1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/local_lock.h>
24 #include <asm/page.h>
25 
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33 
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41 
42 enum migratetype {
43 	MIGRATE_UNMOVABLE,
44 	MIGRATE_MOVABLE,
45 	MIGRATE_RECLAIMABLE,
46 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
47 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48 #ifdef CONFIG_CMA
49 	/*
50 	 * MIGRATE_CMA migration type is designed to mimic the way
51 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
52 	 * from MIGRATE_CMA pageblocks and page allocator never
53 	 * implicitly change migration type of MIGRATE_CMA pageblock.
54 	 *
55 	 * The way to use it is to change migratetype of a range of
56 	 * pageblocks to MIGRATE_CMA which can be done by
57 	 * __free_pageblock_cma() function.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern const char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
is_migrate_movable(int mt)78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 /*
84  * Check whether a migratetype can be merged with another migratetype.
85  *
86  * It is only mergeable when it can fall back to other migratetypes for
87  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
88  */
migratetype_is_mergeable(int mt)89 static inline bool migratetype_is_mergeable(int mt)
90 {
91 	return mt < MIGRATE_PCPTYPES;
92 }
93 
94 #define for_each_migratetype_order(order, type) \
95 	for (order = 0; order < MAX_ORDER; order++) \
96 		for (type = 0; type < MIGRATE_TYPES; type++)
97 
98 extern int page_group_by_mobility_disabled;
99 
100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
101 
102 #define get_pageblock_migratetype(page)					\
103 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
104 
105 struct free_area {
106 	struct list_head	free_list[MIGRATE_TYPES];
107 	unsigned long		nr_free;
108 };
109 
get_page_from_free_area(struct free_area * area,int migratetype)110 static inline struct page *get_page_from_free_area(struct free_area *area,
111 					    int migratetype)
112 {
113 	return list_first_entry_or_null(&area->free_list[migratetype],
114 					struct page, lru);
115 }
116 
free_area_empty(struct free_area * area,int migratetype)117 static inline bool free_area_empty(struct free_area *area, int migratetype)
118 {
119 	return list_empty(&area->free_list[migratetype]);
120 }
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 	NR_VM_ZONE_STAT_ITEMS };
156 
157 enum node_stat_item {
158 	NR_LRU_BASE,
159 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
160 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
161 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
162 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
163 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
164 	NR_SLAB_RECLAIMABLE_B,
165 	NR_SLAB_UNRECLAIMABLE_B,
166 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
167 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
168 	WORKINGSET_NODES,
169 	WORKINGSET_REFAULT_BASE,
170 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
171 	WORKINGSET_REFAULT_FILE,
172 	WORKINGSET_ACTIVATE_BASE,
173 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
174 	WORKINGSET_ACTIVATE_FILE,
175 	WORKINGSET_RESTORE_BASE,
176 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
177 	WORKINGSET_RESTORE_FILE,
178 	WORKINGSET_NODERECLAIM,
179 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
180 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
181 			   only modified from process context */
182 	NR_FILE_PAGES,
183 	NR_FILE_DIRTY,
184 	NR_WRITEBACK,
185 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
186 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
187 	NR_SHMEM_THPS,
188 	NR_SHMEM_PMDMAPPED,
189 	NR_FILE_THPS,
190 	NR_FILE_PMDMAPPED,
191 	NR_ANON_THPS,
192 	NR_VMSCAN_WRITE,
193 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
194 	NR_DIRTIED,		/* page dirtyings since bootup */
195 	NR_WRITTEN,		/* page writings since bootup */
196 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
197 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
198 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
199 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
200 	NR_KERNEL_STACK_KB,	/* measured in KiB */
201 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
202 	NR_KERNEL_SCS_KB,	/* measured in KiB */
203 #endif
204 	NR_PAGETABLE,		/* used for pagetables */
205 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
206 #ifdef CONFIG_SWAP
207 	NR_SWAPCACHE,
208 #endif
209 #ifdef CONFIG_NUMA_BALANCING
210 	PGPROMOTE_SUCCESS,	/* promote successfully */
211 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
212 #endif
213 	NR_VM_NODE_STAT_ITEMS
214 };
215 
216 /*
217  * Returns true if the item should be printed in THPs (/proc/vmstat
218  * currently prints number of anon, file and shmem THPs. But the item
219  * is charged in pages).
220  */
vmstat_item_print_in_thp(enum node_stat_item item)221 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
222 {
223 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
224 		return false;
225 
226 	return item == NR_ANON_THPS ||
227 	       item == NR_FILE_THPS ||
228 	       item == NR_SHMEM_THPS ||
229 	       item == NR_SHMEM_PMDMAPPED ||
230 	       item == NR_FILE_PMDMAPPED;
231 }
232 
233 /*
234  * Returns true if the value is measured in bytes (most vmstat values are
235  * measured in pages). This defines the API part, the internal representation
236  * might be different.
237  */
vmstat_item_in_bytes(int idx)238 static __always_inline bool vmstat_item_in_bytes(int idx)
239 {
240 	/*
241 	 * Global and per-node slab counters track slab pages.
242 	 * It's expected that changes are multiples of PAGE_SIZE.
243 	 * Internally values are stored in pages.
244 	 *
245 	 * Per-memcg and per-lruvec counters track memory, consumed
246 	 * by individual slab objects. These counters are actually
247 	 * byte-precise.
248 	 */
249 	return (idx == NR_SLAB_RECLAIMABLE_B ||
250 		idx == NR_SLAB_UNRECLAIMABLE_B);
251 }
252 
253 /*
254  * We do arithmetic on the LRU lists in various places in the code,
255  * so it is important to keep the active lists LRU_ACTIVE higher in
256  * the array than the corresponding inactive lists, and to keep
257  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
258  *
259  * This has to be kept in sync with the statistics in zone_stat_item
260  * above and the descriptions in vmstat_text in mm/vmstat.c
261  */
262 #define LRU_BASE 0
263 #define LRU_ACTIVE 1
264 #define LRU_FILE 2
265 
266 enum lru_list {
267 	LRU_INACTIVE_ANON = LRU_BASE,
268 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
269 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
270 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
271 	LRU_UNEVICTABLE,
272 	NR_LRU_LISTS
273 };
274 
275 enum vmscan_throttle_state {
276 	VMSCAN_THROTTLE_WRITEBACK,
277 	VMSCAN_THROTTLE_ISOLATED,
278 	VMSCAN_THROTTLE_NOPROGRESS,
279 	VMSCAN_THROTTLE_CONGESTED,
280 	NR_VMSCAN_THROTTLE,
281 };
282 
283 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
284 
285 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
286 
is_file_lru(enum lru_list lru)287 static inline bool is_file_lru(enum lru_list lru)
288 {
289 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
290 }
291 
is_active_lru(enum lru_list lru)292 static inline bool is_active_lru(enum lru_list lru)
293 {
294 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
295 }
296 
297 #define WORKINGSET_ANON 0
298 #define WORKINGSET_FILE 1
299 #define ANON_AND_FILE 2
300 
301 enum lruvec_flags {
302 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
303 					 * backed by a congested BDI
304 					 */
305 };
306 
307 #endif /* !__GENERATING_BOUNDS_H */
308 
309 /*
310  * Evictable pages are divided into multiple generations. The youngest and the
311  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
312  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
313  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
314  * corresponding generation. The gen counter in folio->flags stores gen+1 while
315  * a page is on one of lrugen->lists[]. Otherwise it stores 0.
