1 /*
2  * Copyright 1996-2002 Hans Reiser, see reiserfs/README for licensing and copyright details
3  */
4 
5 				/* this file has an amazingly stupid
6                                    name, yura please fix it to be
7                                    reiserfs.h, and merge all the rest
8                                    of our .h files that are in this
9                                    directory into it.  */
10 
11 
12 #ifndef _LINUX_REISER_FS_H
13 #define _LINUX_REISER_FS_H
14 
15 #include <linux/types.h>
16 #ifdef __KERNEL__
17 #include <linux/slab.h>
18 #include <linux/tqueue.h>
19 #include <asm/unaligned.h>
20 #include <linux/bitops.h>
21 #include <asm/hardirq.h>
22 #include <linux/proc_fs.h>
23 #endif
24 
25 /*
26  *  include/linux/reiser_fs.h
27  *
28  *  Reiser File System constants and structures
29  *
30  */
31 
32 /* in reading the #defines, it may help to understand that they employ
33    the following abbreviations:
34 
35    B = Buffer
36    I = Item header
37    H = Height within the tree (should be changed to LEV)
38    N = Number of the item in the node
39    STAT = stat data
40    DEH = Directory Entry Header
41    EC = Entry Count
42    E = Entry number
43    UL = Unsigned Long
44    BLKH = BLocK Header
45    UNFM = UNForMatted node
46    DC = Disk Child
47    P = Path
48 
49    These #defines are named by concatenating these abbreviations,
50    where first comes the arguments, and last comes the return value,
51    of the macro.
52 
53 */
54 
55 #define USE_INODE_GENERATION_COUNTER
56 
57 #define REISERFS_PREALLOCATE
58 #define DISPLACE_NEW_PACKING_LOCALITIES
59 #define PREALLOCATION_SIZE 9
60 
61 /* n must be power of 2 */
62 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
63 
64 // to be ok for alpha and others we have to align structures to 8 byte
65 // boundary.
66 // FIXME: do not change 4 by anything else: there is code which relies on that
67 #define ROUND_UP(x) _ROUND_UP(x,8LL)
68 
69 /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
70 ** messages.
71 */
72 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
73 
74 /* assertions handling */
75 
76 /** always check a condition and panic if it's false. */
77 #define RASSERT( cond, format, args... )					\
78 if( !( cond ) ) 								\
79   reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at "	\
80 		  __FILE__ ":%i:%s: " format "\n",		\
81 		  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
82 
83 #if defined( CONFIG_REISERFS_CHECK )
84 #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
85 #else
86 #define RFALSE( cond, format, args... ) do {;} while( 0 )
87 #endif
88 
89 #define CONSTF __attribute__( ( const ) )
90 /*
91  * Disk Data Structures
92  */
93 
94 /***************************************************************************/
95 /*                             SUPER BLOCK                                 */
96 /***************************************************************************/
97 
98 /*
99  * Structure of super block on disk, a version of which in RAM is often accessed as s->u.reiserfs_sb.s_rs
100  * the version in RAM is part of a larger structure containing fields never written to disk.
101  */
102 #define UNSET_HASH 0 // read_super will guess about, what hash names
103                      // in directories were sorted with
104 #define TEA_HASH  1
105 #define YURA_HASH 2
106 #define R5_HASH   3
107 #define DEFAULT_HASH R5_HASH
108 
109 
110 struct journal_params {
111     __u32 jp_journal_1st_block;	      /* where does journal start from on its
112 				       * device */
113     __u32 jp_journal_dev;	      /* journal device st_rdev */
114     __u32 jp_journal_size;	      /* size of the journal */
115     __u32 jp_journal_trans_max;	      /* max number of blocks in a transaction. */
116     __u32 jp_journal_magic; 	      /* random value made on fs creation (this
117 				       * was sb_journal_block_count) */
118     __u32 jp_journal_max_batch;	      /* max number of blocks to batch into a
119 				       * trans */
120     __u32 jp_journal_max_commit_age;  /* in seconds, how old can an async
121 				       * commit be */
122     __u32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
123 				       * be */
124 };
125 
126 /* this is the super from 3.5.X, where X >= 10 */
127 struct reiserfs_super_block_v1
128 {
129     __u32 s_block_count;	   /* blocks count         */
130     __u32 s_free_blocks;           /* free blocks count    */
131     __u32 s_root_block;            /* root block number    */
132     struct journal_params s_journal;
133     __u16 s_blocksize;             /* block size */
134     __u16 s_oid_maxsize;	   /* max size of object id array, see
135 				    * get_objectid() commentary  */
136     __u16 s_oid_cursize;	   /* current size of object id array */
137     __u16 s_umount_state;          /* this is set to 1 when filesystem was
138 				    * umounted, to 2 - when not */
139     char s_magic[10];              /* reiserfs magic string indicates that
140 				    * file system is reiserfs:
141 				    * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
142     __u16 s_fs_state;	           /* it is set to used by fsck to mark which
143 				    * phase of rebuilding is done */
144     __u32 s_hash_function_code;    /* indicate, what hash function is being use
145 				    * to sort names in a directory*/
146     __u16 s_tree_height;           /* height of disk tree */
147     __u16 s_bmap_nr;               /* amount of bitmap blocks needed to address
148 				    * each block of file system */
149     __u16 s_version;               /* this field is only reliable on filesystem
150 				    * with non-standard journal */
151     __u16 s_reserved_for_journal;  /* size in blocks of journal area on main
152 				    * device, we need to keep after
153 				    * making fs with non-standard journal */
154 } __attribute__ ((__packed__));
155 
156 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
157 
158 /* this is the on disk super block */
159 struct reiserfs_super_block
160 {
161     struct reiserfs_super_block_v1 s_v1;
162     __u32 s_inode_generation;
163     __u32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
164     unsigned char s_uuid[16];       /* filesystem unique identifier */
165     unsigned char s_label[16];      /* filesystem volume label */
166     char s_unused[88] ;             /* zero filled by mkreiserfs and
167 				     * reiserfs_convert_objectid_map_v1()
168 				     * so any additions must be updated
169 				     * there as well. */
170 }  __attribute__ ((__packed__));
171 
172 #define SB_SIZE (sizeof(struct reiserfs_super_block))
173 
174 #define REISERFS_VERSION_1 0
175 #define REISERFS_VERSION_2 2
176 
177 
178 // on-disk super block fields converted to cpu form
179 #define SB_DISK_SUPER_BLOCK(s) ((s)->u.reiserfs_sb.s_rs)
180 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
181 #define SB_BLOCKSIZE(s) \
182         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
183 #define SB_BLOCK_COUNT(s) \
184         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
185 #define SB_FREE_BLOCKS(s) \
186         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
187 #define SB_REISERFS_MAGIC(s) \
188         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
189 #define SB_ROOT_BLOCK(s) \
190         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
191 #define SB_TREE_HEIGHT(s) \
192         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
193 #define SB_REISERFS_STATE(s) \
194         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
195 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
196 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
197 
198 #define PUT_SB_BLOCK_COUNT(s, val) \
199    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
200 #define PUT_SB_FREE_BLOCKS(s, val) \
201    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
202 #define PUT_SB_ROOT_BLOCK(s, val) \
203    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
204 #define PUT_SB_TREE_HEIGHT(s, val) \
205    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
206 #define PUT_SB_REISERFS_STATE(s, val) \
207    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
208 #define PUT_SB_VERSION(s, val) \
209    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
210 #define PUT_SB_BMAP_NR(s, val) \
211    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
212 
213 
214 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
215 #define SB_ONDISK_JOURNAL_SIZE(s) \
216          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
217 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
218          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
219 #define SB_ONDISK_JOURNAL_DEVICE(s) \
220          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
221 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
222          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
223 
224 #define is_block_in_log_or_reserved_area(s, block) \
225          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
226          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
227          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
228          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
229 
230 
231 
232 				/* used by gcc */
233 #define REISERFS_SUPER_MAGIC 0x52654973
234 				/* used by file system utilities that
235                                    look at the superblock, etc. */
236 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
237 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
238 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
239 
240 extern const char reiserfs_3_5_magic_string[];
241 extern const char reiserfs_3_6_magic_string[];
242 extern const char reiserfs_jr_magic_string[];
243 
244 int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
245 int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
246 int is_reiserfs_jr (struct reiserfs_super_block * rs);
247 
248 
249 
250 /* ReiserFS leaves the first 64k unused, so that partition labels have
251    enough space.  If someone wants to write a fancy bootloader that
252    needs more than 64k, let us know, and this will be increased in size.
