1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6
7 #include "item.h"
8
9 #define MLXSW_CMD_MBOX_SIZE 4096
10
mlxsw_cmd_mbox_alloc(void)11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15
mlxsw_cmd_mbox_free(char * mbox)16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 kfree(mbox);
19 }
20
mlxsw_cmd_mbox_zero(char * mbox)21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25
26 struct mlxsw_core;
27
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 char *in_mbox, size_t in_mbox_size,
31 char *out_mbox, size_t out_mbox_size);
32
mlxsw_cmd_exec_in(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,char * in_mbox,size_t in_mbox_size)33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 u8 opcode_mod, u32 in_mod, char *in_mbox,
35 size_t in_mbox_size)
36 {
37 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 false, in_mbox, in_mbox_size, NULL, 0);
39 }
40
mlxsw_cmd_exec_out(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,bool out_mbox_direct,char * out_mbox,size_t out_mbox_size)41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 u8 opcode_mod, u32 in_mod,
43 bool out_mbox_direct,
44 char *out_mbox, size_t out_mbox_size)
45 {
46 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 out_mbox_direct, false, NULL, 0,
48 out_mbox, out_mbox_size);
49 }
50
mlxsw_cmd_exec_none(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod)51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 u8 opcode_mod, u32 in_mod)
53 {
54 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 false, NULL, 0, NULL, 0);
56 }
57
58 enum mlxsw_cmd_opcode {
59 MLXSW_CMD_OPCODE_QUERY_FW = 0x004,
60 MLXSW_CMD_OPCODE_QUERY_BOARDINFO = 0x006,
61 MLXSW_CMD_OPCODE_QUERY_AQ_CAP = 0x003,
62 MLXSW_CMD_OPCODE_MAP_FA = 0xFFF,
63 MLXSW_CMD_OPCODE_UNMAP_FA = 0xFFE,
64 MLXSW_CMD_OPCODE_CONFIG_PROFILE = 0x100,
65 MLXSW_CMD_OPCODE_ACCESS_REG = 0x040,
66 MLXSW_CMD_OPCODE_SW2HW_DQ = 0x201,
67 MLXSW_CMD_OPCODE_HW2SW_DQ = 0x202,
68 MLXSW_CMD_OPCODE_2ERR_DQ = 0x01E,
69 MLXSW_CMD_OPCODE_QUERY_DQ = 0x022,
70 MLXSW_CMD_OPCODE_SW2HW_CQ = 0x016,
71 MLXSW_CMD_OPCODE_HW2SW_CQ = 0x017,
72 MLXSW_CMD_OPCODE_QUERY_CQ = 0x018,
73 MLXSW_CMD_OPCODE_SW2HW_EQ = 0x013,
74 MLXSW_CMD_OPCODE_HW2SW_EQ = 0x014,
75 MLXSW_CMD_OPCODE_QUERY_EQ = 0x015,
76 MLXSW_CMD_OPCODE_QUERY_RESOURCES = 0x101,
77 };
78
mlxsw_cmd_opcode_str(u16 opcode)79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 switch (opcode) {
82 case MLXSW_CMD_OPCODE_QUERY_FW:
83 return "QUERY_FW";
84 case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 return "QUERY_BOARDINFO";
86 case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 return "QUERY_AQ_CAP";
88 case MLXSW_CMD_OPCODE_MAP_FA:
89 return "MAP_FA";
90 case MLXSW_CMD_OPCODE_UNMAP_FA:
91 return "UNMAP_FA";
92 case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 return "CONFIG_PROFILE";
94 case MLXSW_CMD_OPCODE_ACCESS_REG:
95 return "ACCESS_REG";
96 case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 return "SW2HW_DQ";
98 case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 return "HW2SW_DQ";
100 case MLXSW_CMD_OPCODE_2ERR_DQ:
101 return "2ERR_DQ";
102 case MLXSW_CMD_OPCODE_QUERY_DQ:
103 return "QUERY_DQ";
104 case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 return "SW2HW_CQ";
106 case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 return "HW2SW_CQ";
108 case MLXSW_CMD_OPCODE_QUERY_CQ:
109 return "QUERY_CQ";
110 case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 return "SW2HW_EQ";
112 case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 return "HW2SW_EQ";
114 case MLXSW_CMD_OPCODE_QUERY_EQ:
115 return "QUERY_EQ";
116 case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 return "QUERY_RESOURCES";
118 default:
119 return "*UNKNOWN*";
120 }
121 }
122
123 enum mlxsw_cmd_status {
124 /* Command execution succeeded. */
125 MLXSW_CMD_STATUS_OK = 0x00,
126 /* Internal error (e.g. bus error) occurred while processing command. */
127 MLXSW_CMD_STATUS_INTERNAL_ERR = 0x01,
128 /* Operation/command not supported or opcode modifier not supported. */
129 MLXSW_CMD_STATUS_BAD_OP = 0x02,
130 /* Parameter not supported, parameter out of range. */
131 MLXSW_CMD_STATUS_BAD_PARAM = 0x03,
132 /* System was not enabled or bad system state. */
133 MLXSW_CMD_STATUS_BAD_SYS_STATE = 0x04,
134 /* Attempt to access reserved or unallocated resource, or resource in
135 * inappropriate ownership.