316  *
317  * A page is added to the youngest generation on faulting. The aging needs to
318  * check the accessed bit at least twice before handing this page over to the
319  * eviction. The first check takes care of the accessed bit set on the initial
320  * fault; the second check makes sure this page hasn't been used since then.
321  * This process, AKA second chance, requires a minimum of two generations,
322  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
323  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
324  * rest of generations, if they exist, are considered inactive. See
325  * lru_gen_is_active().
326  *
327  * PG_active is always cleared while a page is on one of lrugen->lists[] so that
328  * the aging needs not to worry about it. And it's set again when a page
329  * considered active is isolated for non-reclaiming purposes, e.g., migration.
330  * See lru_gen_add_folio() and lru_gen_del_folio().
331  *
332  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
333  * number of categories of the active/inactive LRU when keeping track of
334  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
335  * in folio->flags.
336  */
337 #define MIN_NR_GENS		2U
338 #define MAX_NR_GENS		4U
339 
340 /*
341  * Each generation is divided into multiple tiers. A page accessed N times
342  * through file descriptors is in tier order_base_2(N). A page in the first tier
343  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
344  * tables or read ahead. A page in any other tier (N>1) is marked by
345  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
346  * supported without using additional bits in folio->flags.
347  *
348  * In contrast to moving across generations which requires the LRU lock, moving
349  * across tiers only involves atomic operations on folio->flags and therefore
350  * has a negligible cost in the buffered access path. In the eviction path,
351  * comparisons of refaulted/(evicted+protected) from the first tier and the
352  * rest infer whether pages accessed multiple times through file descriptors
353  * are statistically hot and thus worth protecting.
354  *
355  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
356  * number of categories of the active/inactive LRU when keeping track of
357  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
358  * folio->flags.
359  */
360 #define MAX_NR_TIERS		4U
361 
362 #ifndef __GENERATING_BOUNDS_H
363 
364 struct lruvec;
365 struct page_vma_mapped_walk;
366 
367 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
368 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
369 
370 #ifdef CONFIG_LRU_GEN
371 
372 enum {
373 	LRU_GEN_ANON,
374 	LRU_GEN_FILE,
375 };
376 
377 enum {
378 	LRU_GEN_CORE,
379 	LRU_GEN_MM_WALK,
380 	LRU_GEN_NONLEAF_YOUNG,
381 	NR_LRU_GEN_CAPS
382 };
383 
384 #define MIN_LRU_BATCH		BITS_PER_LONG
385 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
386 
387 /* whether to keep historical stats from evicted generations */
388 #ifdef CONFIG_LRU_GEN_STATS
389 #define NR_HIST_GENS		MAX_NR_GENS
390 #else
391 #define NR_HIST_GENS		1U
392 #endif
393 
394 /*
395  * The youngest generation number is stored in max_seq for both anon and file
396  * types as they are aged on an equal footing. The oldest generation numbers are
397  * stored in min_seq[] separately for anon and file types as clean file pages
398  * can be evicted regardless of swap constraints.
399  *
400  * Normally anon and file min_seq are in sync. But if swapping is constrained,
401  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
402  * min_seq behind.
403  *
404  * The number of pages in each generation is eventually consistent and therefore
405  * can be transiently negative when reset_batch_size() is pending.
406  */
407 struct lru_gen_struct {
408 	/* the aging increments the youngest generation number */
409 	unsigned long max_seq;
410 	/* the eviction increments the oldest generation numbers */
411 	unsigned long min_seq[ANON_AND_FILE];
412 	/* the birth time of each generation in jiffies */
413 	unsigned long timestamps[MAX_NR_GENS];
414 	/* the multi-gen LRU lists, lazily sorted on eviction */
415 	struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
416 	/* the multi-gen LRU sizes, eventually consistent */
417 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
418 	/* the exponential moving average of refaulted */
419 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
420 	/* the exponential moving average of evicted+protected */
421 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
422 	/* the first tier doesn't need protection, hence the minus one */
423 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
424 	/* can be modified without holding the LRU lock */
425 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
426 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
427 	/* whether the multi-gen LRU is enabled */
428 	bool enabled;
429 };
430 
431 enum {
432 	MM_LEAF_TOTAL,		/* total leaf entries */
433 	MM_LEAF_OLD,		/* old leaf entries */
434 	MM_LEAF_YOUNG,		/* young leaf entries */
435 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
436 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
437 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
438 	NR_MM_STATS
439 };
440 
441 /* double-buffering Bloom filters */
442 #define NR_BLOOM_FILTERS	2
443 
444 struct lru_gen_mm_state {
445 	/* set to max_seq after each iteration */
446 	unsigned long seq;
447 	/* where the current iteration continues (inclusive) */
448 	struct list_head *head;
449 	/* where the last iteration ended (exclusive) */
450 	struct list_head *tail;
451 	/* to wait for the last page table walker to finish */
452 	struct wait_queue_head wait;
453 	/* Bloom filters flip after each iteration */
454 	unsigned long *filters[NR_BLOOM_FILTERS];
455 	/* the mm stats for debugging */
456 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
457 	/* the number of concurrent page table walkers */
458 	int nr_walkers;
459 };
460 
461 struct lru_gen_mm_walk {
462 	/* the lruvec under reclaim */
463 	struct lruvec *lruvec;
464 	/* unstable max_seq from lru_gen_struct */
465 	unsigned long max_seq;
466 	/* the next address within an mm to scan */
467 	unsigned long next_addr;
468 	/* to batch promoted pages */
469 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
470 	/* to batch the mm stats */
471 	int mm_stats[NR_MM_STATS];
472 	/* total batched items */
473 	int batched;
474 	bool can_swap;
475 	bool force_scan;
476 };
477 
478 void lru_gen_init_lruvec(struct lruvec *lruvec);
479 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
480 
481 #ifdef CONFIG_MEMCG
482 void lru_gen_init_memcg(struct mem_cgroup *memcg);
483 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
484 #endif
485 
486 #else /* !CONFIG_LRU_GEN */
487 
lru_gen_init_lruvec(struct lruvec * lruvec)488 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
489 {
490 }
491 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)492 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
493 {
494 }
495 
496 #ifdef CONFIG_MEMCG
lru_gen_init_memcg(struct mem_cgroup * memcg)497 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
498 {
499 }
500 
lru_gen_exit_memcg(struct mem_cgroup * memcg)501 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
502 {
503 }
504 #endif
505 
506 #endif /* CONFIG_LRU_GEN */
507 
508 struct lruvec {
509 	struct list_head		lists[NR_LRU_LISTS];
510 	/* per lruvec lru_lock for memcg */
511 	spinlock_t			lru_lock;
512 	/*
513 	 * These track the cost of reclaiming one LRU - file or anon -
514 	 * over the other. As the observed cost of reclaiming one LRU
515 	 * increases, the reclaim scan balance tips toward the other.
