1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/misc/habanalabs.h>
15
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31
32 #define HL_NAME "habanalabs"
33
34 /* Use upper bits of mmap offset to store habana driver specific information.
35 * bits[63:59] - Encode mmap type
36 * bits[45:0] - mmap offset value
37 *
38 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
39 * defines are w.r.t to PAGE_SIZE
40 */
41 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
42 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
43 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
44 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
45 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
46
47 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
48 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
49
50 #define HL_PENDING_RESET_PER_SEC 10
51 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
52 #define HL_PENDING_RESET_LONG_SEC 60
53
54 #define HL_HARD_RESET_MAX_TIMEOUT 120
55 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
56
57 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
58
59 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
60
61 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
62
63 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
64 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
65 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
66
67 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
68 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
69
70 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
71
72 #define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */
73
74 #define HL_COMMON_USER_INTERRUPT_ID 0xFFF
75
76 #define HL_STATE_DUMP_HIST_LEN 5
77
78 /* Default value for device reset trigger , an invalid value */
79 #define HL_RESET_TRIGGER_DEFAULT 0xFF
80
81 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
82 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
83
84 /* Memory */
85 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
86
87 /* MMU */
88 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
89
90 /**
91 * enum hl_mmu_page_table_locaion - mmu page table location
92 * @MMU_DR_PGT: page-table is located on device DRAM.
93 * @MMU_HR_PGT: page-table is located on host memory.
94 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
95 */
96 enum hl_mmu_page_table_location {
97 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
98 MMU_HR_PGT, /* host resident MMU PGT */
99 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
100 };
101
102 /*
103 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
104 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
105 */
106 #define HL_RSVD_SOBS 2
107 #define HL_RSVD_MONS 1
108
109 /*
110 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
111 */
112 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2
113
114 #define HL_MAX_SOB_VAL (1 << 15)
115
116 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
117 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
118
119 #define HL_PCI_NUM_BARS 6
120
121 #define HL_MAX_DCORES 4
122
123 /*
124 * Reset Flags
125 *
126 * - HL_DRV_RESET_HARD
127 * If set do hard reset to all engines. If not set reset just
128 * compute/DMA engines.
129 *
130 * - HL_DRV_RESET_FROM_RESET_THR
131 * Set if the caller is the hard-reset thread
132 *
133 * - HL_DRV_RESET_HEARTBEAT
134 * Set if reset is due to heartbeat
135 *
136 * - HL_DRV_RESET_TDR
137 * Set if reset is due to TDR
138 *
139 * - HL_DRV_RESET_DEV_RELEASE
140 * Set if reset is due to device release
141 *
142 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
143 * F/W will perform the reset. No need to ask it to reset the device. This is relevant
144 * only when running with secured f/w
145 *
146 * - HL_DRV_RESET_FW_FATAL_ERR
147 * Set if reset is due to a fatal error from FW
148 *
149 * - HL_DRV_RESET_DELAY
150 * Set if a delay should be added before the reset
151 */
152
153 #define HL_DRV_RESET_HARD (1 << 0)
154 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
155 #define HL_DRV_RESET_HEARTBEAT (1 << 2)
156 #define HL_DRV_RESET_TDR (1 << 3)
157 #define HL_DRV_RESET_DEV_RELEASE (1 << 4)
158 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
159 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
160 #define HL_DRV_RESET_DELAY (1 << 7)
161
162 #define HL_MAX_SOBS_PER_MONITOR 8
163
164 /**
165 * struct hl_gen_wait_properties - properties for generating a wait CB
166 * @data: command buffer
167 * @q_idx: queue id is used to extract fence register address
168 * @size: offset in command buffer
169 * @sob_base: SOB base to use in this wait CB
170 * @sob_val: SOB value to wait for
171 * @mon_id: monitor to use in this wait CB
172 * @sob_mask: each bit represents a SOB offset from sob_base to be used
173 */
174 struct hl_gen_wait_properties {
175 void *data;
176 u32 q_idx;
177 u32 size;
178 u16 sob_base;
179 u16 sob_val;
180 u16 mon_id;
181 u8 sob_mask;
182 };
183
184 /**
185 * struct pgt_info - MMU hop page info.
186 * @node: hash linked-list node for the pgts shadow hash of pgts.
187 * @phys_addr: physical address of the pgt.
188 * @shadow_addr: shadow hop in the host.
189 * @ctx: pointer to the owner ctx.
190 * @num_of_ptes: indicates how many ptes are used in the pgt.
191 *
192 * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
193 * is needed during mapping, a new page is allocated and this structure holds
194 * its essential information. During unmapping, if no valid PTEs remained in the
195 * page, it is freed with its pgt_info structure.
196 */
197 struct pgt_info {
198 struct hlist_node node;
199 u64 phys_addr;
200 u64 shadow_addr;
201 struct hl_ctx *ctx;
202 int num_of_ptes;
203 };
204
205 struct hl_device;
206 struct hl_fpriv;
207
208 /**
209 * enum hl_pci_match_mode - pci match mode per region
210 * @PCI_ADDRESS_MATCH_MODE: address match mode
211 * @PCI_BAR_MATCH_MODE: bar match mode
212 */
213 enum hl_pci_match_mode {
214 PCI_ADDRESS_MATCH_MODE,
215 PCI_BAR_MATCH_MODE
216 };
217
218 /**
219 * enum hl_fw_component - F/W components to read version through registers.
220 * @FW_COMP_BOOT_FIT: boot fit.
221 * @FW_COMP_PREBOOT: preboot.
222 * @FW_COMP_LINUX: linux.
223 */
224 enum hl_fw_component {
225 FW_COMP_BOOT_FIT,
226 FW_COMP_PREBOOT,
227 FW_COMP_LINUX,
228 };
229
230 /**
231 * enum hl_fw_types - F/W types present in the system
232 * @FW_TYPE_NONE: no FW component indication
233 * @FW_TYPE_LINUX: Linux image for device CPU
234 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
235 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
236 * (preboot, ppboot etc...)
237 * @FW_TYPE_ALL_TYPES: Mask for all types
238 */
239 enum hl_fw_types {
240 FW_TYPE_NONE = 0x0,
241 FW_TYPE_LINUX = 0x1,
242 FW_TYPE_BOOT_CPU = 0x2,
243 FW_TYPE_PREBOOT_CPU = 0x4,
244 FW_TYPE_ALL_TYPES =
245 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
246 };
247
248 /**
249 * enum hl_queue_type - Supported QUEUE types.
250 * @QUEUE_TYPE_NA: queue is not available.
251 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
252 * host.
253 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
254 * memories and/or operates the compute engines.
255 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
256 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
257 * notifications are sent by H/W.
258 */
259 enum hl_queue_type {
260 QUEUE_TYPE_NA,
261 QUEUE_TYPE_EXT,
262 QUEUE_TYPE_INT,
263 QUEUE_TYPE_CPU,
264 QUEUE_TYPE_HW
265 };
266
267 enum hl_cs_type {
268 CS_TYPE_DEFAULT,
269 CS_TYPE_SIGNAL,
270 CS_TYPE_WAIT,
271 CS_TYPE_COLLECTIVE_WAIT,
272 CS_RESERVE_SIGNALS,
273 CS_UNRESERVE_SIGNALS
274 };
275
276 /*
277 * struct hl_inbound_pci_region - inbound region descriptor
278 * @mode: pci match mode for this region
279 * @addr: region target address
280 * @size: region size in bytes
281 * @offset_in_bar: offset within bar (address match mode)
282 * @bar: bar id
283 */
284 struct hl_inbound_pci_region {
285 enum hl_pci_match_mode mode;
286 u64 addr;
287 u64 size;
288 u64 offset_in_bar;
289 u8 bar;
290 };
291
292 /*
293 * struct hl_outbound_pci_region - outbound region descriptor
294 * @addr: region target address
295 * @size: region size in bytes
296 */
297 struct hl_outbound_pci_region {
298 u64 addr;
299 u64 size;
300 };
301
302 /*
303 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
304 * allocated by Kernel or by User
305 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
306 * @CB_ALLOC_USER: support only CBs that allocated by User
307 */
308 enum queue_cb_alloc_flags {
309 CB_ALLOC_KERNEL = 0x1,
310 CB_ALLOC_USER = 0x2
311 };
312
313 /*
314 * struct hl_hw_sob - H/W SOB info.
315 * @hdev: habanalabs device structure.
316 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
317 * @sob_id: id of this SOB.
318 * @sob_addr: the sob offset from the base address.
319 * @q_idx: the H/W queue that uses this SOB.
320 * @need_reset: reset indication set when switching to the other sob.
321 */
322 struct hl_hw_sob {
323 struct hl_device *hdev;
324 struct kref kref;
325 u32 sob_id;
326 u32 sob_addr;
327 u32 q_idx;
328 bool need_reset;
329 };
330
331 enum hl_collective_mode {
332 HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
333 HL_COLLECTIVE_MASTER = 0x1,
334 HL_COLLECTIVE_SLAVE = 0x2
335 };
336
337 /**
338 * struct hw_queue_properties - queue information.
339 * @type: queue type.
340 * @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
341 * that allocated by the Kernel driver and therefore,
342 * a CB handle can be provided for jobs on this queue.
343 * Otherwise, a CB address must be provided.
344 * @collective_mode: collective mode of current queue
345 * @driver_only: true if only the driver is allowed to send a job to this queue,
346 * false otherwise.
347 * @supports_sync_stream: True if queue supports sync stream
348 */
349 struct hw_queue_properties {
350 enum hl_queue_type type;
351 enum queue_cb_alloc_flags cb_alloc_flags;
352 enum hl_collective_mode collective_mode;
353 u8 driver_only;
354 u8 supports_sync_stream;
355 };
356
357 /**
358 * enum vm_type - virtual memory mapping request information.
359 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
360 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
361 */
362 enum vm_type {
363 VM_TYPE_USERPTR = 0x1,
364 VM_TYPE_PHYS_PACK = 0x2
365 };
366
367 /**
368 * enum mmu_op_flags - mmu operation relevant information.
369 * @MMU_OP_USERPTR: operation on user memory (host resident).
370 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
371 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
372 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
373 */
374 enum mmu_op_flags {
375 MMU_OP_USERPTR = 0x1,
376 MMU_OP_PHYS_PACK = 0x2,
377 MMU_OP_CLEAR_MEMCACHE = 0x4,
378 MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
379 };
380
381
382 /**
383 * enum hl_device_hw_state - H/W device state. use this to understand whether
384 * to do reset before hw_init or not
385 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
386 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
387 * hw_init
388 */
389 enum hl_device_hw_state {
390 HL_DEVICE_HW_STATE_CLEAN = 0,
391 HL_DEVICE_HW_STATE_DIRTY
392 };
393
394 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
395
396 /**
397 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
398 * @start_addr: virtual start address of the memory region.
399 * @end_addr: virtual end address of the memory region.
400 * @hop_shifts: array holds HOPs shifts.
401 * @hop_masks: array holds HOPs masks.
402 * @last_mask: mask to get the bit indicating this is the last hop.
403 * @pgt_size: size for page tables.
404 * @page_size: default page size used to allocate memory.
405 * @num_hops: The amount of hops supported by the translation table.
406 * @hop_table_size: HOP table size.
407 * @hop0_tables_total_size: total size for all HOP0 tables.
408 * @host_resident: Should the MMU page table reside in host memory or in the
409 * device DRAM.
410 */
411 struct hl_mmu_properties {
412 u64 start_addr;
413 u64 end_addr;
414 u64 hop_shifts[MMU_HOP_MAX];
415 u64 hop_masks[MMU_HOP_MAX];
416 u64 last_mask;
417 u64 pgt_size;
418 u32 page_size;
419 u32 num_hops;
420 u32 hop_table_size;
421 u32 hop0_tables_total_size;
422 u8 host_resident;
423 };
424
425 /**
426 * struct hl_hints_range - hint addresses reserved va range.
427 * @start_addr: start address of the va range.
428 * @end_addr: end address of the va range.
429 */
430 struct hl_hints_range {
431 u64 start_addr;
432 u64 end_addr;
433 };
434
435 /**
436 * struct asic_fixed_properties - ASIC specific immutable properties.
437 * @hw_queues_props: H/W queues properties.
438 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
439 * available sensors.
440 * @uboot_ver: F/W U-boot version.
441 * @preboot_ver: F/W Preboot version.
442 * @dmmu: DRAM MMU address translation properties.
443 * @pmmu: PCI (host) MMU address translation properties.
444 * @pmmu_huge: PCI (host) MMU address translation properties for memory
445 * allocated with huge pages.
446 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
447 * @hints_host_reserved_va_range: host hint addresses reserved range.
448 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
449 * range.
450 * @sram_base_address: SRAM physical start address.
451 * @sram_end_address: SRAM physical end address.
452 * @sram_user_base_address - SRAM physical start address for user access.
453 * @dram_base_address: DRAM physical start address.
454 * @dram_end_address: DRAM physical end address.
455 * @dram_user_base_address: DRAM physical start address for user access.
456 * @dram_size: DRAM total size.
457 * @dram_pci_bar_size: size of PCI bar towards DRAM.
458 * @max_power_default: max power of the device after reset
459 * @dc_power_default: power consumed by the device in mode idle.
460 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
461 * fault.
462 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
463 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
464 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
465 * @mmu_dram_default_page_addr: DRAM default page physical address.
466 * @cb_va_start_addr: virtual start address of command buffers which are mapped
467 * to the device's MMU.
468 * @cb_va_end_addr: virtual end address of command buffers which are mapped to
469 * the device's MMU.
470 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
471 * for hints validity check.
472 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
473 * to enable the device to access them.
474 * @host_base_address: host physical start address for host DMA from device
475 * @host_end_address: host physical end address for host DMA from device
476 * @max_freq_value: current max clk frequency.
477 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
478 * we display to the user
479 * @mmu_pgt_size: MMU page tables total size.
480 * @mmu_pte_size: PTE size in MMU page tables.
481 * @mmu_hop_table_size: MMU hop table size.
482 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
483 * @dram_page_size: page size for MMU DRAM allocation.
484 * @cfg_size: configuration space size on SRAM.
485 * @sram_size: total size of SRAM.
486 * @max_asid: maximum number of open contexts (ASIDs).
487 * @num_of_events: number of possible internal H/W IRQs.
488 * @psoc_pci_pll_nr: PCI PLL NR value.
489 * @psoc_pci_pll_nf: PCI PLL NF value.
490 * @psoc_pci_pll_od: PCI PLL OD value.
491 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
492 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
493 * @high_pll: high PLL frequency used by the device.
494 * @cb_pool_cb_cnt: number of CBs in the CB pool.
495 * @cb_pool_cb_size: size of each CB in the CB pool.