136 */
137 MLXSW_CMD_STATUS_BAD_RESOURCE = 0x05,
138 /* Requested resource is currently executing a command. */
139 MLXSW_CMD_STATUS_RESOURCE_BUSY = 0x06,
140 /* Required capability exceeds device limits. */
141 MLXSW_CMD_STATUS_EXCEED_LIM = 0x08,
142 /* Resource is not in the appropriate state or ownership. */
143 MLXSW_CMD_STATUS_BAD_RES_STATE = 0x09,
144 /* Index out of range (might be beyond table size or attempt to
145 * access a reserved resource).
146 */
147 MLXSW_CMD_STATUS_BAD_INDEX = 0x0A,
148 /* NVMEM checksum/CRC failed. */
149 MLXSW_CMD_STATUS_BAD_NVMEM = 0x0B,
150 /* Device is currently running reset */
151 MLXSW_CMD_STATUS_RUNNING_RESET = 0x26,
152 /* Bad management packet (silently discarded). */
153 MLXSW_CMD_STATUS_BAD_PKT = 0x30,
154 };
155
mlxsw_cmd_status_str(u8 status)156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 switch (status) {
159 case MLXSW_CMD_STATUS_OK:
160 return "OK";
161 case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 return "INTERNAL_ERR";
163 case MLXSW_CMD_STATUS_BAD_OP:
164 return "BAD_OP";
165 case MLXSW_CMD_STATUS_BAD_PARAM:
166 return "BAD_PARAM";
167 case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 return "BAD_SYS_STATE";
169 case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 return "BAD_RESOURCE";
171 case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 return "RESOURCE_BUSY";
173 case MLXSW_CMD_STATUS_EXCEED_LIM:
174 return "EXCEED_LIM";
175 case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 return "BAD_RES_STATE";
177 case MLXSW_CMD_STATUS_BAD_INDEX:
178 return "BAD_INDEX";
179 case MLXSW_CMD_STATUS_BAD_NVMEM:
180 return "BAD_NVMEM";
181 case MLXSW_CMD_STATUS_RUNNING_RESET:
182 return "RUNNING_RESET";
183 case MLXSW_CMD_STATUS_BAD_PKT:
184 return "BAD_PKT";
185 default:
186 return "*UNKNOWN*";
187 }
188 }
189
190 /* QUERY_FW - Query Firmware
191 * -------------------------
192 * OpMod == 0, INMmod == 0
193 * -----------------------
194 * The QUERY_FW command retrieves information related to firmware, command
195 * interface version and the amount of resources that should be allocated to
196 * the firmware.
197 */
198
mlxsw_cmd_query_fw(struct mlxsw_core * mlxsw_core,char * out_mbox)199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 char *out_mbox)
201 {
202 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205
206 /* cmd_mbox_query_fw_fw_pages
207 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208 */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210
211 /* cmd_mbox_query_fw_fw_rev_major
212 * Firmware Revision - Major
213 */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215
216 /* cmd_mbox_query_fw_fw_rev_subminor
217 * Firmware Sub-minor version (Patch level)
218 */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220
221 /* cmd_mbox_query_fw_fw_rev_minor
222 * Firmware Revision - Minor
223 */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225
226 /* cmd_mbox_query_fw_core_clk
227 * Internal Clock Frequency (in MHz)
228 */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230
231 /* cmd_mbox_query_fw_cmd_interface_rev
232 * Command Interface Interpreter Revision ID. This number is bumped up
233 * every time a non-backward-compatible change is done for the command
234 * interface. The current cmd_interface_rev is 1.
235 */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237
238 /* cmd_mbox_query_fw_dt
239 * If set, Debug Trace is supported
240 */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242
243 /* cmd_mbox_query_fw_api_version
244 * Indicates the version of the API, to enable software querying
245 * for compatibility. The current api_version is 1.
246 */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248
249 /* cmd_mbox_query_fw_fw_hour
250 * Firmware timestamp - hour
251 */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253
254 /* cmd_mbox_query_fw_fw_minutes
255 * Firmware timestamp - minutes
256 */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258
259 /* cmd_mbox_query_fw_fw_seconds
260 * Firmware timestamp - seconds
261 */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263
264 /* cmd_mbox_query_fw_fw_year
265 * Firmware timestamp - year
266 */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268
269 /* cmd_mbox_query_fw_fw_month
270 * Firmware timestamp - month
271 */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273
274 /* cmd_mbox_query_fw_fw_day
275 * Firmware timestamp - day
276 */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278
279 /* cmd_mbox_query_fw_clr_int_base_offset
280 * Clear Interrupt register's offset from clr_int_bar register
281 * in PCI address space.
282 */
283 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284
285 /* cmd_mbox_query_fw_clr_int_bar
286 * PCI base address register (BAR) where clr_int register is located.
287 * 00 - BAR 0-1 (64 bit BAR)
288 */
289 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290
291 /* cmd_mbox_query_fw_error_buf_offset
292 * Read Only buffer for internal error reports of offset
293 * from error_buf_bar register in PCI address space).
294 */
295 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296
297 /* cmd_mbox_query_fw_error_buf_size
298 * Internal error buffer size in DWORDs
299 */
300 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301
302 /* cmd_mbox_query_fw_error_int_bar
303 * PCI base address register (BAR) where error buffer
304 * register is located.