516 	 */
517 	unsigned long			anon_cost;
518 	unsigned long			file_cost;
519 	/* Non-resident age, driven by LRU movement */
520 	atomic_long_t			nonresident_age;
521 	/* Refaults at the time of last reclaim cycle */
522 	unsigned long			refaults[ANON_AND_FILE];
523 	/* Various lruvec state flags (enum lruvec_flags) */
524 	unsigned long			flags;
525 #ifdef CONFIG_LRU_GEN
526 	/* evictable pages divided into generations */
527 	struct lru_gen_struct		lrugen;
528 	/* to concurrently iterate lru_gen_mm_list */
529 	struct lru_gen_mm_state		mm_state;
530 #endif
531 #ifdef CONFIG_MEMCG
532 	struct pglist_data *pgdat;
533 #endif
534 };
535 
536 /* Isolate unmapped pages */
537 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
538 /* Isolate for asynchronous migration */
539 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
540 /* Isolate unevictable pages */
541 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
542 
543 /* LRU Isolation modes. */
544 typedef unsigned __bitwise isolate_mode_t;
545 
546 enum zone_watermarks {
547 	WMARK_MIN,
548 	WMARK_LOW,
549 	WMARK_HIGH,
550 	WMARK_PROMO,
551 	NR_WMARK
552 };
553 
554 /*
555  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
556  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
557  * it should not contribute to serious fragmentation causing THP allocation
558  * failures.
559  */
560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
561 #define NR_PCP_THP 1
562 #else
563 #define NR_PCP_THP 0
564 #endif
565 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
566 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
567 
568 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
569 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
570 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
571 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
572 
573 /* Fields and list protected by pagesets local_lock in page_alloc.c */
574 struct per_cpu_pages {
575 	spinlock_t lock;	/* Protects lists field */
576 	int count;		/* number of pages in the list */
577 	int high;		/* high watermark, emptying needed */
578 	int batch;		/* chunk size for buddy add/remove */
579 	short free_factor;	/* batch scaling factor during free */
580 #ifdef CONFIG_NUMA
581 	short expire;		/* When 0, remote pagesets are drained */
582 #endif
583 
584 	/* Lists of pages, one per migrate type stored on the pcp-lists */
585 	struct list_head lists[NR_PCP_LISTS];
586 } ____cacheline_aligned_in_smp;
587 
588 struct per_cpu_zonestat {
589 #ifdef CONFIG_SMP
590 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
591 	s8 stat_threshold;
592 #endif
593 #ifdef CONFIG_NUMA
594 	/*
595 	 * Low priority inaccurate counters that are only folded
596 	 * on demand. Use a large type to avoid the overhead of
597 	 * folding during refresh_cpu_vm_stats.
598 	 */
599 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
600 #endif
601 };
602 
603 struct per_cpu_nodestat {
604 	s8 stat_threshold;
605 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
606 };
607 
608 #endif /* !__GENERATING_BOUNDS.H */
609 
610 enum zone_type {
611 	/*
612 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
613 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
614 	 * On architectures where this area covers the whole 32 bit address
615 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
616 	 * DMA addressing constraints. This distinction is important as a 32bit
617 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
618 	 * platforms may need both zones as they support peripherals with
619 	 * different DMA addressing limitations.
620 	 */
621 #ifdef CONFIG_ZONE_DMA
622 	ZONE_DMA,
623 #endif
624 #ifdef CONFIG_ZONE_DMA32
625 	ZONE_DMA32,
626 #endif
627 	/*
628 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
629 	 * performed on pages in ZONE_NORMAL if the DMA devices support
630 	 * transfers to all addressable memory.
631 	 */
632 	ZONE_NORMAL,
633 #ifdef CONFIG_HIGHMEM
634 	/*
635 	 * A memory area that is only addressable by the kernel through
636 	 * mapping portions into its own address space. This is for example
637 	 * used by i386 to allow the kernel to address the memory beyond
638 	 * 900MB. The kernel will set up special mappings (page
639 	 * table entries on i386) for each page that the kernel needs to
640 	 * access.
641 	 */
642 	ZONE_HIGHMEM,
643 #endif
644 	/*
645 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
646 	 * movable pages with few exceptional cases described below. Main use
647 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
648 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
649 	 * to increase the number of THP/huge pages. Notable special cases are:
650 	 *
651 	 * 1. Pinned pages: (long-term) pinning of movable pages might
652 	 *    essentially turn such pages unmovable. Therefore, we do not allow
653 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
654 	 *    faulted, they come from the right zone right away. However, it is
655 	 *    still possible that address space already has pages in
656 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
657 	 *    touches that memory before pinning). In such case we migrate them
658 	 *    to a different zone. When migration fails - pinning fails.
659 	 * 2. memblock allocations: kernelcore/movablecore setups might create
660 	 *    situations where ZONE_MOVABLE contains unmovable allocations
661 	 *    after boot. Memory offlining and allocations fail early.
662 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
663 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
664 	 *    for example, if we have sections that are only partially
665 	 *    populated. Memory offlining and allocations fail early.
666 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
667 	 *    memory offlining, such pages cannot be allocated.
668 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
669 	 *    hotplugged memory blocks might only partially be managed by the
670 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
671 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
672 	 *    some cases (virtio-mem), such pages can be skipped during
673 	 *    memory offlining, however, cannot be moved/allocated. These
674 	 *    techniques might use alloc_contig_range() to hide previously
675 	 *    exposed pages from the buddy again (e.g., to implement some sort
676 	 *    of memory unplug in virtio-mem).
677 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
678 	 *    situations where ZERO_PAGE(0) which is allocated differently
679 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
680 	 *    cannot be migrated.
681 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
682 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
683 	 *    such zone. Such pages cannot be really moved around as they are
684 	 *    self-stored in the range, but they are treated as movable when
685 	 *    the range they describe is about to be offlined.
686 	 *
687 	 * In general, no unmovable allocations that degrade memory offlining
688 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
689 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
690 	 * if has_unmovable_pages() states that there are no unmovable pages,
691 	 * there can be false negatives).
692 	 */
693 	ZONE_MOVABLE,
694 #ifdef CONFIG_ZONE_DEVICE
695 	ZONE_DEVICE,
696 #endif
697 	__MAX_NR_ZONES
698 
699 };
700 
701 #ifndef __GENERATING_BOUNDS_H
702 
703 #define ASYNC_AND_SYNC 2
704 
705 struct zone {
706 	/* Read-mostly fields */
707 
708 	/* zone watermarks, access with *_wmark_pages(zone) macros */
709 	unsigned long _watermark[NR_WMARK];
710 	unsigned long watermark_boost;
711 
712 	unsigned long nr_reserved_highatomic;
713 
714 	/*
715 	 * We don't know if the memory that we're going to allocate will be
716 	 * freeable or/and it will be released eventually, so to avoid totally
717 	 * wasting several GB of ram we must reserve some of the lower zone
718 	 * memory (otherwise we risk to run OOM on the lower zones despite
719 	 * there being tons of freeable ram on the higher zones).  This array is
720 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
721 	 * changes.
