_device * dev)4176 static inline void netif_testing_off(struct net_device *dev)
4177 {
4178 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4179 linkwatch_fire_event(dev);
4180 }
4181
4182 /**
4183 * netif_testing - test if device is under test
4184 * @dev: network device
4185 *
4186 * Check if device is under test
4187 */
netif_testing(const struct net_device * dev)4188 static inline bool netif_testing(const struct net_device *dev)
4189 {
4190 return test_bit(__LINK_STATE_TESTING, &dev->state);
4191 }
4192
4193
4194 /**
4195 * netif_oper_up - test if device is operational
4196 * @dev: network device
4197 *
4198 * Check if carrier is operational
4199 */
netif_oper_up(const struct net_device * dev)4200 static inline bool netif_oper_up(const struct net_device *dev)
4201 {
4202 return (dev->operstate == IF_OPER_UP ||
4203 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4204 }
4205
4206 /**
4207 * netif_device_present - is device available or removed
4208 * @dev: network device
4209 *
4210 * Check if device has not been removed from system.
4211 */
netif_device_present(const struct net_device * dev)4212 static inline bool netif_device_present(const struct net_device *dev)
4213 {
4214 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4215 }
4216
4217 void netif_device_detach(struct net_device *dev);
4218
4219 void netif_device_attach(struct net_device *dev);
4220
4221 /*
4222 * Network interface message level settings
4223 */
4224
4225 enum {
4226 NETIF_MSG_DRV_BIT,
4227 NETIF_MSG_PROBE_BIT,
4228 NETIF_MSG_LINK_BIT,
4229 NETIF_MSG_TIMER_BIT,
4230 NETIF_MSG_IFDOWN_BIT,
4231 NETIF_MSG_IFUP_BIT,
4232 NETIF_MSG_RX_ERR_BIT,
4233 NETIF_MSG_TX_ERR_BIT,
4234 NETIF_MSG_TX_QUEUED_BIT,
4235 NETIF_MSG_INTR_BIT,
4236 NETIF_MSG_TX_DONE_BIT,
4237 NETIF_MSG_RX_STATUS_BIT,
4238 NETIF_MSG_PKTDATA_BIT,
4239 NETIF_MSG_HW_BIT,
4240 NETIF_MSG_WOL_BIT,
4241
4242 /* When you add a new bit above, update netif_msg_class_names array
4243 * in net/ethtool/common.c
4244 */
4245 NETIF_MSG_CLASS_COUNT,
4246 };
4247 /* Both ethtool_ops interface and internal driver implementation use u32 */
4248 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4249
4250 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4251 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4252
4253 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4254 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4255 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4256 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4257 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4258 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4259 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4260 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4261 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4262 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4263 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4264 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4265 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4266 #define NETIF_MSG_HW __NETIF_MSG(HW)
4267 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4268
4269 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4270 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4271 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4272 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4273 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4274 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4275 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4276 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4277 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4278 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4279 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4280 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4281 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4282 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4283 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4284
netif_msg_init(int debug_value,int default_msg_enable_bits)4285 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4286 {
4287 /* use default */
4288 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4289 return default_msg_enable_bits;
4290 if (debug_value == 0) /* no output */
4291 return 0;
4292 /* set low N bits */
4293 return (1U << debug_value) - 1;
4294 }
4295
