1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31
32 struct mempolicy;
33 struct anon_vma;
34 struct anon_vma_chain;
35 struct user_struct;
36 struct pt_regs;
37
38 extern int sysctl_page_lock_unfairness;
39
40 void init_mm_internals(void);
41
42 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
43 extern unsigned long max_mapnr;
44
set_max_mapnr(unsigned long limit)45 static inline void set_max_mapnr(unsigned long limit)
46 {
47 max_mapnr = limit;
48 }
49 #else
set_max_mapnr(unsigned long limit)50 static inline void set_max_mapnr(unsigned long limit) { }
51 #endif
52
53 extern atomic_long_t _totalram_pages;
totalram_pages(void)54 static inline unsigned long totalram_pages(void)
55 {
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57 }
58
totalram_pages_inc(void)59 static inline void totalram_pages_inc(void)
60 {
61 atomic_long_inc(&_totalram_pages);
62 }
63
totalram_pages_dec(void)64 static inline void totalram_pages_dec(void)
65 {
66 atomic_long_dec(&_totalram_pages);
67 }
68
totalram_pages_add(long count)69 static inline void totalram_pages_add(long count)
70 {
71 atomic_long_add(count, &_totalram_pages);
72 }
73
74 extern void * high_memory;
75 extern int page_cluster;
76
77 #ifdef CONFIG_SYSCTL
78 extern int sysctl_legacy_va_layout;
79 #else
80 #define sysctl_legacy_va_layout 0
81 #endif
82
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84 extern const int mmap_rnd_bits_min;
85 extern const int mmap_rnd_bits_max;
86 extern int mmap_rnd_bits __read_mostly;
87 #endif
88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89 extern const int mmap_rnd_compat_bits_min;
90 extern const int mmap_rnd_compat_bits_max;
91 extern int mmap_rnd_compat_bits __read_mostly;
92 #endif
93
94 #include <asm/page.h>
95 #include <asm/processor.h>
96
97 /*
98 * Architectures that support memory tagging (assigning tags to memory regions,
99 * embedding these tags into addresses that point to these memory regions, and
100 * checking that the memory and the pointer tags match on memory accesses)
101 * redefine this macro to strip tags from pointers.
102 * It's defined as noop for architectures that don't support memory tagging.
103 */
104 #ifndef untagged_addr
105 #define untagged_addr(addr) (addr)
106 #endif
107
108 #ifndef __pa_symbol
109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110 #endif
111
112 #ifndef page_to_virt
113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114 #endif
115
116 #ifndef lm_alias
117 #define lm_alias(x) __va(__pa_symbol(x))
118 #endif
119
120 /*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127 #ifndef mm_forbids_zeropage
128 #define mm_forbids_zeropage(X) (0)
129 #endif
130
131 /*
132 * On some architectures it is expensive to call memset() for small sizes.
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
136 */
137 #if BITS_PER_LONG == 64
138 /* This function must be updated when the size of struct page grows above 80
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
141 * combine write statements if they are both assignments and can be reordered,
142 * this can result in several of the writes here being dropped.
143 */
144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)145 static inline void __mm_zero_struct_page(struct page *page)
146 {
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 80);
153
154 switch (sizeof(struct page)) {
155 case 80:
156 _pp[9] = 0;
157 fallthrough;
158 case 72:
159 _pp[8] = 0;
160 fallthrough;
161 case 64:
162 _pp[7] = 0;
163 fallthrough;
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173 }
174 #else
175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176 #endif
177
178 /*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194 #define MAPCOUNT_ELF_CORE_MARGIN (5)
195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197 extern int sysctl_max_map_count;
198
199 extern unsigned long sysctl_user_reserve_kbytes;
200 extern unsigned long sysctl_admin_reserve_kbytes;
201
202 extern int sysctl_overcommit_memory;
203 extern int sysctl_overcommit_ratio;
204 extern unsigned long sysctl_overcommit_kbytes;
205
206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
216 #else
217 #define nth_page(page,n) ((page) + (n))
218 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
219 #endif
220
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
lru_to_folio(struct list_head * head)228 static inline struct folio *lru_to_folio(struct list_head *head)
229 {
230 return list_entry((head)->prev, struct folio, lru);
231 }
232
233 void setup_initial_init_mm(void *start_code, void *end_code,
234 void *end_data, void *brk);
235
236 /*
237 * Linux kernel virtual memory manager primitives.
238 * The idea being to have a "virtual" mm in the same way
239 * we have a virtual fs - giving a cleaner interface to the
240 * mm details, and allowing different kinds of memory mappings
241 * (from shared memory to executable loading to arbitrary
242 * mmap() functions).