722 	 */
723 	long lowmem_reserve[MAX_NR_ZONES];
724 
725 #ifdef CONFIG_NUMA
726 	int node;
727 #endif
728 	struct pglist_data	*zone_pgdat;
729 	struct per_cpu_pages	__percpu *per_cpu_pageset;
730 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
731 	/*
732 	 * the high and batch values are copied to individual pagesets for
733 	 * faster access
734 	 */
735 	int pageset_high;
736 	int pageset_batch;
737 
738 #ifndef CONFIG_SPARSEMEM
739 	/*
740 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
741 	 * In SPARSEMEM, this map is stored in struct mem_section
742 	 */
743 	unsigned long		*pageblock_flags;
744 #endif /* CONFIG_SPARSEMEM */
745 
746 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
747 	unsigned long		zone_start_pfn;
748 
749 	/*
750 	 * spanned_pages is the total pages spanned by the zone, including
751 	 * holes, which is calculated as:
752 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
753 	 *
754 	 * present_pages is physical pages existing within the zone, which
755 	 * is calculated as:
756 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
757 	 *
758 	 * present_early_pages is present pages existing within the zone
759 	 * located on memory available since early boot, excluding hotplugged
760 	 * memory.
761 	 *
762 	 * managed_pages is present pages managed by the buddy system, which
763 	 * is calculated as (reserved_pages includes pages allocated by the
764 	 * bootmem allocator):
765 	 *	managed_pages = present_pages - reserved_pages;
766 	 *
767 	 * cma pages is present pages that are assigned for CMA use
768 	 * (MIGRATE_CMA).
769 	 *
770 	 * So present_pages may be used by memory hotplug or memory power
771 	 * management logic to figure out unmanaged pages by checking
772 	 * (present_pages - managed_pages). And managed_pages should be used
773 	 * by page allocator and vm scanner to calculate all kinds of watermarks
774 	 * and thresholds.
775 	 *
776 	 * Locking rules:
777 	 *
778 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
779 	 * It is a seqlock because it has to be read outside of zone->lock,
780 	 * and it is done in the main allocator path.  But, it is written
781 	 * quite infrequently.
782 	 *
783 	 * The span_seq lock is declared along with zone->lock because it is
784 	 * frequently read in proximity to zone->lock.  It's good to
785 	 * give them a chance of being in the same cacheline.
786 	 *
787 	 * Write access to present_pages at runtime should be protected by
788 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
789 	 * present_pages should use get_online_mems() to get a stable value.
790 	 */
791 	atomic_long_t		managed_pages;
792 	unsigned long		spanned_pages;
793 	unsigned long		present_pages;
794 #if defined(CONFIG_MEMORY_HOTPLUG)
795 	unsigned long		present_early_pages;
796 #endif
797 #ifdef CONFIG_CMA
798 	unsigned long		cma_pages;
799 #endif
800 
801 	const char		*name;
802 
803 #ifdef CONFIG_MEMORY_ISOLATION
804 	/*
805 	 * Number of isolated pageblock. It is used to solve incorrect
806 	 * freepage counting problem due to racy retrieving migratetype
807 	 * of pageblock. Protected by zone->lock.
808 	 */
809 	unsigned long		nr_isolate_pageblock;
810 #endif
811 
812 #ifdef CONFIG_MEMORY_HOTPLUG
813 	/* see spanned/present_pages for more description */
814 	seqlock_t		span_seqlock;
815 #endif
816 
817 	int initialized;
818 
819 	/* Write-intensive fields used from the page allocator */
820 	CACHELINE_PADDING(_pad1_);
821 
822 	/* free areas of different sizes */
823 	struct free_area	free_area[MAX_ORDER];
824 
825 	/* zone flags, see below */
826 	unsigned long		flags;
827 
828 	/* Primarily protects free_area */
829 	spinlock_t		lock;
830 
831 	/* Write-intensive fields used by compaction and vmstats. */
832 	CACHELINE_PADDING(_pad2_);
833 
834 	/*
835 	 * When free pages are below this point, additional steps are taken
836 	 * when reading the number of free pages to avoid per-cpu counter
837 	 * drift allowing watermarks to be breached
838 	 */
839 	unsigned long percpu_drift_mark;
840 
841 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
842 	/* pfn where compaction free scanner should start */
843 	unsigned long		compact_cached_free_pfn;
844 	/* pfn where compaction migration scanner should start */
845 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
846 	unsigned long		compact_init_migrate_pfn;
847 	unsigned long		compact_init_free_pfn;
848 #endif
849 
850 #ifdef CONFIG_COMPACTION
851 	/*
852 	 * On compaction failure, 1<<compact_defer_shift compactions
853 	 * are skipped before trying again. The number attempted since
854 	 * last failure is tracked with compact_considered.
855 	 * compact_order_failed is the minimum compaction failed order.
856 	 */
857 	unsigned int		compact_considered;
858 	unsigned int		compact_defer_shift;
859 	int			compact_order_failed;
860 #endif
861 
862 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
863 	/* Set to true when the PG_migrate_skip bits should be cleared */
864 	bool			compact_blockskip_flush;
865 #endif
866 
867 	bool			contiguous;
868 
869 	CACHELINE_PADDING(_pad3_);
870 	/* Zone statistics */
871 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
872 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
873 } ____cacheline_internodealigned_in_smp;
874 
875 enum pgdat_flags {
876 	PGDAT_DIRTY,			/* reclaim scanning has recently found
877 					 * many dirty file pages at the tail
878 					 * of the LRU.
879 					 */
880 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
881 					 * many pages under writeback
882 					 */
883 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
884 };
885 
886 enum zone_flags {
887 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
888 					 * Cleared when kswapd is woken.
889 					 */
890 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
891 };
892 
zone_managed_pages(struct zone * zone)893 static inline unsigned long zone_managed_pages(struct zone *zone)
894 {
895 	return (unsigned long)atomic_long_read(&zone->managed_pages);
896 }
897 
zone_cma_pages(struct zone * zone)898 static inline unsigned long zone_cma_pages(struct zone *zone)
899 {
900 #ifdef CONFIG_CMA
901 	return zone->cma_pages;
902 #else
903 	return 0;
904 #endif
905 }
906 
zone_end_pfn(const struct zone * zone)907 static inline unsigned long zone_end_pfn(const struct zone *zone)
908 {
909 	return zone->zone_start_pfn + zone->spanned_pages;
910 }
911 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)912 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
913 {
914 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
915 }
916 
zone_is_initialized(struct zone * zone)917 static inline bool zone_is_initialized(struct zone *zone)
918 {
919 	return zone->initialized;
920 }
921 
zone_is_empty(struct zone * zone)922 static inline bool zone_is_empty(struct zone *zone)
923 {
924 	return zone->spanned_pages == 0;
925 }
926 
927 #ifndef BUILD_VDSO32_64
928 /*
929  * The zone field is never updated after free_area_init_core()
930  * sets it, so none of the operations on it need to be atomic.
931  */
932 
933 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
934 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
935 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
936 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
937 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
938 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
939 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
940 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
941 
942 /*
943  * Define the bit shifts to access each section.  For non-existent
944  * sections we define the shift as 0; that plus a 0 mask ensures
945  * the compiler will optimise away reference to them.