305 * 00 - BAR 0-1 (64 bit BAR)
306 */
307 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308
309 /* cmd_mbox_query_fw_doorbell_page_offset
310 * Offset of the doorbell page
311 */
312 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313
314 /* cmd_mbox_query_fw_doorbell_page_bar
315 * PCI base address register (BAR) of the doorbell page
316 * 00 - BAR 0-1 (64 bit BAR)
317 */
318 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319
320 /* cmd_mbox_query_fw_free_running_clock_offset
321 * The offset of the free running clock page
322 */
323 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
324
325 /* cmd_mbox_query_fw_fr_rn_clk_bar
326 * PCI base address register (BAR) of the free running clock page
327 * 0: BAR 0
328 * 1: 64 bit BAR
329 */
330 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
331
332 /* cmd_mbox_query_fw_utc_sec_offset
333 * The offset of the UTC_Sec page
334 */
335 MLXSW_ITEM64(cmd_mbox, query_fw, utc_sec_offset, 0x70, 0, 64);
336
337 /* cmd_mbox_query_fw_utc_sec_bar
338 * PCI base address register (BAR) of the UTC_Sec page
339 * 0: BAR 0
340 * 1: 64 bit BAR
341 * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
342 */
343 MLXSW_ITEM32(cmd_mbox, query_fw, utc_sec_bar, 0x78, 30, 2);
344
345 /* cmd_mbox_query_fw_utc_nsec_offset
346 * The offset of the UTC_nSec page
347 */
348 MLXSW_ITEM64(cmd_mbox, query_fw, utc_nsec_offset, 0x80, 0, 64);
349
350 /* cmd_mbox_query_fw_utc_nsec_bar
351 * PCI base address register (BAR) of the UTC_nSec page
352 * 0: BAR 0
353 * 1: 64 bit BAR
354 * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
355 */
356 MLXSW_ITEM32(cmd_mbox, query_fw, utc_nsec_bar, 0x88, 30, 2);
357
358 /* QUERY_BOARDINFO - Query Board Information
359 * -----------------------------------------
360 * OpMod == 0 (N/A), INMmod == 0 (N/A)
361 * -----------------------------------
362 * The QUERY_BOARDINFO command retrieves adapter specific parameters.
363 */
364
mlxsw_cmd_boardinfo(struct mlxsw_core * mlxsw_core,char * out_mbox)365 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
366 char *out_mbox)
367 {
368 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
369 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
370 }
371
372 /* cmd_mbox_boardinfo_intapin
373 * When PCIe interrupt messages are being used, this value is used for clearing
374 * an interrupt. When using MSI-X, this register is not used.
375 */
376 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
377
378 /* cmd_mbox_boardinfo_vsd_vendor_id
379 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
380 * specifying/formatting the VSD. The vsd_vendor_id identifies the management
381 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
382 * format and encoding as long as they use their assigned vsd_vendor_id.
383 */
384 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
385
386 /* cmd_mbox_boardinfo_vsd
387 * Vendor Specific Data. The VSD string that is burnt to the Flash
388 * with the firmware.
389 */
390 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
391 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
392
393 /* cmd_mbox_boardinfo_psid
394 * The PSID field is a 16-ascii (byte) character string which acts as
395 * the board ID. The PSID format is used in conjunction with
396 * Mellanox vsd_vendor_id (15B3h).
397 */
398 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
399 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
400
401 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
402 * -----------------------------------------------------
403 * OpMod == 0 (N/A), INMmod == 0 (N/A)
404 * -----------------------------------
405 * The QUERY_AQ_CAP command returns the device asynchronous queues
406 * capabilities supported.
407 */
408
mlxsw_cmd_query_aq_cap(struct mlxsw_core * mlxsw_core,char * out_mbox)409 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
410 char *out_mbox)
411 {
412 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
413 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
414 }
415
416 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
417 * Log (base 2) of max WQEs allowed on SDQ.
418 */
419 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
420
421 /* cmd_mbox_query_aq_cap_max_num_sdqs
422 * Maximum number of SDQs.
423 */
424 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
425
426 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
427 * Log (base 2) of max WQEs allowed on RDQ.
428 */
429 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
430
431 /* cmd_mbox_query_aq_cap_max_num_rdqs
432 * Maximum number of RDQs.
433 */
434 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
435
436 /* cmd_mbox_query_aq_cap_log_max_cq_sz
437 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
438 */
439 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
440
441 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
442 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
443 */
444 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
445
446 /* cmd_mbox_query_aq_cap_max_num_cqs
447 * Maximum number of CQs.
448 */
449 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
450
451 /* cmd_mbox_query_aq_cap_log_max_eq_sz
452 * Log (base 2) of max EQEs allowed on EQ.
453 */
454 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
455
456 /* cmd_mbox_query_aq_cap_max_num_eqs
457 * Maximum number of EQs.
458 */
459 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
460
461 /* cmd_mbox_query_aq_cap_max_sg_sq
462 * The maximum S/G list elements in an DSQ. DSQ must not contain
463 * more S/G entries than indicated here.
464 */
465 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
466
467 /* cmd_mbox_query_aq_cap_
468 * The maximum S/G list elements in an DRQ. DRQ must not contain
469 * more S/G entries than indicated here.
470 */
471 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
472
473 /* MAP_FA - Map Firmware Area
474 * --------------------------
475 * OpMod == 0 (N/A), INMmod == Number of VPM entries
476 * -------------------------------------------------
477 * The MAP_FA command passes physical pages to the switch. These pages
478 * are used to store the device firmware. MAP_FA can be executed multiple
479 * times until all the firmware area is mapped (the size that should be
480 * mapped is retrieved through the QUERY_FW command). All required pages
481 * must be mapped to finish the initialization phase. Physical memory
482 * passed in this command must be pinned.