243 */
244
245 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
246 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
247 void vm_area_free(struct vm_area_struct *);
248
249 #ifndef CONFIG_MMU
250 extern struct rb_root nommu_region_tree;
251 extern struct rw_semaphore nommu_region_sem;
252
253 extern unsigned int kobjsize(const void *objp);
254 #endif
255
256 /*
257 * vm_flags in vm_area_struct, see mm_types.h.
258 * When changing, update also include/trace/events/mmflags.h
259 */
260 #define VM_NONE 0x00000000
261
262 #define VM_READ 0x00000001 /* currently active flags */
263 #define VM_WRITE 0x00000002
264 #define VM_EXEC 0x00000004
265 #define VM_SHARED 0x00000008
266
267 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
268 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
269 #define VM_MAYWRITE 0x00000020
270 #define VM_MAYEXEC 0x00000040
271 #define VM_MAYSHARE 0x00000080
272
273 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
275 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
276 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
277
278 #define VM_LOCKED 0x00002000
279 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
280
281 /* Used by sys_madvise() */
282 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
283 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
284
285 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
286 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
287 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
288 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
289 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
290 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
291 #define VM_SYNC 0x00800000 /* Synchronous page faults */
292 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
293 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
294 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
295
296 #ifdef CONFIG_MEM_SOFT_DIRTY
297 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
298 #else
299 # define VM_SOFTDIRTY 0
300 #endif
301
302 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
303 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
304 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
305 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
306
307 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
308 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
312 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
314 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
315 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
316 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
317 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
318 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
319
320 #ifdef CONFIG_ARCH_HAS_PKEYS
321 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
322 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
323 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
324 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
325 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
326 #ifdef CONFIG_PPC
327 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
328 #else
329 # define VM_PKEY_BIT4 0
330 #endif
331 #endif /* CONFIG_ARCH_HAS_PKEYS */
332
333 #if defined(CONFIG_X86)
334 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
335 #elif defined(CONFIG_PPC)
336 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
337 #elif defined(CONFIG_PARISC)
338 # define VM_GROWSUP VM_ARCH_1
339 #elif defined(CONFIG_IA64)
340 # define VM_GROWSUP VM_ARCH_1
341 #elif defined(CONFIG_SPARC64)
342 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
343 # define VM_ARCH_CLEAR VM_SPARC_ADI
344 #elif defined(CONFIG_ARM64)
345 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
346 # define VM_ARCH_CLEAR VM_ARM64_BTI
347 #elif !defined(CONFIG_MMU)
348 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
349 #endif
350
351 #if defined(CONFIG_ARM64_MTE)
352 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
353 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
354 #else
355 # define VM_MTE VM_NONE
356 # define VM_MTE_ALLOWED VM_NONE
357 #endif
358
359 #ifndef VM_GROWSUP
360 # define VM_GROWSUP VM_NONE
361 #endif
362
363 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
364 # define VM_UFFD_MINOR_BIT 37
365 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
366 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367 # define VM_UFFD_MINOR VM_NONE
368 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
369
370 /* Bits set in the VMA until the stack is in its final location */
371 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
372
373 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
374
375 /* Common data flag combinations */
376 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
379 VM_MAYWRITE | VM_MAYEXEC)
380 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382
383 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
384 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
385 #endif
386
387 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
388 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
389 #endif
390
391 #ifdef CONFIG_STACK_GROWSUP
392 #define VM_STACK VM_GROWSUP
393 #else
394 #define VM_STACK VM_GROWSDOWN
395 #endif
396
397 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
398
399 /* VMA basic access permission flags */
400 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
401
402
403 /*
404 * Special vmas that are non-mergable, non-mlock()able.
405 */
406 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
407
408 /* This mask prevents VMA from being scanned with khugepaged */
409 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
410
411 /* This mask defines which mm->def_flags a process can inherit its parent */
412 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
413
414 /* This mask is used to clear all the VMA flags used by mlock */
415 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
416
417 /* Arch-specific flags to clear when updating VM flags on protection change */
418 #ifndef VM_ARCH_CLEAR
419 # define VM_ARCH_CLEAR VM_NONE
420 #endif
421 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
422
423 /*
424 * mapping from the currently active vm_flags protection bits (the
425 * low four bits) to a page protection mask..
426 */
427 extern pgprot_t protection_map[16];
428
429 /*
430 * The default fault flags that should be used by most of the
431 * arch-specific page fault handlers.
432 */
433 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
434 FAULT_FLAG_KILLABLE | \
435 FAULT_FLAG_INTERRUPTIBLE)
436
437 /**
438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
439 * @flags: Fault flags.
440 *
441 * This is mostly used for places where we want to try to avoid taking
442 * the mmap_lock for too long a time when waiting for another condition
443 * to change, in which case we can try to be polite to release the
444 * mmap_lock in the first round to avoid potential starvation of other
445 * processes that would also want the mmap_lock.