946  */
947 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
948 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
949 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
950 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
951 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
952 
953 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
954 #ifdef NODE_NOT_IN_PAGE_FLAGS
955 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
956 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
957 						SECTIONS_PGOFF : ZONES_PGOFF)
958 #else
959 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
960 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
961 						NODES_PGOFF : ZONES_PGOFF)
962 #endif
963 
964 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
965 
966 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
967 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
968 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
969 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
970 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
971 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
972 
page_zonenum(const struct page * page)973 static inline enum zone_type page_zonenum(const struct page *page)
974 {
975 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
976 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
977 }
978 
folio_zonenum(const struct folio * folio)979 static inline enum zone_type folio_zonenum(const struct folio *folio)
980 {
981 	return page_zonenum(&folio->page);
982 }
983 
984 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)985 static inline bool is_zone_device_page(const struct page *page)
986 {
987 	return page_zonenum(page) == ZONE_DEVICE;
988 }
989 extern void memmap_init_zone_device(struct zone *, unsigned long,
990 				    unsigned long, struct dev_pagemap *);
991 #else
is_zone_device_page(const struct page * page)992 static inline bool is_zone_device_page(const struct page *page)
993 {
994 	return false;
995 }
996 #endif
997 
folio_is_zone_device(const struct folio * folio)998 static inline bool folio_is_zone_device(const struct folio *folio)
999 {
1000 	return is_zone_device_page(&folio->page);
1001 }
1002 
is_zone_movable_page(const struct page * page)1003 static inline bool is_zone_movable_page(const struct page *page)
1004 {
1005 	return page_zonenum(page) == ZONE_MOVABLE;
1006 }
1007 #endif
1008 
1009 /*
1010  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1011  * intersection with the given zone
1012  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1013 static inline bool zone_intersects(struct zone *zone,
1014 		unsigned long start_pfn, unsigned long nr_pages)
1015 {
1016 	if (zone_is_empty(zone))
1017 		return false;
1018 	if (start_pfn >= zone_end_pfn(zone) ||
1019 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1020 		return false;
1021 
1022 	return true;
1023 }
1024 
1025 /*
1026  * The "priority" of VM scanning is how much of the queues we will scan in one
1027  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1028  * queues ("queue_length >> 12") during an aging round.
1029  */
1030 #define DEF_PRIORITY 12
1031 
1032 /* Maximum number of zones on a zonelist */
1033 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1034 
1035 enum {
1036 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1037 #ifdef CONFIG_NUMA
1038 	/*
1039 	 * The NUMA zonelists are doubled because we need zonelists that
1040 	 * restrict the allocations to a single node for __GFP_THISNODE.
1041 	 */
1042 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1043 #endif
1044 	MAX_ZONELISTS
1045 };
1046 
1047 /*
1048  * This struct contains information about a zone in a zonelist. It is stored
1049  * here to avoid dereferences into large structures and lookups of tables
1050  */
1051 struct zoneref {
1052 	struct zone *zone;	/* Pointer to actual zone */
1053 	int zone_idx;		/* zone_idx(zoneref->zone) */
1054 };
1055 
1056 /*
1057  * One allocation request operates on a zonelist. A zonelist
1058  * is a list of zones, the first one is the 'goal' of the
1059  * allocation, the other zones are fallback zones, in decreasing
1060  * priority.
1061  *
1062  * To speed the reading of the zonelist, the zonerefs contain the zone index
1063  * of the entry being read. Helper functions to access information given
1064  * a struct zoneref are
1065  *
1066  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1067  * zonelist_zone_idx()	- Return the index of the zone for an entry
1068  * zonelist_node_idx()	- Return the index of the node for an entry
1069  */
1070 struct zonelist {
1071 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1072 };
1073 
1074 /*
1075  * The array of struct pages for flatmem.
1076  * It must be declared for SPARSEMEM as well because there are configurations
1077  * that rely on that.
1078  */
1079 extern struct page *mem_map;
1080 
1081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1082 struct deferred_split {
1083 	spinlock_t split_queue_lock;
1084 	struct list_head split_queue;
1085 	unsigned long split_queue_len;
1086 };
1087 #endif
1088 
1089 /*
1090  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1091  * it's memory layout. On UMA machines there is a single pglist_data which
1092  * describes the whole memory.
1093  *
1094  * Memory statistics and page replacement data structures are maintained on a
1095  * per-zone basis.
1096  */
1097 typedef struct pglist_data {
1098 	/*
1099 	 * node_zones contains just the zones for THIS node. Not all of the
1100 	 * zones may be populated, but it is the full list. It is referenced by
1101 	 * this node's node_zonelists as well as other node's node_zonelists.
1102 	 */
1103 	struct zone node_zones[MAX_NR_ZONES];
1104 
1105 	/*
1106 	 * node_zonelists contains references to all zones in all nodes.
1107 	 * Generally the first zones will be references to this node's
1108 	 * node_zones.
1109 	 */
1110 	struct zonelist node_zonelists[MAX_ZONELISTS];
1111 
1112 	int nr_zones; /* number of populated zones in this node */
1113 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1114 	struct page *node_mem_map;
1115 #ifdef CONFIG_PAGE_EXTENSION
1116 	struct page_ext *node_page_ext;
1117 #endif
1118 #endif
1119 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1120 	/*
1121 	 * Must be held any time you expect node_start_pfn,
1122 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1123 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1124 	 * init.
1125 	 *
1126 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1127 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1128 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1129 	 *
1130 	 * Nests above zone->lock and zone->span_seqlock
1131 	 */
1132 	spinlock_t node_size_lock;
1133 #endif
1134 	unsigned long node_start_pfn;
1135 	unsigned long node_present_pages; /* total number of physical pages */
1136 	unsigned long node_spanned_pages; /* total size of physical page
1137 					     range, including holes */
1138 	int node_id;
1139 	wait_queue_head_t kswapd_wait;
1140 	wait_queue_head_t pfmemalloc_wait;
1141 
1142 	/* workqueues for throttling reclaim for different reasons. */
1143 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1144 
1145 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1146 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1147 					 * when throttling started. */
1148 #ifdef CONFIG_MEMORY_HOTPLUG
1149 	struct mutex kswapd_lock;
1150 #endif
1151 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1152 	int kswapd_order;
1153 	enum zone_type kswapd_highest_zoneidx;
1154 
1155 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1156 
1157 #ifdef CONFIG_COMPACTION
1158 	int kcompactd_max_order;
1159 	enum zone_type kcompactd_highest_zoneidx;
1160 	wait_queue_head_t kcompactd_wait;
1161 	struct task_struct *kcompactd;
1162 	bool proactive_compact_trigger;
1163 #endif
1164 	/*
1165 	 * This is a per-node reserve of pages that are not available
1166 	 * to userspace allocations.
1167 	 */
1168 	unsigned long		totalreserve_pages;
1169 
1170 #ifdef CONFIG_NUMA
1171 	/*
1172 	 * node reclaim becomes active if more unmapped pages exist.
1173 	 */
1174 	unsigned long		min_unmapped_pages;
1175 	unsigned long		min_slab_pages;
1176 #endif /* CONFIG_NUMA */
1177 
1178 	/* Write-intensive fields used by page reclaim */
1179 	CACHELINE_PADDING(_pad1_);
1180 
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 	/*
1183 	 * If memory initialisation on large machines is deferred then this
1184 	 * is the first PFN that needs to be initialised.