__netif_tx_lock(struct netdev_queue * txq,int cpu)4296 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4297 {
4298 spin_lock(&txq->_xmit_lock);
4299 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4300 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4301 }
4302
__netif_tx_acquire(struct netdev_queue * txq)4303 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4304 {
4305 __acquire(&txq->_xmit_lock);
4306 return true;
4307 }
4308
__netif_tx_release(struct netdev_queue * txq)4309 static inline void __netif_tx_release(struct netdev_queue *txq)
4310 {
4311 __release(&txq->_xmit_lock);
4312 }
4313
__netif_tx_lock_bh(struct netdev_queue * txq)4314 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4315 {
4316 spin_lock_bh(&txq->_xmit_lock);
4317 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4318 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4319 }
4320
__netif_tx_trylock(struct netdev_queue * txq)4321 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4322 {
4323 bool ok = spin_trylock(&txq->_xmit_lock);
4324
4325 if (likely(ok)) {
4326 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4327 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4328 }
4329 return ok;
4330 }
4331
__netif_tx_unlock(struct netdev_queue * txq)4332 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4333 {
4334 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4335 WRITE_ONCE(txq->xmit_lock_owner, -1);
4336 spin_unlock(&txq->_xmit_lock);
4337 }
4338
__netif_tx_unlock_bh(struct netdev_queue * txq)4339 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4340 {
4341 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4342 WRITE_ONCE(txq->xmit_lock_owner, -1);
4343 spin_unlock_bh(&txq->_xmit_lock);
4344 }
4345
4346 /*
4347 * txq->trans_start can be read locklessly from dev_watchdog()
4348 */
txq_trans_update(struct netdev_queue * txq)4349 static inline void txq_trans_update(struct netdev_queue *txq)
4350 {
4351 if (txq->xmit_lock_owner != -1)
4352 WRITE_ONCE(txq->trans_start, jiffies);
4353 }
4354
txq_trans_cond_update(struct netdev_queue * txq)4355 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4356 {
4357 unsigned long now = jiffies;
4358
4359 if (READ_ONCE(txq->trans_start) != now)
4360 WRITE_ONCE(txq->trans_start, now);
4361 }
4362
4363 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4364 static inline void netif_trans_update(struct net_device *dev)
4365 {
4366 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4367
4368 txq_trans_cond_update(txq);
4369 }
4370
4371 /**
4372 * netif_tx_lock - grab network device transmit lock
4373 * @dev: network device
4374 *
4375 * Get network device transmit lock
4376 */
4377 void netif_tx_lock(struct net_device *dev);
4378
netif_tx_lock_bh(struct net_device * dev)4379 static inline void netif_tx_lock_bh(struct net_device *dev)
4380 {
4381 local_bh_disable();
4382 netif_tx_lock(dev);
4383 }
4384
4385 void netif_tx_unlock(struct net_device *dev);
4386
netif_tx_unlock_bh(struct net_device * dev)4387 static inline void netif_tx_unlock_bh(struct net_device *dev)
4388 {
4389 netif_tx_unlock(dev);
4390 local_bh_enable();
4391 }
4392
4393 #define HARD_TX_LOCK(dev, txq, cpu) { \
4394 if ((dev->features & NETIF_F_LLTX) == 0) { \
4395 __netif_tx_lock(txq, cpu); \
4396 } else { \
4397 __netif_tx_acquire(txq); \
4398 } \
4399 }
4400
4401 #define HARD_TX_TRYLOCK(dev, txq) \
4402 (((dev->features & NETIF_F_LLTX) == 0) ? \
4403 __netif_tx_trylock(txq) : \
4404 __netif_tx_acquire(txq))
4405
4406 #define HARD_TX_UNLOCK(dev, txq) { \
4407 if ((dev->features & NETIF_F_LLTX) == 0) { \
4408 __netif_tx_unlock(txq); \
4409 } else { \
4410 __netif_tx_release(txq); \
4411 } \
4412 }
4413
netif_tx_disable(struct net_device * dev)4414 static inline void netif_tx_disable(struct net_device *dev)
4415 {
4416 unsigned int i;
4417 int cpu;
4418
4419 local_bh_disable();
4420 cpu = smp_processor_id();
4421 spin_lock(&dev->tx_global_lock);
4422 for (i = 0; i < dev->num_tx_queues; i++) {
4423 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4424
4425 __netif_tx_lock(txq, cpu);
4426 netif_tx_stop_queue(txq);
4427 __netif_tx_unlock(txq);
4428 }
4429 spin_unlock(&dev->tx_global_lock);
4430 local_bh_enable();
4431 }
4432
netif_addr_lock(struct net_device * dev)4433 static inline void netif_addr_lock(struct net_device *dev)
4434 {
4435 unsigned char nest_level = 0;
4436
4437 #ifdef CONFIG_LOCKDEP
4438 nest_level = dev->nested_level;