446 *
447 * Return: true if the page fault allows retry and this is the first
448 * attempt of the fault handling; false otherwise.
449 */
fault_flag_allow_retry_first(enum fault_flag flags)450 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
451 {
452 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
453 (!(flags & FAULT_FLAG_TRIED));
454 }
455
456 #define FAULT_FLAG_TRACE \
457 { FAULT_FLAG_WRITE, "WRITE" }, \
458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
462 { FAULT_FLAG_TRIED, "TRIED" }, \
463 { FAULT_FLAG_USER, "USER" }, \
464 { FAULT_FLAG_REMOTE, "REMOTE" }, \
465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
467
468 /*
469 * vm_fault is filled by the pagefault handler and passed to the vma's
470 * ->fault function. The vma's ->fault is responsible for returning a bitmask
471 * of VM_FAULT_xxx flags that give details about how the fault was handled.
472 *
473 * MM layer fills up gfp_mask for page allocations but fault handler might
474 * alter it if its implementation requires a different allocation context.
475 *
476 * pgoff should be used in favour of virtual_address, if possible.
477 */
478 struct vm_fault {
479 const struct {
480 struct vm_area_struct *vma; /* Target VMA */
481 gfp_t gfp_mask; /* gfp mask to be used for allocations */
482 pgoff_t pgoff; /* Logical page offset based on vma */
483 unsigned long address; /* Faulting virtual address - masked */
484 unsigned long real_address; /* Faulting virtual address - unmasked */
485 };
486 enum fault_flag flags; /* FAULT_FLAG_xxx flags
487 * XXX: should really be 'const' */
488 pmd_t *pmd; /* Pointer to pmd entry matching
489 * the 'address' */
490 pud_t *pud; /* Pointer to pud entry matching
491 * the 'address'
492 */
493 union {
494 pte_t orig_pte; /* Value of PTE at the time of fault */
495 pmd_t orig_pmd; /* Value of PMD at the time of fault,
496 * used by PMD fault only.
497 */
498 };
499
500 struct page *cow_page; /* Page handler may use for COW fault */
501 struct page *page; /* ->fault handlers should return a
502 * page here, unless VM_FAULT_NOPAGE
503 * is set (which is also implied by
504 * VM_FAULT_ERROR).
505 */
506 /* These three entries are valid only while holding ptl lock */
507 pte_t *pte; /* Pointer to pte entry matching
508 * the 'address'. NULL if the page
509 * table hasn't been allocated.
510 */
511 spinlock_t *ptl; /* Page table lock.
512 * Protects pte page table if 'pte'
513 * is not NULL, otherwise pmd.
514 */
515 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
516 * vm_ops->map_pages() sets up a page
517 * table from atomic context.
518 * do_fault_around() pre-allocates
519 * page table to avoid allocation from
520 * atomic context.
521 */
522 };
523
524 /* page entry size for vm->huge_fault() */
525 enum page_entry_size {
526 PE_SIZE_PTE = 0,
527 PE_SIZE_PMD,
528 PE_SIZE_PUD,
529 };
530
531 /*
532 * These are the virtual MM functions - opening of an area, closing and
533 * unmapping it (needed to keep files on disk up-to-date etc), pointer
534 * to the functions called when a no-page or a wp-page exception occurs.
535 */
536 struct vm_operations_struct {
537 void (*open)(struct vm_area_struct * area);
538 /**
539 * @close: Called when the VMA is being removed from the MM.
540 * Context: User context. May sleep. Caller holds mmap_lock.
541 */
542 void (*close)(struct vm_area_struct * area);
543 /* Called any time before splitting to check if it's allowed */
544 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
545 int (*mremap)(struct vm_area_struct *area);
546 /*
547 * Called by mprotect() to make driver-specific permission
548 * checks before mprotect() is finalised. The VMA must not
549 * be modified. Returns 0 if eprotect() can proceed.
550 */
551 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
552 unsigned long end, unsigned long newflags);
553 vm_fault_t (*fault)(struct vm_fault *vmf);
554 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
555 enum page_entry_size pe_size);
556 vm_fault_t (*map_pages)(struct vm_fault *vmf,
557 pgoff_t start_pgoff, pgoff_t end_pgoff);
558 unsigned long (*pagesize)(struct vm_area_struct * area);
559
560 /* notification that a previously read-only page is about to become
561 * writable, if an error is returned it will cause a SIGBUS */
562 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
563
564 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
565 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
566
567 /* called by access_process_vm when get_user_pages() fails, typically
568 * for use by special VMAs. See also generic_access_phys() for a generic
569 * implementation useful for any iomem mapping.