496 * @max_pending_cs: maximum of concurrent pending command submissions
497 * @max_queues: maximum amount of queues in the system
498 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
499 * capabilities reported by FW, bit description
500 * can be found in CPU_BOOT_DEV_STS0
501 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
502 * capabilities reported by FW, bit description
503 * can be found in CPU_BOOT_DEV_STS1
504 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
505 * status reported by FW, bit description can be
506 * found in CPU_BOOT_DEV_STS0
507 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
508 * status reported by FW, bit description can be
509 * found in CPU_BOOT_DEV_STS1
510 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
511 * status reported by FW, bit description can be
512 * found in CPU_BOOT_DEV_STS0
513 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
514 * status reported by FW, bit description can be
515 * found in CPU_BOOT_DEV_STS1
516 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
517 * which the property supports_user_set_page_size is true
518 * (i.e. the DRAM supports multiple page sizes), otherwise
519 * it will shall be equal to dram_page_size.
520 * @collective_first_sob: first sync object available for collective use
521 * @collective_first_mon: first monitor available for collective use
522 * @sync_stream_first_sob: first sync object available for sync stream use
523 * @sync_stream_first_mon: first monitor available for sync stream use
524 * @first_available_user_sob: first sob available for the user
525 * @first_available_user_mon: first monitor available for the user
526 * @first_available_user_msix_interrupt: first available msix interrupt
527 * reserved for the user
528 * @first_available_cq: first available CQ for the user.
529 * @user_interrupt_count: number of user interrupts.
530 * @server_type: Server type that the ASIC is currently installed in.
531 * The value is according to enum hl_server_type in uapi file.
532 * @tpc_enabled_mask: which TPCs are enabled.
533 * @completion_queues_count: number of completion queues.
534 * @fw_security_enabled: true if security measures are enabled in firmware,
535 * false otherwise
536 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
537 * BOOT_DEV_STS0
538 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
539 * BOOT_DEV_STS1
540 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
541 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
542 * @num_functional_hbms: number of functional HBMs in each DCORE.
543 * @hints_range_reservation: device support hint addresses range reservation.
544 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
545 * @dynamic_fw_load: is dynamic FW load is supported.
546 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
547 * false otherwise.
548 * @use_get_power_for_reset_history: To support backward compatibility for Goya
549 * and Gaudi
550 * @supports_soft_reset: is soft reset supported.
551 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
552 * initiated by user or TDR. This is only true
553 * in inference ASICs, as there is no real-world
554 * use-case of doing soft-reset in training (due
555 * to the fact that training runs on multiple
556 * devices)
557 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
558 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
559 * @supports_user_set_page_size: true if user can set the allocation page size.
560 * @dma_mask: the dma mask to be set for this device
561 */
562 struct asic_fixed_properties {
563 struct hw_queue_properties *hw_queues_props;
564 struct cpucp_info cpucp_info;
565 char uboot_ver[VERSION_MAX_LEN];
566 char preboot_ver[VERSION_MAX_LEN];
567 struct hl_mmu_properties dmmu;
568 struct hl_mmu_properties pmmu;
569 struct hl_mmu_properties pmmu_huge;
570 struct hl_hints_range hints_dram_reserved_va_range;
571 struct hl_hints_range hints_host_reserved_va_range;
572 struct hl_hints_range hints_host_hpage_reserved_va_range;
573 u64 sram_base_address;
574 u64 sram_end_address;
575 u64 sram_user_base_address;
576 u64 dram_base_address;
577 u64 dram_end_address;
578 u64 dram_user_base_address;
579 u64 dram_size;
580 u64 dram_pci_bar_size;
581 u64 max_power_default;
582 u64 dc_power_default;
583 u64 dram_size_for_default_page_mapping;
584 u64 pcie_dbi_base_address;
585 u64 pcie_aux_dbi_reg_addr;
586 u64 mmu_pgt_addr;
587 u64 mmu_dram_default_page_addr;
588 u64 cb_va_start_addr;
589 u64 cb_va_end_addr;
590 u64 dram_hints_align_mask;
591 u64 device_dma_offset_for_host_access;
592 u64 host_base_address;
593 u64 host_end_address;
594 u64 max_freq_value;
595 u32 clk_pll_index;
596 u32 mmu_pgt_size;
597 u32 mmu_pte_size;
598 u32 mmu_hop_table_size;
599 u32 mmu_hop0_tables_total_size;
600 u32 dram_page_size;
601 u32 cfg_size;
602 u32 sram_size;
603 u32 max_asid;
604 u32 num_of_events;
605 u32 psoc_pci_pll_nr;
606 u32 psoc_pci_pll_nf;
607 u32 psoc_pci_pll_od;
608 u32 psoc_pci_pll_div_factor;
609 u32 psoc_timestamp_frequency;
610 u32 high_pll;
611 u32 cb_pool_cb_cnt;
612 u32 cb_pool_cb_size;
613 u32 max_pending_cs;
614 u32 max_queues;
615 u32 fw_preboot_cpu_boot_dev_sts0;
616 u32 fw_preboot_cpu_boot_dev_sts1;
617 u32 fw_bootfit_cpu_boot_dev_sts0;
618 u32 fw_bootfit_cpu_boot_dev_sts1;
619 u32 fw_app_cpu_boot_dev_sts0;
620 u32 fw_app_cpu_boot_dev_sts1;
621 u32 device_mem_alloc_default_page_size;
622 u16 collective_first_sob;
623 u16 collective_first_mon;
624 u16 sync_stream_first_sob;
625 u16 sync_stream_first_mon;
626 u16 first_available_user_sob[HL_MAX_DCORES];
627 u16 first_available_user_mon[HL_MAX_DCORES];
628 u16 first_available_user_msix_interrupt;
629 u16 first_available_cq[HL_MAX_DCORES];
630 u16 user_interrupt_count;
631 u16 server_type;
632 u8 tpc_enabled_mask;
633 u8 completion_queues_count;
634 u8 fw_security_enabled;
635 u8 fw_cpu_boot_dev_sts0_valid;
636 u8 fw_cpu_boot_dev_sts1_valid;
637 u8 dram_supports_virtual_memory;
638 u8 hard_reset_done_by_fw;
639 u8 num_functional_hbms;
640 u8 hints_range_reservation;
641 u8 iatu_done_by_fw;
642 u8 dynamic_fw_load;
643 u8 gic_interrupts_enable;
644 u8 use_get_power_for_reset_history;
645 u8 supports_soft_reset;
646 u8 allow_inference_soft_reset;
647 u8 configurable_stop_on_err;
648 u8 set_max_power_on_device_init;
649 u8 supports_user_set_page_size;
650 u8 dma_mask;
651 };
652
653 /**
654 * struct hl_fence - software synchronization primitive
655 * @completion: fence is implemented using completion
656 * @refcount: refcount for this fence
657 * @cs_sequence: sequence of the corresponding command submission
658 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
659 * masters QIDs that multi cs is waiting on
660 * @error: mark this fence with error
661 * @timestamp: timestamp upon completion
662 * @mcs_handling_done: indicates that corresponding command submission has
663 * finished msc handling, this does not mean it was part
664 * of the mcs
665 */
666 struct hl_fence {
667 struct completion completion;
668 struct kref refcount;
669 u64 cs_sequence;
670 u32 stream_master_qid_map;
671 int error;
672 ktime_t timestamp;
673 u8 mcs_handling_done;
674 };
675
676 /**
677 * struct hl_cs_compl - command submission completion object.
678 * @base_fence: hl fence object.
679 * @lock: spinlock to protect fence.
680 * @hdev: habanalabs device structure.
681 * @hw_sob: the H/W SOB used in this signal/wait CS.
682 * @encaps_sig_hdl: encaps signals hanlder.
683 * @cs_seq: command submission sequence number.
684 * @type: type of the CS - signal/wait.
685 * @sob_val: the SOB value that is used in this signal/wait CS.
686 * @sob_group: the SOB group that is used in this collective wait CS.
687 * @encaps_signals: indication whether it's a completion object of cs with
688 * encaps signals or not.
689 */
690 struct hl_cs_compl {
691 struct hl_fence base_fence;
692 spinlock_t lock;
693 struct hl_device *hdev;
694 struct hl_hw_sob *hw_sob;
695 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
696 u64 cs_seq;
697 enum hl_cs_type type;
698 u16 sob_val;
699 u16 sob_group;
700 bool encaps_signals;
701 };
702
703 /*
704 * Command Buffers
705 */
706
707 /**
708 * struct hl_ts_buff - describes a timestamp buffer.
709 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
710 * @user_buff_address: Holds the user buffer's kernel virtual address.
711 * @kernel_buff_size: Holds the internal kernel buffer size.
712 */
713 struct hl_ts_buff {
714 void *kernel_buff_address;
715 void *user_buff_address;
716 u32 kernel_buff_size;
717 };
718
719 struct hl_mmap_mem_buf;
720
721 /**
722 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
723 * @dev: back pointer to the owning device
724 * @lock: protects handles
725 * @handles: an idr holding all active handles to the memory buffers in the system.
726 */
727 struct hl_mem_mgr {
728 struct device *dev;
729 spinlock_t lock;
730 struct idr handles;
731 };
732
733 /**
734 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
735 * @topic: string identifier used for logging
736 * @mem_id: memory type identifier, embedded in the handle and used to identify
737 * the memory type by handle.
738 * @alloc: callback executed on buffer allocation, shall allocate the memory,
739 * set it under buffer private, and set mappable size.
740 * @mmap: callback executed on mmap, must map the buffer to vma
741 * @release: callback executed on release, must free the resources used by the buffer
742 */
743 struct hl_mmap_mem_buf_behavior {
744 const char *topic;
745 u64 mem_id;
746
747 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
748 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
749 void (*release)(struct hl_mmap_mem_buf *buf);
750 };
751
752 /**
753 * struct hl_mmap_mem_buf - describes a single unified memory buffer
754 * @behavior: buffer behavior
755 * @mmg: back pointer to the unified memory manager
756 * @refcount: reference counter for buffer users
757 * @private: pointer to buffer behavior private data
758 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
759 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
760 * may change at runtime.
761 * @mappable_size: the original mappable size of the buffer, does not change after
762 * the allocation.
763 * @handle: the buffer id in mmg handles store
764 */
765 struct hl_mmap_mem_buf {
766 struct hl_mmap_mem_buf_behavior *behavior;
767 struct hl_mem_mgr *mmg;
768 struct kref refcount;
769 void *private;
770 atomic_t mmap;
771 u64 real_mapped_size;
772 u64 mappable_size;
773 u64 handle;
774 };
775
776 /**
777 * struct hl_cb - describes a Command Buffer.
778 * @hdev: pointer to device this CB belongs to.
779 * @ctx: pointer to the CB owner's context.
780 * @buf: back pointer to the parent mappable memory buffer
781 * @debugfs_list: node in debugfs list of command buffers.
782 * @pool_list: node in pool list of command buffers.
783 * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
784 * the device's MMU.
785 * @kernel_address: Holds the CB's kernel virtual address.
786 * @bus_address: Holds the CB's DMA address.
787 * @size: holds the CB's size.
788 * @cs_cnt: holds number of CS that this CB participates in.
789 * @is_pool: true if CB was acquired from the pool, false otherwise.
790 * @is_internal: internaly allocated
791 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
792 */
793 struct hl_cb {
794 struct hl_device *hdev;
795 struct hl_ctx *ctx;
796 struct hl_mmap_mem_buf *buf;
797 struct list_head debugfs_list;
798 struct list_head pool_list;
799 struct list_head va_block_list;
800 void *kernel_address;
801 dma_addr_t bus_address;
802 u32 size;
803 atomic_t cs_cnt;
804 u8 is_pool;
805 u8 is_internal;
806 u8 is_mmu_mapped;
807 };
808
809
810 /*
811 * QUEUES
812 */
813
814 struct hl_cs;
815 struct hl_cs_job;
816
817 /* Queue length of external and HW queues */
818 #define HL_QUEUE_LENGTH 4096
819 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
820
821 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
822 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
823 #endif
824
825 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
826 #define HL_CQ_LENGTH HL_QUEUE_LENGTH
827 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
828
829 /* Must be power of 2 */
830 #define HL_EQ_LENGTH 64
831 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
832
833 /* Host <-> CPU-CP shared memory size */
834 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
835
836 /**
837 * struct hl_sync_stream_properties -
838 * describes a H/W queue sync stream properties
839 * @hw_sob: array of the used H/W SOBs by this H/W queue.
840 * @next_sob_val: the next value to use for the currently used SOB.
841 * @base_sob_id: the base SOB id of the SOBs used by this queue.
842 * @base_mon_id: the base MON id of the MONs used by this queue.
843 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
844 * in order to sync with all slave queues.
845 * @collective_slave_mon_id: the MON id used by this slave queue in order to
846 * sync with its master queue.
847 * @collective_sob_id: current SOB id used by this collective slave queue
848 * to signal its collective master queue upon completion.
849 * @curr_sob_offset: the id offset to the currently used SOB from the
850 * HL_RSVD_SOBS that are being used by this queue.
851 */
852 struct hl_sync_stream_properties {
853 struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
854 u16 next_sob_val;
855 u16 base_sob_id;
856 u16 base_mon_id;
857 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
858 u16 collective_slave_mon_id;
859 u16 collective_sob_id;
860 u8 curr_sob_offset;
861 };
862
863 /**
864 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
865 * handlers manager
866 * @lock: protects handles.
867 * @handles: an idr to hold all encapsulated signals handles.
868 */
869 struct hl_encaps_signals_mgr {
870 spinlock_t lock;
871 struct idr handles;
872 };
873
874 /**
875 * struct hl_hw_queue - describes a H/W transport queue.
876 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
877 * @sync_stream_prop: sync stream queue properties
878 * @queue_type: type of queue.
879 * @collective_mode: collective mode of current queue
880 * @kernel_address: holds the queue's kernel virtual address.
881 * @bus_address: holds the queue's DMA address.
882 * @pi: holds the queue's pi value.
883 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
884 * @hw_queue_id: the id of the H/W queue.
885 * @cq_id: the id for the corresponding CQ for this H/W queue.
886 * @msi_vec: the IRQ number of the H/W queue.
887 * @int_queue_len: length of internal queue (number of entries).
888 * @valid: is the queue valid (we have array of 32 queues, not all of them
889 * exist).