253    This number must be larger than than the largest block size on any
254    platform, or code will break.  -Hans */
255 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
256 #define REISERFS_FIRST_BLOCK unused_define
257 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
258 
259 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
260 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
261 
262 // reiserfs internal error code (used by search_by_key adn fix_nodes))
263 #define CARRY_ON      0
264 #define REPEAT_SEARCH -1
265 #define IO_ERROR      -2
266 #define NO_DISK_SPACE -3
267 #define NO_BALANCING_NEEDED  (-4)
268 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
269 
270 typedef unsigned long b_blocknr_t;
271 typedef __u32 unp_t;
272 
273 struct unfm_nodeinfo {
274     unp_t unfm_nodenum;
275     unsigned short unfm_freespace;
276 };
277 
278 
279 /* there are two formats of keys: 3.5 and 3.6
280  */
281 #define KEY_FORMAT_3_5 0
282 #define KEY_FORMAT_3_6 1
283 
284 /* there are two stat datas */
285 #define STAT_DATA_V1 0
286 #define STAT_DATA_V2 1
287 
288 /** this says about version of key of all items (but stat data) the
289     object consists of */
290 #define get_inode_item_key_version( inode )                                    \
291     (((inode)->u.reiserfs_i.i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
292 
293 #define set_inode_item_key_version( inode, version )                           \
294          ({ if((version)==KEY_FORMAT_3_6)                                      \
295                 (inode)->u.reiserfs_i.i_flags |= i_item_key_version_mask;      \
296             else                                                               \
297                 (inode)->u.reiserfs_i.i_flags &= ~i_item_key_version_mask; })
298 
299 #define get_inode_sd_version(inode)                                            \
300     (((inode)->u.reiserfs_i.i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
301 
302 #define set_inode_sd_version(inode, version)                                   \
303          ({ if((version)==STAT_DATA_V2)                                        \
304                 (inode)->u.reiserfs_i.i_flags |= i_stat_data_version_mask;     \
305             else                                                               \
306                 (inode)->u.reiserfs_i.i_flags &= ~i_stat_data_version_mask; })
307 
308 /* This is an aggressive tail suppression policy, I am hoping it
309    improves our benchmarks. The principle behind it is that percentage
310    space saving is what matters, not absolute space saving.  This is
311    non-intuitive, but it helps to understand it if you consider that the
312    cost to access 4 blocks is not much more than the cost to access 1
313    block, if you have to do a seek and rotate.  A tail risks a
314    non-linear disk access that is significant as a percentage of total
315    time cost for a 4 block file and saves an amount of space that is
316    less significant as a percentage of space, or so goes the hypothesis.
317    -Hans */
318 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
319 (\
320   (!(n_tail_size)) || \
321   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
322    ( (n_file_size) >= (n_block_size) * 4 ) || \
323    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
324      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
325    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
326      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
327    ( ( (n_file_size) >= (n_block_size) ) && \
328      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
329 )
330 
331 /* Another strategy for tails, this one means only create a tail if all the
332    file would fit into one DIRECT item.
333    Primary intention for this one is to increase performance by decreasing
334    seeking.
335 */
336 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
337 (\
338   (!(n_tail_size)) || \
339   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
340 )
341 
342 
343 
344 /*
345  * values for s_umount_state field
346  */
347 #define REISERFS_VALID_FS    1
348 #define REISERFS_ERROR_FS    2
349 
350 //
351 // there are 5 item types currently
352 //
353 #define TYPE_STAT_DATA 0
354 #define TYPE_INDIRECT 1
355 #define TYPE_DIRECT 2
356 #define TYPE_DIRENTRY 3
357 #define TYPE_MAXTYPE 3
358 #define TYPE_ANY 15 // FIXME: comment is required
359 
360 /***************************************************************************/
361 /*                       KEY & ITEM HEAD                                   */
362 /***************************************************************************/
363 
364 //
365 // directories use this key as well as old files
366 //
367 struct offset_v1 {
368     __u32 k_offset;
369     __u32 k_uniqueness;
370 } __attribute__ ((__packed__));
371 
372 struct offset_v2 {
373 #ifdef __LITTLE_ENDIAN
374 	    /* little endian version */
375 	    __u64 k_offset:60;
376 	    __u64 k_type: 4;
377 #else
378 	    /* big endian version */
379 	    __u64 k_type: 4;
380 	    __u64 k_offset:60;
381 #endif
382 } __attribute__ ((__packed__));
383 
384 #ifndef __LITTLE_ENDIAN
385 typedef union {
386     struct offset_v2 offset_v2;
387     __u64 linear;
388 } __attribute__ ((__packed__)) offset_v2_esafe_overlay;
389 
offset_v2_k_type(const struct offset_v2 * v2)390 static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
391 {
392     offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
393     tmp.linear = le64_to_cpu( tmp.linear );
394     return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
395 }
396 
set_offset_v2_k_type(struct offset_v2 * v2,int type)397 static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
398 {
399     offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
400     tmp->linear = le64_to_cpu(tmp->linear);
401     tmp->offset_v2.k_type = type;
402     tmp->linear = cpu_to_le64(tmp->linear);
403 }
404 
offset_v2_k_offset(const struct offset_v2 * v2)405 static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
406 {
407     offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
408     tmp.linear = le64_to_cpu( tmp.linear );
409     return tmp.offset_v2.k_offset;
410 }
411 
set_offset_v2_k_offset(struct offset_v2 * v2,loff_t offset)412 static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
413     offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
414     tmp->linear = le64_to_cpu(tmp->linear);
415     tmp->offset_v2.k_offset = offset;
416     tmp->linear = cpu_to_le64(tmp->linear);
417 }
418 #else
419 # define offset_v2_k_type(v2)           ((v2)->k_type)
420 # define set_offset_v2_k_type(v2,val)   (offset_v2_k_type(v2) = (val))
421 # define offset_v2_k_offset(v2)         ((v2)->k_offset)
422 # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
423 #endif
424 
425 /* Key of an item determines its location in the S+tree, and
426    is composed of 4 components */
427 struct key {
428     __u32 k_dir_id;    /* packing locality: by default parent
429 			  directory object id */
430     __u32 k_objectid;  /* object identifier */
431     union {
432 	struct offset_v1 k_offset_v1;
433 	struct offset_v2 k_offset_v2;
434     } __attribute__ ((__packed__)) u;
435 } __attribute__ ((__packed__));
436 
437 
438 struct cpu_key {
439     struct key on_disk_key;
440     int version;
441     int key_length; /* 3 in all cases but direct2indirect and
442 		       indirect2direct conversion */
443 };
444 
445 /* Our function for comparing keys can compare keys of different
446    lengths.  It takes as a parameter the length of the keys it is to
447    compare.  These defines are used in determining what is to be passed
448    to it as that parameter. */
449 #define REISERFS_FULL_KEY_LEN     4
450 #define REISERFS_SHORT_KEY_LEN    2
451 
452 /* The result of the key compare */
453 #define FIRST_GREATER 1
454 #define SECOND_GREATER -1
455 #define KEYS_IDENTICAL 0
456 #define KEY_FOUND 1
457 #define KEY_NOT_FOUND 0
458 
459 #define KEY_SIZE (sizeof(struct key))
460 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
461 
462 /* return values for search_by_key and clones */
463 #define ITEM_FOUND 1
464 #define ITEM_NOT_FOUND 0
465 #define ENTRY_FOUND 1
466 #define ENTRY_NOT_FOUND 0
467 #define DIRECTORY_NOT_FOUND -1
468 #define REGULAR_FILE_FOUND -2
469 #define DIRECTORY_FOUND -3
470 #define BYTE_FOUND 1
471 #define BYTE_NOT_FOUND 0
472 #define FILE_NOT_FOUND -1
473 
474 #define POSITION_FOUND 1
475 #define POSITION_NOT_FOUND 0
476 
477 // return values for reiserfs_find_entry and search_by_entry_key
478 #define NAME_FOUND 1
479 #define NAME_NOT_FOUND 0
480 #define GOTO_PREVIOUS_ITEM 2
481 #define NAME_FOUND_INVISIBLE 3
482 
483 /*  Everything in the filesystem is stored as a set of items.  The
484     item head contains the key of the item, its free space (for
485     indirect items) and specifies the location of the item itself
486     within the block.  */
487 
488 struct item_head
489 {
490 	/* Everything in the tree is found by searching for it based on
491 	 * its key.*/
492 	struct key ih_key;
493 	union {
494 		/* The free space in the last unformatted node of an
495 		   indirect item if this is an indirect item.  This
496 		   equals 0xFFFF iff this is a direct item or stat data
497 		   item. Note that the key, not this field, is used to
498 		   determine the item type, and thus which field this
499 		   union contains. */
500 		__u16 ih_free_space_reserved;
501 		/* Iff this is a directory item, this field equals the
502 		   number of directory entries in the directory item. */
503 		__u16 ih_entry_count;
504 	} __attribute__ ((__packed__)) u;
505 	__u16 ih_item_len;           /* total size of the item body */
506 	__u16 ih_item_location;      /* an offset to the item body
507 				      * within the block */
508 	__u16 ih_version;	     /* 0 for all old items, 2 for new
509 					ones. Highest bit is set by fsck
510 					temporary, cleaned after all
511 					done */
512 } __attribute__ ((__packed__));
513 /* size of item header     */
514 #define IH_SIZE (sizeof(struct item_head))
515 
516 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
517 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
518 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
519 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
520 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
521 
522 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
523 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
524 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
525 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
526 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
527 
528 
529 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
530 
531 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
532 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
533 
534 /* these operate on indirect items, where you've got an array of ints
535 ** at a possibly unaligned location.  These are a noop on ia32
536 **
537 ** p is the array of __u32, i is the index into the array, v is the value
538 ** to store there.