570 */
571 int (*access)(struct vm_area_struct *vma, unsigned long addr,
572 void *buf, int len, int write);
573
574 /* Called by the /proc/PID/maps code to ask the vma whether it
575 * has a special name. Returning non-NULL will also cause this
576 * vma to be dumped unconditionally. */
577 const char *(*name)(struct vm_area_struct *vma);
578
579 #ifdef CONFIG_NUMA
580 /*
581 * set_policy() op must add a reference to any non-NULL @new mempolicy
582 * to hold the policy upon return. Caller should pass NULL @new to
583 * remove a policy and fall back to surrounding context--i.e. do not
584 * install a MPOL_DEFAULT policy, nor the task or system default
585 * mempolicy.
586 */
587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
588
589 /*
590 * get_policy() op must add reference [mpol_get()] to any policy at
591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
592 * in mm/mempolicy.c will do this automatically.
593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
596 * must return NULL--i.e., do not "fallback" to task or system default
597 * policy.
598 */
599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
600 unsigned long addr);
601 #endif
602 /*
603 * Called by vm_normal_page() for special PTEs to find the
604 * page for @addr. This is useful if the default behavior
605 * (using pte_page()) would not find the correct page.
606 */
607 struct page *(*find_special_page)(struct vm_area_struct *vma,
608 unsigned long addr);
609 };
610
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
612 {
613 static const struct vm_operations_struct dummy_vm_ops = {};
614
615 memset(vma, 0, sizeof(*vma));
616 vma->vm_mm = mm;
617 vma->vm_ops = &dummy_vm_ops;
618 INIT_LIST_HEAD(&vma->anon_vma_chain);
619 }
620
vma_set_anonymous(struct vm_area_struct * vma)621 static inline void vma_set_anonymous(struct vm_area_struct *vma)
622 {
623 vma->vm_ops = NULL;
624 }
625
vma_is_anonymous(struct vm_area_struct * vma)626 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
627 {
628 return !vma->vm_ops;
629 }
630
vma_is_temporary_stack(struct vm_area_struct * vma)631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
632 {
633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
634
635 if (!maybe_stack)
636 return false;
637
638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
639 VM_STACK_INCOMPLETE_SETUP)
640 return true;
641
642 return false;
643 }
644
vma_is_foreign(struct vm_area_struct * vma)645 static inline bool vma_is_foreign(struct vm_area_struct *vma)
646 {
647 if (!current->mm)
648 return true;
649
650 if (current->mm != vma->vm_mm)
651 return true;
652
653 return false;
654 }
655
vma_is_accessible(struct vm_area_struct * vma)656 static inline bool vma_is_accessible(struct vm_area_struct *vma)
657 {
658 return vma->vm_flags & VM_ACCESS_FLAGS;
659 }
660
661 #ifdef CONFIG_SHMEM
662 /*
663 * The vma_is_shmem is not inline because it is used only by slow
664 * paths in userfault.
665 */
666 bool vma_is_shmem(struct vm_area_struct *vma);
667 #else
vma_is_shmem(struct vm_area_struct * vma)668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
669 #endif
670
671 int vma_is_stack_for_current(struct vm_area_struct *vma);
672
673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
675
676 struct mmu_gather;
677 struct inode;
678
compound_order(struct page * page)679 static inline unsigned int compound_order(struct page *page)
680 {
681 if (!PageHead(page))
682 return 0;
683 return page[1].compound_order;
684 }
685
686 /**
687 * folio_order - The allocation order of a folio.
688 * @folio: The folio.
689 *
690 * A folio is composed of 2^order pages. See get_order() for the definition
691 * of order.
692 *
693 * Return: The order of the folio.
694 */
folio_order(struct folio * folio)695 static inline unsigned int folio_order(struct folio *folio)
696 {
697 return compound_order(&folio->page);
698 }
699
700 #include <linux/huge_mm.h>
701
702 /*
703 * Methods to modify the page usage count.
704 *
705 * What counts for a page usage:
706 * - cache mapping (page->mapping)
707 * - private data (page->private)
708 * - page mapped in a task's page tables, each mapping
709 * is counted separately
710 *
711 * Also, many kernel routines increase the page count before a critical
712 * routine so they can be sure the page doesn't go away from under them.
713 */
714
715 /*
716 * Drop a ref, return true if the refcount fell to zero (the page has no users)
717 */
put_page_testzero(struct page * page)718 static inline int put_page_testzero(struct page *page)
719 {
720 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
721 return page_ref_dec_and_test(page);
722 }
723
folio_put_testzero(struct folio * folio)724 static inline int folio_put_testzero(struct folio *folio)
725 {
726 return put_page_testzero(&folio->page);
727 }
728
729 /*
730 * Try to grab a ref unless the page has a refcount of zero, return false if
731 * that is the case.