483 */
484
485 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
486
mlxsw_cmd_map_fa(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 vpm_entries_count)487 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
488 char *in_mbox, u32 vpm_entries_count)
489 {
490 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
491 0, vpm_entries_count,
492 in_mbox, MLXSW_CMD_MBOX_SIZE);
493 }
494
495 /* cmd_mbox_map_fa_pa
496 * Physical Address.
497 */
498 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
499
500 /* cmd_mbox_map_fa_log2size
501 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
502 * that starts at PA_L/H.
503 */
504 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
505
506 /* UNMAP_FA - Unmap Firmware Area
507 * ------------------------------
508 * OpMod == 0 (N/A), INMmod == 0 (N/A)
509 * -----------------------------------
510 * The UNMAP_FA command unload the firmware and unmaps all the
511 * firmware area. After this command is completed the device will not access
512 * the pages that were mapped to the firmware area. After executing UNMAP_FA
513 * command, software reset must be done prior to execution of MAP_FW command.
514 */
515
mlxsw_cmd_unmap_fa(struct mlxsw_core * mlxsw_core)516 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
517 {
518 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
519 }
520
521 /* QUERY_RESOURCES - Query chip resources
522 * --------------------------------------
523 * OpMod == 0 (N/A) , INMmod is index
524 * ----------------------------------
525 * The QUERY_RESOURCES command retrieves information related to chip resources
526 * by resource ID. Every command returns 32 entries. INmod is being use as base.
527 * for example, index 1 will return entries 32-63. When the tables end and there
528 * are no more sources in the table, will return resource id 0xFFF to indicate
529 * it.
530 */
531
532 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
533 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
534 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
535
mlxsw_cmd_query_resources(struct mlxsw_core * mlxsw_core,char * out_mbox,int index)536 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
537 char *out_mbox, int index)
538 {
539 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
540 0, index, false, out_mbox,
541 MLXSW_CMD_MBOX_SIZE);
542 }
543
544 /* cmd_mbox_query_resource_id
545 * The resource id. 0xFFFF indicates table's end.
546 */
547 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
548
549 /* cmd_mbox_query_resource_data
550 * The resource
551 */
552 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
553 0x00, 0, 40, 0x8, 0, false);
554
555 /* CONFIG_PROFILE (Set) - Configure Switch Profile
556 * ------------------------------
557 * OpMod == 1 (Set), INMmod == 0 (N/A)
558 * -----------------------------------
559 * The CONFIG_PROFILE command sets the switch profile. The command can be
560 * executed on the device only once at startup in order to allocate and
561 * configure all switch resources and prepare it for operational mode.
562 * It is not possible to change the device profile after the chip is
563 * in operational mode.
564 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
565 * state therefore it is required to perform software reset to the device
566 * following an unsuccessful completion of the command. It is required
567 * to perform software reset to the device to change an existing profile.
568 */
569
mlxsw_cmd_config_profile_set(struct mlxsw_core * mlxsw_core,char * in_mbox)570 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
571 char *in_mbox)
572 {
573 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
574 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
575 }
576
577 /* cmd_mbox_config_profile_set_max_vepa_channels
578 * Capability bit. Setting a bit to 1 configures the profile
579 * according to the mailbox contents.
580 */
581 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
582
583 /* cmd_mbox_config_profile_set_max_lag
584 * Capability bit. Setting a bit to 1 configures the profile
585 * according to the mailbox contents.
586 */
587 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
588
589 /* cmd_mbox_config_profile_set_max_port_per_lag
590 * Capability bit. Setting a bit to 1 configures the profile
591 * according to the mailbox contents.
592 */
593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
594
595 /* cmd_mbox_config_profile_set_max_mid
596 * Capability bit. Setting a bit to 1 configures the profile
597 * according to the mailbox contents.
598 */
599 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
600
601 /* cmd_mbox_config_profile_set_max_pgt
602 * Capability bit. Setting a bit to 1 configures the profile
603 * according to the mailbox contents.
604 */
605 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
606
607 /* cmd_mbox_config_profile_set_max_system_port
608 * Capability bit. Setting a bit to 1 configures the profile
609 * according to the mailbox contents.
610 */
611 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
612
613 /* cmd_mbox_config_profile_set_max_vlan_groups
614 * Capability bit. Setting a bit to 1 configures the profile
615 * according to the mailbox contents.
616 */
617 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
618
619 /* cmd_mbox_config_profile_set_max_regions
620 * Capability bit. Setting a bit to 1 configures the profile
621 * according to the mailbox contents.
622 */
623 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
624
625 /* cmd_mbox_config_profile_set_flood_mode
626 * Capability bit. Setting a bit to 1 configures the profile
627 * according to the mailbox contents.
628 */
629 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
630
631 /* cmd_mbox_config_profile_set_max_flood_tables
632 * Capability bit. Setting a bit to 1 configures the profile
633 * according to the mailbox contents.
634 */
635 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
636
637 /* cmd_mbox_config_profile_set_max_ib_mc
638 * Capability bit. Setting a bit to 1 configures the profile
639 * according to the mailbox contents.