539 */
540 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
541 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
542 
543 //
544 // in old version uniqueness field shows key type
545 //
546 #define V1_SD_UNIQUENESS 0
547 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
548 #define V1_DIRECT_UNIQUENESS 0xffffffff
549 #define V1_DIRENTRY_UNIQUENESS 500
550 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
551 
552 extern void reiserfs_warning (struct super_block *, const char * fmt, ...);
553 /* __attribute__( ( format ( printf, 1, 2 ) ) ); */
554 
555 //
556 // here are conversion routines
557 //
558 static inline int uniqueness2type (__u32 uniqueness) CONSTF;
uniqueness2type(__u32 uniqueness)559 static inline int uniqueness2type (__u32 uniqueness)
560 {
561     switch (uniqueness) {
562     case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
563     case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
564     case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
565     case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
566     default:
567 	    reiserfs_warning(NULL, "vs-500: unknown uniqueness %d\n", uniqueness);
568 	case V1_ANY_UNIQUENESS:
569 	    return TYPE_ANY;
570     }
571 }
572 
573 static inline __u32 type2uniqueness (int type) CONSTF;
type2uniqueness(int type)574 static inline __u32 type2uniqueness (int type)
575 {
576     switch (type) {
577     case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
578     case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
579     case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
580     case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
581     default:
582 	    reiserfs_warning(NULL, "vs-501: unknown type %d\n", type);
583 	case TYPE_ANY:
584 	    return V1_ANY_UNIQUENESS;
585     }
586 }
587 
588 //
589 // key is pointer to on disk key which is stored in le, result is cpu,
590 // there is no way to get version of object from key, so, provide
591 // version to these defines
592 //
le_key_k_offset(int version,const struct key * key)593 static inline loff_t le_key_k_offset (int version, const struct key * key)
594 {
595     return (version == KEY_FORMAT_3_5) ?
596         le32_to_cpu( key->u.k_offset_v1.k_offset ) :
597 	offset_v2_k_offset( &(key->u.k_offset_v2) );
598 }
599 
le_ih_k_offset(const struct item_head * ih)600 static inline loff_t le_ih_k_offset (const struct item_head * ih)
601 {
602     return le_key_k_offset (ih_version (ih), &(ih->ih_key));
603 }
604 
le_key_k_type(int version,const struct key * key)605 static inline loff_t le_key_k_type (int version, const struct key * key)
606 {
607     return (version == KEY_FORMAT_3_5) ?
608         uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
609 	offset_v2_k_type( &(key->u.k_offset_v2) );
610 }
611 
le_ih_k_type(const struct item_head * ih)612 static inline loff_t le_ih_k_type (const struct item_head * ih)
613 {
614     return le_key_k_type (ih_version (ih), &(ih->ih_key));
615 }
616 
617 
set_le_key_k_offset(int version,struct key * key,loff_t offset)618 static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
619 {
620     (version == KEY_FORMAT_3_5) ?
621         (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
622 	(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
623 }
624 
625 
set_le_ih_k_offset(struct item_head * ih,loff_t offset)626 static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
627 {
628     set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
629 }
630 
631 
set_le_key_k_type(int version,struct key * key,int type)632 static inline void set_le_key_k_type (int version, struct key * key, int type)
633 {
634     (version == KEY_FORMAT_3_5) ?
635         (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
636 	(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
637 }
set_le_ih_k_type(struct item_head * ih,int type)638 static inline void set_le_ih_k_type (struct item_head * ih, int type)
639 {
640     set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
641 }
642 
643 
644 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
645 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
646 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
647 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
648 
649 //
650 // item header has version.
651 //
652 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
653 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
654 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
655 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
656 
657 
658 
659 //
660 // key is pointer to cpu key, result is cpu
661 //
cpu_key_k_offset(const struct cpu_key * key)662 static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
663 {
664     return (key->version == KEY_FORMAT_3_5) ?
665         key->on_disk_key.u.k_offset_v1.k_offset :
666 	key->on_disk_key.u.k_offset_v2.k_offset;
667 }
668 
cpu_key_k_type(const struct cpu_key * key)669 static inline loff_t cpu_key_k_type (const struct cpu_key * key)
670 {
671     return (key->version == KEY_FORMAT_3_5) ?
672         uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
673 	key->on_disk_key.u.k_offset_v2.k_type;
674 }
675 
set_cpu_key_k_offset(struct cpu_key * key,loff_t offset)676 static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
677 {
678     (key->version == KEY_FORMAT_3_5) ?
679         (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
680 	(key->on_disk_key.u.k_offset_v2.k_offset = offset);
681 }
682 
683 
set_cpu_key_k_type(struct cpu_key * key,int type)684 static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
685 {
686     (key->version == KEY_FORMAT_3_5) ?
687         (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
688 	(key->on_disk_key.u.k_offset_v2.k_type = type);
689 }
690 
691 
cpu_key_k_offset_dec(struct cpu_key * key)692 static inline void cpu_key_k_offset_dec (struct cpu_key * key)
693 {
694     if (key->version == KEY_FORMAT_3_5)
695 	key->on_disk_key.u.k_offset_v1.k_offset --;
696     else
697 	key->on_disk_key.u.k_offset_v2.k_offset --;
698 }
699 
700 
701 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
702 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
703 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
704 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
705 
706 
707 /* are these used ? */
708 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
709 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
710 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
711 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
712 
713 
714 
715 
716 
717 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
718     ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
719           I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
720 
721 /* maximal length of item */
722 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
723 #define MIN_ITEM_LEN 1
724 
725 
726 /* object identifier for root dir */
727 #define REISERFS_ROOT_OBJECTID 2
728 #define REISERFS_ROOT_PARENT_OBJECTID 1
729 extern struct key root_key;
730 
731 
732 
733 
734 /*
735  * Picture represents a leaf of the S+tree
736  *  ______________________________________________________
737  * |      |  Array of     |                   |           |
738  * |Block |  Object-Item  |      F r e e      |  Objects- |
739  * | head |  Headers      |     S p a c e     |   Items   |
740  * |______|_______________|___________________|___________|
741  */
742 
743 /* Header of a disk block.  More precisely, header of a formatted leaf
744    or internal node, and not the header of an unformatted node. */
745 struct block_head {
746   __u16 blk_level;        /* Level of a block in the tree. */
747   __u16 blk_nr_item;      /* Number of keys/items in a block. */
748   __u16 blk_free_space;   /* Block free space in bytes. */
749   __u16 blk_reserved;
750 				/* dump this in v4/planA */
751   struct key  blk_right_delim_key; /* kept only for compatibility */
752 };
753 
754 #define BLKH_SIZE                     (sizeof(struct block_head))
755 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
756 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
757 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
758 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
759 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
760 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
761 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
762 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
763 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
764 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
765 
766 /*
767  * values for blk_level field of the struct block_head
768  */
769 
770 #define FREE_LEVEL 0 /* when node gets removed from the tree its
771 			blk_level is set to FREE_LEVEL. It is then
772 			used to see whether the node is still in the
773 			tree */
774 
775 #define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
776 
777 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
778 #define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
779 /* Number of items that are in buffer. */
780 #define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
781 #define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
782 #define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
783 
784 #define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
785 #define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
786 #define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
787 
788 
789 /* Get right delimiting key. -- little endian */
790 #define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
791 
792 /* Does the buffer contain a disk leaf. */
793 #define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
794 
795 /* Does the buffer contain a disk internal node */
796 #define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
797                                             && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
798 
799 
800 
801 
802 /***************************************************************************/
803 /*                             STAT DATA                                   */
804 /***************************************************************************/
805 
806 
807 //
808 // old stat data is 32 bytes long. We are going to distinguish new one by
809 // different size
810 //
811 struct stat_data_v1
812 {
813     __u16 sd_mode;	/* file type, permissions */
814     __u16 sd_nlink;	/* number of hard links */
815     __u16 sd_uid;		/* owner */
816     __u16 sd_gid;		/* group */
817     __u32 sd_size;	/* file size */
818     __u32 sd_atime;	/* time of last access */
819     __u32 sd_mtime;	/* time file was last modified  */
820     __u32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
821     union {
822 	__u32 sd_rdev;
823 	__u32 sd_blocks;	/* number of blocks file uses */
824     } __attribute__ ((__packed__)) u;
825     __u32 sd_first_direct_byte; /* first byte of file which is stored
826 				   in a direct item: except that if it
827 				   equals 1 it is a symlink and if it
828 				   equals ~(__u32)0 there is no
829 				   direct item.  The existence of this
830 				   field really grates on me. Let's
831 				   replace it with a macro based on
832 				   sd_size and our tail suppression
833 				   policy.  Someday.  -Hans */
834 } __attribute__ ((__packed__));
835 
836 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
837 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
838 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
839 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
840 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
841 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
842 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
843 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
844 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
845 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
846 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
847 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
848 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
849 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
850 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
851 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
852 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
853 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
854 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
855 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
856 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
857 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
858 #define sd_v1_first_direct_byte(sdp) \
859                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
860 #define set_sd_v1_first_direct_byte(sdp,v) \
861                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
862 
863 #include <linux/ext2_fs.h>
864 
865 /* inode flags stored in sd_attrs (nee sd_reserved) */
866 
867 /* we want common flags to have the same values as in ext2,
868    so chattr(1) will work without problems */
869 #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
870 #define REISERFS_APPEND_FL    EXT2_APPEND_FL
871 #define REISERFS_SYNC_FL      EXT2_SYNC_FL
872 #define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
873 #define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
874 #define REISERFS_SECRM_FL     EXT2_SECRM_FL
875 #define REISERFS_UNRM_FL      EXT2_UNRM_FL
876 #define REISERFS_COMPR_FL     EXT2_COMPR_FL
877 /* persistent flag to disable tails on per-file basic.
878    Note, that is inheritable: mark directory with this and
879    all new files inside will not have tails.