4439 #endif
4440 spin_lock_nested(&dev->addr_list_lock, nest_level);
4441 }
4442
netif_addr_lock_bh(struct net_device * dev)4443 static inline void netif_addr_lock_bh(struct net_device *dev)
4444 {
4445 unsigned char nest_level = 0;
4446
4447 #ifdef CONFIG_LOCKDEP
4448 nest_level = dev->nested_level;
4449 #endif
4450 local_bh_disable();
4451 spin_lock_nested(&dev->addr_list_lock, nest_level);
4452 }
4453
netif_addr_unlock(struct net_device * dev)4454 static inline void netif_addr_unlock(struct net_device *dev)
4455 {
4456 spin_unlock(&dev->addr_list_lock);
4457 }
4458
netif_addr_unlock_bh(struct net_device * dev)4459 static inline void netif_addr_unlock_bh(struct net_device *dev)
4460 {
4461 spin_unlock_bh(&dev->addr_list_lock);
4462 }
4463
4464 /*
4465 * dev_addrs walker. Should be used only for read access. Call with
4466 * rcu_read_lock held.
4467 */
4468 #define for_each_dev_addr(dev, ha) \
4469 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4470
4471 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4472
4473 void ether_setup(struct net_device *dev);
4474
4475 /* Support for loadable net-drivers */
4476 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4477 unsigned char name_assign_type,
4478 void (*setup)(struct net_device *),
4479 unsigned int txqs, unsigned int rxqs);
4480 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4481 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4482
4483 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4484 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4485 count)
4486
4487 int register_netdev(struct net_device *dev);
4488 void unregister_netdev(struct net_device *dev);
4489
4490 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4491
4492 /* General hardware address lists handling functions */
4493 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4494 struct netdev_hw_addr_list *from_list, int addr_len);
4495 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4496 struct netdev_hw_addr_list *from_list, int addr_len);
4497 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4498 struct net_device *dev,
4499 int (*sync)(struct net_device *, const unsigned char *),
4500 int (*unsync)(struct net_device *,
4501 const unsigned char *));
4502 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4503 struct net_device *dev,
4504 int (*sync)(struct net_device *,
4505 const unsigned char *, int),
4506 int (*unsync)(struct net_device *,
4507 const unsigned char *, int));
4508 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4509 struct net_device *dev,
4510 int (*unsync)(struct net_device *,
4511 const unsigned char *, int));
4512 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4513 struct net_device *dev,
4514 int (*unsync)(struct net_device *,
4515 const unsigned char *));
4516 void __hw_addr_init(struct netdev_hw_addr_list *list);
4517
4518 /* Functions used for device addresses handling */
4519 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4520 const void *addr, size_t len);
4521
4522 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4523 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4524 {
4525 dev_addr_mod(dev, 0, addr, len);
4526 }
4527
dev_addr_set(struct net_device * dev,const u8 * addr)4528 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4529 {
4530 __dev_addr_set(dev, addr, dev->addr_len);
4531 }
4532
4533 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4534 unsigned char addr_type);
4535 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4536 unsigned char addr_type);
4537
4538 /* Functions used for unicast addresses handling */
4539 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4540 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4541 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4542 int dev_uc_sync(struct net_device *to, struct net_device *from);
4543 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4544 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4545 void dev_uc_flush(struct net_device *dev);
4546 void dev_uc_init(struct net_device *dev);
4547
4548 /**
4549 * __dev_uc_sync - Synchonize device's unicast list
4550 * @dev: device to sync
4551 * @sync: function to call if address should be added
4552 * @unsync: function to call if address should be removed
4553 *
4554 * Add newly added addresses to the interface, and release
4555 * addresses that have been deleted.