890 * @supports_sync_stream: True if queue supports sync stream
891 */
892 struct hl_hw_queue {
893 struct hl_cs_job **shadow_queue;
894 struct hl_sync_stream_properties sync_stream_prop;
895 enum hl_queue_type queue_type;
896 enum hl_collective_mode collective_mode;
897 void *kernel_address;
898 dma_addr_t bus_address;
899 u32 pi;
900 atomic_t ci;
901 u32 hw_queue_id;
902 u32 cq_id;
903 u32 msi_vec;
904 u16 int_queue_len;
905 u8 valid;
906 u8 supports_sync_stream;
907 };
908
909 /**
910 * struct hl_cq - describes a completion queue
911 * @hdev: pointer to the device structure
912 * @kernel_address: holds the queue's kernel virtual address
913 * @bus_address: holds the queue's DMA address
914 * @cq_idx: completion queue index in array
915 * @hw_queue_id: the id of the matching H/W queue
916 * @ci: ci inside the queue
917 * @pi: pi inside the queue
918 * @free_slots_cnt: counter of free slots in queue
919 */
920 struct hl_cq {
921 struct hl_device *hdev;
922 void *kernel_address;
923 dma_addr_t bus_address;
924 u32 cq_idx;
925 u32 hw_queue_id;
926 u32 ci;
927 u32 pi;
928 atomic_t free_slots_cnt;
929 };
930
931 /**
932 * struct hl_user_interrupt - holds user interrupt information
933 * @hdev: pointer to the device structure
934 * @wait_list_head: head to the list of user threads pending on this interrupt
935 * @wait_list_lock: protects wait_list_head
936 * @interrupt_id: msix interrupt id
937 */
938 struct hl_user_interrupt {
939 struct hl_device *hdev;
940 struct list_head wait_list_head;
941 spinlock_t wait_list_lock;
942 u32 interrupt_id;
943 };
944
945 /**
946 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
947 * @free_objects_node: node in the list free_obj_jobs
948 * @cq_cb: pointer to cq command buffer to be freed
949 * @buf: pointer to timestamp buffer to be freed
950 */
951 struct timestamp_reg_free_node {
952 struct list_head free_objects_node;
953 struct hl_cb *cq_cb;
954 struct hl_mmap_mem_buf *buf;
955 };
956
957 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
958 * the job will be to pass over the free_obj_jobs list and put refcount to objects
959 * in each node of the list
960 * @free_obj: workqueue object to free timestamp registration node objects
961 * @hdev: pointer to the device structure
962 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
963 */
964 struct timestamp_reg_work_obj {
965 struct work_struct free_obj;
966 struct hl_device *hdev;
967 struct list_head *free_obj_head;
968 };
969
970 /* struct timestamp_reg_info - holds the timestamp registration related data.
971 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
972 * relevant only when doing timestamps records registration.
973 * @cq_cb: pointer to CQ counter CB.
974 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
975 * relevant only when doing timestamps records
976 * registration.
977 * @in_use: indicates if the node already in use. relevant only when doing
978 * timestamps records registration, since in this case the driver
979 * will have it's own buffer which serve as a records pool instead of
980 * allocating records dynamically.
981 */
982 struct timestamp_reg_info {
983 struct hl_mmap_mem_buf *buf;
984 struct hl_cb *cq_cb;
985 u64 *timestamp_kernel_addr;
986 u8 in_use;
987 };
988
989 /**
990 * struct hl_user_pending_interrupt - holds a context to a user thread
991 * pending on an interrupt
992 * @ts_reg_info: holds the timestamps registration nodes info
993 * @wait_list_node: node in the list of user threads pending on an interrupt
994 * @fence: hl fence object for interrupt completion
995 * @cq_target_value: CQ target value
996 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
997 * handler for taget value comparison
998 */
999 struct hl_user_pending_interrupt {
1000 struct timestamp_reg_info ts_reg_info;
1001 struct list_head wait_list_node;
1002 struct hl_fence fence;
1003 u64 cq_target_value;
1004 u64 *cq_kernel_addr;
1005 };
1006
1007 /**
1008 * struct hl_eq - describes the event queue (single one per device)
1009 * @hdev: pointer to the device structure
1010 * @kernel_address: holds the queue's kernel virtual address
1011 * @bus_address: holds the queue's DMA address
1012 * @ci: ci inside the queue
1013 * @prev_eqe_index: the index of the previous event queue entry. The index of
1014 * the current entry's index must be +1 of the previous one.
1015 * @check_eqe_index: do we need to check the index of the current entry vs. the
1016 * previous one. This is for backward compatibility with older
1017 * firmwares
1018 */
1019 struct hl_eq {
1020 struct hl_device *hdev;
1021 void *kernel_address;
1022 dma_addr_t bus_address;
1023 u32 ci;
1024 u32 prev_eqe_index;
1025 bool check_eqe_index;
1026 };
1027
1028
1029 /*
1030 * ASICs
1031 */
1032
1033 /**
1034 * enum hl_asic_type - supported ASIC types.
1035 * @ASIC_INVALID: Invalid ASIC type.
1036 * @ASIC_GOYA: Goya device.
1037 * @ASIC_GAUDI: Gaudi device.
1038 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1039 */
1040 enum hl_asic_type {
1041 ASIC_INVALID,
1042 ASIC_GOYA,
1043 ASIC_GAUDI,
1044 ASIC_GAUDI_SEC
1045 };
1046
1047 struct hl_cs_parser;
1048
1049 /**
1050 * enum hl_pm_mng_profile - power management profile.
1051 * @PM_AUTO: internal clock is set by the Linux driver.
1052 * @PM_MANUAL: internal clock is set by the user.
1053 * @PM_LAST: last power management type.
1054 */
1055 enum hl_pm_mng_profile {
1056 PM_AUTO = 1,
1057 PM_MANUAL,
1058 PM_LAST
1059 };
1060
1061 /**
1062 * enum hl_pll_frequency - PLL frequency.
1063 * @PLL_HIGH: high frequency.
1064 * @PLL_LOW: low frequency.
1065 * @PLL_LAST: last frequency values that were configured by the user.
1066 */
1067 enum hl_pll_frequency {
1068 PLL_HIGH = 1,
1069 PLL_LOW,
1070 PLL_LAST
1071 };
1072
1073 #define PLL_REF_CLK 50
1074
1075 enum div_select_defs {
1076 DIV_SEL_REF_CLK = 0,
1077 DIV_SEL_PLL_CLK = 1,
1078 DIV_SEL_DIVIDED_REF = 2,
1079 DIV_SEL_DIVIDED_PLL = 3,
1080 };
1081
1082 enum debugfs_access_type {
1083 DEBUGFS_READ8,
1084 DEBUGFS_WRITE8,
1085 DEBUGFS_READ32,
1086 DEBUGFS_WRITE32,
1087 DEBUGFS_READ64,
1088 DEBUGFS_WRITE64,
1089 };
1090
1091 enum pci_region {
1092 PCI_REGION_CFG,
1093 PCI_REGION_SRAM,
1094 PCI_REGION_DRAM,
1095 PCI_REGION_SP_SRAM,
1096 PCI_REGION_NUMBER,
1097 };
1098
1099 /**
1100 * struct pci_mem_region - describe memory region in a PCI bar
1101 * @region_base: region base address
1102 * @region_size: region size
1103 * @bar_size: size of the BAR
1104 * @offset_in_bar: region offset into the bar
1105 * @bar_id: bar ID of the region
1106 * @used: if used 1, otherwise 0
1107 */
1108 struct pci_mem_region {
1109 u64 region_base;
1110 u64 region_size;
1111 u64 bar_size;
1112 u64 offset_in_bar;
1113 u8 bar_id;
1114 u8 used;
1115 };
1116
1117 /**
1118 * struct static_fw_load_mgr - static FW load manager
1119 * @preboot_version_max_off: max offset to preboot version
1120 * @boot_fit_version_max_off: max offset to boot fit version
1121 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1122 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1123 * @cpu_boot_status_reg: boot status register
1124 * @cpu_boot_dev_status0_reg: boot device status register 0
1125 * @cpu_boot_dev_status1_reg: boot device status register 1
1126 * @boot_err0_reg: boot error register 0
1127 * @boot_err1_reg: boot error register 1
1128 * @preboot_version_offset_reg: SRAM offset to preboot version register
1129 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1130 * @sram_offset_mask: mask for getting offset into the SRAM
1131 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1132 */
1133 struct static_fw_load_mgr {
1134 u64 preboot_version_max_off;
1135 u64 boot_fit_version_max_off;
1136 u32 kmd_msg_to_cpu_reg;
1137 u32 cpu_cmd_status_to_host_reg;
1138 u32 cpu_boot_status_reg;
1139 u32 cpu_boot_dev_status0_reg;
1140 u32 cpu_boot_dev_status1_reg;
1141 u32 boot_err0_reg;
1142 u32 boot_err1_reg;
1143 u32 preboot_version_offset_reg;
1144 u32 boot_fit_version_offset_reg;
1145 u32 sram_offset_mask;
1146 u32 cpu_reset_wait_msec;
1147 };
1148
1149 /**
1150 * struct fw_response - FW response to LKD command
1151 * @ram_offset: descriptor offset into the RAM
1152 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1153 * @status: command status
1154 */
1155 struct fw_response {
1156 u32 ram_offset;
1157 u8 ram_type;
1158 u8 status;
1159 };
1160
1161 /**
1162 * struct dynamic_fw_load_mgr - dynamic FW load manager
1163 * @response: FW to LKD response
1164 * @comm_desc: the communication descriptor with FW
1165 * @image_region: region to copy the FW image to
1166 * @fw_image_size: size of FW image to load
1167 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1168 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1169 */
1170 struct dynamic_fw_load_mgr {
1171 struct fw_response response;
1172 struct lkd_fw_comms_desc comm_desc;
1173 struct pci_mem_region *image_region;
1174 size_t fw_image_size;
1175 u32 wait_for_bl_timeout;
1176 bool fw_desc_valid;
1177 };
1178
1179 /**
1180 * struct fw_image_props - properties of FW image
1181 * @image_name: name of the image
1182 * @src_off: offset in src FW to copy from
1183 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1184 */
1185 struct fw_image_props {
1186 char *image_name;
1187 u32 src_off;
1188 u32 copy_size;
1189 };
1190
1191 /**
1192 * struct fw_load_mgr - manager FW loading process
1193 * @dynamic_loader: specific structure for dynamic load
1194 * @static_loader: specific structure for static load
1195 * @boot_fit_img: boot fit image properties
1196 * @linux_img: linux image properties
1197 * @cpu_timeout: CPU response timeout in usec
1198 * @boot_fit_timeout: Boot fit load timeout in usec
1199 * @skip_bmc: should BMC be skipped
1200 * @sram_bar_id: SRAM bar ID
1201 * @dram_bar_id: DRAM bar ID
1202 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1203 * component. values are set according to enum hl_fw_types.
1204 */
1205 struct fw_load_mgr {
1206 union {
1207 struct dynamic_fw_load_mgr dynamic_loader;
1208 struct static_fw_load_mgr static_loader;
1209 };
1210 struct fw_image_props boot_fit_img;
1211 struct fw_image_props linux_img;
1212 u32 cpu_timeout;
1213 u32 boot_fit_timeout;
1214 u8 skip_bmc;
1215 u8 sram_bar_id;
1216 u8 dram_bar_id;
1217 u8 fw_comp_loaded;
1218 };
1219
1220 /**
1221 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1222 * common code.
1223 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1224 * @early_fini: tears down what was done in early_init.
1225 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1226 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1227 * @sw_init: sets up driver state, does not configure H/W.
1228 * @sw_fini: tears down driver state, does not configure H/W.
1229 * @hw_init: sets up the H/W state.
1230 * @hw_fini: tears down the H/W state.
1231 * @halt_engines: halt engines, needed for reset sequence. This also disables
1232 * interrupts from the device. Should be called before
1233 * hw_fini and before CS rollback.
1234 * @suspend: handles IP specific H/W or SW changes for suspend.
1235 * @resume: handles IP specific H/W or SW changes for resume.
1236 * @mmap: maps a memory.
1237 * @ring_doorbell: increment PI on a given QMAN.
1238 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1239 * function because the PQs are located in different memory areas
1240 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1241 * writing the PQE must match the destination memory area
1242 * properties.
1243 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1244 * dma_alloc_coherent(). This is ASIC function because
1245 * its implementation is not trivial when the driver
1246 * is loaded in simulation mode (not upstreamed).
1247 * @asic_dma_free_coherent: Free coherent DMA memory by calling
1248 * dma_free_coherent(). This is ASIC function because
1249 * its implementation is not trivial when the driver
1250 * is loaded in simulation mode (not upstreamed).
1251 * @scrub_device_mem: Scrub device memory given an address and size
1252 * @scrub_device_dram: Scrub the dram memory of the device.
1253 * @get_int_queue_base: get the internal queue base address.
1254 * @test_queues: run simple test on all queues for sanity check.
1255 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1256 * size of allocation is HL_DMA_POOL_BLK_SIZE.
1257 * @asic_dma_pool_free: free small DMA allocation from pool.
1258 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1259 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1260 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1261 * @cs_parser: parse Command Submission.
1262 * @asic_dma_map_sgtable: DMA map scatter-gather table.
1263 * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
1264 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1265 * @update_eq_ci: update event queue CI.
1266 * @context_switch: called upon ASID context switch.
1267 * @restore_phase_topology: clear all SOBs amd MONs.
1268 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1269 * internal memory via DMA engine.
1270 * @add_device_attr: add ASIC specific device attributes.
1271 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1272 * @get_events_stat: retrieve event queue entries histogram.
1273 * @read_pte: read MMU page table entry from DRAM.
1274 * @write_pte: write MMU page table entry to DRAM.
1275 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1276 * (L1 only) or hard (L0 & L1) flush.
1277 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1278 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1279 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1280 * @debug_coresight: perform certain actions on Coresight for debugging.
1281 * @is_device_idle: return true if device is idle, false otherwise.
1282 * @non_hard_reset_late_init: perform certain actions needed after a reset which is not hard-reset
1283 * @hw_queues_lock: acquire H/W queues lock.
1284 * @hw_queues_unlock: release H/W queues lock.
1285 * @get_pci_id: retrieve PCI ID.
1286 * @get_eeprom_data: retrieve EEPROM data from F/W.
1287 * @get_monitor_dump: retrieve monitor registers dump from F/W.
1288 * @send_cpu_message: send message to F/W. If the message is timedout, the
1289 * driver will eventually reset the device. The timeout can
1290 * be determined by the calling function or it can be 0 and
1291 * then the timeout is the default timeout for the specific
1292 * ASIC
1293 * @get_hw_state: retrieve the H/W state
1294 * @pci_bars_map: Map PCI BARs.
1295 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1296 * @rreg: Read a register. Needed for simulator support.
1297 * @wreg: Write a register. Needed for simulator support.
1298 * @halt_coresight: stop the ETF and ETR traces.
1299 * @ctx_init: context dependent initialization.
1300 * @ctx_fini: context dependent cleanup.
1301 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1302 * @load_firmware_to_device: load the firmware to the device's memory
1303 * @load_boot_fit_to_device: load boot fit to device's memory
1304 * @get_signal_cb_size: Get signal CB size.
1305 * @get_wait_cb_size: Get wait CB size.
1306 * @gen_signal_cb: Generate a signal CB.
1307 * @gen_wait_cb: Generate a wait CB.
1308 * @reset_sob: Reset a SOB.
1309 * @reset_sob_group: Reset SOB group
1310 * @get_device_time: Get the device time.
1311 * @collective_wait_init_cs: Generate collective master/slave packets
1312 * and place them in the relevant cs jobs
1313 * @collective_wait_create_jobs: allocate collective wait cs jobs
1314 * @scramble_addr: Routine to scramble the address prior of mapping it
1315 * in the MMU.