880 
881    Teodore Tso allocated EXT2_NOTAIL_FL (0x00008000) for this. Change
882    numeric constant to ext2 macro when available. */
883 #define REISERFS_NOTAIL_FL    (0x00008000) /* EXT2_NOTAIL_FL */
884 
885 /* persistent flags that file inherits from the parent directory */
886 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
887 				REISERFS_SYNC_FL |	\
888 				REISERFS_NOATIME_FL |	\
889 				REISERFS_NODUMP_FL |	\
890 				REISERFS_SECRM_FL |	\
891 				REISERFS_COMPR_FL |	\
892 				REISERFS_NOTAIL_FL )
893 
894 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
895    address blocks) */
896 struct stat_data {
897     __u16 sd_mode;	/* file type, permissions */
898     __u16 sd_attrs;     /* persistent inode flags */
899     __u32 sd_nlink;	/* number of hard links */
900     __u64 sd_size;	/* file size */
901     __u32 sd_uid;		/* owner */
902     __u32 sd_gid;		/* group */
903     __u32 sd_atime;	/* time of last access */
904     __u32 sd_mtime;	/* time file was last modified  */
905     __u32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
906     __u32 sd_blocks;
907     union {
908 	__u32 sd_rdev;
909 	__u32 sd_generation;
910       //__u32 sd_first_direct_byte;
911       /* first byte of file which is stored in a
912 				       direct item: except that if it equals 1
913 				       it is a symlink and if it equals
914 				       ~(__u32)0 there is no direct item.  The
915 				       existence of this field really grates
916 				       on me. Let's replace it with a macro
917 				       based on sd_size and our tail
918 				       suppression policy? */
919   } __attribute__ ((__packed__)) u;
920 } __attribute__ ((__packed__));
921 //
922 // this is 44 bytes long
923 //
924 #define SD_SIZE (sizeof(struct stat_data))
925 #define SD_V2_SIZE              SD_SIZE
926 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
927 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
928 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
929 /* sd_reserved */
930 /* set_sd_reserved */
931 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
932 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
933 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
934 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
935 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
936 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
937 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
938 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
939 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
940 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
941 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
942 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
943 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
944 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
945 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
946 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
947 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
948 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
949 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
950 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
951 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
952 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
953 
954 
955 /***************************************************************************/
956 /*                      DIRECTORY STRUCTURE                                */
957 /***************************************************************************/
958 /*
959    Picture represents the structure of directory items
960    ________________________________________________
961    |  Array of     |   |     |        |       |   |
962    | directory     |N-1| N-2 | ....   |   1st |0th|
963    | entry headers |   |     |        |       |   |
964    |_______________|___|_____|________|_______|___|
965                     <----   directory entries         ------>
966 
967  First directory item has k_offset component 1. We store "." and ".."
968  in one item, always, we never split "." and ".." into differing
969  items.  This makes, among other things, the code for removing
970  directories simpler. */
971 #define SD_OFFSET  0
972 #define SD_UNIQUENESS 0
973 #define DOT_OFFSET 1
974 #define DOT_DOT_OFFSET 2
975 #define DIRENTRY_UNIQUENESS 500
976 
977 /* */
978 #define FIRST_ITEM_OFFSET 1
979 
980 /*
981    Q: How to get key of object pointed to by entry from entry?
982 
983    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
984       of object, entry points to */
985 
986 /* NOT IMPLEMENTED:
987    Directory will someday contain stat data of object */
988 
989 
990 
991 struct reiserfs_de_head
992 {
993   __u32 deh_offset;		/* third component of the directory entry key */
994   __u32 deh_dir_id;		/* objectid of the parent directory of the object, that is referenced
995 					   by directory entry */
996   __u32 deh_objectid;		/* objectid of the object, that is referenced by directory entry */
997   __u16 deh_location;		/* offset of name in the whole item */
998   __u16 deh_state;		/* whether 1) entry contains stat data (for future), and 2) whether
999 					   entry is hidden (unlinked) */
1000 } __attribute__ ((__packed__));
1001 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1002 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1003 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1004 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1005 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1006 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1007 
1008 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1009 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1010 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1011 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1012 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1013 
1014 /* empty directory contains two entries "." and ".." and their headers */
1015 #define EMPTY_DIR_SIZE \
1016 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1017 
1018 /* old format directories have this size when empty */
1019 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1020 
1021 #define DEH_Statdata 0			/* not used now */
1022 #define DEH_Visible 2
1023 
1024 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1025 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1026 #   define ADDR_UNALIGNED_BITS  (3)
1027 #endif
1028 
1029 /* These are only used to manipulate deh_state.
1030  * Because of this, we'll use the ext2_ bit routines,
1031  * since they are little endian */
1032 #ifdef ADDR_UNALIGNED_BITS
1033 
1034 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1035 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1036 
1037 #   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1038 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1039 #   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1040 
1041 #else
1042 
1043 #   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
1044 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
1045 #   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
1046 
1047 #endif
1048 
1049 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1050 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1051 #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1052 #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1053 
1054 #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1055 #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1056 #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1057 
1058 extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1059 				    __u32 par_dirid, __u32 par_objid);
1060 extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1061 				 __u32 par_dirid, __u32 par_objid);
1062 
1063 /* array of the entry headers */
1064  /* get item body */
1065 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1066 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1067 
1068 /* length of the directory entry in directory item. This define
1069    calculates length of i-th directory entry using directory entry
1070    locations from dir entry head. When it calculates length of 0-th
1071    directory entry, it uses length of whole item in place of entry
1072    location of the non-existent following entry in the calculation.
1073    See picture above.*/
1074 /*
1075 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1076 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1077 */
entry_length(const struct buffer_head * bh,const struct item_head * ih,int pos_in_item)1078 static inline int entry_length (const struct buffer_head * bh,
1079 								const struct item_head * ih, int pos_in_item)
1080 {
1081     struct reiserfs_de_head * deh;
1082 
1083     deh = B_I_DEH (bh, ih) + pos_in_item;
1084     if (pos_in_item)
1085 	return deh_location(deh-1) - deh_location(deh);
1086 
1087     return ih_item_len(ih) - deh_location(deh);
1088 }
1089 
1090 
1091 
1092 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1093 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1094 
1095 
1096 /* name by bh, ih and entry_num */
1097 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1098 
1099 // two entries per block (at least)
1100 #define REISERFS_MAX_NAME(block_size) 255
1101 
1102 
1103 /* this structure is used for operations on directory entries. It is
1104    not a disk structure. */
1105 /* When reiserfs_find_entry or search_by_entry_key find directory
1106    entry, they return filled reiserfs_dir_entry structure */
1107 struct reiserfs_dir_entry
1108 {
1109   struct buffer_head * de_bh;
1110   int de_item_num;
1111   struct item_head * de_ih;
1112   int de_entry_num;
1113   struct reiserfs_de_head * de_deh;
1114   int de_entrylen;
1115   int de_namelen;
1116   char * de_name;
1117   char * de_gen_number_bit_string;
1118 
1119   __u32 de_dir_id;
1120   __u32 de_objectid;
1121 
1122   struct cpu_key de_entry_key;
1123 };
1124 
1125 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1126 
1127 /* pointer to file name, stored in entry */
1128 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1129 
1130 /* length of name */
1131 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1132 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1133 
1134 
1135 
1136 /* hash value occupies bits from 7 up to 30 */
1137 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1138 /* generation number occupies 7 bits starting from 0 up to 6 */
1139 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1140 #define MAX_GENERATION_NUMBER  127
1141 
1142 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1143 
1144 
1145 /*
1146  * Picture represents an internal node of the reiserfs tree
1147  *  ______________________________________________________
1148  * |      |  Array of     |  Array of         |  Free     |
1149  * |block |    keys       |  pointers         | space     |
1150  * | head |      N        |      N+1          |           |
1151  * |______|_______________|___________________|___________|
1152  */
1153 
1154 /***************************************************************************/
1155 /*                      DISK CHILD                                         */
1156 /***************************************************************************/
1157 /* Disk child pointer: The pointer from an internal node of the tree
1158    to a node that is on disk. */
1159 struct disk_child {
1160   __u32       dc_block_number;              /* Disk child's block number. */
1161   __u16       dc_size;		            /* Disk child's used space.   */
1162   __u16       dc_reserved;
1163 };
1164 
1165 #define DC_SIZE (sizeof(struct disk_child))
1166 #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1167 #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1168 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1169 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1170 
1171 /* Get disk child by buffer header and position in the tree node. */
1172 #define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1173 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1174 
1175 /* Get disk child number by buffer header and position in the tree node. */
1176 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1177 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1178 
1179  /* maximal value of field child_size in structure disk_child */
1180  /* child size is the combined size of all items and their headers */
1181 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1182 
1183 /* amount of used space in buffer (not including block head) */
1184 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1185 
1186 /* max and min number of keys in internal node */
1187 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1188 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1189 
1190 /***************************************************************************/
1191 /*                      PATH STRUCTURES AND DEFINES                        */
1192 /***************************************************************************/
1193 
1194 
1195 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1196    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1197    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1198    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1199    position of the block_number of the next node if it is looking through an internal node.  If it
1200    is looking through a leaf node bin_search will find the position of the item which has key either
1201    equal to given key, or which is the maximal key less than the given key. */
1202 
1203 struct  path_element  {
1204   struct buffer_head *	pe_buffer;    /* Pointer to the buffer at the path in the tree. */
1205   int         		pe_position;  /* Position in the tree node which is placed in the */
1206                                       /* buffer above.                                  */
1207 };
1208 
1209 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1210 #define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1211 #define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
1212 
1213 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1214 #define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1215 
1216 
1217 
1218 /* We need to keep track of who the ancestors of nodes are.  When we
1219    perform a search we record which nodes were visited while
1220    descending the tree looking for the node we searched for. This list
1221    of nodes is called the path.  This information is used while
1222    performing balancing.  Note that this path information may become
1223    invalid, and this means we must check it when using it to see if it
1224    is still valid. You'll need to read search_by_key and the comments
1225    in it, especially about decrement_counters_in_path(), to understand
1226    this structure.