732 * This can be called when MMU is off so it must not access
733 * any of the virtual mappings.
734 */
get_page_unless_zero(struct page * page)735 static inline bool get_page_unless_zero(struct page *page)
736 {
737 return page_ref_add_unless(page, 1, 0);
738 }
739
740 extern int page_is_ram(unsigned long pfn);
741
742 enum {
743 REGION_INTERSECTS,
744 REGION_DISJOINT,
745 REGION_MIXED,
746 };
747
748 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
749 unsigned long desc);
750
751 /* Support for virtually mapped pages */
752 struct page *vmalloc_to_page(const void *addr);
753 unsigned long vmalloc_to_pfn(const void *addr);
754
755 /*
756 * Determine if an address is within the vmalloc range
757 *
758 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
759 * is no special casing required.
760 */
761
762 #ifndef is_ioremap_addr
763 #define is_ioremap_addr(x) is_vmalloc_addr(x)
764 #endif
765
766 #ifdef CONFIG_MMU
767 extern bool is_vmalloc_addr(const void *x);
768 extern int is_vmalloc_or_module_addr(const void *x);
769 #else
is_vmalloc_addr(const void * x)770 static inline bool is_vmalloc_addr(const void *x)
771 {
772 return false;
773 }
is_vmalloc_or_module_addr(const void * x)774 static inline int is_vmalloc_or_module_addr(const void *x)
775 {
776 return 0;
777 }
778 #endif
779
780 /*
781 * How many times the entire folio is mapped as a single unit (eg by a
782 * PMD or PUD entry). This is probably not what you want, except for
783 * debugging purposes; look at folio_mapcount() or page_mapcount()
784 * instead.
785 */
folio_entire_mapcount(struct folio * folio)786 static inline int folio_entire_mapcount(struct folio *folio)
787 {
788 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
789 return atomic_read(folio_mapcount_ptr(folio)) + 1;
790 }
791
792 /*
793 * Mapcount of compound page as a whole, does not include mapped sub-pages.
794 *
795 * Must be called only for compound pages.
796 */
compound_mapcount(struct page * page)797 static inline int compound_mapcount(struct page *page)
798 {
799 return folio_entire_mapcount(page_folio(page));
800 }
801
802 /*
803 * The atomic page->_mapcount, starts from -1: so that transitions
804 * both from it and to it can be tracked, using atomic_inc_and_test
805 * and atomic_add_negative(-1).
806 */
page_mapcount_reset(struct page * page)807 static inline void page_mapcount_reset(struct page *page)
808 {
809 atomic_set(&(page)->_mapcount, -1);
810 }
811
812 int __page_mapcount(struct page *page);
813
814 /*
815 * Mapcount of 0-order page; when compound sub-page, includes
816 * compound_mapcount().
817 *
818 * Result is undefined for pages which cannot be mapped into userspace.
819 * For example SLAB or special types of pages. See function page_has_type().
820 * They use this place in struct page differently.
821 */
page_mapcount(struct page * page)822 static inline int page_mapcount(struct page *page)
823 {
824 if (unlikely(PageCompound(page)))
825 return __page_mapcount(page);
826 return atomic_read(&page->_mapcount) + 1;
827 }
828
829 int folio_mapcount(struct folio *folio);
830
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
total_mapcount(struct page * page)832 static inline int total_mapcount(struct page *page)
833 {
834 return folio_mapcount(page_folio(page));
835 }
836
837 #else
total_mapcount(struct page * page)838 static inline int total_mapcount(struct page *page)
839 {
840 return page_mapcount(page);
841 }
842 #endif
843
virt_to_head_page(const void * x)844 static inline struct page *virt_to_head_page(const void *x)
845 {
846 struct page *page = virt_to_page(x);
847
848 return compound_head(page);
849 }
850
virt_to_folio(const void * x)851 static inline struct folio *virt_to_folio(const void *x)
852 {
853 struct page *page = virt_to_page(x);
854
855 return page_folio(page);
856 }
857
858 void __put_page(struct page *page);
859
860 void put_pages_list(struct list_head *pages);
861
862 void split_page(struct page *page, unsigned int order);
863 void folio_copy(struct folio *dst, struct folio *src);
864
865 unsigned long nr_free_buffer_pages(void);
866
867 /*
868 * Compound pages have a destructor function. Provide a
869 * prototype for that function and accessor functions.
870 * These are _only_ valid on the head of a compound page.