1185 	 */
1186 	unsigned long first_deferred_pfn;
1187 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1188 
1189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190 	struct deferred_split deferred_split_queue;
1191 #endif
1192 
1193 #ifdef CONFIG_NUMA_BALANCING
1194 	/* start time in ms of current promote rate limit period */
1195 	unsigned int nbp_rl_start;
1196 	/* number of promote candidate pages at start time of current rate limit period */
1197 	unsigned long nbp_rl_nr_cand;
1198 	/* promote threshold in ms */
1199 	unsigned int nbp_threshold;
1200 	/* start time in ms of current promote threshold adjustment period */
1201 	unsigned int nbp_th_start;
1202 	/*
1203 	 * number of promote candidate pages at stat time of current promote
1204 	 * threshold adjustment period
1205 	 */
1206 	unsigned long nbp_th_nr_cand;
1207 #endif
1208 	/* Fields commonly accessed by the page reclaim scanner */
1209 
1210 	/*
1211 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1212 	 *
1213 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1214 	 */
1215 	struct lruvec		__lruvec;
1216 
1217 	unsigned long		flags;
1218 
1219 #ifdef CONFIG_LRU_GEN
1220 	/* kswap mm walk data */
1221 	struct lru_gen_mm_walk	mm_walk;
1222 #endif
1223 
1224 	CACHELINE_PADDING(_pad2_);
1225 
1226 	/* Per-node vmstats */
1227 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1228 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1229 #ifdef CONFIG_NUMA
1230 	struct memory_tier __rcu *memtier;
1231 #endif
1232 } pg_data_t;
1233 
1234 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1235 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1236 
1237 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1238 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1239 
pgdat_end_pfn(pg_data_t * pgdat)1240 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1241 {
1242 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1243 }
1244 
1245 #include <linux/memory_hotplug.h>
1246 
1247 void build_all_zonelists(pg_data_t *pgdat);
1248 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1249 		   enum zone_type highest_zoneidx);
1250 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1251 			 int highest_zoneidx, unsigned int alloc_flags,
1252 			 long free_pages);
1253 bool zone_watermark_ok(struct zone *z, unsigned int order,
1254 		unsigned long mark, int highest_zoneidx,
1255 		unsigned int alloc_flags);
1256 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1257 		unsigned long mark, int highest_zoneidx);
1258 /*
1259  * Memory initialization context, use to differentiate memory added by
1260  * the platform statically or via memory hotplug interface.
1261  */
1262 enum meminit_context {
1263 	MEMINIT_EARLY,
1264 	MEMINIT_HOTPLUG,
1265 };
1266 
1267 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1268 				     unsigned long size);
1269 
1270 extern void lruvec_init(struct lruvec *lruvec);
1271 
lruvec_pgdat(struct lruvec * lruvec)1272 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1273 {
1274 #ifdef CONFIG_MEMCG
1275 	return lruvec->pgdat;
1276 #else
1277 	return container_of(lruvec, struct pglist_data, __lruvec);
1278 #endif
1279 }
1280 
1281 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1282 int local_memory_node(int node_id);
1283 #else
local_memory_node(int node_id)1284 static inline int local_memory_node(int node_id) { return node_id; };
1285 #endif
1286 
1287 /*
1288  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1289  */
1290 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1291 
1292 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1293 static inline bool zone_is_zone_device(struct zone *zone)
1294 {
1295 	return zone_idx(zone) == ZONE_DEVICE;
1296 }
1297 #else
zone_is_zone_device(struct zone * zone)1298 static inline bool zone_is_zone_device(struct zone *zone)
1299 {
1300 	return false;
1301 }
1302 #endif
1303 
1304 /*
1305  * Returns true if a zone has pages managed by the buddy allocator.
1306  * All the reclaim decisions have to use this function rather than
1307  * populated_zone(). If the whole zone is reserved then we can easily
1308  * end up with populated_zone() && !managed_zone().
1309  */
managed_zone(struct zone * zone)1310 static inline bool managed_zone(struct zone *zone)
1311 {
1312 	return zone_managed_pages(zone);
1313 }
1314 
1315 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1316 static inline bool populated_zone(struct zone *zone)
1317 {
1318 	return zone->present_pages;
1319 }
1320 
1321 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1322 static inline int zone_to_nid(struct zone *zone)
1323 {
1324 	return zone->node;
1325 }
1326 
zone_set_nid(struct zone * zone,int nid)1327 static inline void zone_set_nid(struct zone *zone, int nid)
1328 {
1329 	zone->node = nid;
1330 }
1331 #else
zone_to_nid(struct zone * zone)1332 static inline int zone_to_nid(struct zone *zone)
1333 {
1334 	return 0;
1335 }
1336 
zone_set_nid(struct zone * zone,int nid)1337 static inline void zone_set_nid(struct zone *zone, int nid) {}
1338 #endif
1339 
1340 extern int movable_zone;
1341 
is_highmem_idx(enum zone_type idx)1342 static inline int is_highmem_idx(enum zone_type idx)
1343 {
1344 #ifdef CONFIG_HIGHMEM
1345 	return (idx == ZONE_HIGHMEM ||
1346 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1347 #else
1348 	return 0;
1349 #endif
1350 }
1351 
1352 /**
1353  * is_highmem - helper function to quickly check if a struct zone is a
1354  *              highmem zone or not.  This is an attempt to keep references
1355  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1356  * @zone: pointer to struct zone variable
1357  * Return: 1 for a highmem zone, 0 otherwise
1358  */
is_highmem(struct zone * zone)1359 static inline int is_highmem(struct zone *zone)
1360 {
1361 	return is_highmem_idx(zone_idx(zone));
1362 }
1363 
1364 #ifdef CONFIG_ZONE_DMA
1365 bool has_managed_dma(void);
1366 #else
has_managed_dma(void)1367 static inline bool has_managed_dma(void)
1368 {
1369 	return false;
1370 }
1371 #endif
1372 
1373 /* These two functions are used to setup the per zone pages min values */
1374 struct ctl_table;
1375 
1376 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1377 		loff_t *);
1378 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1379 		size_t *, loff_t *);
1380 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1381 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1382 		size_t *, loff_t *);
1383 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1384 		void *, size_t *, loff_t *);
1385 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1386 		void *, size_t *, loff_t *);
1387 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1388 		void *, size_t *, loff_t *);
1389 int numa_zonelist_order_handler(struct ctl_table *, int,
1390 		void *, size_t *, loff_t *);
1391 extern int percpu_pagelist_high_fraction;
1392 extern char numa_zonelist_order[];
1393 #define NUMA_ZONELIST_ORDER_LEN	16
1394 
1395 #ifndef CONFIG_NUMA
1396 
1397 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1398 static inline struct pglist_data *NODE_DATA(int nid)
1399 {
1400 	return &contig_page_data;
1401 }
1402 
1403 #else /* CONFIG_NUMA */
1404 
1405 #include <asm/mmzone.h>
1406 
1407 #endif /* !CONFIG_NUMA */
1408 
1409 extern struct pglist_data *first_online_pgdat(void);
1410 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1411 extern struct zone *next_zone(struct zone *zone);
1412 
1413 /**
1414  * for_each_online_pgdat - helper macro to iterate over all online nodes
1415  * @pgdat: pointer to a pg_data_t variable
1416  */
1417 #define for_each_online_pgdat(pgdat)			\
1418 	for (pgdat = first_online_pgdat();		\
1419 	     pgdat;					\
1420 	     pgdat = next_online_pgdat(pgdat))
1421 /**
1422  * for_each_zone - helper macro to iterate over all memory zones
1423  * @zone: pointer to struct zone variable
1424  *
1425  * The user only needs to declare the zone variable, for_each_zone
1426  * fills it in.