640 */
641 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
642
643 /* cmd_mbox_config_profile_set_max_pkey
644 * Capability bit. Setting a bit to 1 configures the profile
645 * according to the mailbox contents.
646 */
647 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
648
649 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
650 * Capability bit. Setting a bit to 1 configures the profile
651 * according to the mailbox contents.
652 */
653 MLXSW_ITEM32(cmd_mbox, config_profile,
654 set_adaptive_routing_group_cap, 0x0C, 14, 1);
655
656 /* cmd_mbox_config_profile_set_ar_sec
657 * Capability bit. Setting a bit to 1 configures the profile
658 * according to the mailbox contents.
659 */
660 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
661
662 /* cmd_mbox_config_set_ubridge
663 * Capability bit. Setting a bit to 1 configures the profile
664 * according to the mailbox contents.
665 */
666 MLXSW_ITEM32(cmd_mbox, config_profile, set_ubridge, 0x0C, 22, 1);
667
668 /* cmd_mbox_config_set_kvd_linear_size
669 * Capability bit. Setting a bit to 1 configures the profile
670 * according to the mailbox contents.
671 */
672 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
673
674 /* cmd_mbox_config_set_kvd_hash_single_size
675 * Capability bit. Setting a bit to 1 configures the profile
676 * according to the mailbox contents.
677 */
678 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
679
680 /* cmd_mbox_config_set_kvd_hash_double_size
681 * Capability bit. Setting a bit to 1 configures the profile
682 * according to the mailbox contents.
683 */
684 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
685
686 /* cmd_mbox_config_set_cqe_version
687 * Capability bit. Setting a bit to 1 configures the profile
688 * according to the mailbox contents.
689 */
690 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
691
692 /* cmd_mbox_config_set_cqe_time_stamp_type
693 * Capability bit. Setting a bit to 1 configures the profile
694 * according to the mailbox contents.
695 */
696 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_time_stamp_type, 0x08, 2, 1);
697
698 /* cmd_mbox_config_profile_max_vepa_channels
699 * Maximum number of VEPA channels per port (0 through 16)
700 * 0 - multi-channel VEPA is disabled
701 */
702 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
703
704 /* cmd_mbox_config_profile_max_lag
705 * Maximum number of LAG IDs requested.
706 * Reserved when Spectrum-1/2/3, supported from Spectrum-4 and above.
707 * For Spectrum-4, firmware sets 128 for values between 1-128 and 256 for values
708 * between 129-256.
709 */
710 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
711
712 /* cmd_mbox_config_profile_max_port_per_lag
713 * Maximum number of ports per LAG requested.
714 */
715 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
716
717 /* cmd_mbox_config_profile_max_mid
718 * Maximum Multicast IDs.
719 * Multicast IDs are allocated from 0 to max_mid-1
720 */
721 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
722
723 /* cmd_mbox_config_profile_max_pgt
724 * Maximum records in the Port Group Table per Switch Partition.
725 * Port Group Table indexes are from 0 to max_pgt-1
726 */
727 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
728
729 /* cmd_mbox_config_profile_max_system_port
730 * The maximum number of system ports that can be allocated.
731 */
732 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
733
734 /* cmd_mbox_config_profile_max_vlan_groups
735 * Maximum number VLAN Groups for VLAN binding.
736 */
737 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
738
739 /* cmd_mbox_config_profile_max_regions
740 * Maximum number of TCAM Regions.
741 */
742 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
743
744 /* cmd_mbox_config_profile_max_flood_tables
745 * Maximum number of single-entry flooding tables. Different flooding tables
746 * can be associated with different packet types.
747 */
748 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
749
750 /* cmd_mbox_config_profile_max_vid_flood_tables
751 * Maximum number of per-vid flooding tables. Flooding tables are associated
752 * to the different packet types for the different switch partitions.
753 * Table size is 4K entries covering all VID space.
754 */
755 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
756
757 enum mlxsw_cmd_mbox_config_profile_flood_mode {
758 /* Mixed mode, where:
759 * max_flood_tables indicates the number of single-entry tables.
760 * max_vid_flood_tables indicates the number of per-VID tables.
761 * max_fid_offset_flood_tables indicates the number of FID-offset
762 * tables. max_fid_flood_tables indicates the number of per-FID tables.
763 * Reserved when unified bridge model is used.
764 */
765 MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_MIXED = 3,
766 /* Controlled flood tables. Reserved when legacy bridge model is
767 * used.
768 */
769 MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CONTROLLED = 4,
770 };
771
772 /* cmd_mbox_config_profile_flood_mode
773 * Flooding mode to use.
774 */
775 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 3);
776
777 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
778 * Maximum number of FID-offset flooding tables.
779 */
780 MLXSW_ITEM32(cmd_mbox, config_profile,
781 max_fid_offset_flood_tables, 0x34, 24, 4);
782
783 /* cmd_mbox_config_profile_fid_offset_flood_table_size
784 * The size (number of entries) of each FID-offset flood table.
785 */
786 MLXSW_ITEM32(cmd_mbox, config_profile,
787 fid_offset_flood_table_size, 0x34, 0, 16);
788
789 /* cmd_mbox_config_profile_max_fid_flood_tables
790 * Maximum number of per-FID flooding tables.
791 *
792 * Note: This flooding tables cover special FIDs only (vFIDs), starting at
793 * FID value 4K and higher.