871 */
872 typedef void compound_page_dtor(struct page *);
873
874 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
875 enum compound_dtor_id {
876 NULL_COMPOUND_DTOR,
877 COMPOUND_PAGE_DTOR,
878 #ifdef CONFIG_HUGETLB_PAGE
879 HUGETLB_PAGE_DTOR,
880 #endif
881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
882 TRANSHUGE_PAGE_DTOR,
883 #endif
884 NR_COMPOUND_DTORS,
885 };
886 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
887
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)888 static inline void set_compound_page_dtor(struct page *page,
889 enum compound_dtor_id compound_dtor)
890 {
891 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
892 page[1].compound_dtor = compound_dtor;
893 }
894
destroy_compound_page(struct page * page)895 static inline void destroy_compound_page(struct page *page)
896 {
897 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
898 compound_page_dtors[page[1].compound_dtor](page);
899 }
900
head_compound_pincount(struct page * head)901 static inline int head_compound_pincount(struct page *head)
902 {
903 return atomic_read(compound_pincount_ptr(head));
904 }
905
set_compound_order(struct page * page,unsigned int order)906 static inline void set_compound_order(struct page *page, unsigned int order)
907 {
908 page[1].compound_order = order;
909 #ifdef CONFIG_64BIT
910 page[1].compound_nr = 1U << order;
911 #endif
912 }
913
914 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)915 static inline unsigned long compound_nr(struct page *page)
916 {
917 if (!PageHead(page))
918 return 1;
919 #ifdef CONFIG_64BIT
920 return page[1].compound_nr;
921 #else
922 return 1UL << compound_order(page);
923 #endif
924 }
925
926 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)927 static inline unsigned long page_size(struct page *page)
928 {
929 return PAGE_SIZE << compound_order(page);
930 }
931
932 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)933 static inline unsigned int page_shift(struct page *page)
934 {
935 return PAGE_SHIFT + compound_order(page);
936 }
937
938 /**
939 * thp_order - Order of a transparent huge page.
940 * @page: Head page of a transparent huge page.
941 */
thp_order(struct page * page)942 static inline unsigned int thp_order(struct page *page)
943 {
944 VM_BUG_ON_PGFLAGS(PageTail(page), page);
945 return compound_order(page);
946 }
947
948 /**
949 * thp_nr_pages - The number of regular pages in this huge page.
950 * @page: The head page of a huge page.
951 */
thp_nr_pages(struct page * page)952 static inline int thp_nr_pages(struct page *page)
953 {
954 VM_BUG_ON_PGFLAGS(PageTail(page), page);
955 return compound_nr(page);
956 }
957
958 /**
959 * thp_size - Size of a transparent huge page.
960 * @page: Head page of a transparent huge page.
961 *
962 * Return: Number of bytes in this page.
963 */
thp_size(struct page * page)964 static inline unsigned long thp_size(struct page *page)
965 {
966 return PAGE_SIZE << thp_order(page);
967 }
968
969 void free_compound_page(struct page *page);
970
971 #ifdef CONFIG_MMU
972 /*
973 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
974 * servicing faults for write access. In the normal case, do always want
975 * pte_mkwrite. But get_user_pages can cause write faults for mappings
976 * that do not have writing enabled, when used by access_process_vm.
977 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)978 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
979 {
980 if (likely(vma->vm_flags & VM_WRITE))
981 pte = pte_mkwrite(pte);
982 return pte;
983 }
984
985 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
986 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
987
988 vm_fault_t finish_fault(struct vm_fault *vmf);
989 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
990 #endif
991
992 /*
993 * Multiple processes may "see" the same page. E.g. for untouched
994 * mappings of /dev/null, all processes see the same page full of
995 * zeroes, and text pages of executables and shared libraries have
996 * only one copy in memory, at most, normally.
997 *
998 * For the non-reserved pages, page_count(page) denotes a reference count.
999 * page_count() == 0 means the page is free. page->lru is then used for
1000 * freelist management in the buddy allocator.
1001 * page_count() > 0 means the page has been allocated.
1002 *
1003 * Pages are allocated by the slab allocator in order to provide memory
1004 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1005 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1006 * unless a particular usage is carefully commented. (the responsibility of
1007 * freeing the kmalloc memory is the caller's, of course).
1008 *
1009 * A page may be used by anyone else who does a __get_free_page().
1010 * In this case, page_count still tracks the references, and should only
1011 * be used through the normal accessor functions. The top bits of page->flags
1012 * and page->virtual store page management information, but all other fields
1013 * are unused and could be used privately, carefully. The management of this
1014 * page is the responsibility of the one who allocated it, and those who have
1015 * subsequently been given references to it.
1016 *
1017 * The other pages (we may call them "pagecache pages") are completely
1018 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1019 * The following discussion applies only to them.