4556 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4557 static inline int __dev_uc_sync(struct net_device *dev,
4558 int (*sync)(struct net_device *,
4559 const unsigned char *),
4560 int (*unsync)(struct net_device *,
4561 const unsigned char *))
4562 {
4563 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4564 }
4565
4566 /**
4567 * __dev_uc_unsync - Remove synchronized addresses from device
4568 * @dev: device to sync
4569 * @unsync: function to call if address should be removed
4570 *
4571 * Remove all addresses that were added to the device by dev_uc_sync().
4572 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4573 static inline void __dev_uc_unsync(struct net_device *dev,
4574 int (*unsync)(struct net_device *,
4575 const unsigned char *))
4576 {
4577 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4578 }
4579
4580 /* Functions used for multicast addresses handling */
4581 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4582 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4583 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4584 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4585 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4586 int dev_mc_sync(struct net_device *to, struct net_device *from);
4587 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4588 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4589 void dev_mc_flush(struct net_device *dev);
4590 void dev_mc_init(struct net_device *dev);
4591
4592 /**
4593 * __dev_mc_sync - Synchonize device's multicast list
4594 * @dev: device to sync
4595 * @sync: function to call if address should be added
4596 * @unsync: function to call if address should be removed
4597 *
4598 * Add newly added addresses to the interface, and release
4599 * addresses that have been deleted.
4600 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4601 static inline int __dev_mc_sync(struct net_device *dev,
4602 int (*sync)(struct net_device *,
4603 const unsigned char *),
4604 int (*unsync)(struct net_device *,
4605 const unsigned char *))
4606 {
4607 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4608 }
4609
4610 /**
4611 * __dev_mc_unsync - Remove synchronized addresses from device
4612 * @dev: device to sync
4613 * @unsync: function to call if address should be removed
4614 *
4615 * Remove all addresses that were added to the device by dev_mc_sync().
4616 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4617 static inline void __dev_mc_unsync(struct net_device *dev,
4618 int (*unsync)(struct net_device *,
4619 const unsigned char *))
4620 {
4621 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4622 }
4623
4624 /* Functions used for secondary unicast and multicast support */
4625 void dev_set_rx_mode(struct net_device *dev);
4626 int dev_set_promiscuity(struct net_device *dev, int inc);
4627 int dev_set_allmulti(struct net_device *dev, int inc);
4628 void netdev_state_change(struct net_device *dev);
4629 void __netdev_notify_peers(struct net_device *dev);
4630 void netdev_notify_peers(struct net_device *dev);
4631 void netdev_features_change(struct net_device *dev);
4632 /* Load a device via the kmod */
4633 void dev_load(struct net *net, const char *name);
4634 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4635 struct rtnl_link_stats64 *storage);
4636 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4637 const struct net_device_stats *netdev_stats);
4638 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4639 const struct pcpu_sw_netstats __percpu *netstats);
4640 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4641
4642 extern int netdev_max_backlog;
4643 extern int dev_rx_weight;
4644 extern int dev_tx_weight;
4645 extern int gro_normal_batch;
4646
4647 enum {
4648 NESTED_SYNC_IMM_BIT,
4649 NESTED_SYNC_TODO_BIT,
4650 };
4651
4652 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4653 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4654
4655 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4656 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4657
4658 struct netdev_nested_priv {
4659 unsigned char flags;
4660 void *data;
4661 };
4662