1316 * @descramble_addr: Routine to de-scramble the address prior of
1317 * showing it to users.
1318 * @ack_protection_bits_errors: ack and dump all security violations
1319 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1320 * also returns the size of the block if caller supplies
1321 * a valid pointer for it
1322 * @hw_block_mmap: mmap a HW block with a given id.
1323 * @enable_events_from_fw: send interrupt to firmware to notify them the
1324 * driver is ready to receive asynchronous events. This
1325 * function should be called during the first init and
1326 * after every hard-reset of the device
1327 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1328 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1329 * generic f/w compatible PLL Indexes
1330 * @init_firmware_loader: initialize data for FW loader.
1331 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1332 * @state_dump_init: initialize constants required for state dump
1333 * @get_sob_addr: get SOB base address offset.
1334 * @set_pci_memory_regions: setting properties of PCI memory regions
1335 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1336 * @is_valid_dram_page_size: return true if page size is supported in device
1337 * memory allocation, otherwise false.
1338 * @get_valid_dram_page_orders: get valid device memory allocation page orders
1339 * @access_dev_mem: access device memory
1340 * @set_dram_bar_base: set the base of the DRAM BAR
1341 */
1342 struct hl_asic_funcs {
1343 int (*early_init)(struct hl_device *hdev);
1344 int (*early_fini)(struct hl_device *hdev);
1345 int (*late_init)(struct hl_device *hdev);
1346 void (*late_fini)(struct hl_device *hdev);
1347 int (*sw_init)(struct hl_device *hdev);
1348 int (*sw_fini)(struct hl_device *hdev);
1349 int (*hw_init)(struct hl_device *hdev);
1350 void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1351 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1352 int (*suspend)(struct hl_device *hdev);
1353 int (*resume)(struct hl_device *hdev);
1354 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1355 void *cpu_addr, dma_addr_t dma_addr, size_t size);
1356 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1357 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1358 struct hl_bd *bd);
1359 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1360 dma_addr_t *dma_handle, gfp_t flag);
1361 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1362 void *cpu_addr, dma_addr_t dma_handle);
1363 int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
1364 int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1365 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1366 dma_addr_t *dma_handle, u16 *queue_len);
1367 int (*test_queues)(struct hl_device *hdev);
1368 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1369 gfp_t mem_flags, dma_addr_t *dma_handle);
1370 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1371 dma_addr_t dma_addr);
1372 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1373 size_t size, dma_addr_t *dma_handle);
1374 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1375 size_t size, void *vaddr);
1376 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1377 struct sg_table *sgt,
1378 enum dma_data_direction dir);
1379 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1380 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1381 enum dma_data_direction dir);
1382 u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
1383 struct sg_table *sgt);
1384 void (*add_end_of_cb_packets)(struct hl_device *hdev,
1385 void *kernel_address, u32 len,
1386 u64 cq_addr, u32 cq_val, u32 msix_num,
1387 bool eb);
1388 void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1389 int (*context_switch)(struct hl_device *hdev, u32 asid);
1390 void (*restore_phase_topology)(struct hl_device *hdev);
1391 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1392 void *blob_addr);
1393 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1394 struct attribute_group *dev_vrm_attr_grp);
1395 void (*handle_eqe)(struct hl_device *hdev,
1396 struct hl_eq_entry *eq_entry);
1397 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1398 u32 *size);
1399 u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1400 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1401 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1402 u32 flags);
1403 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1404 u32 flags, u32 asid, u64 va, u64 size);
1405 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1406 int (*send_heartbeat)(struct hl_device *hdev);
1407 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1408 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
1409 u8 mask_len, struct seq_file *s);
1410 int (*non_hard_reset_late_init)(struct hl_device *hdev);
1411 void (*hw_queues_lock)(struct hl_device *hdev);
1412 void (*hw_queues_unlock)(struct hl_device *hdev);
1413 u32 (*get_pci_id)(struct hl_device *hdev);
1414 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1415 int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1416 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1417 u16 len, u32 timeout, u64 *result);
1418 int (*pci_bars_map)(struct hl_device *hdev);
1419 int (*init_iatu)(struct hl_device *hdev);
1420 u32 (*rreg)(struct hl_device *hdev, u32 reg);
1421 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1422 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1423 int (*ctx_init)(struct hl_ctx *ctx);
1424 void (*ctx_fini)(struct hl_ctx *ctx);
1425 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1426 int (*load_firmware_to_device)(struct hl_device *hdev);
1427 int (*load_boot_fit_to_device)(struct hl_device *hdev);
1428 u32 (*get_signal_cb_size)(struct hl_device *hdev);
1429 u32 (*get_wait_cb_size)(struct hl_device *hdev);
1430 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1431 u32 size, bool eb);
1432 u32 (*gen_wait_cb)(struct hl_device *hdev,
1433 struct hl_gen_wait_properties *prop);
1434 void (*reset_sob)(struct hl_device *hdev, void *data);
1435 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1436 u64 (*get_device_time)(struct hl_device *hdev);
1437 int (*collective_wait_init_cs)(struct hl_cs *cs);
1438 int (*collective_wait_create_jobs)(struct hl_device *hdev,
1439 struct hl_ctx *ctx, struct hl_cs *cs,
1440 u32 wait_queue_id, u32 collective_engine_id,
1441 u32 encaps_signal_offset);
1442 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1443 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1444 void (*ack_protection_bits_errors)(struct hl_device *hdev);
1445 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1446 u32 *block_size, u32 *block_id);
1447 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1448 u32 block_id, u32 block_size);
1449 void (*enable_events_from_fw)(struct hl_device *hdev);
1450 void (*get_msi_info)(__le32 *table);
1451 int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1452 void (*init_firmware_loader)(struct hl_device *hdev);
1453 void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1454 void (*state_dump_init)(struct hl_device *hdev);
1455 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1456 void (*set_pci_memory_regions)(struct hl_device *hdev);
1457 u32* (*get_stream_master_qid_arr)(void);
1458 bool (*is_valid_dram_page_size)(u32 page_size);
1459 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1460 u32 page_size, u32 *real_page_size, bool is_dram_addr);
1461 void (*get_valid_dram_page_orders)(struct hl_info_dev_memalloc_page_sizes *info);
1462 int (*access_dev_mem)(struct hl_device *hdev, struct pci_mem_region *region,
1463 enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type);
1464 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1465 };
1466
1467
1468 /*
1469 * CONTEXTS
1470 */
1471
1472 #define HL_KERNEL_ASID_ID 0
1473
1474 /**
1475 * enum hl_va_range_type - virtual address range type.
1476 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1477 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1478 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1479 */
1480 enum hl_va_range_type {
1481 HL_VA_RANGE_TYPE_HOST,
1482 HL_VA_RANGE_TYPE_HOST_HUGE,
1483 HL_VA_RANGE_TYPE_DRAM,
1484 HL_VA_RANGE_TYPE_MAX
1485 };
1486
1487 /**
1488 * struct hl_va_range - virtual addresses range.
1489 * @lock: protects the virtual addresses list.
1490 * @list: list of virtual addresses blocks available for mappings.
1491 * @start_addr: range start address.
1492 * @end_addr: range end address.
1493 * @page_size: page size of this va range.
1494 */
1495 struct hl_va_range {
1496 struct mutex lock;
1497 struct list_head list;
1498 u64 start_addr;
1499 u64 end_addr;
1500 u32 page_size;
1501 };
1502
1503 /**
1504 * struct hl_cs_counters_atomic - command submission counters
1505 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1506 * @parsing_drop_cnt: dropped due to error in packet parsing
1507 * @queue_full_drop_cnt: dropped due to queue full
1508 * @device_in_reset_drop_cnt: dropped due to device in reset
1509 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1510 * @validation_drop_cnt: dropped due to error in validation
1511 */
1512 struct hl_cs_counters_atomic {
1513 atomic64_t out_of_mem_drop_cnt;
1514 atomic64_t parsing_drop_cnt;
1515 atomic64_t queue_full_drop_cnt;
1516 atomic64_t device_in_reset_drop_cnt;
1517 atomic64_t max_cs_in_flight_drop_cnt;
1518 atomic64_t validation_drop_cnt;
1519 };
1520
1521 /**
1522 * struct hl_dmabuf_priv - a dma-buf private object.
1523 * @dmabuf: pointer to dma-buf object.
1524 * @ctx: pointer to the dma-buf owner's context.
1525 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for
1526 * memory allocation handle.
1527 * @device_address: physical address of the device's memory. Relevant only
1528 * if phys_pg_pack is NULL (dma-buf was exported from address).
1529 * The total size can be taken from the dmabuf object.
1530 */
1531 struct hl_dmabuf_priv {
1532 struct dma_buf *dmabuf;
1533 struct hl_ctx *ctx;
1534 struct hl_vm_phys_pg_pack *phys_pg_pack;
1535 uint64_t device_address;
1536 };
1537
1538 /**
1539 * struct hl_ctx - user/kernel context.
1540 * @mem_hash: holds mapping from virtual address to virtual memory area
1541 * descriptor (hl_vm_phys_pg_list or hl_userptr).
1542 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1543 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1544 * @hdev: pointer to the device structure.
1545 * @refcount: reference counter for the context. Context is released only when
1546 * this hits 0l. It is incremented on CS and CS_WAIT.
1547 * @cs_pending: array of hl fence objects representing pending CS.
1548 * @va_range: holds available virtual addresses for host and dram mappings.
1549 * @mem_hash_lock: protects the mem_hash.
1550 * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
1551 * MMU hash or walking the PGT requires talking this lock.
1552 * @hw_block_list_lock: protects the HW block memory list.
1553 * @debugfs_list: node in debugfs list of contexts.
1554 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1555 * @cs_counters: context command submission counters.
1556 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1557 * device's MMU.
1558 * @sig_mgr: encaps signals handle manager.
1559 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1560 * to user so user could inquire about CS. It is used as
1561 * index to cs_pending array.
1562 * @dram_default_hops: array that holds all hops addresses needed for default
1563 * DRAM mapping.
1564 * @cs_lock: spinlock to protect cs_sequence.
1565 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1566 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1567 * context from running the context switch phase.
1568 * Only a single thread should run it.
1569 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1570 * the context switch phase from moving to their
1571 * execution phase before the context switch phase
1572 * has finished.
1573 * @asid: context's unique address space ID in the device's MMU.
1574 * @handle: context's opaque handle for user
1575 */
1576 struct hl_ctx {
1577 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1578 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1579 struct hl_fpriv *hpriv;
1580 struct hl_device *hdev;
1581 struct kref refcount;
1582 struct hl_fence **cs_pending;
1583 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1584 struct mutex mem_hash_lock;
1585 struct mutex mmu_lock;
1586 struct mutex hw_block_list_lock;
1587 struct list_head debugfs_list;
1588 struct list_head hw_block_mem_list;
1589 struct hl_cs_counters_atomic cs_counters;
1590 struct gen_pool *cb_va_pool;
1591 struct hl_encaps_signals_mgr sig_mgr;
1592 u64 cs_sequence;
1593 u64 *dram_default_hops;
1594 spinlock_t cs_lock;
1595 atomic64_t dram_phys_mem;
1596 atomic_t thread_ctx_switch_token;
1597 u32 thread_ctx_switch_wait_token;
1598 u32 asid;
1599 u32 handle;
1600 };
1601
1602 /**
1603 * struct hl_ctx_mgr - for handling multiple contexts.
1604 * @ctx_lock: protects ctx_handles.
1605 * @ctx_handles: idr to hold all ctx handles.
1606 */
1607 struct hl_ctx_mgr {
1608 struct mutex ctx_lock;
1609 struct idr ctx_handles;
1610 };
1611
1612
1613
1614 /*
1615 * COMMAND SUBMISSIONS
1616 */
1617
1618 /**
1619 * struct hl_userptr - memory mapping chunk information
1620 * @vm_type: type of the VM.
1621 * @job_node: linked-list node for hanging the object on the Job's list.
1622 * @pages: pointer to struct page array
1623 * @npages: size of @pages array
1624 * @sgt: pointer to the scatter-gather table that holds the pages.
1625 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1626 * @debugfs_list: node in debugfs list of command submissions.
1627 * @pid: the pid of the user process owning the memory
1628 * @addr: user-space virtual address of the start of the memory area.
1629 * @size: size of the memory area to pin & map.
1630 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1631 */
1632 struct hl_userptr {
1633 enum vm_type vm_type; /* must be first */
1634 struct list_head job_node;
1635 struct page **pages;
1636 unsigned int npages;
1637 struct sg_table *sgt;
1638 enum dma_data_direction dir;
1639 struct list_head debugfs_list;
1640 pid_t pid;
1641 u64 addr;
1642 u64 size;
1643 u8 dma_mapped;
1644 };
1645
1646 /**
1647 * struct hl_cs - command submission.
1648 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1649 * @ctx: the context this CS belongs to.
1650 * @job_list: list of the CS's jobs in the various queues.
1651 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1652 * @refcount: reference counter for usage of the CS.
1653 * @fence: pointer to the fence object of this CS.
1654 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1655 * CS only).
1656 * @finish_work: workqueue object to run when CS is completed by H/W.
1657 * @work_tdr: delayed work node for TDR.
1658 * @mirror_node : node in device mirror list of command submissions.
1659 * @staged_cs_node: node in the staged cs list.
1660 * @debugfs_list: node in debugfs list of command submissions.
1661 * @encaps_sig_hdl: holds the encaps signals handle.
1662 * @sequence: the sequence number of this CS.
1663 * @staged_sequence: the sequence of the staged submission this CS is part of,
1664 * relevant only if staged_cs is set.
1665 * @timeout_jiffies: cs timeout in jiffies.
1666 * @submission_time_jiffies: submission time of the cs
1667 * @type: CS_TYPE_*.
1668 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1669 * @sob_addr_offset: sob offset from the configuration base address.
1670 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1671 * cs with encaps signals.
1672 * @submitted: true if CS was submitted to H/W.
1673 * @completed: true if CS was completed by device.
1674 * @timedout : true if CS was timedout.
1675 * @tdr_active: true if TDR was activated for this CS (to prevent
1676 * double TDR activation).
1677 * @aborted: true if CS was aborted due to some device error.
1678 * @timestamp: true if a timestmap must be captured upon completion.
1679 * @staged_last: true if this is the last staged CS and needs completion.
1680 * @staged_first: true if this is the first staged CS and we need to receive
1681 * timeout for this CS.
1682 * @staged_cs: true if this CS is part of a staged submission.
1683 * @skip_reset_on_timeout: true if we shall not reset the device in case
1684 * timeout occurs (debug scenario).
1685 * @encaps_signals: true if this CS has encaps reserved signals.