1020 *
1021 * A pagecache page contains an opaque `private' member, which belongs to the
1022 * page's address_space. Usually, this is the address of a circular list of
1023 * the page's disk buffers. PG_private must be set to tell the VM to call
1024 * into the filesystem to release these pages.
1025 *
1026 * A page may belong to an inode's memory mapping. In this case, page->mapping
1027 * is the pointer to the inode, and page->index is the file offset of the page,
1028 * in units of PAGE_SIZE.
1029 *
1030 * If pagecache pages are not associated with an inode, they are said to be
1031 * anonymous pages. These may become associated with the swapcache, and in that
1032 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1033 *
1034 * In either case (swapcache or inode backed), the pagecache itself holds one
1035 * reference to the page. Setting PG_private should also increment the
1036 * refcount. The each user mapping also has a reference to the page.
1037 *
1038 * The pagecache pages are stored in a per-mapping radix tree, which is
1039 * rooted at mapping->i_pages, and indexed by offset.
1040 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1041 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1042 *
1043 * All pagecache pages may be subject to I/O:
1044 * - inode pages may need to be read from disk,
1045 * - inode pages which have been modified and are MAP_SHARED may need
1046 * to be written back to the inode on disk,
1047 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1048 * modified may need to be swapped out to swap space and (later) to be read
1049 * back into memory.
1050 */
1051
1052 /*
1053 * The zone field is never updated after free_area_init_core()
1054 * sets it, so none of the operations on it need to be atomic.
1055 */
1056
1057 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1058 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1059 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1060 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1061 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1062 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1063
1064 /*
1065 * Define the bit shifts to access each section. For non-existent
1066 * sections we define the shift as 0; that plus a 0 mask ensures
1067 * the compiler will optimise away reference to them.
1068 */
1069 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1070 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1071 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1072 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1073 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1074
1075 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1076 #ifdef NODE_NOT_IN_PAGE_FLAGS
1077 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1078 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1079 SECTIONS_PGOFF : ZONES_PGOFF)
1080 #else
1081 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1082 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1083 NODES_PGOFF : ZONES_PGOFF)
1084 #endif
1085
1086 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1087
1088 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1089 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1090 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1091 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1092 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1093 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1094
page_zonenum(const struct page * page)1095 static inline enum zone_type page_zonenum(const struct page *page)
1096 {
1097 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1098 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1099 }
1100
folio_zonenum(const struct folio * folio)1101 static inline enum zone_type folio_zonenum(const struct folio *folio)
1102 {
1103 return page_zonenum(&folio->page);
1104 }
1105
1106 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1107 static inline bool is_zone_device_page(const struct page *page)
1108 {
1109 return page_zonenum(page) == ZONE_DEVICE;
1110 }
1111 extern void memmap_init_zone_device(struct zone *, unsigned long,
1112 unsigned long, struct dev_pagemap *);
1113 #else
is_zone_device_page(const struct page * page)1114 static inline bool is_zone_device_page(const struct page *page)
1115 {
1116 return false;
1117 }
1118 #endif
1119
folio_is_zone_device(const struct folio * folio)1120 static inline bool folio_is_zone_device(const struct folio *folio)
1121 {
1122 return is_zone_device_page(&folio->page);
1123 }
1124
is_zone_movable_page(const struct page * page)1125 static inline bool is_zone_movable_page(const struct page *page)
1126 {
1127 return page_zonenum(page) == ZONE_MOVABLE;
1128 }
1129
1130 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1131 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1132
1133 bool __put_devmap_managed_page_refs(struct page *page, int refs);
put_devmap_managed_page_refs(struct page * page,int refs)1134 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1135 {
1136 if (!static_branch_unlikely(&devmap_managed_key))
1137 return false;
1138 if (!is_zone_device_page(page))
1139 return false;
1140 return __put_devmap_managed_page_refs(page, refs);
1141 }
1142 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_page_refs(struct page * page,int refs)1143 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1144 {
1145 return false;
1146 }
1147 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1148
put_devmap_managed_page(struct page * page)1149 static inline bool put_devmap_managed_page(struct page *page)
1150 {
1151 return put_devmap_managed_page_refs(page, 1);
1152 }
1153
1154 /* 127: arbitrary random number, small enough to assemble well */
1155 #define folio_ref_zero_or_close_to_overflow(folio) \
1156 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1157
1158 /**
1159 * folio_get - Increment the reference count on a folio.
1160 * @folio: The folio.
1161 *
1162 * Context: May be called in any context, as long as you know that
1163 * you have a refcount on the folio. If you do not already have one,
1164 * folio_try_get() may be the right interface for you to use.