1227 
1228 Paths make the code so much harder to work with and debug.... An
1229 enormous number of bugs are due to them, and trying to write or modify
1230 code that uses them just makes my head hurt.  They are based on an
1231 excessive effort to avoid disturbing the precious VFS code.:-( The
1232 gods only know how we are going to SMP the code that uses them.
1233 znodes are the way! */
1234 
1235 
1236 struct  path {
1237   int                   path_length;                      	/* Length of the array above.   */
1238   struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1239   int			pos_in_item;
1240 };
1241 
1242 #define pos_in_item(path) ((path)->pos_in_item)
1243 
1244 #define INITIALIZE_PATH(var) \
1245 struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, }
1246 
1247 /* Get path element by path and path position. */
1248 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1249 
1250 /* Get buffer header at the path by path and path position. */
1251 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1252 
1253 /* Get position in the element at the path by path and path position. */
1254 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1255 
1256 
1257 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1258 				/* you know, to the person who didn't
1259                                    write this the macro name does not
1260                                    at first suggest what it does.
1261                                    Maybe POSITION_FROM_PATH_END? Or
1262                                    maybe we should just focus on
1263                                    dumping paths... -Hans */
1264 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1265 
1266 
1267 #define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1268 
1269 /* in do_balance leaf has h == 0 in contrast with path structure,
1270    where root has level == 0. That is why we need these defines */
1271 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h))	/* tb->S[h] */
1272 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)			/* tb->F[h] or tb->S[0]->b_parent */
1273 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1274 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)		/* tb->S[h]->b_item_order */
1275 
1276 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1277 
1278 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1279 #define get_ih(path) PATH_PITEM_HEAD(path)
1280 #define get_item_pos(path) PATH_LAST_POSITION(path)
1281 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1282 #define item_moved(ih,path) comp_items(ih, path)
1283 #define path_changed(ih,path) comp_items (ih, path)
1284 
1285 
1286 /***************************************************************************/
1287 /*                       MISC                                              */
1288 /***************************************************************************/
1289 
1290 /* Size of pointer to the unformatted node. */
1291 #define UNFM_P_SIZE (sizeof(unp_t))
1292 #define UNFM_P_SHIFT 2
1293 
1294 // in in-core inode key is stored on le form
1295 #define INODE_PKEY(inode) ((struct key *)((inode)->u.reiserfs_i.i_key))
1296 
1297 #define MAX_UL_INT 0xffffffff
1298 #define MAX_INT    0x7ffffff
1299 #define MAX_US_INT 0xffff
1300 
1301 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1302 #define U32_MAX (~(__u32)0)
1303 
max_reiserfs_offset(const struct inode * inode)1304 static inline loff_t max_reiserfs_offset (const struct inode * inode)
1305 {
1306     if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1307 	return (loff_t)U32_MAX;
1308 
1309     return (loff_t)((~(__u64)0) >> 4);
1310 }
1311 
1312 
1313 /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1314 #define MAX_KEY_OBJECTID	MAX_UL_INT
1315 
1316 
1317 #define MAX_B_NUM  MAX_UL_INT
1318 #define MAX_FC_NUM MAX_US_INT
1319 
1320 
1321 /* the purpose is to detect overflow of an unsigned short */
1322 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1323 
1324 
1325 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1326 #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode	*/
1327 #define REISERFS_USER_MEM		1	/* reiserfs user memory mode		*/
1328 
1329 #define fs_generation(s) ((s)->u.reiserfs_sb.s_generation_counter)
1330 #define get_generation(s) atomic_read (&fs_generation(s))
1331 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1332 #define fs_changed(gen,s) (gen != get_generation (s))
1333 
1334 
1335 /***************************************************************************/
1336 /*                  FIXATE NODES                                           */
1337 /***************************************************************************/
1338 
1339 #define VI_TYPE_LEFT_MERGEABLE 1
1340 #define VI_TYPE_RIGHT_MERGEABLE 2
1341 
1342 /* To make any changes in the tree we always first find node, that
1343    contains item to be changed/deleted or place to insert a new
1344    item. We call this node S. To do balancing we need to decide what
1345    we will shift to left/right neighbor, or to a new node, where new
1346    item will be etc. To make this analysis simpler we build virtual
1347    node. Virtual node is an array of items, that will replace items of
1348    node S. (For instance if we are going to delete an item, virtual
1349    node does not contain it). Virtual node keeps information about
1350    item sizes and types, mergeability of first and last items, sizes
1351    of all entries in directory item. We use this array of items when
1352    calculating what we can shift to neighbors and how many nodes we
1353    have to have if we do not any shiftings, if we shift to left/right
1354    neighbor or to both. */
1355 struct virtual_item
1356 {
1357     int vi_index; // index in the array of item operations
1358     unsigned short vi_type;	// left/right mergeability
1359     unsigned short vi_item_len;           /* length of item that it will have after balancing */
1360     struct item_head * vi_ih;
1361     const char * vi_item;     // body of item (old or new)
1362     const void * vi_new_data; // 0 always but paste mode
1363     void * vi_uarea;    // item specific area
1364 };
1365 
1366 
1367 struct virtual_node
1368 {
1369   char * vn_free_ptr;		/* this is a pointer to the free space in the buffer */
1370   unsigned short vn_nr_item;	/* number of items in virtual node */
1371   short vn_size;        	/* size of node , that node would have if it has unlimited size and no balancing is performed */
1372   short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
1373   short vn_affected_item_num;
1374   short vn_pos_in_item;
1375   struct item_head * vn_ins_ih;	/* item header of inserted item, 0 for other modes */
1376   const void * vn_data;
1377   struct virtual_item * vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
1378 };
1379 
1380 /* used by directory items when creating virtual nodes */
1381 struct direntry_uarea {
1382     int flags;
1383     __u16 entry_count;
1384     __u16 entry_sizes[1];
1385 } __attribute__ ((__packed__)) ;
1386 
1387 
1388 /***************************************************************************/
1389 /*                  TREE BALANCE                                           */
1390 /***************************************************************************/
1391 
1392 /* This temporary structure is used in tree balance algorithms, and
1393    constructed as we go to the extent that its various parts are
1394    needed.  It contains arrays of nodes that can potentially be
1395    involved in the balancing of node S, and parameters that define how
1396    each of the nodes must be balanced.  Note that in these algorithms
1397    for balancing the worst case is to need to balance the current node
1398    S and the left and right neighbors and all of their parents plus
1399    create a new node.  We implement S1 balancing for the leaf nodes
1400    and S0 balancing for the internal nodes (S1 and S0 are defined in
1401    our papers.)*/
1402 
1403 #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
1404 
1405 /* maximum number of FEB blocknrs on a single level */
1406 #define MAX_AMOUNT_NEEDED 2
1407 
1408 /* someday somebody will prefix every field in this struct with tb_ */
1409 struct tree_balance
1410 {
1411   int tb_mode;
1412   int need_balance_dirty;
1413   struct super_block * tb_sb;
1414   struct reiserfs_transaction_handle *transaction_handle ;
1415   struct path * tb_path;
1416   struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
1417   struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
1418   struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
1419   struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
1420   struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
1421   struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */
1422 
1423   struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1424 					     cur_blknum. */
1425   struct buffer_head * used[MAX_FEB_SIZE];
1426   struct buffer_head * thrown[MAX_FEB_SIZE];
1427   int lnum[MAX_HEIGHT];	/* array of number of items which must be
1428 			   shifted to the left in order to balance the
1429 			   current node; for leaves includes item that
1430 			   will be partially shifted; for internal
1431 			   nodes, it is the number of child pointers
1432 			   rather than items. It includes the new item
1433 			   being created. The code sometimes subtracts
1434 			   one to get the number of wholly shifted
1435 			   items for other purposes. */
1436   int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
1437   int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
1438 					       S[h] to its item number within the node CFL[h] */
1439   int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
1440   int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
1441 					       S[h]. A negative value means removing.  */
1442   int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
1443 					       balancing on the level h of the tree.  If 0 then S is
1444 					       being deleted, if 1 then S is remaining and no new nodes
1445 					       are being created, if 2 or 3 then 1 or 2 new nodes is
1446 					       being created */
1447 
1448   /* fields that are used only for balancing leaves of the tree */
1449   int cur_blknum;	/* number of empty blocks having been already allocated			*/
1450   int s0num;             /* number of items that fall into left most  node when S[0] splits	*/
1451   int s1num;             /* number of items that fall into first  new node when S[0] splits	*/
1452   int s2num;             /* number of items that fall into second new node when S[0] splits	*/
1453   int lbytes;            /* number of bytes which can flow to the left neighbor from the	left	*/
1454   /* most liquid item that cannot be shifted from S[0] entirely		*/
1455   /* if -1 then nothing will be partially shifted */
1456   int rbytes;            /* number of bytes which will flow to the right neighbor from the right	*/
1457   /* most liquid item that cannot be shifted from S[0] entirely		*/
1458   /* if -1 then nothing will be partially shifted                           */
1459   int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits	*/
1460             			/* note: if S[0] splits into 3 nodes, then items do not need to be cut	*/
1461   int s2bytes;
1462   struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1463   char * vn_buf;		/* kmalloced memory. Used to create
1464 				   virtual node and keep map of
1465 				   dirtied bitmap blocks */
1466   int vn_buf_size;		/* size of the vn_buf */
1467   struct virtual_node * tb_vn;	/* VN starts after bitmap of bitmap blocks */
1468 
1469   int fs_gen;                  /* saved value of `reiserfs_generation' counter
1470 			          see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1471 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1472   struct key  key;	      /* key pointer, to pass to block allocator or
1473 				 another low-level subsystem */
1474 #endif
1475 } ;
1476 
1477 /* These are modes of balancing */
1478 
1479 /* When inserting an item. */
1480 #define M_INSERT	'i'
1481 /* When inserting into (directories only) or appending onto an already
1482    existant item. */
1483 #define M_PASTE		'p'
1484 /* When deleting an item. */
1485 #define M_DELETE	'd'
1486 /* When truncating an item or removing an entry from a (directory) item. */
1487 #define M_CUT 		'c'
1488 
1489 /* used when balancing on leaf level skipped (in reiserfsck) */
1490 #define M_INTERNAL	'n'
1491 
1492 /* When further balancing is not needed, then do_balance does not need
1493    to be called. */
1494 #define M_SKIP_BALANCING 		's'
1495 #define M_CONVERT	'v'
1496 
1497 /* modes of leaf_move_items */
1498 #define LEAF_FROM_S_TO_L 0
1499 #define LEAF_FROM_S_TO_R 1
1500 #define LEAF_FROM_R_TO_L 2
1501 #define LEAF_FROM_L_TO_R 3
1502 #define LEAF_FROM_S_TO_SNEW 4
1503 
1504 #define FIRST_TO_LAST 0
1505 #define LAST_TO_FIRST 1
1506 
1507 /* used in do_balance for passing parent of node information that has
1508    been gotten from tb struct */
1509 struct buffer_info {
1510     struct tree_balance * tb;
1511     struct buffer_head * bi_bh;
1512     struct buffer_head * bi_parent;
1513     int bi_position;
1514 };
1515 
1516 
1517 /* there are 4 types of items: stat data, directory item, indirect, direct.