794 */
795 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
796
797 /* cmd_mbox_config_profile_fid_flood_table_size
798 * The size (number of entries) of each per-FID table.
799 */
800 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
801
802 /* cmd_mbox_config_profile_max_ib_mc
803 * Maximum number of multicast FDB records for InfiniBand
804 * FDB (in 512 chunks) per InfiniBand switch partition.
805 */
806 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
807
808 /* cmd_mbox_config_profile_max_pkey
809 * Maximum per port PKEY table size (for PKEY enforcement)
810 */
811 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
812
813 /* cmd_mbox_config_profile_ar_sec
814 * Primary/secondary capability
815 * Describes the number of adaptive routing sub-groups
816 * 0 - disable primary/secondary (single group)
817 * 1 - enable primary/secondary (2 sub-groups)
818 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
819 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
820 */
821 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
822
823 /* cmd_mbox_config_profile_adaptive_routing_group_cap
824 * Adaptive Routing Group Capability. Indicates the number of AR groups
825 * supported. Note that when Primary/secondary is enabled, each
826 * primary/secondary couple consumes 2 adaptive routing entries.
827 */
828 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
829
830 /* cmd_mbox_config_profile_arn
831 * Adaptive Routing Notification Enable
832 * Not supported in SwitchX, SwitchX-2
833 */
834 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
835
836 /* cmd_mbox_config_profile_ubridge
837 * Unified Bridge
838 * 0 - non unified bridge
839 * 1 - unified bridge
840 */
841 MLXSW_ITEM32(cmd_mbox, config_profile, ubridge, 0x50, 4, 1);
842
843 /* cmd_mbox_config_kvd_linear_size
844 * KVD Linear Size
845 * Valid for Spectrum only
846 * Allowed values are 128*N where N=0 or higher
847 */
848 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
849
850 /* cmd_mbox_config_kvd_hash_single_size
851 * KVD Hash single-entries size
852 * Valid for Spectrum only
853 * Allowed values are 128*N where N=0 or higher
854 * Must be greater or equal to cap_min_kvd_hash_single_size
855 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
856 */
857 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
858
859 /* cmd_mbox_config_kvd_hash_double_size
860 * KVD Hash double-entries size (units of single-size entries)
861 * Valid for Spectrum only
862 * Allowed values are 128*N where N=0 or higher
863 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
864 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
865 */
866 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
867
868 /* cmd_mbox_config_profile_swid_config_mask
869 * Modify Switch Partition Configuration mask. When set, the configu-
870 * ration value for the Switch Partition are taken from the mailbox.
871 * When clear, the current configuration values are used.
872 * Bit 0 - set type
873 * Bit 1 - properties
874 * Other - reserved
875 */
876 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
877 0x60, 24, 8, 0x08, 0x00, false);
878
879 /* cmd_mbox_config_profile_swid_config_type
880 * Switch Partition type.
881 * 0000 - disabled (Switch Partition does not exist)
882 * 0001 - InfiniBand
883 * 0010 - Ethernet
884 * 1000 - router port (SwitchX-2 only)
885 * Other - reserved
886 */
887 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
888 0x60, 20, 4, 0x08, 0x00, false);
889
890 /* cmd_mbox_config_profile_swid_config_properties
891 * Switch Partition properties.
892 */
893 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
894 0x60, 0, 8, 0x08, 0x00, false);
895
896 enum mlxsw_cmd_mbox_config_profile_cqe_time_stamp_type {
897 /* uSec - 1.024uSec (default). Only bits 15:0 are valid. */
898 MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_USEC,
899 /* FRC - Free Running Clock, units of 1nSec.
900 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
901 */
902 MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_FRC,
903 /* UTC. time_stamp[37:30] = Sec, time_stamp[29:0] = nSec.
904 * Reserved when SwitchX/2, Switch-IB/2 and Spectrum-1.
905 */
906 MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_UTC,
907 };
908
909 /* cmd_mbox_config_profile_cqe_time_stamp_type
910 * CQE time_stamp_type for non-mirror-packets.
911 * Configured if set_cqe_time_stamp_type is set.
912 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
913 */
914 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_time_stamp_type, 0xB0, 8, 2);
915
916 /* cmd_mbox_config_profile_cqe_version
917 * CQE version:
918 * 0: CQE version is 0
919 * 1: CQE version is either 1 or 2
920 * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
921 */
922 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
923
924 /* ACCESS_REG - Access EMAD Supported Register
925 * ----------------------------------
926 * OpMod == 0 (N/A), INMmod == 0 (N/A)
927 * -------------------------------------
928 * The ACCESS_REG command supports accessing device registers. This access
929 * is mainly used for bootstrapping.
930 */
931
mlxsw_cmd_access_reg(struct mlxsw_core * mlxsw_core,bool reset_ok,char * in_mbox,char * out_mbox)932 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
933 bool reset_ok,
934 char *in_mbox, char *out_mbox)
935 {
936 return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
937 0, 0, false, reset_ok,
938 in_mbox, MLXSW_CMD_MBOX_SIZE,
939 out_mbox, MLXSW_CMD_MBOX_SIZE);
940 }
941
942 /* SW2HW_DQ - Software to Hardware DQ
943 * ----------------------------------
944 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
945 * INMmod == DQ number
946 * ----------------------------------------------
947 * The SW2HW_DQ command transitions a descriptor queue from software to
948 * hardware ownership. The command enables posting WQEs and ringing DoorBells
949 * on the descriptor queue.