1686 */
1687 struct hl_cs {
1688 u16 *jobs_in_queue_cnt;
1689 struct hl_ctx *ctx;
1690 struct list_head job_list;
1691 spinlock_t job_lock;
1692 struct kref refcount;
1693 struct hl_fence *fence;
1694 struct hl_fence *signal_fence;
1695 struct work_struct finish_work;
1696 struct delayed_work work_tdr;
1697 struct list_head mirror_node;
1698 struct list_head staged_cs_node;
1699 struct list_head debugfs_list;
1700 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1701 u64 sequence;
1702 u64 staged_sequence;
1703 u64 timeout_jiffies;
1704 u64 submission_time_jiffies;
1705 enum hl_cs_type type;
1706 u32 encaps_sig_hdl_id;
1707 u32 sob_addr_offset;
1708 u16 initial_sob_count;
1709 u8 submitted;
1710 u8 completed;
1711 u8 timedout;
1712 u8 tdr_active;
1713 u8 aborted;
1714 u8 timestamp;
1715 u8 staged_last;
1716 u8 staged_first;
1717 u8 staged_cs;
1718 u8 skip_reset_on_timeout;
1719 u8 encaps_signals;
1720 };
1721
1722 /**
1723 * struct hl_cs_job - command submission job.
1724 * @cs_node: the node to hang on the CS jobs list.
1725 * @cs: the CS this job belongs to.
1726 * @user_cb: the CB we got from the user.
1727 * @patched_cb: in case of patching, this is internal CB which is submitted on
1728 * the queue instead of the CB we got from the IOCTL.
1729 * @finish_work: workqueue object to run when job is completed.
1730 * @userptr_list: linked-list of userptr mappings that belong to this job and
1731 * wait for completion.
1732 * @debugfs_list: node in debugfs list of command submission jobs.
1733 * @refcount: reference counter for usage of the CS job.
1734 * @queue_type: the type of the H/W queue this job is submitted to.
1735 * @id: the id of this job inside a CS.
1736 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1737 * @user_cb_size: the actual size of the CB we got from the user.
1738 * @job_cb_size: the actual size of the CB that we put on the queue.
1739 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1740 * to wait on part of the reserved signals.
1741 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1742 * handle to a kernel-allocated CB object, false
1743 * otherwise (SRAM/DRAM/host address).
1744 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1745 * info is needed later, when adding the 2xMSG_PROT at the
1746 * end of the JOB, to know which barriers to put in the
1747 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1748 * have streams so the engine can't be busy by another
1749 * stream.
1750 */
1751 struct hl_cs_job {
1752 struct list_head cs_node;
1753 struct hl_cs *cs;
1754 struct hl_cb *user_cb;
1755 struct hl_cb *patched_cb;
1756 struct work_struct finish_work;
1757 struct list_head userptr_list;
1758 struct list_head debugfs_list;
1759 struct kref refcount;
1760 enum hl_queue_type queue_type;
1761 u32 id;
1762 u32 hw_queue_id;
1763 u32 user_cb_size;
1764 u32 job_cb_size;
1765 u32 encaps_sig_wait_offset;
1766 u8 is_kernel_allocated_cb;
1767 u8 contains_dma_pkt;
1768 };
1769
1770 /**
1771 * struct hl_cs_parser - command submission parser properties.
1772 * @user_cb: the CB we got from the user.
1773 * @patched_cb: in case of patching, this is internal CB which is submitted on
1774 * the queue instead of the CB we got from the IOCTL.
1775 * @job_userptr_list: linked-list of userptr mappings that belong to the related
1776 * job and wait for completion.
1777 * @cs_sequence: the sequence number of the related CS.
1778 * @queue_type: the type of the H/W queue this job is submitted to.
1779 * @ctx_id: the ID of the context the related CS belongs to.
1780 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1781 * @user_cb_size: the actual size of the CB we got from the user.
1782 * @patched_cb_size: the size of the CB after parsing.
1783 * @job_id: the id of the related job inside the related CS.
1784 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1785 * handle to a kernel-allocated CB object, false
1786 * otherwise (SRAM/DRAM/host address).
1787 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1788 * info is needed later, when adding the 2xMSG_PROT at the
1789 * end of the JOB, to know which barriers to put in the
1790 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1791 * have streams so the engine can't be busy by another
1792 * stream.
1793 * @completion: true if we need completion for this CS.
1794 */
1795 struct hl_cs_parser {
1796 struct hl_cb *user_cb;
1797 struct hl_cb *patched_cb;
1798 struct list_head *job_userptr_list;
1799 u64 cs_sequence;
1800 enum hl_queue_type queue_type;
1801 u32 ctx_id;
1802 u32 hw_queue_id;
1803 u32 user_cb_size;
1804 u32 patched_cb_size;
1805 u8 job_id;
1806 u8 is_kernel_allocated_cb;
1807 u8 contains_dma_pkt;
1808 u8 completion;
1809 };
1810
1811 /*
1812 * MEMORY STRUCTURE
1813 */
1814
1815 /**
1816 * struct hl_vm_hash_node - hash element from virtual address to virtual
1817 * memory area descriptor (hl_vm_phys_pg_list or
1818 * hl_userptr).
1819 * @node: node to hang on the hash table in context object.
1820 * @vaddr: key virtual address.
1821 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1822 */
1823 struct hl_vm_hash_node {
1824 struct hlist_node node;
1825 u64 vaddr;
1826 void *ptr;
1827 };
1828
1829 /**
1830 * struct hl_vm_hw_block_list_node - list element from user virtual address to
1831 * HW block id.
1832 * @node: node to hang on the list in context object.
1833 * @ctx: the context this node belongs to.
1834 * @vaddr: virtual address of the HW block.
1835 * @size: size of the block.
1836 * @id: HW block id (handle).
1837 */
1838 struct hl_vm_hw_block_list_node {
1839 struct list_head node;
1840 struct hl_ctx *ctx;
1841 unsigned long vaddr;
1842 u32 size;
1843 u32 id;
1844 };
1845
1846 /**
1847 * struct hl_vm_phys_pg_pack - physical page pack.
1848 * @vm_type: describes the type of the virtual area descriptor.
1849 * @pages: the physical page array.
1850 * @npages: num physical pages in the pack.
1851 * @total_size: total size of all the pages in this list.
1852 * @node: used to attach to deletion list that is used when all the allocations are cleared
1853 * at the teardown of the context.
1854 * @mapping_cnt: number of shared mappings.
1855 * @exporting_cnt: number of dma-buf exporting.
1856 * @asid: the context related to this list.
1857 * @page_size: size of each page in the pack.
1858 * @flags: HL_MEM_* flags related to this list.
1859 * @handle: the provided handle related to this list.
1860 * @offset: offset from the first page.
1861 * @contiguous: is contiguous physical memory.
1862 * @created_from_userptr: is product of host virtual address.
1863 */
1864 struct hl_vm_phys_pg_pack {
1865 enum vm_type vm_type; /* must be first */
1866 u64 *pages;
1867 u64 npages;
1868 u64 total_size;
1869 struct list_head node;
1870 atomic_t mapping_cnt;
1871 u32 exporting_cnt;
1872 u32 asid;
1873 u32 page_size;
1874 u32 flags;
1875 u32 handle;
1876 u32 offset;
1877 u8 contiguous;
1878 u8 created_from_userptr;
1879 };
1880
1881 /**
1882 * struct hl_vm_va_block - virtual range block information.
1883 * @node: node to hang on the virtual range list in context object.
1884 * @start: virtual range start address.
1885 * @end: virtual range end address.
1886 * @size: virtual range size.
1887 */
1888 struct hl_vm_va_block {
1889 struct list_head node;
1890 u64 start;
1891 u64 end;
1892 u64 size;
1893 };
1894
1895 /**
1896 * struct hl_vm - virtual memory manager for MMU.
1897 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1898 * @dram_pg_pool_refcount: reference counter for the pool usage.
1899 * @idr_lock: protects the phys_pg_list_handles.
1900 * @phys_pg_pack_handles: idr to hold all device allocations handles.
1901 * @init_done: whether initialization was done. We need this because VM
1902 * initialization might be skipped during device initialization.
1903 */
1904 struct hl_vm {
1905 struct gen_pool *dram_pg_pool;
1906 struct kref dram_pg_pool_refcount;
1907 spinlock_t idr_lock;
1908 struct idr phys_pg_pack_handles;
1909 u8 init_done;
1910 };
1911
1912
1913 /*
1914 * DEBUG, PROFILING STRUCTURE
1915 */
1916
1917 /**
1918 * struct hl_debug_params - Coresight debug parameters.
1919 * @input: pointer to component specific input parameters.
1920 * @output: pointer to component specific output parameters.
1921 * @output_size: size of output buffer.
1922 * @reg_idx: relevant register ID.
1923 * @op: component operation to execute.
1924 * @enable: true if to enable component debugging, false otherwise.
1925 */
1926 struct hl_debug_params {
1927 void *input;
1928 void *output;
1929 u32 output_size;
1930 u32 reg_idx;
1931 u32 op;
1932 bool enable;
1933 };
1934
1935 /**
1936 * struct hl_notifier_event - holds the notifier data structure
1937 * @eventfd: the event file descriptor to raise the notifications
1938 * @lock: mutex lock to protect the notifier data flows
1939 * @events_mask: indicates the bitmap events
1940 */
1941 struct hl_notifier_event {
1942 struct eventfd_ctx *eventfd;
1943 struct mutex lock;
1944 u64 events_mask;
1945 };
1946
1947 /*
1948 * FILE PRIVATE STRUCTURE
1949 */
1950
1951 /**
1952 * struct hl_fpriv - process information stored in FD private data.
1953 * @hdev: habanalabs device structure.
1954 * @filp: pointer to the given file structure.
1955 * @taskpid: current process ID.
1956 * @ctx: current executing context. TODO: remove for multiple ctx per process
1957 * @ctx_mgr: context manager to handle multiple context for this FD.
1958 * @mem_mgr: manager descriptor for memory exportable via mmap
1959 * @notifier_event: notifier eventfd towards user process
1960 * @debugfs_list: list of relevant ASIC debugfs.
1961 * @dev_node: node in the device list of file private data
1962 * @refcount: number of related contexts.
1963 * @restore_phase_mutex: lock for context switch and restore phase.
1964 */
1965 struct hl_fpriv {
1966 struct hl_device *hdev;
1967 struct file *filp;
1968 struct pid *taskpid;
1969 struct hl_ctx *ctx;
1970 struct hl_ctx_mgr ctx_mgr;
1971 struct hl_mem_mgr mem_mgr;
1972 struct hl_notifier_event notifier_event;
1973 struct list_head debugfs_list;
1974 struct list_head dev_node;
1975 struct kref refcount;
1976 struct mutex restore_phase_mutex;
1977 };
1978
1979
1980 /*
1981 * DebugFS
1982 */
1983
1984 /**
1985 * struct hl_info_list - debugfs file ops.
1986 * @name: file name.
1987 * @show: function to output information.
1988 * @write: function to write to the file.
1989 */
1990 struct hl_info_list {
1991 const char *name;
1992 int (*show)(struct seq_file *s, void *data);
1993 ssize_t (*write)(struct file *file, const char __user *buf,
1994 size_t count, loff_t *f_pos);
1995 };
1996
1997 /**
1998 * struct hl_debugfs_entry - debugfs dentry wrapper.
1999 * @info_ent: dentry realted ops.
2000 * @dev_entry: ASIC specific debugfs manager.
2001 */
2002 struct hl_debugfs_entry {
2003 const struct hl_info_list *info_ent;
2004 struct hl_dbg_device_entry *dev_entry;
2005 };
2006
2007 /**
2008 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2009 * @root: root dentry.
2010 * @hdev: habanalabs device structure.
2011 * @entry_arr: array of available hl_debugfs_entry.
2012 * @file_list: list of available debugfs files.
2013 * @file_mutex: protects file_list.
2014 * @cb_list: list of available CBs.
2015 * @cb_spinlock: protects cb_list.
2016 * @cs_list: list of available CSs.
2017 * @cs_spinlock: protects cs_list.
2018 * @cs_job_list: list of available CB jobs.
2019 * @cs_job_spinlock: protects cs_job_list.
2020 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2021 * @userptr_spinlock: protects userptr_list.
2022 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2023 * @ctx_mem_hash_spinlock: protects cb_list.
2024 * @data_dma_blob_desc: data DMA descriptor of blob.
2025 * @mon_dump_blob_desc: monitor dump descriptor of blob.
2026 * @state_dump: data of the system states in case of a bad cs.
2027 * @state_dump_sem: protects state_dump.
2028 * @addr: next address to read/write from/to in read/write32.
2029 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2030 * @userptr_lookup: the target user ptr to look up for on demand.
2031 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
2032 * @mmu_asid: ASID to use while translating in mmu_show.