4663 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4664 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4665 struct list_head **iter);
4666
4667 /* iterate through upper list, must be called under RCU read lock */
4668 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4669 for (iter = &(dev)->adj_list.upper, \
4670 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4671 updev; \
4672 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4673
4674 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4675 int (*fn)(struct net_device *upper_dev,
4676 struct netdev_nested_priv *priv),
4677 struct netdev_nested_priv *priv);
4678
4679 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4680 struct net_device *upper_dev);
4681
4682 bool netdev_has_any_upper_dev(struct net_device *dev);
4683
4684 void *netdev_lower_get_next_private(struct net_device *dev,
4685 struct list_head **iter);
4686 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4687 struct list_head **iter);
4688
4689 #define netdev_for_each_lower_private(dev, priv, iter) \
4690 for (iter = (dev)->adj_list.lower.next, \
4691 priv = netdev_lower_get_next_private(dev, &(iter)); \
4692 priv; \
4693 priv = netdev_lower_get_next_private(dev, &(iter)))
4694
4695 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4696 for (iter = &(dev)->adj_list.lower, \
4697 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4698 priv; \
4699 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4700
4701 void *netdev_lower_get_next(struct net_device *dev,
4702 struct list_head **iter);
4703
4704 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4705 for (iter = (dev)->adj_list.lower.next, \
4706 ldev = netdev_lower_get_next(dev, &(iter)); \
4707 ldev; \
4708 ldev = netdev_lower_get_next(dev, &(iter)))
4709
4710 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4711 struct list_head **iter);
4712 int netdev_walk_all_lower_dev(struct net_device *dev,
4713 int (*fn)(struct net_device *lower_dev,
4714 struct netdev_nested_priv *priv),
4715 struct netdev_nested_priv *priv);
4716 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4717 int (*fn)(struct net_device *lower_dev,
4718 struct netdev_nested_priv *priv),
4719 struct netdev_nested_priv *priv);
4720
4721 void *netdev_adjacent_get_private(struct list_head *adj_list);
4722 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4724 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4725 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4726 struct netlink_ext_ack *extack);
4727 int netdev_master_upper_dev_link(struct net_device *dev,
4728 struct net_device *upper_dev,
4729 void *upper_priv, void *upper_info,
4730 struct netlink_ext_ack *extack);
4731 void netdev_upper_dev_unlink(struct net_device *dev,
4732 struct net_device *upper_dev);
4733 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4734 struct net_device *new_dev,
4735 struct net_device *dev,
4736 struct netlink_ext_ack *extack);
4737 void netdev_adjacent_change_commit(struct net_device *old_dev,
4738 struct net_device *new_dev,
4739 struct net_device *dev);
4740 void netdev_adjacent_change_abort(struct net_device *old_dev,
4741 struct net_device *new_dev,
4742 struct net_device *dev);
4743 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4744 void *netdev_lower_dev_get_private(struct net_device *dev,
4745 struct net_device *lower_dev);
4746 void netdev_lower_state_changed(struct net_device *lower_dev,
4747 void *lower_state_info);
4748
4749 /* RSS keys are 40 or 52 bytes long */
4750 #define NETDEV_RSS_KEY_LEN 52
4751 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4752 void netdev_rss_key_fill(void *buffer, size_t len);
4753
4754 int skb_checksum_help(struct sk_buff *skb);
4755 int skb_crc32c_csum_help(struct sk_buff *skb);
4756 int skb_csum_hwoffload_help(struct sk_buff *skb,
4757 const netdev_features_t features);
4758
4759 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4760 netdev_features_t features, bool tx_path);
4761 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4762 netdev_features_t features, __be16 type);
4763 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4764 netdev_features_t features);
4765
4766 struct netdev_bonding_info {
4767 ifslave slave;
4768 ifbond master;
4769 };
4770