1518 +-------------------+------------+--------------+------------+
1519 |	            |  k_offset  | k_uniqueness | mergeable? |
1520 +-------------------+------------+--------------+------------+
1521 |     stat data     |	0        |      0       |   no       |
1522 +-------------------+------------+--------------+------------+
1523 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1524 | non 1st directory | hash value |              |   yes      |
1525 |     item          |            |              |            |
1526 +-------------------+------------+--------------+------------+
1527 | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1528 +-------------------+------------+--------------+------------+
1529 | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1530 +-------------------+------------+--------------+------------+
1531 */
1532 
1533 struct item_operations {
1534     int (*bytes_number) (struct item_head * ih, int block_size);
1535     void (*decrement_key) (struct cpu_key *);
1536     int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1537     void (*print_item) (struct item_head *, char * item);
1538     void (*check_item) (struct item_head *, char * item);
1539 
1540     int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1541 		      int is_affected, int insert_size);
1542     int (*check_left) (struct virtual_item * vi, int free,
1543 			    int start_skip, int end_skip);
1544     int (*check_right) (struct virtual_item * vi, int free);
1545     int (*part_size) (struct virtual_item * vi, int from, int to);
1546     int (*unit_num) (struct virtual_item * vi);
1547     void (*print_vi) (struct virtual_item * vi);
1548 };
1549 
1550 
1551 extern struct item_operations stat_data_ops, indirect_ops, direct_ops,
1552   direntry_ops;
1553 extern struct item_operations * item_ops [TYPE_ANY + 1];
1554 
1555 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1556 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1557 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1558 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1559 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1560 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1561 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1562 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1563 #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
1564 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1565 
1566 
1567 
1568 
1569 
1570 #define COMP_KEYS comp_keys
1571 #define COMP_SHORT_KEYS comp_short_keys
1572 /*#define keys_of_same_object comp_short_keys*/
1573 
1574 /* number of blocks pointed to by the indirect item */
1575 #define I_UNFM_NUM(p_s_ih)	( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1576 
1577 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1578 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1579 
1580 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1581 
1582 
1583 /* get the item header */
1584 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1585 
1586 /* get key */
1587 #define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1588 
1589 /* get the key */
1590 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1591 
1592 /* get item body */
1593 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1594 
1595 /* get the stat data by the buffer header and the item order */
1596 #define B_N_STAT_DATA(bh,nr) \
1597 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1598 
1599     /* following defines use reiserfs buffer header and item header */
1600 
1601 /* get stat-data */
1602 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1603 
1604 // this is 3976 for size==4096
1605 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1606 
1607 /* indirect items consist of entries which contain blocknrs, pos
1608    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1609    blocknr contained by the entry pos points to */
1610 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1611 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1612 
1613 struct reiserfs_iget4_args {
1614     __u32 objectid ;
1615 } ;
1616 
1617 /***************************************************************************/
1618 /*                    FUNCTION DECLARATIONS                                */
1619 /***************************************************************************/
1620 
1621 /*#ifdef __KERNEL__*/
1622 
1623 /* journal.c see journal.c for all the comments here */
1624 
1625 #define JOURNAL_TRANS_HALF 1018   /* must be correct to keep the desc and commit structs at 4k */
1626 
1627 
1628 /* first block written in a commit.  */
1629 struct reiserfs_journal_desc {
1630   __u32 j_trans_id ;			/* id of commit */
1631   __u32 j_len ;			/* length of commit. len +1 is the commit block */
1632   __u32 j_mount_id ;				/* mount id of this trans*/
1633   __u32 j_realblock[JOURNAL_TRANS_HALF] ; /* real locations for each block */
1634   char j_magic[12] ;
1635 } ;
1636 
1637 /* last block written in a commit */
1638 struct reiserfs_journal_commit {
1639   __u32 j_trans_id ;			/* must match j_trans_id from the desc block */
1640   __u32 j_len ;			/* ditto */
1641   __u32 j_realblock[JOURNAL_TRANS_HALF] ; /* real locations for each block */
1642   char j_digest[16] ;			/* md5 sum of all the blocks involved, including desc and commit. not used, kill it */
1643 } ;
1644 
1645 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1646 ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1647 ** and this transaction does not need to be replayed.
1648 */
1649 struct reiserfs_journal_header {
1650   __u32 j_last_flush_trans_id ;		/* id of last fully flushed transaction */
1651   __u32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
1652   __u32 j_mount_id ;
1653   /* 12 */ struct journal_params jh_journal;
1654 } ;
1655 
1656 extern task_queue reiserfs_commit_thread_tq ;
1657 extern wait_queue_head_t reiserfs_commit_thread_wait ;
1658 
1659 /* biggest tunable defines are right here */
1660 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1661 #define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
1662 #define JOURNAL_TRANS_MIN_DEFAULT 256
1663 #define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1664 #define JOURNAL_MIN_RATIO 2
1665 #define JOURNAL_MAX_COMMIT_AGE 30
1666 #define JOURNAL_MAX_TRANS_AGE 30
1667 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1668 
1669 /* both of these can be as low as 1, or as high as you want.  The min is the
1670 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1671 ** as needed, and released when transactions are committed.  On release, if
1672 ** the current number of nodes is > max, the node is freed, otherwise,
1673 ** it is put on a free list for faster use later.