2033 * @state_dump_head: index of the latest state dump
2034 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2035 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2036 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2037 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2038 */
2039 struct hl_dbg_device_entry {
2040 struct dentry *root;
2041 struct hl_device *hdev;
2042 struct hl_debugfs_entry *entry_arr;
2043 struct list_head file_list;
2044 struct mutex file_mutex;
2045 struct list_head cb_list;
2046 spinlock_t cb_spinlock;
2047 struct list_head cs_list;
2048 spinlock_t cs_spinlock;
2049 struct list_head cs_job_list;
2050 spinlock_t cs_job_spinlock;
2051 struct list_head userptr_list;
2052 spinlock_t userptr_spinlock;
2053 struct list_head ctx_mem_hash_list;
2054 spinlock_t ctx_mem_hash_spinlock;
2055 struct debugfs_blob_wrapper data_dma_blob_desc;
2056 struct debugfs_blob_wrapper mon_dump_blob_desc;
2057 char *state_dump[HL_STATE_DUMP_HIST_LEN];
2058 struct rw_semaphore state_dump_sem;
2059 u64 addr;
2060 u64 mmu_addr;
2061 u64 userptr_lookup;
2062 u64 memory_scrub_val;
2063 u32 mmu_asid;
2064 u32 state_dump_head;
2065 u8 i2c_bus;
2066 u8 i2c_addr;
2067 u8 i2c_reg;
2068 u8 i2c_len;
2069 };
2070
2071 /**
2072 * struct hl_hw_obj_name_entry - single hw object name, member of
2073 * hl_state_dump_specs
2074 * @node: link to the containing hash table
2075 * @name: hw object name
2076 * @id: object identifier
2077 */
2078 struct hl_hw_obj_name_entry {
2079 struct hlist_node node;
2080 const char *name;
2081 u32 id;
2082 };
2083
2084 enum hl_state_dump_specs_props {
2085 SP_SYNC_OBJ_BASE_ADDR,
2086 SP_NEXT_SYNC_OBJ_ADDR,
2087 SP_SYNC_OBJ_AMOUNT,
2088 SP_MON_OBJ_WR_ADDR_LOW,
2089 SP_MON_OBJ_WR_ADDR_HIGH,
2090 SP_MON_OBJ_WR_DATA,
2091 SP_MON_OBJ_ARM_DATA,
2092 SP_MON_OBJ_STATUS,
2093 SP_MONITORS_AMOUNT,
2094 SP_TPC0_CMDQ,
2095 SP_TPC0_CFG_SO,
2096 SP_NEXT_TPC,
2097 SP_MME_CMDQ,
2098 SP_MME_CFG_SO,
2099 SP_NEXT_MME,
2100 SP_DMA_CMDQ,
2101 SP_DMA_CFG_SO,
2102 SP_DMA_QUEUES_OFFSET,
2103 SP_NUM_OF_MME_ENGINES,
2104 SP_SUB_MME_ENG_NUM,
2105 SP_NUM_OF_DMA_ENGINES,
2106 SP_NUM_OF_TPC_ENGINES,
2107 SP_ENGINE_NUM_OF_QUEUES,
2108 SP_ENGINE_NUM_OF_STREAMS,
2109 SP_ENGINE_NUM_OF_FENCES,
2110 SP_FENCE0_CNT_OFFSET,
2111 SP_FENCE0_RDATA_OFFSET,
2112 SP_CP_STS_OFFSET,
2113 SP_NUM_CORES,
2114
2115 SP_MAX
2116 };
2117
2118 enum hl_sync_engine_type {
2119 ENGINE_TPC,
2120 ENGINE_DMA,
2121 ENGINE_MME,
2122 };
2123
2124 /**
2125 * struct hl_mon_state_dump - represents a state dump of a single monitor
2126 * @id: monitor id
2127 * @wr_addr_low: address monitor will write to, low bits
2128 * @wr_addr_high: address monitor will write to, high bits
2129 * @wr_data: data monitor will write
2130 * @arm_data: register value containing monitor configuration
2131 * @status: monitor status
2132 */
2133 struct hl_mon_state_dump {
2134 u32 id;
2135 u32 wr_addr_low;
2136 u32 wr_addr_high;
2137 u32 wr_data;
2138 u32 arm_data;
2139 u32 status;
2140 };
2141
2142 /**
2143 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2144 * @engine_type: type of the engine
2145 * @engine_id: id of the engine
2146 * @sync_id: id of the sync object
2147 */
2148 struct hl_sync_to_engine_map_entry {
2149 struct hlist_node node;
2150 enum hl_sync_engine_type engine_type;
2151 u32 engine_id;
2152 u32 sync_id;
2153 };
2154
2155 /**
2156 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2157 * @tb: hash table containing the mapping, each element is of type
2158 * struct hl_sync_to_engine_map_entry
2159 */
2160 struct hl_sync_to_engine_map {
2161 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2162 };
2163
2164 /**
2165 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2166 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2167 * @print_single_monitor: format monitor data as string
2168 * @monitor_valid: return true if given monitor dump is valid
2169 * @print_fences_single_engine: format fences data as string
2170 */
2171 struct hl_state_dump_specs_funcs {
2172 int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2173 struct hl_sync_to_engine_map *map);
2174 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2175 struct hl_device *hdev,
2176 struct hl_mon_state_dump *mon);
2177 int (*monitor_valid)(struct hl_mon_state_dump *mon);
2178 int (*print_fences_single_engine)(struct hl_device *hdev,
2179 u64 base_offset,
2180 u64 status_base_offset,
2181 enum hl_sync_engine_type engine_type,
2182 u32 engine_id, char **buf,
2183 size_t *size, size_t *offset);
2184 };
2185
2186 /**
2187 * struct hl_state_dump_specs - defines ASIC known hw objects names
2188 * @so_id_to_str_tb: sync objects names index table
2189 * @monitor_id_to_str_tb: monitors names index table
2190 * @funcs: virtual functions used for state dump
2191 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2192 * @props: pointer to a per asic const props array required for state dump
2193 */
2194 struct hl_state_dump_specs {
2195 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2196 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2197 struct hl_state_dump_specs_funcs funcs;
2198 const char * const *sync_namager_names;
2199 s64 *props;
2200 };
2201
2202
2203 /*
2204 * DEVICES
2205 */
2206
2207 #define HL_STR_MAX 32
2208
2209 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2210
2211 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2212 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2213 */
2214 #define HL_MAX_MINORS 256
2215
2216 /*
2217 * Registers read & write functions.
2218 */
2219
2220 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2221 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2222
2223 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2224 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2225 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2226 hdev->asic_funcs->rreg(hdev, (reg)))
2227
2228 #define WREG32_P(reg, val, mask) \
2229 do { \
2230 u32 tmp_ = RREG32(reg); \
2231 tmp_ &= (mask); \
2232 tmp_ |= ((val) & ~(mask)); \
2233 WREG32(reg, tmp_); \
2234 } while (0)
2235 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2236 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2237
2238 #define RMWREG32(reg, val, mask) \
2239 do { \
2240 u32 tmp_ = RREG32(reg); \
2241 tmp_ &= ~(mask); \
2242 tmp_ |= ((val) << __ffs(mask)); \
2243 WREG32(reg, tmp_); \
2244 } while (0)
2245
2246 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2247
2248 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2249 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2250 #define WREG32_FIELD(reg, offset, field, val) \
2251 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2252 ~REG_FIELD_MASK(reg, field)) | \
2253 (val) << REG_FIELD_SHIFT(reg, field))
2254
2255 /* Timeout should be longer when working with simulator but cap the
2256 * increased timeout to some maximum
2257 */
2258 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2259 ({ \
2260 ktime_t __timeout; \
2261 if (hdev->pdev) \
2262 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2263 else \
2264 __timeout = ktime_add_us(ktime_get(),\
2265 min((u64)(timeout_us * 10), \
2266 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2267 might_sleep_if(sleep_us); \
2268 for (;;) { \
2269 (val) = RREG32(addr); \
2270 if (cond) \
2271 break; \
2272 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2273 (val) = RREG32(addr); \
2274 break; \
2275 } \
2276 if (sleep_us) \
2277 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2278 } \
2279 (cond) ? 0 : -ETIMEDOUT; \
2280 })
2281
2282 /*
2283 * address in this macro points always to a memory location in the
2284 * host's (server's) memory. That location is updated asynchronously
2285 * either by the direct access of the device or by another core.
2286 *
2287 * To work both in LE and BE architectures, we need to distinguish between the
2288 * two states (device or another core updates the memory location). Therefore,
2289 * if mem_written_by_device is true, the host memory being polled will be
2290 * updated directly by the device. If false, the host memory being polled will
2291 * be updated by host CPU. Required so host knows whether or not the memory
2292 * might need to be byte-swapped before returning value to caller.
2293 */
2294 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2295 mem_written_by_device) \
2296 ({ \
2297 ktime_t __timeout; \
2298 if (hdev->pdev) \
2299 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2300 else \
2301 __timeout = ktime_add_us(ktime_get(),\
2302 min((u64)(timeout_us * 10), \
2303 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2304 might_sleep_if(sleep_us); \
2305 for (;;) { \
2306 /* Verify we read updates done by other cores or by device */ \
2307 mb(); \
2308 (val) = *((u32 *)(addr)); \
2309 if (mem_written_by_device) \
2310 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2311 if (cond) \
2312 break; \
2313 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2314 (val) = *((u32 *)(addr)); \
2315 if (mem_written_by_device) \
2316 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2317 break; \
2318 } \
2319 if (sleep_us) \
2320 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2321 } \
2322 (cond) ? 0 : -ETIMEDOUT; \
2323 })
2324
2325 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
2326 timeout_us) \
2327 ({ \
2328 ktime_t __timeout; \
2329 if (hdev->pdev) \
2330 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2331 else \
2332 __timeout = ktime_add_us(ktime_get(),\
2333 min((u64)(timeout_us * 10), \
2334 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2335 might_sleep_if(sleep_us); \
2336 for (;;) { \
2337 (val) = readl(addr); \
2338 if (cond) \
2339 break; \
2340 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2341 (val) = readl(addr); \
2342 break; \
2343 } \
2344 if (sleep_us) \
2345 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2346 } \
2347 (cond) ? 0 : -ETIMEDOUT; \
2348 })
2349
2350 struct hwmon_chip_info;
2351
2352 /**
2353 * struct hl_device_reset_work - reset workqueue task wrapper.
2354 * @wq: work queue for device reset procedure.
2355 * @reset_work: reset work to be done.
2356 * @hdev: habanalabs device structure.
2357 * @flags: reset flags.
2358 */
2359 struct hl_device_reset_work {
2360 struct workqueue_struct *wq;
2361 struct delayed_work reset_work;
2362 struct hl_device *hdev;
2363 u32 flags;
2364 };
2365
2366 /**
2367 * struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
2368 * information.
2369 * @virt_addr: the virtual address of the hop.
2370 * @phys-addr: the physical address of the hop (used by the device-mmu).
2371 * @shadow_addr: The shadow of the hop used by the driver for walking the hops.
2372 */
2373 struct hr_mmu_hop_addrs {
2374 u64 virt_addr;
2375 u64 phys_addr;
2376 u64 shadow_addr;
2377 };
2378
2379 /**
2380 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2381 * page-table internal information.
2382 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2383 * @mmu_shadow_hop0: shadow array of hop0 tables.
2384 */
2385 struct hl_mmu_hr_priv {
2386 struct gen_pool *mmu_pgt_pool;
2387 struct hr_mmu_hop_addrs *mmu_shadow_hop0;
2388 };
2389
2390 /**
2391 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2392 * page-table internal information.
2393 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2394 * @mmu_shadow_hop0: shadow array of hop0 tables.
2395 */
2396 struct hl_mmu_dr_priv {
2397 struct gen_pool *mmu_pgt_pool;
2398 void *mmu_shadow_hop0;
2399 };
2400
2401 /**
2402 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2403 * @dr: information on the device-resident MMU, when exists.
2404 * @hr: information on the host-resident MMU, when exists.
2405 */
2406 struct hl_mmu_priv {
2407 struct hl_mmu_dr_priv dr;
2408 struct hl_mmu_hr_priv hr;
2409 };
2410
2411 /**
2412 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2413 * that was created in order to translate a virtual address to a
2414 * physical one.
2415 * @hop_addr: The address of the hop.
2416 * @hop_pte_addr: The address of the hop entry.
2417 * @hop_pte_val: The value in the hop entry.
2418 */
2419 struct hl_mmu_per_hop_info {
2420 u64 hop_addr;
2421 u64 hop_pte_addr;
2422 u64 hop_pte_val;
2423 };
2424
2425 /**
2426 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2427 * hop-entries that were created in order to translate a virtual address to a
2428 * physical one.
2429 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2430 * address replaces the original virtual-address when mapped
2431 * in the MMU tables.
2432 * @unscrambled_paddr: The un-scrambled physical address.
2433 * @hop_info: Array holding the per-hop information used for the translation.
2434 * @used_hops: The number of hops used for the translation.
2435 * @range_type: virtual address range type.
2436 */
2437 struct hl_mmu_hop_info {
2438 u64 scrambled_vaddr;
2439 u64 unscrambled_paddr;
2440 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
2441 u32 used_hops;
2442 enum hl_va_range_type range_type;
2443 };
2444
2445 /**
2446 * struct hl_mmu_funcs - Device related MMU functions.
2447 * @init: initialize the MMU module.
2448 * @fini: release the MMU module.
2449 * @ctx_init: Initialize a context for using the MMU module.
2450 * @ctx_fini: disable a ctx from using the mmu module.
2451 * @map: maps a virtual address to physical address for a context.
2452 * @unmap: unmap a virtual address of a context.
2453 * @flush: flush all writes from all cores to reach device MMU.
2454 * @swap_out: marks all mapping of the given context as swapped out.
2455 * @swap_in: marks all mapping of the given context as swapped in.
2456 * @get_tlb_info: returns the list of hops and hop-entries used that were
2457 * created in order to translate the giver virtual address to a
2458 * physical one.
2459 */
2460 struct hl_mmu_funcs {
2461 int (*init)(struct hl_device *hdev);
2462 void (*fini)(struct hl_device *hdev);
2463 int (*ctx_init)(struct hl_ctx *ctx);
2464 void (*ctx_fini)(struct hl_ctx *ctx);
2465 int (*map)(struct hl_ctx *ctx,
2466 u64 virt_addr, u64 phys_addr, u32 page_size,
2467 bool is_dram_addr);
2468 int (*unmap)(struct hl_ctx *ctx,
2469 u64 virt_addr, bool is_dram_addr);
2470 void (*flush)(struct hl_ctx *ctx);
2471 void (*swap_out)(struct hl_ctx *ctx);
2472 void (*swap_in)(struct hl_ctx *ctx);
2473 int (*get_tlb_info)(struct hl_ctx *ctx,
2474 u64 virt_addr, struct hl_mmu_hop_info *hops);
2475 };
2476
2477 /**
2478 * struct hl_prefetch_work - prefetch work structure handler
2479 * @pf_work: actual work struct.
2480 * @ctx: compute context.
2481 * @va: virtual address to pre-fetch.
2482 * @size: pre-fetch size.
2483 * @flags: operation flags.
2484 * @asid: ASID for maintenance operation.
2485 */
2486 struct hl_prefetch_work {
2487 struct work_struct pf_work;
2488 struct hl_ctx *ctx;
2489 u64 va;
2490 u64 size;
2491 u32 flags;
2492 u32 asid;
2493 };
2494
2495 /*
2496 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2497 * parallel
2498 */
2499 #define MULTI_CS_MAX_USER_CTX 2
2500
2501 /**
2502 * struct multi_cs_completion - multi CS wait completion.
2503 * @completion: completion of any of the CS in the list
2504 * @lock: spinlock for the completion structure
2505 * @timestamp: timestamp for the multi-CS completion
2506 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2507 * is waiting
2508 * @used: 1 if in use, otherwise 0
2509 */
2510 struct multi_cs_completion {
2511 struct completion completion;
2512 spinlock_t lock;
2513 s64 timestamp;
2514 u32 stream_master_qid_map;
2515 u8 used;
2516 };
2517
2518 /**
2519 * struct multi_cs_data - internal data for multi CS call
2520 * @ctx: pointer to the context structure
2521 * @fence_arr: array of fences of all CSs
2522 * @seq_arr: array of CS sequence numbers
2523 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2524 * @timestamp: timestamp of first completed CS
2525 * @wait_status: wait for CS status
2526 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2527 * @arr_len: fence_arr and seq_arr array length
2528 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2529 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2530 */
2531 struct multi_cs_data {
2532 struct hl_ctx *ctx;
2533 struct hl_fence **fence_arr;
2534 u64 *seq_arr;
2535 s64 timeout_jiffies;
2536 s64 timestamp;
2537 long wait_status;
2538 u32 completion_bitmap;
2539 u8 arr_len;
2540 u8 gone_cs;
2541 u8 update_ts;
2542 };
2543
2544 /**
2545 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2546 * @start: timestamp taken when 'start' event is received in driver
2547 * @end: timestamp taken when 'end' event is received in driver
2548 */
2549 struct hl_clk_throttle_timestamp {
2550 ktime_t start;
2551 ktime_t end;
2552 };
2553
2554 /**
2555 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2556 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2557 * index 1 refers to THERMAL
2558 * @lock: protects this structure as it can be accessed from both event queue
2559 * context and info_ioctl context
2560 * @current_reason: bitmask represents the current clk throttling reasons
2561 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2562 */
2563 struct hl_clk_throttle {
2564 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2565 struct mutex lock;
2566 u32 current_reason;
2567 u32 aggregated_reason;
2568 };
2569
2570 /**
2571 * struct cs_timeout_info - info of last CS timeout occurred.