950 */
951
__mlxsw_cmd_sw2hw_dq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number,u8 opcode_mod)952 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
953 char *in_mbox, u32 dq_number,
954 u8 opcode_mod)
955 {
956 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
957 opcode_mod, dq_number,
958 in_mbox, MLXSW_CMD_MBOX_SIZE);
959 }
960
961 enum {
962 MLXSW_CMD_OPCODE_MOD_SDQ = 0,
963 MLXSW_CMD_OPCODE_MOD_RDQ = 1,
964 };
965
mlxsw_cmd_sw2hw_sdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)966 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
967 char *in_mbox, u32 dq_number)
968 {
969 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
970 MLXSW_CMD_OPCODE_MOD_SDQ);
971 }
972
mlxsw_cmd_sw2hw_rdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)973 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
974 char *in_mbox, u32 dq_number)
975 {
976 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
977 MLXSW_CMD_OPCODE_MOD_RDQ);
978 }
979
980 /* cmd_mbox_sw2hw_dq_cq
981 * Number of the CQ that this Descriptor Queue reports completions to.
982 */
983 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
984
985 enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp {
986 MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE,
987 MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE,
988 };
989
990 /* cmd_mbox_sw2hw_dq_sdq_lp
991 * SDQ local Processing
992 * 0: local processing by wqe.lp
993 * 1: local processing (ignoring wqe.lp)
994 */
995 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1);
996
997 /* cmd_mbox_sw2hw_dq_sdq_tclass
998 * SDQ: CPU Egress TClass
999 * RDQ: Reserved
1000 */
1001 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
1002
1003 /* cmd_mbox_sw2hw_dq_log2_dq_sz
1004 * Log (base 2) of the Descriptor Queue size in 4KB pages.
1005 */
1006 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
1007
1008 /* cmd_mbox_sw2hw_dq_pa
1009 * Physical Address.
1010 */
1011 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
1012
1013 /* HW2SW_DQ - Hardware to Software DQ
1014 * ----------------------------------
1015 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1016 * INMmod == DQ number
1017 * ----------------------------------------------
1018 * The HW2SW_DQ command transitions a descriptor queue from hardware to
1019 * software ownership. Incoming packets on the DQ are silently discarded,
1020 * SW should not post descriptors on nonoperational DQs.
1021 */
1022
__mlxsw_cmd_hw2sw_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)1023 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
1024 u32 dq_number, u8 opcode_mod)
1025 {
1026 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
1027 opcode_mod, dq_number);
1028 }
1029
mlxsw_cmd_hw2sw_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1030 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
1031 u32 dq_number)
1032 {
1033 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1034 MLXSW_CMD_OPCODE_MOD_SDQ);
1035 }
1036
mlxsw_cmd_hw2sw_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1037 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
1038 u32 dq_number)
1039 {
1040 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1041 MLXSW_CMD_OPCODE_MOD_RDQ);
1042 }
1043
1044 /* 2ERR_DQ - To Error DQ
1045 * ---------------------
1046 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1047 * INMmod == DQ number
1048 * ----------------------------------------------
1049 * The 2ERR_DQ command transitions the DQ into the error state from the state
1050 * in which it has been. While the command is executed, some in-process
1051 * descriptors may complete. Once the DQ transitions into the error state,
1052 * if there are posted descriptors on the RDQ/SDQ, the hardware writes
1053 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
1054 * When the command is completed successfully, the DQ is already in
1055 * the error state.
1056 */
1057
__mlxsw_cmd_2err_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)1058 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
1059 u32 dq_number, u8 opcode_mod)
1060 {
1061 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1062 opcode_mod, dq_number);
1063 }
1064
mlxsw_cmd_2err_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1065 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
1066 u32 dq_number)
1067 {
1068 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1069 MLXSW_CMD_OPCODE_MOD_SDQ);
1070 }
1071
mlxsw_cmd_2err_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1072 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1073 u32 dq_number)
1074 {
1075 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1076 MLXSW_CMD_OPCODE_MOD_RDQ);
1077 }
1078
1079 /* QUERY_DQ - Query DQ
1080 * ---------------------
1081 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1082 * INMmod == DQ number
1083 * ----------------------------------------------
1084 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1085 *
1086 * Note: Output mailbox has the same format as SW2HW_DQ.
1087 */
1088
__mlxsw_cmd_query_dq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number,u8 opcode_mod)1089 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1090 char *out_mbox, u32 dq_number,
1091 u8 opcode_mod)
1092 {
1093 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1094 opcode_mod, dq_number, false,
1095 out_mbox, MLXSW_CMD_MBOX_SIZE);
1096 }
1097
mlxsw_cmd_query_sdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1098 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1099 char *out_mbox, u32 dq_number)
1100 {
1101 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1102 MLXSW_CMD_OPCODE_MOD_SDQ);
1103 }
1104
mlxsw_cmd_query_rdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1105 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1106 char *out_mbox, u32 dq_number)
1107 {
1108 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1109 MLXSW_CMD_OPCODE_MOD_RDQ);
1110 }
1111
1112 /* SW2HW_CQ - Software to Hardware CQ
1113 * ----------------------------------
1114 * OpMod == 0 (N/A), INMmod == CQ number
1115 * -------------------------------------
1116 * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1117 * to hardware. The command takes the CQ context entry from the input mailbox
1118 * and stores it in the CQC in the ownership of the hardware. The command fails
1119 * if the requested CQC entry is already in the ownership of the hardware.