1674 */
1675 #define REISERFS_MIN_BITMAP_NODES 10
1676 #define REISERFS_MAX_BITMAP_NODES 100
1677 
1678 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1679 #define JBH_HASH_MASK 8191
1680 
1681 /* After several hours of tedious analysis, the following hash
1682  * function won.  Do not mess with it... -DaveM
1683  */
1684 /* The two definitions below were borrowed from fs/buffer.c file of Linux kernel
1685  * sources and are not licensed by Namesys to its non-GPL license customers */
1686 #define _jhashfn(dev,block)	\
1687 	((((dev)<<(JBH_HASH_SHIFT - 6)) ^ ((dev)<<(JBH_HASH_SHIFT - 9))) ^ \
1688 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1689 #define journal_hash(t,dev,block) ((t)[_jhashfn((dev),(block)) & JBH_HASH_MASK])
1690 
1691 /* finds n'th buffer with 0 being the start of this commit.  Needs to go away, j_ap_blocks has changed
1692 ** since I created this.  One chunk of code in journal.c needs changing before deleting it
1693 */
1694 #define JOURNAL_BUFFER(j,n) ((j)->j_ap_blocks[((j)->j_start + (n)) % JOURNAL_BLOCK_COUNT])
1695 
1696 void reiserfs_commit_for_inode(struct inode *) ;
1697 void reiserfs_commit_for_tail(struct inode *) ;
1698 void reiserfs_update_inode_transaction(struct inode *) ;
1699 void reiserfs_update_tail_transaction(struct inode *) ;
1700 void reiserfs_wait_on_write_block(struct super_block *s) ;
1701 void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1702 void reiserfs_allow_writes(struct super_block *s) ;
1703 void reiserfs_check_lock_depth(char *caller) ;
1704 void reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1705 void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1706 struct buffer_head  * journal_bread (struct super_block *s, int block);
1707 struct buffer_head  * journal_getblk (struct super_block *s, int block);
1708 struct buffer_head  * journal_get_hash_table (struct super_block *s, int block);
1709 int journal_init(struct super_block *, const char * j_dev_name, int old_format) ;
1710 int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1711 int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1712 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1713 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1714 int journal_mark_dirty_nolog(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1715 int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, unsigned long blocknr) ;
1716 int push_journal_writer(char *w) ;
1717 int pop_journal_writer(int windex) ;
1718 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1719 int reiserfs_in_journal(struct super_block *p_s_sb, kdev_t dev, int bmap_nr, int bit_nr, int size, int searchall, unsigned int *next) ;
1720 int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1721 struct super_block *reiserfs_get_super(kdev_t dev) ;
1722 void flush_async_commits(struct super_block *p_s_sb) ;
1723 
1724 int buffer_journaled(const struct buffer_head *bh) ;
1725 int mark_buffer_journal_new(struct buffer_head *bh) ;
1726 int reiserfs_sync_all_buffers(kdev_t dev, int wait) ;
1727 int reiserfs_sync_buffers(kdev_t dev, int wait) ;
1728 int reiserfs_add_page_to_flush_list(struct reiserfs_transaction_handle *,
1729                                     struct inode *, struct buffer_head *) ;
1730 int reiserfs_remove_page_from_flush_list(struct reiserfs_transaction_handle *,
1731                                          struct inode *) ;
1732 
1733 int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1734 
1735 				/* why is this kerplunked right here? */
reiserfs_buffer_prepared(const struct buffer_head * bh)1736 static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1737   if (bh && test_bit(BH_JPrepared, &( (struct buffer_head *)bh)->b_state))
1738     return 1 ;
1739   else
1740     return 0 ;
1741 }
1742 
1743 /* buffer was journaled, waiting to get to disk */
buffer_journal_dirty(const struct buffer_head * bh)1744 static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1745   if (bh)
1746     return test_bit(BH_JDirty_wait, &( (struct buffer_head *)bh)->b_state) ;
1747   else
1748     return 0 ;
1749 }
mark_buffer_notjournal_dirty(struct buffer_head * bh)1750 static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1751   if (bh)
1752     clear_bit(BH_JDirty_wait, &bh->b_state) ;
1753   return 0 ;
1754 }
mark_buffer_notjournal_new(struct buffer_head * bh)1755 static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1756   if (bh) {
1757     clear_bit(BH_JNew, &bh->b_state) ;
1758   }
1759   return 0 ;
1760 }
1761 
1762 void add_save_link (struct reiserfs_transaction_handle * th,
1763 					struct inode * inode, int truncate);
1764 void remove_save_link (struct inode * inode, int truncate);
1765 
1766 /* objectid.c */
1767 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1768 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1769 int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1770 
1771 /* stree.c */
1772 int B_IS_IN_TREE(const struct buffer_head *);
1773 extern inline void copy_short_key (void * to, const void * from);
1774 extern void copy_item_head(struct item_head * p_v_to,
1775 								  const struct item_head * p_v_from);
1776 
1777 // first key is in cpu form, second - le
1778 extern int comp_keys (const struct key * le_key,
1779 			     const struct cpu_key * cpu_key);
1780 extern int  comp_short_keys (const struct key * le_key,
1781 				    const struct cpu_key * cpu_key);
1782 extern void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1783 
1784 // both are cpu keys
1785 extern  int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1786 extern int comp_short_cpu_keys (const struct cpu_key *,
1787 				       const struct cpu_key *);
1788 extern void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1789 
1790 // both are in le form
1791 extern int comp_le_keys (const struct key *, const struct key *);
1792 extern int comp_short_le_keys (const struct key *, const struct key *);
1793 
1794 //
1795 // get key version from on disk key - kludge
1796 //
le_key_version(const struct key * key)1797 static inline int le_key_version (const struct key * key)
1798 {
1799     int type;
1800 
1801     type = offset_v2_k_type( &(key->u.k_offset_v2));
1802     if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1803 	return KEY_FORMAT_3_5;
1804 
1805     return KEY_FORMAT_3_6;
1806 
1807 }
1808 
1809 
copy_key(struct key * to,const struct key * from)1810 static inline void copy_key (struct key *to, const struct key *from)
1811 {
1812     memcpy (to, from, KEY_SIZE);
1813 }
1814 
1815 
1816 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1817 const struct key * get_rkey (const struct path * p_s_chk_path,
1818 							 const struct super_block  * p_s_sb);
1819 inline int bin_search (const void * p_v_key, const void * p_v_base,
1820 					   int p_n_num, int p_n_width, int * p_n_pos);
1821 int search_by_key (struct super_block *, const struct cpu_key *,
1822 				   struct path *, int);
1823 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1824 int search_for_position_by_key (struct super_block * p_s_sb,
1825 								const struct cpu_key * p_s_cpu_key,
1826 								struct path * p_s_search_path);
1827 extern void decrement_bcount (struct buffer_head * p_s_bh);
1828 void decrement_counters_in_path (struct path * p_s_search_path);
1829 void pathrelse (struct path * p_s_search_path);
1830 int reiserfs_check_path(struct path *p) ;
1831 void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1832 
1833 int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1834 			  struct path * path,
1835 			  const struct cpu_key * key,
1836 			  struct item_head * ih, const char * body);
1837 
1838 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1839 			      struct path * path,
1840 			      const struct cpu_key * key,
1841 			      const char * body, int paste_size);
1842 
1843 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1844 			    struct path * path,
1845 			    struct cpu_key * key,
1846 			    struct inode * inode,
1847 			    struct page *page,
1848 			    loff_t new_file_size);
1849 
1850 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1851 			  struct path * path,
1852 			  const struct cpu_key * key,
1853 			  struct inode * inode,
1854 			  struct buffer_head  * p_s_un_bh);
1855 
1856 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1857                                                                 struct key * key);
1858 void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1859 void reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1860 			   struct  inode * p_s_inode, struct page *,
1861 			   int update_timestamps);
1862 
1863 #define block_size(inode) ((inode)->i_sb->s_blocksize)
1864 #define file_size(inode) ((inode)->i_size)
1865 #define tail_size(inode) (file_size (inode) & (block_size (inode) - 1))
1866 
1867 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1868 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), block_size (inode)):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), block_size (inode)):0 )
1869 
1870 void padd_item (char * item, int total_length, int length);
1871 
1872 /* inode.c */
1873 
1874 void reiserfs_read_inode (struct inode * inode) ;
1875 void reiserfs_read_inode2(struct inode * inode, void *p) ;
1876 void reiserfs_delete_inode (struct inode * inode);
1877 void reiserfs_write_inode (struct inode * inode, int) ;
1878 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, __u32 *data,
1879 									 int len, int fhtype, int parent);
1880 int reiserfs_dentry_to_fh(struct dentry *dentry, __u32 *data, int *lenp, int need_parent);
1881 
1882 int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1883 void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1884 void make_cpu_key (struct cpu_key * cpu_key, const struct inode * inode, loff_t offset,
1885 		   int type, int key_length);
1886 void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1887 			int version,
1888 			loff_t offset, int type, int length, int entry_count);
1889 struct inode * reiserfs_iget (struct super_block * s,
1890 			      const struct cpu_key * key);
1891 
1892 int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1893                                struct inode * dir, int mode,
1894                                const char * symname,
1895                                int i_size,
1896                                struct dentry *dentry,
1897                                struct inode *inode);
1898 int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode);
1899 void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode);
1900 
1901 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1902 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1903 
1904 /* namei.c */
1905 void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1906 int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1907 			 struct path * path,
1908 			 struct reiserfs_dir_entry * de);
1909 /* procfs.c */
1910 
1911 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1912 #define REISERFS_PROC_INFO
1913 #else
1914 #undef REISERFS_PROC_INFO
1915 #endif
1916 
1917 int reiserfs_proc_info_init( struct super_block *sb );
1918 int reiserfs_proc_info_done( struct super_block *sb );
1919 struct proc_dir_entry *reiserfs_proc_register( struct super_block *sb,
1920 											   char *name, read_proc_t *func );
1921 void reiserfs_proc_unregister( struct super_block *sb, const char *name );
1922 struct proc_dir_entry *reiserfs_proc_register_global( char *name,
1923 													  read_proc_t *func );
1924 void reiserfs_proc_unregister_global( const char *name );
1925 int reiserfs_proc_info_global_init( void );
1926 int reiserfs_proc_info_global_done( void );
1927 int reiserfs_proc_tail( int len, char *buffer, char **start,
1928 						off_t offset, int count, int *eof );
1929 int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1930 									 int count, int *eof, void *data );
1931 int reiserfs_version_in_proc( char *buffer, char **start, off_t offset,
1932 							  int count, int *eof, void *data );
1933 int reiserfs_super_in_proc( char *buffer, char **start, off_t offset,
1934 							int count, int *eof, void *data );
1935 int reiserfs_per_level_in_proc( char *buffer, char **start, off_t offset,
1936 								int count, int *eof, void *data );
1937 int reiserfs_bitmap_in_proc( char *buffer, char **start, off_t offset,
1938 								int count, int *eof, void *data );
1939 int reiserfs_on_disk_super_in_proc( char *buffer, char **start, off_t offset,
1940 									int count, int *eof, void *data );
1941 int reiserfs_oidmap_in_proc( char *buffer, char **start, off_t offset,
1942 							 int count, int *eof, void *data );
1943 int reiserfs_journal_in_proc( char *buffer, char **start, off_t offset,
1944 							  int count, int *eof, void *data );
1945 
1946 #if defined( REISERFS_PROC_INFO )
1947 
1948 #define PROC_EXP( e )   e
1949 
1950 #define MAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
1951 #define __PINFO( sb ) ( sb ) -> u.reiserfs_sb.s_proc_info_data
1952 #define PROC_INFO_MAX( sb, field, value )								\
1953     __PINFO( sb ).field =												\
1954         MAX( ( sb ) -> u.reiserfs_sb.s_proc_info_data.field, value )
1955 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1956 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1957 #define PROC_INFO_BH_STAT( sb, bh, level )							\
1958     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
1959     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
1960     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1961 #else
1962 #define PROC_EXP( e )
1963 #define VOID_V ( ( void ) 0 )
1964 #define PROC_INFO_MAX( sb, field, value ) VOID_V
1965 #define PROC_INFO_INC( sb, field ) VOID_V
1966 #define PROC_INFO_ADD( sb, field, val ) VOID_V
1967 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1968 #endif
1969 
1970 /* dir.c */
1971 extern struct inode_operations reiserfs_dir_inode_operations;
1972 extern struct file_operations reiserfs_dir_operations;
1973 
1974 /* tail_conversion.c */
1975 int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
1976 int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
1977 void reiserfs_unmap_buffer(struct buffer_head *) ;
1978 
1979 
1980 /* file.c */
1981 extern struct inode_operations reiserfs_file_inode_operations;
1982 extern struct file_operations reiserfs_file_operations;
1983 extern struct address_space_operations reiserfs_address_space_operations ;
1984 int get_new_buffer (struct reiserfs_transaction_handle *th, struct buffer_head *,
1985 		    struct buffer_head **, struct path *);
1986 
1987 
1988 /* buffer2.c */
1989 struct buffer_head * reiserfs_getblk (kdev_t n_dev, int n_block, int n_size);
1990 void wait_buffer_until_released (const struct buffer_head * bh);
1991 struct buffer_head * reiserfs_bread (struct super_block *super, int n_block,
1992 				     int n_size);
1993 
1994 /* fix_nodes.c */
1995 #ifdef CONFIG_REISERFS_CHECK
1996 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
1997 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
1998 #else
1999 #define reiserfs_kmalloc(x, y, z) kmalloc(x, y)
2000 #define reiserfs_kfree(x, y, z) kfree(x)
2001 #endif
2002 
2003 int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
2004 	       struct item_head * p_s_ins_ih, const void *);
2005 void unfix_nodes (struct tree_balance *);
2006 void free_buffers_in_tb (struct tree_balance * p_s_tb);
2007 
2008 
2009 /* prints.c */
2010 void reiserfs_panic (struct super_block * s, const char * fmt, ...)