4771 struct netdev_notifier_bonding_info {
4772 struct netdev_notifier_info info; /* must be first */
4773 struct netdev_bonding_info bonding_info;
4774 };
4775
4776 void netdev_bonding_info_change(struct net_device *dev,
4777 struct netdev_bonding_info *bonding_info);
4778
4779 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4780 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4781 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4782 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4783 const void *data)
4784 {
4785 }
4786 #endif
4787
4788 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4789 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4790 {
4791 return __skb_gso_segment(skb, features, true);
4792 }
4793 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4794
can_checksum_protocol(netdev_features_t features,__be16 protocol)4795 static inline bool can_checksum_protocol(netdev_features_t features,
4796 __be16 protocol)
4797 {
4798 if (protocol == htons(ETH_P_FCOE))
4799 return !!(features & NETIF_F_FCOE_CRC);
4800
4801 /* Assume this is an IP checksum (not SCTP CRC) */
4802
4803 if (features & NETIF_F_HW_CSUM) {
4804 /* Can checksum everything */
4805 return true;
4806 }
4807
4808 switch (protocol) {
4809 case htons(ETH_P_IP):
4810 return !!(features & NETIF_F_IP_CSUM);
4811 case htons(ETH_P_IPV6):
4812 return !!(features & NETIF_F_IPV6_CSUM);
4813 default:
4814 return false;
4815 }
4816 }
4817
4818 #ifdef CONFIG_BUG
4819 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4820 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4821 static inline void netdev_rx_csum_fault(struct net_device *dev,
4822 struct sk_buff *skb)
4823 {
4824 }
4825 #endif
4826 /* rx skb timestamps */
4827 void net_enable_timestamp(void);
4828 void net_disable_timestamp(void);
4829
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4830 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4831 const struct skb_shared_hwtstamps *hwtstamps,
4832 bool cycles)
4833 {
4834 const struct net_device_ops *ops = dev->netdev_ops;
4835
4836 if (ops->ndo_get_tstamp)
4837 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4838
4839 return hwtstamps->hwtstamp;
4840 }
4841
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4842 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4843 struct sk_buff *skb, struct net_device *dev,
4844 bool more)
4845 {
4846 __this_cpu_write(softnet_data.xmit.more, more);
4847 return ops->ndo_start_xmit(skb, dev);
4848 }
4849
netdev_xmit_more(void)4850 static inline bool netdev_xmit_more(void)
4851 {
4852 return __this_cpu_read(softnet_data.xmit.more);
4853 }
4854
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4855 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4856 struct netdev_queue *txq, bool more)
4857 {
4858 const struct net_device_ops *ops = dev->netdev_ops;
4859 netdev_tx_t rc;
4860
4861 rc = __netdev_start_xmit(ops, skb, dev, more);
4862 if (rc == NETDEV_TX_OK)
4863 txq_trans_update(txq);
4864
4865 return rc;
4866 }
4867
4868 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4869 const void *ns);
4870 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4871 const void *ns);
4872
4873 extern const struct kobj_ns_type_operations net_ns_type_operations;
4874
4875 const char *netdev_drivername(const struct net_device *dev);
4876
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4877 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4878 netdev_features_t f2)
4879 {
4880 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4881 if (f1 & NETIF_F_HW_CSUM)
4882 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4883 else
4884 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4885 }
4886
4887 return f1 & f2;
4888 }
4889
netdev_get_wanted_features(struct net_device * dev)4890 static inline netdev_features_t netdev_get_wanted_features(
4891 struct net_device *dev)
4892 {
4893 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4894 }
4895 netdev_features_t netdev_increment_features(netdev_features_t all,
4896 netdev_features_t one, netdev_features_t mask);
4897
4898 /* Allow TSO being used on stacked device :
4899 * Performing the GSO segmentation before last device
4900 * is a performance improvement.