2572 * @timestamp: CS timeout timestamp.
2573 * @write_disable: if set writing to CS parameters in the structure is disabled so,
2574 * the first (root cause) CS timeout will not be overwritten.
2575 * @seq: CS timeout sequence number.
2576 */
2577 struct cs_timeout_info {
2578 ktime_t timestamp;
2579 atomic_t write_disable;
2580 u64 seq;
2581 };
2582
2583 /**
2584 * struct razwi_info - info about last razwi error occurred.
2585 * @timestamp: razwi timestamp.
2586 * @write_disable: if set writing to razwi parameters in the structure is disabled so the
2587 * first (root cause) razwi will not be overwritten.
2588 * @addr: address that caused razwi.
2589 * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does
2590 * not have engine id it will be set to U16_MAX.
2591 * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible
2592 * engines which one them caused the razwi. In that case, it will contain the
2593 * second possible engine id, otherwise it will be set to U16_MAX.
2594 * @non_engine_initiator: in case the initiator of the razwi does not have engine id.
2595 * @type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX.
2596 */
2597 struct razwi_info {
2598 ktime_t timestamp;
2599 atomic_t write_disable;
2600 u64 addr;
2601 u16 engine_id_1;
2602 u16 engine_id_2;
2603 u8 non_engine_initiator;
2604 u8 type;
2605 };
2606
2607 /**
2608 * struct last_error_session_info - info about last session errors occurred.
2609 * @cs_timeout: CS timeout error last information.
2610 * @razwi: razwi last information.
2611 */
2612 struct last_error_session_info {
2613 struct cs_timeout_info cs_timeout;
2614 struct razwi_info razwi;
2615 };
2616
2617 /**
2618 * struct hl_reset_info - holds current device reset information.
2619 * @lock: lock to protect critical reset flows.
2620 * @soft_reset_cnt: number of soft reset since the driver was loaded.
2621 * @hard_reset_cnt: number of hard reset since the driver was loaded.
2622 * @hard_reset_schedule_flags: hard reset is scheduled to after current soft reset,
2623 * here we hold the hard reset flags.
2624 * @in_reset: is device in reset flow.
2625 * @is_in_soft_reset: Device is currently in soft reset process.
2626 * @needs_reset: true if reset_on_lockup is false and device should be reset
2627 * due to lockup.
2628 * @hard_reset_pending: is there a hard reset work pending.
2629 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
2630 * triggered, and cleared after it is shared with preboot.
2631 * @prev_reset_trigger: saves the previous trigger which caused a reset, overidden
2632 * with a new value on next reset
2633 * @reset_trigger_repeated: set if device reset is triggered more than once with
2634 * same cause.
2635 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
2636 * complete instead.
2637 */
2638 struct hl_reset_info {
2639 spinlock_t lock;
2640 u32 soft_reset_cnt;
2641 u32 hard_reset_cnt;
2642 u32 hard_reset_schedule_flags;
2643 u8 in_reset;
2644 u8 is_in_soft_reset;
2645 u8 needs_reset;
2646 u8 hard_reset_pending;
2647
2648 u8 curr_reset_cause;
2649 u8 prev_reset_trigger;
2650 u8 reset_trigger_repeated;
2651
2652 u8 skip_reset_on_timeout;
2653 };
2654
2655 /**
2656 * struct hl_device - habanalabs device structure.
2657 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
2658 * @pcie_bar_phys: array of available PCIe bars physical addresses.
2659 * (required only for PCI address match mode)
2660 * @pcie_bar: array of available PCIe bars virtual addresses.
2661 * @rmmio: configuration area address on SRAM.
2662 * @cdev: related char device.
2663 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
2664 * @dev: related kernel basic device structure.
2665 * @dev_ctrl: related kernel device structure for the control device
2666 * @work_heartbeat: delayed work for CPU-CP is-alive check.
2667 * @device_reset_work: delayed work which performs hard reset
2668 * @asic_name: ASIC specific name.
2669 * @asic_type: ASIC specific type.
2670 * @completion_queue: array of hl_cq.
2671 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
2672 * interrupt, driver will monitor the list of fences
2673 * registered to this interrupt.
2674 * @common_user_interrupt: common user interrupt for all user interrupts.
2675 * upon any user interrupt, driver will monitor the
2676 * list of fences registered to this common structure.
2677 * @cq_wq: work queues of completion queues for executing work in process
2678 * context.
2679 * @eq_wq: work queue of event queue for executing work in process context.
2680 * @ts_free_obj_wq: work queue for timestamp registration objects release.
2681 * @pf_wq: work queue for MMU pre-fetch operations.
2682 * @kernel_ctx: Kernel driver context structure.
2683 * @kernel_queues: array of hl_hw_queue.
2684 * @cs_mirror_list: CS mirror list for TDR.
2685 * @cs_mirror_lock: protects cs_mirror_list.
2686 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
2687 * @event_queue: event queue for IRQ from CPU-CP.
2688 * @dma_pool: DMA pool for small allocations.
2689 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
2690 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
2691 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
2692 * @asid_bitmap: holds used/available ASIDs.
2693 * @asid_mutex: protects asid_bitmap.
2694 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
2695 * @debug_lock: protects critical section of setting debug mode for device
2696 * @asic_prop: ASIC specific immutable properties.
2697 * @asic_funcs: ASIC specific functions.
2698 * @asic_specific: ASIC specific information to use only from ASIC files.
2699 * @vm: virtual memory manager for MMU.
2700 * @hwmon_dev: H/W monitor device.
2701 * @hl_chip_info: ASIC's sensors information.
2702 * @device_status_description: device status description.
2703 * @hl_debugfs: device's debugfs manager.
2704 * @cb_pool: list of preallocated CBs.
2705 * @cb_pool_lock: protects the CB pool.
2706 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
2707 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
2708 * @internal_cb_pool: internal command buffer memory pool.
2709 * @internal_cb_va_base: internal cb pool mmu virtual address base
2710 * @fpriv_list: list of file private data structures. Each structure is created
2711 * when a user opens the device
2712 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
2713 * when a user opens the control device
2714 * @fpriv_list_lock: protects the fpriv_list
2715 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
2716 * @aggregated_cs_counters: aggregated cs counters among all contexts
2717 * @mmu_priv: device-specific MMU data.
2718 * @mmu_func: device-related MMU functions.
2719 * @fw_loader: FW loader manager.
2720 * @pci_mem_region: array of memory regions in the PCI
2721 * @state_dump_specs: constants and dictionaries needed to dump system state.
2722 * @multi_cs_completion: array of multi-CS completion.
2723 * @clk_throttling: holds information about current/previous clock throttling events
2724 * @last_error: holds information about last session in which CS timeout or razwi error occurred.
2725 * @reset_info: holds current device reset information.
2726 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
2727 * @fw_major_version: major version of current loaded preboot
2728 * @dram_used_mem: current DRAM memory consumption.
2729 * @timeout_jiffies: device CS timeout value.
2730 * @max_power: the max power of the device, as configured by the sysadmin. This
2731 * value is saved so in case of hard-reset, the driver will restore
2732 * this value and update the F/W after the re-initialization
2733 * @boot_error_status_mask: contains a mask of the device boot error status.
2734 * Each bit represents a different error, according to
2735 * the defines in hl_boot_if.h. If the bit is cleared,
2736 * the error will be ignored by the driver during
2737 * device initialization. Mainly used to debug and
2738 * workaround firmware bugs
2739 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
2740 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
2741 * @last_successful_open_jif: timestamp (jiffies) of the last successful
2742 * device open.
2743 * @last_open_session_duration_jif: duration (jiffies) of the last device open
2744 * session.
2745 * @open_counter: number of successful device open operations.
2746 * @fw_poll_interval_usec: FW status poll interval in usec.
2747 * used for CPU boot status
2748 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
2749 * used for COMMs protocols cmds(COMMS_STS_*)
2750 * @card_type: Various ASICs have several card types. This indicates the card
2751 * type of the current device.
2752 * @major: habanalabs kernel driver major.
2753 * @high_pll: high PLL profile frequency.
2754 * @id: device minor.
2755 * @id_control: minor of the control device
2756 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
2757 * addresses.
2758 * @is_in_dram_scrub: true if dram scrub operation is on going.
2759 * @disabled: is device disabled.
2760 * @late_init_done: is late init stage was done during initialization.
2761 * @hwmon_initialized: is H/W monitor sensors was initialized.
2762 * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
2763 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
2764 * otherwise.
2765 * @dram_default_page_mapping: is DRAM default page mapping enabled.
2766 * @memory_scrub: true to perform device memory scrub in various locations,
2767 * such as context-switch, context close, page free, etc.
2768 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
2769 * huge pages.
2770 * @init_done: is the initialization of the device done.
2771 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
2772 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
2773 * can be used. This indication is needed because in some ASICs we need to do
2774 * specific operations to enable that infrastructure.
2775 * @cdev_sysfs_created: were char devices and sysfs nodes created.
2776 * @stop_on_err: true if engines should stop on error.
2777 * @supports_sync_stream: is sync stream supported.
2778 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
2779 * @collective_mon_idx: helper index for collective initialization
2780 * @supports_coresight: is CoreSight supported.
2781 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
2782 * @process_kill_trial_cnt: number of trials reset thread tried killing
2783 * user processes
2784 * @device_fini_pending: true if device_fini was called and might be
2785 * waiting for the reset thread to finish
2786 * @supports_staged_submission: true if staged submissions are supported
2787 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
2788 * halted. We can't halt it again because the COMMS
2789 * protocol will throw an error. Relevant only for
2790 * cases where Linux was not loaded to device CPU
2791 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
2792 * @is_compute_ctx_active: Whether there is an active compute context executing.
2793 * @compute_ctx_in_release: true if the current compute context is being released.
2794 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
2795 */
2796 struct hl_device {
2797 struct pci_dev *pdev;
2798 u64 pcie_bar_phys[HL_PCI_NUM_BARS];
2799 void __iomem *pcie_bar[HL_PCI_NUM_BARS];
2800 void __iomem *rmmio;
2801 struct cdev cdev;
2802 struct cdev cdev_ctrl;
2803 struct device *dev;
2804 struct device *dev_ctrl;
2805 struct delayed_work work_heartbeat;
2806 struct hl_device_reset_work device_reset_work;
2807 char asic_name[HL_STR_MAX];
2808 char status[HL_DEV_STS_MAX][HL_STR_MAX];
2809 enum hl_asic_type asic_type;
2810 struct hl_cq *completion_queue;
2811 struct hl_user_interrupt *user_interrupt;
2812 struct hl_user_interrupt common_user_interrupt;
2813 struct workqueue_struct **cq_wq;
2814 struct workqueue_struct *eq_wq;
2815 struct workqueue_struct *ts_free_obj_wq;
2816 struct workqueue_struct *pf_wq;
2817 struct hl_ctx *kernel_ctx;
2818 struct hl_hw_queue *kernel_queues;
2819 struct list_head cs_mirror_list;
2820 spinlock_t cs_mirror_lock;
2821 struct hl_mem_mgr kernel_mem_mgr;
2822 struct hl_eq event_queue;
2823 struct dma_pool *dma_pool;
2824 void *cpu_accessible_dma_mem;
2825 dma_addr_t cpu_accessible_dma_address;
2826 struct gen_pool *cpu_accessible_dma_pool;
2827 unsigned long *asid_bitmap;
2828 struct mutex asid_mutex;
2829 struct mutex send_cpu_message_lock;
2830 struct mutex debug_lock;
2831 struct asic_fixed_properties asic_prop;
2832 const struct hl_asic_funcs *asic_funcs;
2833 void *asic_specific;
2834 struct hl_vm vm;
2835 struct device *hwmon_dev;
2836 struct hwmon_chip_info *hl_chip_info;
2837
2838 struct hl_dbg_device_entry hl_debugfs;
2839
2840 struct list_head cb_pool;
2841 spinlock_t cb_pool_lock;
2842
2843 void *internal_cb_pool_virt_addr;
2844 dma_addr_t internal_cb_pool_dma_addr;
2845 struct gen_pool *internal_cb_pool;
2846 u64 internal_cb_va_base;
2847
2848 struct list_head fpriv_list;
2849 struct list_head fpriv_ctrl_list;
2850 struct mutex fpriv_list_lock;
2851 struct mutex fpriv_ctrl_list_lock;
2852
2853 struct hl_cs_counters_atomic aggregated_cs_counters;
2854
2855 struct hl_mmu_priv mmu_priv;
2856 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
2857
2858 struct fw_load_mgr fw_loader;
2859
2860 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
2861
2862 struct hl_state_dump_specs state_dump_specs;
2863
2864 struct multi_cs_completion multi_cs_completion[
2865 MULTI_CS_MAX_USER_CTX];
2866 struct hl_clk_throttle clk_throttling;
2867 struct last_error_session_info last_error;
2868
2869 struct hl_reset_info reset_info;
2870
2871 u32 *stream_master_qid_arr;
2872 u32 fw_major_version;
2873 atomic64_t dram_used_mem;
2874 u64 timeout_jiffies;
2875 u64 max_power;
2876 u64 boot_error_status_mask;
2877 u64 dram_pci_bar_start;
2878 u64 last_successful_open_jif;
2879 u64 last_open_session_duration_jif;
2880 u64 open_counter;
2881 u64 fw_poll_interval_usec;
2882 ktime_t last_successful_open_ktime;
2883 u64 fw_comms_poll_interval_usec;
2884
2885 enum cpucp_card_types card_type;
2886 u32 major;
2887 u32 high_pll;
2888 u16 id;
2889 u16 id_control;
2890 u16 cpu_pci_msb_addr;
2891 u8 is_in_dram_scrub;
2892 u8 disabled;
2893 u8 late_init_done;
2894 u8 hwmon_initialized;
2895 u8 heartbeat;
2896 u8 reset_on_lockup;
2897 u8 dram_default_page_mapping;
2898 u8 memory_scrub;
2899 u8 pmmu_huge_range;
2900 u8 init_done;
2901 u8 device_cpu_disabled;
2902 u8 in_debug;
2903 u8 cdev_sysfs_created;
2904 u8 stop_on_err;
2905 u8 supports_sync_stream;
2906 u8 sync_stream_queue_idx;
2907 u8 collective_mon_idx;
2908 u8 supports_coresight;
2909 u8 supports_cb_mapping;
2910 u8 process_kill_trial_cnt;
2911 u8 device_fini_pending;
2912 u8 supports_staged_submission;
2913 u8 device_cpu_is_halted;
2914 u8 supports_wait_for_multi_cs;
2915 u8 stream_master_qid_arr_size;
2916 u8 is_compute_ctx_active;
2917 u8 compute_ctx_in_release;
2918 u8 supports_mmu_prefetch;
2919
2920 /* Parameters for bring-up */
2921 u64 nic_ports_mask;
2922 u64 fw_components;
2923 u8 mmu_enable;
2924 u8 mmu_huge_page_opt;
2925 u8 reset_pcilink;
2926 u8 cpu_queues_enable;
2927 u8 pldm;
2928 u8 axi_drain;
2929 u8 sram_scrambler_enable;
2930 u8 dram_scrambler_enable;
2931 u8 hard_reset_on_fw_events;
2932 u8 bmc_enable;
2933 u8 rl_enable;
2934 u8 reset_on_preboot_fail;
2935 u8 reset_upon_device_release;
2936 u8 reset_if_device_not_idle;
2937 };
2938
2939
2940 /**
2941 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
2942 * @refcount: refcount used to protect removing this id when several
2943 * wait cs are used to wait of the reserved encaps signals.