1427  */
1428 #define for_each_zone(zone)			        \
1429 	for (zone = (first_online_pgdat())->node_zones; \
1430 	     zone;					\
1431 	     zone = next_zone(zone))
1432 
1433 #define for_each_populated_zone(zone)		        \
1434 	for (zone = (first_online_pgdat())->node_zones; \
1435 	     zone;					\
1436 	     zone = next_zone(zone))			\
1437 		if (!populated_zone(zone))		\
1438 			; /* do nothing */		\
1439 		else
1440 
zonelist_zone(struct zoneref * zoneref)1441 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1442 {
1443 	return zoneref->zone;
1444 }
1445 
zonelist_zone_idx(struct zoneref * zoneref)1446 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1447 {
1448 	return zoneref->zone_idx;
1449 }
1450 
zonelist_node_idx(struct zoneref * zoneref)1451 static inline int zonelist_node_idx(struct zoneref *zoneref)
1452 {
1453 	return zone_to_nid(zoneref->zone);
1454 }
1455 
1456 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1457 					enum zone_type highest_zoneidx,
1458 					nodemask_t *nodes);
1459 
1460 /**
1461  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1462  * @z: The cursor used as a starting point for the search
1463  * @highest_zoneidx: The zone index of the highest zone to return
1464  * @nodes: An optional nodemask to filter the zonelist with
1465  *
1466  * This function returns the next zone at or below a given zone index that is
1467  * within the allowed nodemask using a cursor as the starting point for the
1468  * search. The zoneref returned is a cursor that represents the current zone
1469  * being examined. It should be advanced by one before calling
1470  * next_zones_zonelist again.
1471  *
1472  * Return: the next zone at or below highest_zoneidx within the allowed
1473  * nodemask using a cursor within a zonelist as a starting point
1474  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1475 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1476 					enum zone_type highest_zoneidx,
1477 					nodemask_t *nodes)
1478 {
1479 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1480 		return z;
1481 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1482 }
1483 
1484 /**
1485  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1486  * @zonelist: The zonelist to search for a suitable zone
1487  * @highest_zoneidx: The zone index of the highest zone to return
1488  * @nodes: An optional nodemask to filter the zonelist with
1489  *
1490  * This function returns the first zone at or below a given zone index that is
1491  * within the allowed nodemask. The zoneref returned is a cursor that can be
1492  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1493  * one before calling.
1494  *
1495  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1496  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1497  * update due to cpuset modification.
1498  *
1499  * Return: Zoneref pointer for the first suitable zone found
1500  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1501 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1502 					enum zone_type highest_zoneidx,
1503 					nodemask_t *nodes)
1504 {
1505 	return next_zones_zonelist(zonelist->_zonerefs,
1506 							highest_zoneidx, nodes);
1507 }
1508 
1509 /**
1510  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1511  * @zone: The current zone in the iterator
1512  * @z: The current pointer within zonelist->_zonerefs being iterated
1513  * @zlist: The zonelist being iterated
1514  * @highidx: The zone index of the highest zone to return
1515  * @nodemask: Nodemask allowed by the allocator
1516  *
1517  * This iterator iterates though all zones at or below a given zone index and
1518  * within a given nodemask
1519  */
1520 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1521 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1522 		zone;							\
1523 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1524 			zone = zonelist_zone(z))
1525 
1526 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1527 	for (zone = z->zone;	\
1528 		zone;							\
1529 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1530 			zone = zonelist_zone(z))
1531 
1532 
1533 /**
1534  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1535  * @zone: The current zone in the iterator
1536  * @z: The current pointer within zonelist->zones being iterated
1537  * @zlist: The zonelist being iterated
1538  * @highidx: The zone index of the highest zone to return
1539  *
1540  * This iterator iterates though all zones at or below a given zone index.
1541  */
1542 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1543 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1544 
1545 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1546 static inline bool movable_only_nodes(nodemask_t *nodes)
1547 {
1548 	struct zonelist *zonelist;
1549 	struct zoneref *z;
1550 	int nid;
1551 
1552 	if (nodes_empty(*nodes))
1553 		return false;
1554 
1555 	/*
1556 	 * We can chose arbitrary node from the nodemask to get a
1557 	 * zonelist as they are interlinked. We just need to find
1558 	 * at least one zone that can satisfy kernel allocations.
1559 	 */
1560 	nid = first_node(*nodes);
1561 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1562 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1563 	return (!z->zone) ? true : false;
1564 }
1565 
1566 
1567 #ifdef CONFIG_SPARSEMEM
1568 #include <asm/sparsemem.h>
1569 #endif
1570 
1571 #ifdef CONFIG_FLATMEM
1572 #define pfn_to_nid(pfn)		(0)
1573 #endif
1574 
1575 #ifdef CONFIG_SPARSEMEM
1576 
1577 /*
1578  * PA_SECTION_SHIFT		physical address to/from section number
1579  * PFN_SECTION_SHIFT		pfn to/from section number
1580  */
1581 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1582 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1583 
1584 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1585 
1586 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1587 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1588 
1589 #define SECTION_BLOCKFLAGS_BITS \
1590 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1591 
1592 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1593 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1594 #endif
1595 
pfn_to_section_nr(unsigned long pfn)1596 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1597 {
1598 	return pfn >> PFN_SECTION_SHIFT;
1599 }
section_nr_to_pfn(unsigned long sec)1600 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1601 {
1602 	return sec << PFN_SECTION_SHIFT;
1603 }
1604 
1605 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1606 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1607 
1608 #define SUBSECTION_SHIFT 21
1609 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1610 
1611 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1612 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1613 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1614 
1615 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1616 #error Subsection size exceeds section size
1617 #else
1618 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1619 #endif
1620 
1621 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1622 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1623 
1624 struct mem_section_usage {
1625 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1626 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1627 #endif
1628 	/* See declaration of similar field in struct zone */
1629 	unsigned long pageblock_flags[0];
1630 };
1631 
1632 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1633 
1634 struct page;
1635 struct page_ext;
1636 struct mem_section {
1637 	/*
1638 	 * This is, logically, a pointer to an array of struct
1639 	 * pages.  However, it is stored with some other magic.
1640 	 * (see sparse.c::sparse_init_one_section())
1641 	 *
1642 	 * Additionally during early boot we encode node id of
1643 	 * the location of the section here to guide allocation.
1644 	 * (see sparse.c::memory_present())
1645 	 *
1646 	 * Making it a UL at least makes someone do a cast
1647 	 * before using it wrong.
1648 	 */
1649 	unsigned long section_mem_map;
1650 
1651 	struct mem_section_usage *usage;
1652 #ifdef CONFIG_PAGE_EXTENSION
1653 	/*
1654 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1655 	 * section. (see page_ext.h about this.)