2011 __attribute__ ( ( noreturn ) );/* __attribute__( ( format ( printf, 2, 3 ) ) ) */
2012 void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2013 /* __attribute__( ( format ( printf, 3, 4 ) ) ); */
2014 void print_virtual_node (struct virtual_node * vn);
2015 void print_indirect_item (struct buffer_head * bh, int item_num);
2016 void store_print_tb (struct tree_balance * tb);
2017 void print_cur_tb (char * mes);
2018 void print_de (struct reiserfs_dir_entry * de);
2019 void print_bi (struct buffer_info * bi, char * mes);
2020 #define PRINT_LEAF_ITEMS 1   /* print all items */
2021 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2022 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2023 void print_block (struct buffer_head * bh, ...);
2024 void print_path (struct tree_balance * tb, struct path * path);
2025 void print_bmap (struct super_block * s, int silent);
2026 void print_bmap_block (int i, char * data, int size, int silent);
2027 /*void print_super_block (struct super_block * s, char * mes);*/
2028 void print_objectid_map (struct super_block * s);
2029 void print_block_head (struct buffer_head * bh, char * mes);
2030 void check_leaf (struct buffer_head * bh);
2031 void check_internal (struct buffer_head * bh);
2032 void print_statistics (struct super_block * s);
2033 char * reiserfs_hashname(int code);
2034 
2035 /* lbalance.c */
2036 int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2037 int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2038 int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2039 void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2040 void leaf_insert_into_buf (struct buffer_info * bi, int before,
2041                            struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2042 void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2043                            int pos_in_item, int paste_size, const char * body, int zeros_number);
2044 void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2045                            int cut_size);
2046 void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2047                          int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2048 /* ibalance.c */
2049 int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2050                       struct buffer_head **);
2051 
2052 /* do_balance.c */
2053 void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2054 					struct buffer_head * bh, int flag);
2055 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2056 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2057 
2058 void do_balance (struct tree_balance * tb, struct item_head * ih,
2059                  const char * body, int flag);
2060 void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2061 
2062 int get_left_neighbor_position (struct tree_balance * tb, int h);
2063 int get_right_neighbor_position (struct tree_balance * tb, int h);
2064 void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2065 void replace_lkey (struct tree_balance *, int, struct item_head *);
2066 void replace_rkey (struct tree_balance *, int, struct item_head *);
2067 void make_empty_node (struct buffer_info *);
2068 struct buffer_head * get_FEB (struct tree_balance *);
2069 
2070 /* bitmap.c */
2071 
2072 /* structure contains hints for block allocator, and it is a container for
2073  * arguments, such as node, search path, transaction_handle, etc. */
2074  struct __reiserfs_blocknr_hint {
2075      struct inode * inode;		/* inode passed to allocator, if we allocate unf. nodes */
2076      long block;			/* file offset, in blocks */
2077      struct key key;
2078      struct path * path;		/* search path, used by allocator to deternine search_start by
2079 					 * various ways */
2080      struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2081 					       * bitmap blocks changes  */
2082      b_blocknr_t beg, end;
2083      b_blocknr_t search_start;		/* a field used to transfer search start value (block number)
2084 					 * between different block allocator procedures
2085 					 * (determine_search_start() and others) */
2086     int prealloc_size;			/* is set in determine_prealloc_size() function, used by underlayed
2087 					 * function that do actual allocation */
2088 
2089     int formatted_node:1;		/* the allocator uses different polices for getting disk space for
2090 					 * formatted/unformatted blocks with/without preallocation */
2091     int preallocate:1;
2092 };
2093 
2094 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2095 
2096 int reiserfs_parse_alloc_options (struct super_block *, char *);
2097 int is_reusable (struct super_block * s, unsigned long block, int bit_value);
2098 void reiserfs_free_block (struct reiserfs_transaction_handle *th, unsigned long);
2099 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
reiserfs_new_form_blocknrs(struct tree_balance * tb,b_blocknr_t * new_blocknrs,int amount_needed)2100 extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2101 					      b_blocknr_t *new_blocknrs, int amount_needed)
2102 {
2103     reiserfs_blocknr_hint_t hint = {
2104 	th:tb->transaction_handle,
2105 	path: tb->tb_path,
2106 	inode: NULL,
2107 	key: tb->key,
2108 	block: 0,
2109 	formatted_node:1
2110     };
2111     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2112 }
2113 
reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct path * path,long block)2114 extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2115 					     struct inode *inode,
2116 					     b_blocknr_t *new_blocknrs,
2117 					     struct path * path, long block)
2118 {
2119     reiserfs_blocknr_hint_t hint = {
2120 	th: th,
2121 	path: path,
2122 	inode: inode,
2123 	block: block,
2124 	formatted_node: 0,
2125 	preallocate: 0
2126     };
2127     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2128 }
2129 
2130 #ifdef REISERFS_PREALLOCATE
reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct path * path,long block)2131 extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2132 					     struct inode * inode,
2133 					     b_blocknr_t *new_blocknrs,
2134 					     struct path * path, long block)
2135 {
2136     reiserfs_blocknr_hint_t hint = {
2137 	th: th,
2138 	path: path,
2139 	inode: inode,
2140 	block: block,
2141 	formatted_node: 0,
2142 	preallocate: 1
2143     };
2144     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2145 }
2146 
2147 void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2148 				struct inode * inode);
2149 void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2150 #endif
2151 void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2152 void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2153 
2154 /* hashes.c */
2155 __u32 keyed_hash (const signed char *msg, int len);
2156 __u32 yura_hash (const signed char *msg, int len);
2157 __u32 r5_hash (const signed char *msg, int len);
2158 
2159 /* the ext2 bit routines adjust for big or little endian as
2160 ** appropriate for the arch, so in our laziness we use them rather
2161 ** than using the bit routines they call more directly.  These
2162 ** routines must be used when changing on disk bitmaps.  */
2163 #define reiserfs_test_and_set_le_bit   ext2_set_bit
2164 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2165 #define reiserfs_test_le_bit           ext2_test_bit
2166 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2167 
2168 /* sometimes reiserfs_truncate may require to allocate few new blocks
2169    to perform indirect2direct conversion. People probably used to
2170    think, that truncate should work without problems on a filesystem
2171    without free disk space. They may complain that they can not
2172    truncate due to lack of free disk space. This spare space allows us
2173    to not worry about it. 500 is probably too much, but it should be
2174    absolutely safe */
2175 #define SPARE_SPACE 500
2176 
2177 
2178 /* prototypes from ioctl.c */
2179 int reiserfs_ioctl (struct inode * inode, struct file * filp,
2180  		    unsigned int cmd, unsigned long arg);
2181 int reiserfs_unpack (struct inode * inode, struct file * filp);
2182 
2183 /* ioctl's command */
2184 #define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
2185 /* define following flags to be the same as in ext2, so that chattr(1),
2186    lsattr(1) will work with us. */
2187 #define REISERFS_IOC_GETFLAGS           EXT2_IOC_GETFLAGS
2188 #define REISERFS_IOC_SETFLAGS           EXT2_IOC_SETFLAGS
2189 #define REISERFS_IOC_GETVERSION 	EXT2_IOC_GETVERSION
2190 #define REISERFS_IOC_SETVERSION         EXT2_IOC_SETVERSION
2191 
2192 #endif /* _LINUX_REISER_FS_H */
2193 
2194 
2195