4901 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4902 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4903 netdev_features_t mask)
4904 {
4905 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4906 }
4907
4908 int __netdev_update_features(struct net_device *dev);
4909 void netdev_update_features(struct net_device *dev);
4910 void netdev_change_features(struct net_device *dev);
4911
4912 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4913 struct net_device *dev);
4914
4915 netdev_features_t passthru_features_check(struct sk_buff *skb,
4916 struct net_device *dev,
4917 netdev_features_t features);
4918 netdev_features_t netif_skb_features(struct sk_buff *skb);
4919
net_gso_ok(netdev_features_t features,int gso_type)4920 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4921 {
4922 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4923
4924 /* check flags correspondence */
4925 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4926 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4927 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4928 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4929 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4930 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4931 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4932 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4933 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4934 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4935 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4936 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4937 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4938 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4939 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4940 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4941 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4942 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4943 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4944
4945 return (features & feature) == feature;
4946 }
4947
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4948 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4949 {
4950 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4951 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4952 }
4953
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4954 static inline bool netif_needs_gso(struct sk_buff *skb,
4955 netdev_features_t features)
4956 {
4957 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4958 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4959 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4960 }
4961
4962 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4963 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4964 void netif_inherit_tso_max(struct net_device *to,
4965 const struct net_device *from);
4966
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4967 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4968 int pulled_hlen, u16 mac_offset,
4969 int mac_len)
4970 {
4971 skb->protocol = protocol;
4972 skb->encapsulation = 1;
4973 skb_push(skb, pulled_hlen);
4974 skb_reset_transport_header(skb);
4975 skb->mac_header = mac_offset;
4976 skb->network_header = skb->mac_header + mac_len;
4977 skb->mac_len = mac_len;
4978 }
4979
netif_is_macsec(const struct net_device * dev)4980 static inline bool netif_is_macsec(const struct net_device *dev)
4981 {
4982 return dev->priv_flags & IFF_MACSEC;
4983 }
4984
netif_is_macvlan(const struct net_device * dev)4985 static inline bool netif_is_macvlan(const struct net_device *dev)
4986 {
4987 return dev->priv_flags & IFF_MACVLAN;
4988 }
4989
netif_is_macvlan_port(const struct net_device * dev)4990 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4991 {
4992 return dev->priv_flags & IFF_MACVLAN_PORT;
4993 }
4994
netif_is_bond_master(const struct net_device * dev)4995 static inline bool netif_is_bond_master(const struct net_device *dev)
4996 {
4997 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4998 }
4999
netif_is_bond_slave(const struct net_device * dev)5000 static inline bool netif_is_bond_slave(const struct net_device *dev)
5001 {
5002 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5003 }
5004
netif_supports_nofcs(struct net_device * dev)5005 static inline bool netif_supports_nofcs(struct net_device *dev)
5006 {
5007 return dev->priv_flags & IFF_SUPP_NOFCS;
5008 }
5009
netif_has_l3_rx_handler(const struct net_device * dev)5010 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5011 {
5012 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5013 }
5014
netif_is_l3_master(const struct net_device * dev)5015 static inline bool netif_is_l3_master(const struct net_device *dev)
5016 {
5017 return dev->priv_flags & IFF_L3MDEV_MASTER;
5018 }
5019
netif_is_l3_slave(const struct net_device * dev)5020 static inline bool netif_is_l3_slave(const struct net_device *dev)
5021 {
5022 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5023 }
5024
netif_is_bridge_master(const struct net_device * dev)5025 static inline bool netif_is_bridge_master(const struct net_device *dev)
5026 {
5027 return dev->priv_flags & IFF_EBRIDGE;
5028 }
5029
netif_is_bridge_port(const struct net_device * dev)5030 static inline bool netif_is_bridge_port(const struct net_device *dev)