1656 	 */
1657 	struct page_ext *page_ext;
1658 	unsigned long pad;
1659 #endif
1660 	/*
1661 	 * WARNING: mem_section must be a power-of-2 in size for the
1662 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1663 	 */
1664 };
1665 
1666 #ifdef CONFIG_SPARSEMEM_EXTREME
1667 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1668 #else
1669 #define SECTIONS_PER_ROOT	1
1670 #endif
1671 
1672 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1673 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1674 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1675 
1676 #ifdef CONFIG_SPARSEMEM_EXTREME
1677 extern struct mem_section **mem_section;
1678 #else
1679 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1680 #endif
1681 
section_to_usemap(struct mem_section * ms)1682 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1683 {
1684 	return ms->usage->pageblock_flags;
1685 }
1686 
__nr_to_section(unsigned long nr)1687 static inline struct mem_section *__nr_to_section(unsigned long nr)
1688 {
1689 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1690 
1691 	if (unlikely(root >= NR_SECTION_ROOTS))
1692 		return NULL;
1693 
1694 #ifdef CONFIG_SPARSEMEM_EXTREME
1695 	if (!mem_section || !mem_section[root])
1696 		return NULL;
1697 #endif
1698 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1699 }
1700 extern size_t mem_section_usage_size(void);
1701 
1702 /*
1703  * We use the lower bits of the mem_map pointer to store
1704  * a little bit of information.  The pointer is calculated
1705  * as mem_map - section_nr_to_pfn(pnum).  The result is
1706  * aligned to the minimum alignment of the two values:
1707  *   1. All mem_map arrays are page-aligned.
1708  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1709  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1710  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1711  *      worst combination is powerpc with 256k pages,
1712  *      which results in PFN_SECTION_SHIFT equal 6.
1713  * To sum it up, at least 6 bits are available on all architectures.
1714  * However, we can exceed 6 bits on some other architectures except
1715  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1716  * with the worst case of 64K pages on arm64) if we make sure the
1717  * exceeded bit is not applicable to powerpc.
1718  */
1719 enum {
1720 	SECTION_MARKED_PRESENT_BIT,
1721 	SECTION_HAS_MEM_MAP_BIT,
1722 	SECTION_IS_ONLINE_BIT,
1723 	SECTION_IS_EARLY_BIT,
1724 #ifdef CONFIG_ZONE_DEVICE
1725 	SECTION_TAINT_ZONE_DEVICE_BIT,
1726 #endif
1727 	SECTION_MAP_LAST_BIT,
1728 };
1729 
1730 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1731 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1732 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1733 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1734 #ifdef CONFIG_ZONE_DEVICE
1735 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1736 #endif
1737 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1738 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1739 
__section_mem_map_addr(struct mem_section * section)1740 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1741 {
1742 	unsigned long map = section->section_mem_map;
1743 	map &= SECTION_MAP_MASK;
1744 	return (struct page *)map;
1745 }
1746 
present_section(struct mem_section * section)1747 static inline int present_section(struct mem_section *section)
1748 {
1749 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1750 }
1751 
present_section_nr(unsigned long nr)1752 static inline int present_section_nr(unsigned long nr)
1753 {
1754 	return present_section(__nr_to_section(nr));
1755 }
1756 
valid_section(struct mem_section * section)1757 static inline int valid_section(struct mem_section *section)
1758 {
1759 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1760 }
1761 
early_section(struct mem_section * section)1762 static inline int early_section(struct mem_section *section)
1763 {
1764 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1765 }
1766 
valid_section_nr(unsigned long nr)1767 static inline int valid_section_nr(unsigned long nr)
1768 {
1769 	return valid_section(__nr_to_section(nr));
1770 }
1771 
online_section(struct mem_section * section)1772 static inline int online_section(struct mem_section *section)
1773 {
1774 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1775 }
1776 
1777 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1778 static inline int online_device_section(struct mem_section *section)
1779 {
1780 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1781 
1782 	return section && ((section->section_mem_map & flags) == flags);
1783 }
1784 #else
online_device_section(struct mem_section * section)1785 static inline int online_device_section(struct mem_section *section)
1786 {
1787 	return 0;
1788 }
1789 #endif
1790 
online_section_nr(unsigned long nr)1791 static inline int online_section_nr(unsigned long nr)
1792 {
1793 	return online_section(__nr_to_section(nr));
1794 }
1795 
1796 #ifdef CONFIG_MEMORY_HOTPLUG
1797 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1798 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1799 #endif
1800 
__pfn_to_section(unsigned long pfn)1801 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1802 {
1803 	return __nr_to_section(pfn_to_section_nr(pfn));
1804 }
1805 
1806 extern unsigned long __highest_present_section_nr;
1807 
subsection_map_index(unsigned long pfn)1808 static inline int subsection_map_index(unsigned long pfn)
1809 {
1810 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1811 }
1812 
1813 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1814 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1815 {
1816 	int idx = subsection_map_index(pfn);
1817 
1818 	return test_bit(idx, ms->usage->subsection_map);
1819 }
1820 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1821 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1822 {
1823 	return 1;
1824 }
1825 #endif
1826 
1827 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1828 /**
1829  * pfn_valid - check if there is a valid memory map entry for a PFN
1830  * @pfn: the page frame number to check
1831  *
1832  * Check if there is a valid memory map entry aka struct page for the @pfn.
1833  * Note, that availability of the memory map entry does not imply that
1834  * there is actual usable memory at that @pfn. The struct page may
1835  * represent a hole or an unusable page frame.
1836  *
1837  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1838  */
pfn_valid(unsigned long pfn)1839 static inline int pfn_valid(unsigned long pfn)
1840 {
1841 	struct mem_section *ms;
1842 
1843 	/*
1844 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1845 	 * pfn. Else it might lead to false positives when
1846 	 * some of the upper bits are set, but the lower bits
1847 	 * match a valid pfn.
1848 	 */
1849 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1850 		return 0;
1851 
1852 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1853 		return 0;
1854 	ms = __pfn_to_section(pfn);
1855 	if (!valid_section(ms))
1856 		return 0;
1857 	/*
1858 	 * Traditionally early sections always returned pfn_valid() for
1859 	 * the entire section-sized span.
1860 	 */
1861 	return early_section(ms) || pfn_section_valid(ms, pfn);
1862 }
1863 #endif
1864 
pfn_in_present_section(unsigned long pfn)1865 static inline int pfn_in_present_section(unsigned long pfn)
1866 {
1867 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1868 		return 0;
1869 	return present_section(__pfn_to_section(pfn));
1870 }
1871 
next_present_section_nr(unsigned long section_nr)1872 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1873 {
1874 	while (++section_nr <= __highest_present_section_nr) {
1875 		if (present_section_nr(section_nr))
1876 			return section_nr;
1877 	}
1878 
1879 	return -1;
1880 }
1881 
1882 /*
1883  * These are _only_ used during initialisation, therefore they
1884  * can use __initdata ...  They could have names to indicate
1885  * this restriction.
1886  */
1887 #ifdef CONFIG_NUMA
1888 #define pfn_to_nid(pfn)							\
1889 ({									\
1890 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1891 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1892 })
1893 #else
1894 #define pfn_to_nid(pfn)		(0)
1895 #endif
1896 
1897 void sparse_init(void);
1898 #else
1899 #define sparse_init()	do {} while (0)
1900 #define sparse_index_init(_sec, _nid)  do {} while (0)
1901 #define pfn_in_present_section pfn_valid
1902 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1903 #endif /* CONFIG_SPARSEMEM */
1904 
1905 #endif /* !__GENERATING_BOUNDS.H */
1906 #endif /* !__ASSEMBLY__ */
1907 #endif /* _LINUX_MMZONE_H */
1908