1120 */
1121
mlxsw_cmd_sw2hw_cq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 cq_number)1122 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1123 char *in_mbox, u32 cq_number)
1124 {
1125 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1126 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1127 }
1128
1129 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1130 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1131 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1132 };
1133
1134 /* cmd_mbox_sw2hw_cq_cqe_ver
1135 * CQE Version.
1136 */
1137 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1138
1139 /* cmd_mbox_sw2hw_cq_c_eqn
1140 * Event Queue this CQ reports completion events to.
1141 */
1142 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1143
1144 /* cmd_mbox_sw2hw_cq_st
1145 * Event delivery state machine
1146 * 0x0 - FIRED
1147 * 0x1 - ARMED (Request for Notification)
1148 */
1149 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1150
1151 /* cmd_mbox_sw2hw_cq_log_cq_size
1152 * Log (base 2) of the CQ size (in entries).
1153 */
1154 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1155
1156 /* cmd_mbox_sw2hw_cq_producer_counter
1157 * Producer Counter. The counter is incremented for each CQE that is
1158 * written by the HW to the CQ.
1159 * Maintained by HW (valid for the QUERY_CQ command only)
1160 */
1161 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1162
1163 /* cmd_mbox_sw2hw_cq_pa
1164 * Physical Address.
1165 */
1166 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1167
1168 /* HW2SW_CQ - Hardware to Software CQ
1169 * ----------------------------------
1170 * OpMod == 0 (N/A), INMmod == CQ number
1171 * -------------------------------------
1172 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1173 * to software. The CQC entry is invalidated as a result of this command.
1174 */
1175
mlxsw_cmd_hw2sw_cq(struct mlxsw_core * mlxsw_core,u32 cq_number)1176 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1177 u32 cq_number)
1178 {
1179 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1180 0, cq_number);
1181 }
1182
1183 /* QUERY_CQ - Query CQ
1184 * ----------------------------------
1185 * OpMod == 0 (N/A), INMmod == CQ number
1186 * -------------------------------------
1187 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1188 * The command stores the snapshot in the output mailbox in the software format.
1189 * Note that the CQ context state and values are not affected by the QUERY_CQ
1190 * command. The QUERY_CQ command is for debug purposes only.
1191 *
1192 * Note: Output mailbox has the same format as SW2HW_CQ.
1193 */
1194
mlxsw_cmd_query_cq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 cq_number)1195 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1196 char *out_mbox, u32 cq_number)
1197 {
1198 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1199 0, cq_number, false,
1200 out_mbox, MLXSW_CMD_MBOX_SIZE);
1201 }
1202
1203 /* SW2HW_EQ - Software to Hardware EQ
1204 * ----------------------------------
1205 * OpMod == 0 (N/A), INMmod == EQ number
1206 * -------------------------------------
1207 * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1208 * to hardware. The command takes the EQ context entry from the input mailbox
1209 * and stores it in the EQC in the ownership of the hardware. The command fails
1210 * if the requested EQC entry is already in the ownership of the hardware.
1211 */
1212
mlxsw_cmd_sw2hw_eq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 eq_number)1213 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1214 char *in_mbox, u32 eq_number)
1215 {
1216 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1217 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1218 }
1219
1220 /* cmd_mbox_sw2hw_eq_int_msix
1221 * When set, MSI-X cycles will be generated by this EQ.
1222 * When cleared, an interrupt will be generated by this EQ.
1223 */
1224 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1225
1226 /* cmd_mbox_sw2hw_eq_st
1227 * Event delivery state machine
1228 * 0x0 - FIRED
1229 * 0x1 - ARMED (Request for Notification)
1230 * 0x11 - Always ARMED
1231 * other - reserved
1232 */
1233 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1234
1235 /* cmd_mbox_sw2hw_eq_log_eq_size
1236 * Log (base 2) of the EQ size (in entries).
1237 */
1238 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1239
1240 /* cmd_mbox_sw2hw_eq_producer_counter
1241 * Producer Counter. The counter is incremented for each EQE that is written
1242 * by the HW to the EQ.
1243 * Maintained by HW (valid for the QUERY_EQ command only)
1244 */
1245 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1246
1247 /* cmd_mbox_sw2hw_eq_pa
1248 * Physical Address.
1249 */
1250 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1251
1252 /* HW2SW_EQ - Hardware to Software EQ
1253 * ----------------------------------
1254 * OpMod == 0 (N/A), INMmod == EQ number
1255 * -------------------------------------
1256 */
1257
mlxsw_cmd_hw2sw_eq(struct mlxsw_core * mlxsw_core,u32 eq_number)1258 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1259 u32 eq_number)
1260 {
1261 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1262 0, eq_number);
1263 }
1264
1265 /* QUERY_EQ - Query EQ
1266 * ----------------------------------
1267 * OpMod == 0 (N/A), INMmod == EQ number
1268 * -------------------------------------
1269 *
1270 * Note: Output mailbox has the same format as SW2HW_EQ.
1271 */
1272
mlxsw_cmd_query_eq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 eq_number)1273 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1274 char *out_mbox, u32 eq_number)
1275 {
1276 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1277 0, eq_number, false,
1278 out_mbox, MLXSW_CMD_MBOX_SIZE);
1279 }
1280
1281 #endif
1282