5031 {
5032 return dev->priv_flags & IFF_BRIDGE_PORT;
5033 }
5034
netif_is_ovs_master(const struct net_device * dev)5035 static inline bool netif_is_ovs_master(const struct net_device *dev)
5036 {
5037 return dev->priv_flags & IFF_OPENVSWITCH;
5038 }
5039
netif_is_ovs_port(const struct net_device * dev)5040 static inline bool netif_is_ovs_port(const struct net_device *dev)
5041 {
5042 return dev->priv_flags & IFF_OVS_DATAPATH;
5043 }
5044
netif_is_any_bridge_port(const struct net_device * dev)5045 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5046 {
5047 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5048 }
5049
netif_is_team_master(const struct net_device * dev)5050 static inline bool netif_is_team_master(const struct net_device *dev)
5051 {
5052 return dev->priv_flags & IFF_TEAM;
5053 }
5054
netif_is_team_port(const struct net_device * dev)5055 static inline bool netif_is_team_port(const struct net_device *dev)
5056 {
5057 return dev->priv_flags & IFF_TEAM_PORT;
5058 }
5059
netif_is_lag_master(const struct net_device * dev)5060 static inline bool netif_is_lag_master(const struct net_device *dev)
5061 {
5062 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5063 }
5064
netif_is_lag_port(const struct net_device * dev)5065 static inline bool netif_is_lag_port(const struct net_device *dev)
5066 {
5067 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5068 }
5069
netif_is_rxfh_configured(const struct net_device * dev)5070 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5071 {
5072 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5073 }
5074
netif_is_failover(const struct net_device * dev)5075 static inline bool netif_is_failover(const struct net_device *dev)
5076 {
5077 return dev->priv_flags & IFF_FAILOVER;
5078 }
5079
netif_is_failover_slave(const struct net_device * dev)5080 static inline bool netif_is_failover_slave(const struct net_device *dev)
5081 {
5082 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5083 }
5084
5085 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5086 static inline void netif_keep_dst(struct net_device *dev)
5087 {
5088 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5089 }
5090
5091 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5092 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5093 {
5094 /* TODO: reserve and use an additional IFF bit, if we get more users */
5095 return netif_is_macsec(dev);
5096 }
5097
5098 extern struct pernet_operations __net_initdata loopback_net_ops;
5099
5100 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5101
5102 /* netdev_printk helpers, similar to dev_printk */
5103
netdev_name(const struct net_device * dev)5104 static inline const char *netdev_name(const struct net_device *dev)
5105 {
5106 if (!dev->name[0] || strchr(dev->name, '%'))
5107 return "(unnamed net_device)";
5108 return dev->name;
5109 }
5110
netdev_unregistering(const struct net_device * dev)5111 static inline bool netdev_unregistering(const struct net_device *dev)
5112 {
5113 return dev->reg_state == NETREG_UNREGISTERING;
5114 }
5115
netdev_reg_state(const struct net_device * dev)5116 static inline const char *netdev_reg_state(const struct net_device *dev)
5117 {
5118 switch (dev->reg_state) {
5119 case NETREG_UNINITIALIZED: return " (uninitialized)";
5120 case NETREG_REGISTERED: return "";
5121 case NETREG_UNREGISTERING: return " (unregistering)";
5122 case NETREG_UNREGISTERED: return " (unregistered)";
5123 case NETREG_RELEASED: return " (released)";
5124 case NETREG_DUMMY: return " (dummy)";
5125 }
5126
5127 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5128 return " (unknown)";
5129 }
5130
5131 #define MODULE_ALIAS_NETDEV(device) \
5132 MODULE_ALIAS("netdev-" device)
5133
5134 /*
5135 * netdev_WARN() acts like dev_printk(), but with the key difference
5136 * of using a WARN/WARN_ON to get the message out, including the
5137 * file/line information and a backtrace.
5138 */
5139 #define netdev_WARN(dev, format, args...) \
5140 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5141 netdev_reg_state(dev), ##args)
5142
5143 #define netdev_WARN_ONCE(dev, format, args...) \
5144 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5145 netdev_reg_state(dev), ##args)
5146
5147 /*
5148 * The list of packet types we will receive (as opposed to discard)
5149 * and the routines to invoke.
5150 *
5151 * Why 16. Because with 16 the only overlap we get on a hash of the
5152 * low nibble of the protocol value is RARP/SNAP/X.25.
5153 *
5154 * 0800 IP
5155 * 0001 802.3
5156 * 0002 AX.25
5157 * 0004 802.2
5158 * 8035 RARP
5159 * 0005 SNAP
5160 * 0805 X.25
5161 * 0806 ARP
5162 * 8137 IPX
5163 * 0009 Localtalk
5164 * 86DD IPv6
5165 */
5166 #define PTYPE_HASH_SIZE (16)
5167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5168
5169 extern struct list_head ptype_all __read_mostly;
5170 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5171
5172 extern struct net_device *blackhole_netdev;
5173
5174 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5175 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5176 #define DEV_STATS_ADD(DEV, FIELD, VAL) \
5177 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5178
5179 #endif /* _LINUX_NETDEVICE_H */
5180