2944 * @hdev: pointer to habanalabs device structure.
2945 * @hw_sob: pointer to H/W SOB used in the reservation.
2946 * @ctx: pointer to the user's context data structure
2947 * @cs_seq: staged cs sequence which contains encapsulated signals
2948 * @id: idr handler id to be used to fetch the handler info
2949 * @q_idx: stream queue index
2950 * @pre_sob_val: current SOB value before reservation
2951 * @count: signals number
2952 */
2953 struct hl_cs_encaps_sig_handle {
2954 struct kref refcount;
2955 struct hl_device *hdev;
2956 struct hl_hw_sob *hw_sob;
2957 struct hl_ctx *ctx;
2958 u64 cs_seq;
2959 u32 id;
2960 u32 q_idx;
2961 u32 pre_sob_val;
2962 u32 count;
2963 };
2964
2965 /*
2966 * IOCTLs
2967 */
2968
2969 /**
2970 * typedef hl_ioctl_t - typedef for ioctl function in the driver
2971 * @hpriv: pointer to the FD's private data, which contains state of
2972 * user process
2973 * @data: pointer to the input/output arguments structure of the IOCTL
2974 *
2975 * Return: 0 for success, negative value for error
2976 */
2977 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
2978
2979 /**
2980 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
2981 * @cmd: the IOCTL code as created by the kernel macros.
2982 * @func: pointer to the driver's function that should be called for this IOCTL.
2983 */
2984 struct hl_ioctl_desc {
2985 unsigned int cmd;
2986 hl_ioctl_t *func;
2987 };
2988
2989
2990 /*
2991 * Kernel module functions that can be accessed by entire module
2992 */
2993
2994 /**
2995 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
2996 * @sg: the SG list.
2997 * @dma_addr: pointer to DMA address to return.
2998 *
2999 * Calculate the number of consecutive pages described by the SG list. Take the
3000 * offset of the address in the first page, add to it the length and round it up
3001 * to the number of needed pages.
3002 */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3003 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3004 {
3005 *dma_addr = sg_dma_address(sg);
3006
3007 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3008 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
3009 }
3010
3011 /**
3012 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3013 * @address: The start address of the area we want to validate.
3014 * @size: The size in bytes of the area we want to validate.
3015 * @range_start_address: The start address of the valid range.
3016 * @range_end_address: The end address of the valid range.
3017 *
3018 * Return: true if the area is inside the valid range, false otherwise.
3019 */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3020 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3021 u64 range_start_address, u64 range_end_address)
3022 {
3023 u64 end_address = address + size;
3024
3025 if ((address >= range_start_address) &&
3026 (end_address <= range_end_address) &&
3027 (end_address > address))
3028 return true;
3029
3030 return false;
3031 }
3032
3033 /**
3034 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3035 * @address: The start address of the area we want to validate.
3036 * @size: The size in bytes of the area we want to validate.
3037 * @range_start_address: The start address of the valid range.
3038 * @range_end_address: The end address of the valid range.
3039 *
3040 * Return: true if the area overlaps part or all of the valid range,
3041 * false otherwise.
3042 */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3043 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3044 u64 range_start_address, u64 range_end_address)
3045 {
3046 u64 end_address = address + size - 1;
3047
3048 return ((address <= range_end_address) && (range_start_address <= end_address));
3049 }
3050
3051 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3052 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3053 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3054 enum dma_data_direction dir);
3055 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3056 enum debugfs_access_type acc_type);
3057 int hl_access_dev_mem(struct hl_device *hdev, struct pci_mem_region *region,
3058 enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type);
3059 int hl_device_open(struct inode *inode, struct file *filp);
3060 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3061 bool hl_device_operational(struct hl_device *hdev,
3062 enum hl_device_status *status);
3063 enum hl_device_status hl_device_status(struct hl_device *hdev);
3064 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3065 int hl_hw_queues_create(struct hl_device *hdev);
3066 void hl_hw_queues_destroy(struct hl_device *hdev);
3067 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3068 u32 cb_size, u64 cb_ptr);
3069 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3070 u32 ctl, u32 len, u64 ptr);
3071 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3072 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3073 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3074 void hl_hw_queue_update_ci(struct hl_cs *cs);
3075 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3076
3077 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3078 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3079
3080 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3081 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3082 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3083 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3084 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3085 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3086 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3087 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3088 irqreturn_t hl_irq_handler_user_cq(int irq, void *arg);
3089 irqreturn_t hl_irq_handler_default(int irq, void *arg);
3090 u32 hl_cq_inc_ptr(u32 ptr);
3091
3092 int hl_asid_init(struct hl_device *hdev);
3093 void hl_asid_fini(struct hl_device *hdev);
3094 unsigned long hl_asid_alloc(struct hl_device *hdev);
3095 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3096
3097 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3098 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3099 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3100 void hl_ctx_do_release(struct kref *ref);
3101 void hl_ctx_get(struct hl_ctx *ctx);
3102 int hl_ctx_put(struct hl_ctx *ctx);
3103 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3104 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3105 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3106 struct hl_fence **fence, u32 arr_len);
3107 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3108 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3109
3110 int hl_device_init(struct hl_device *hdev, struct class *hclass);
3111 void hl_device_fini(struct hl_device *hdev);
3112 int hl_device_suspend(struct hl_device *hdev);
3113 int hl_device_resume(struct hl_device *hdev);
3114 int hl_device_reset(struct hl_device *hdev, u32 flags);
3115 void hl_hpriv_get(struct hl_fpriv *hpriv);
3116 int hl_hpriv_put(struct hl_fpriv *hpriv);
3117 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3118
3119 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3120 struct cpucp_sensor *sensors_arr);
3121
3122 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event);
3123
3124 int hl_sysfs_init(struct hl_device *hdev);
3125 void hl_sysfs_fini(struct hl_device *hdev);
3126
3127 int hl_hwmon_init(struct hl_device *hdev);
3128 void hl_hwmon_fini(struct hl_device *hdev);
3129
3130 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3131 struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3132 bool map_cb, u64 *handle);
3133 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3134 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3135 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3136 void hl_cb_put(struct hl_cb *cb);
3137 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3138 bool internal_cb);
3139 int hl_cb_pool_init(struct hl_device *hdev);
3140 int hl_cb_pool_fini(struct hl_device *hdev);
3141 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3142 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3143
3144 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3145 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3146 enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3147 void hl_sob_reset_error(struct kref *ref);
3148 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3149 void hl_fence_put(struct hl_fence *fence);
3150 void hl_fences_put(struct hl_fence **fence, int len);
3151 void hl_fence_get(struct hl_fence *fence);
3152 void cs_get(struct hl_cs *cs);
3153 bool cs_needs_completion(struct hl_cs *cs);
3154 bool cs_needs_timeout(struct hl_cs *cs);
3155 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3156 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3157 void hl_multi_cs_completion_init(struct hl_device *hdev);
3158
3159 void goya_set_asic_funcs(struct hl_device *hdev);
3160 void gaudi_set_asic_funcs(struct hl_device *hdev);
3161
3162 int hl_vm_ctx_init(struct hl_ctx *ctx);
3163 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3164
3165 int hl_vm_init(struct hl_device *hdev);
3166 void hl_vm_fini(struct hl_device *hdev);
3167
3168 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3169 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3170
3171 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3172 enum hl_va_range_type type, u32 size, u32 alignment);
3173 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3174 u64 start_addr, u64 size);
3175 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3176 struct hl_userptr *userptr);
3177 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3178 void hl_userptr_delete_list(struct hl_device *hdev,
3179 struct list_head *userptr_list);
3180 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3181 struct list_head *userptr_list,
3182 struct hl_userptr **userptr);
3183
3184 int hl_mmu_init(struct hl_device *hdev);
3185 void hl_mmu_fini(struct hl_device *hdev);
3186 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3187 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3188 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3189 u32 page_size, bool flush_pte);
3190 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3191 u32 page_size, u32 *real_page_size, bool is_dram_addr);
3192 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3193 bool flush_pte);
3194 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3195 u64 phys_addr, u32 size);
3196 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3197 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3198 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3199 u32 flags, u32 asid, u64 va, u64 size);
3200 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3201 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3202 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3203 u8 hop_idx, u64 hop_addr, u64 virt_addr);
3204 void hl_mmu_swap_out(struct hl_ctx *ctx);
3205 void hl_mmu_swap_in(struct hl_ctx *ctx);
3206 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3207 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3208 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3209 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3210 struct hl_mmu_hop_info *hops);
3211 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3212 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3213 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3214
3215 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3216 void __iomem *dst, u32 src_offset, u32 size);
3217 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
3218 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3219 u16 len, u32 timeout, u64 *result);
3220 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3221 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3222 size_t irq_arr_size);
3223 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3224 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3225 dma_addr_t *dma_handle);
3226 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3227 void *vaddr);
3228 int hl_fw_send_heartbeat(struct hl_device *hdev);
3229 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3230 u32 sts_boot_dev_sts0_reg,
3231 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3232 u32 boot_err1_reg);
3233 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3234 u32 sts_boot_dev_sts0_reg,
3235 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3236 u32 boot_err1_reg);
3237 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3238 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3239 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3240 struct hl_info_pci_counters *counters);
3241 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3242 u64 *total_energy);
3243 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3244 enum pll_index *pll_index);
3245 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3246 u16 *pll_freq_arr);
3247 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3248 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3249 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3250 int hl_fw_init_cpu(struct hl_device *hdev);
3251 int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
3252 u32 sts_boot_dev_sts0_reg,
3253 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3254 u32 boot_err1_reg, u32 timeout);
3255 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3256 struct fw_load_mgr *fw_loader,
3257 enum comms_cmd cmd, unsigned int size,
3258 bool wait_ok, u32 timeout);
3259 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3260 struct cpucp_hbm_row_info *info);
3261 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3262 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3263 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3264 bool is_wc[3]);
3265 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3266 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3267 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3268 struct hl_inbound_pci_region *pci_region);
3269 int hl_pci_set_outbound_region(struct hl_device *hdev,
3270 struct hl_outbound_pci_region *pci_region);
3271 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3272 int hl_pci_init(struct hl_device *hdev);
3273 void hl_pci_fini(struct hl_device *hdev);
3274
3275 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3276 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3277 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3278 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3279 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3280 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3281 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3282 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3283 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3284 long hl_fw_get_max_power(struct hl_device *hdev);
3285 void hl_fw_set_max_power(struct hl_device *hdev);
3286 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3287 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3288 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3289 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3290 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3291 void hl_fw_set_pll_profile(struct hl_device *hdev);
3292 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3293 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3294
3295 void hw_sob_get(struct hl_hw_sob *hw_sob);
3296 void hw_sob_put(struct hl_hw_sob *hw_sob);
3297 void hl_encaps_handle_do_release(struct kref *ref);
3298 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3299 struct hl_cs *cs, struct hl_cs_job *job,
3300 struct hl_cs_compl *cs_cmpl);
3301 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3302 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3303 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3304
3305 int hl_state_dump(struct hl_device *hdev);
3306 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3307 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3308 struct hl_mon_state_dump *mon);
3309 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3310 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3311 const char *format, ...);
3312 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3313 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3314
3315 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3316 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3317 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3318 void *args);
3319 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3320 u64 handle);
3321 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3322 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3323 struct hl_mmap_mem_buf *
3324 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3325 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3326 void *args);
3327
3328 #ifdef CONFIG_DEBUG_FS
3329
3330 void hl_debugfs_init(void);
3331 void hl_debugfs_fini(void);
3332 void hl_debugfs_add_device(struct hl_device *hdev);
3333 void hl_debugfs_remove_device(struct hl_device *hdev);
3334 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3335 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3336 void hl_debugfs_add_cb(struct hl_cb *cb);
3337 void hl_debugfs_remove_cb(struct hl_cb *cb);
3338 void hl_debugfs_add_cs(struct hl_cs *cs);
3339 void hl_debugfs_remove_cs(struct hl_cs *cs);
3340 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3341 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3342 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3343 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3344 struct hl_userptr *userptr);
3345 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3346 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3347 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3348 unsigned long length);
3349
3350 #else
3351
hl_debugfs_init(void)3352 static inline void __init hl_debugfs_init(void)
3353 {
3354 }
3355
hl_debugfs_fini(void)3356 static inline void hl_debugfs_fini(void)
3357 {
3358 }
3359
hl_debugfs_add_device(struct hl_device * hdev)3360 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3361 {
3362 }
3363
hl_debugfs_remove_device(struct hl_device * hdev)3364 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3365 {
3366 }
3367
hl_debugfs_add_file(struct hl_fpriv * hpriv)3368 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3369 {
3370 }
3371
hl_debugfs_remove_file(struct hl_fpriv * hpriv)3372 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3373 {
3374 }
3375
hl_debugfs_add_cb(struct hl_cb * cb)3376 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3377 {
3378 }
3379
hl_debugfs_remove_cb(struct hl_cb * cb)3380 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3381 {
3382 }
3383
hl_debugfs_add_cs(struct hl_cs * cs)3384 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3385 {
3386 }
3387
hl_debugfs_remove_cs(struct hl_cs * cs)3388 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3389 {
3390 }
3391
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3392 static inline void hl_debugfs_add_job(struct hl_device *hdev,
3393 struct hl_cs_job *job)
3394 {
3395 }
3396
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3397 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3398 struct hl_cs_job *job)
3399 {
3400 }
3401
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3402 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3403 struct hl_userptr *userptr)
3404 {
3405 }
3406
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3407 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3408 struct hl_userptr *userptr)
3409 {
3410 }
3411
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3412 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3413 struct hl_ctx *ctx)
3414 {
3415 }
3416
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3417 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3418 struct hl_ctx *ctx)
3419 {
3420 }
3421
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3422 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3423 char *data, unsigned long length)
3424 {
3425 }
3426
3427 #endif
3428
3429 /* IOCTLs */
3430 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3431 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3432 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3433 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3434 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3435 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3436
3437 #endif /* HABANALABSP_H_ */
3438