1165 */
folio_get(struct folio * folio)1166 static inline void folio_get(struct folio *folio)
1167 {
1168 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1169 folio_ref_inc(folio);
1170 }
1171
get_page(struct page * page)1172 static inline void get_page(struct page *page)
1173 {
1174 folio_get(page_folio(page));
1175 }
1176
1177 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1178
try_get_page(struct page * page)1179 static inline __must_check bool try_get_page(struct page *page)
1180 {
1181 page = compound_head(page);
1182 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1183 return false;
1184 page_ref_inc(page);
1185 return true;
1186 }
1187
1188 /**
1189 * folio_put - Decrement the reference count on a folio.
1190 * @folio: The folio.
1191 *
1192 * If the folio's reference count reaches zero, the memory will be
1193 * released back to the page allocator and may be used by another
1194 * allocation immediately. Do not access the memory or the struct folio
1195 * after calling folio_put() unless you can be sure that it wasn't the
1196 * last reference.
1197 *
1198 * Context: May be called in process or interrupt context, but not in NMI
1199 * context. May be called while holding a spinlock.
1200 */
folio_put(struct folio * folio)1201 static inline void folio_put(struct folio *folio)
1202 {
1203 if (folio_put_testzero(folio))
1204 __put_page(&folio->page);
1205 }
1206
1207 /**
1208 * folio_put_refs - Reduce the reference count on a folio.
1209 * @folio: The folio.
1210 * @refs: The amount to subtract from the folio's reference count.
1211 *
1212 * If the folio's reference count reaches zero, the memory will be
1213 * released back to the page allocator and may be used by another
1214 * allocation immediately. Do not access the memory or the struct folio
1215 * after calling folio_put_refs() unless you can be sure that these weren't
1216 * the last references.
1217 *
1218 * Context: May be called in process or interrupt context, but not in NMI
1219 * context. May be called while holding a spinlock.
1220 */
folio_put_refs(struct folio * folio,int refs)1221 static inline void folio_put_refs(struct folio *folio, int refs)
1222 {
1223 if (folio_ref_sub_and_test(folio, refs))
1224 __put_page(&folio->page);
1225 }
1226
put_page(struct page * page)1227 static inline void put_page(struct page *page)
1228 {
1229 struct folio *folio = page_folio(page);
1230
1231 /*
1232 * For some devmap managed pages we need to catch refcount transition
1233 * from 2 to 1:
1234 */
1235 if (put_devmap_managed_page(&folio->page))
1236 return;
1237 folio_put(folio);
1238 }
1239
1240 /*
1241 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1242 * the page's refcount so that two separate items are tracked: the original page
1243 * reference count, and also a new count of how many pin_user_pages() calls were
1244 * made against the page. ("gup-pinned" is another term for the latter).
1245 *
1246 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1247 * distinct from normal pages. As such, the unpin_user_page() call (and its
1248 * variants) must be used in order to release gup-pinned pages.
1249 *
1250 * Choice of value:
1251 *
1252 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1253 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1254 * simpler, due to the fact that adding an even power of two to the page
1255 * refcount has the effect of using only the upper N bits, for the code that
1256 * counts up using the bias value. This means that the lower bits are left for
1257 * the exclusive use of the original code that increments and decrements by one
1258 * (or at least, by much smaller values than the bias value).
1259 *
1260 * Of course, once the lower bits overflow into the upper bits (and this is
1261 * OK, because subtraction recovers the original values), then visual inspection
1262 * no longer suffices to directly view the separate counts. However, for normal
1263 * applications that don't have huge page reference counts, this won't be an
1264 * issue.
1265 *
1266 * Locking: the lockless algorithm described in folio_try_get_rcu()
1267 * provides safe operation for get_user_pages(), page_mkclean() and
1268 * other calls that race to set up page table entries.
1269 */
1270 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1271
1272 void unpin_user_page(struct page *page);
1273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1274 bool make_dirty);
1275 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1276 bool make_dirty);
1277 void unpin_user_pages(struct page **pages, unsigned long npages);
1278
is_cow_mapping(vm_flags_t flags)1279 static inline bool is_cow_mapping(vm_flags_t flags)
1280 {
1281 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1282 }
1283
1284 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1285 #define SECTION_IN_PAGE_FLAGS
1286 #endif
1287
1288 /*
1289 * The identification function is mainly used by the buddy allocator for
1290 * determining if two pages could be buddies. We are not really identifying
1291 * the zone since we could be using the section number id if we do not have
1292 * node id available in page flags.
1293 * We only guarantee that it will return the same value for two combinable
1294 * pages in a zone.
1295 */
page_zone_id(struct page * page)1296 static inline int page_zone_id(struct page *page)
1297 {
1298 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1299 }
1300
1301 #ifdef NODE_NOT_IN_PAGE_FLAGS
1302 extern int page_to_nid(const struct page *page);
1303 #else
page_to_nid(const struct page * page)1304 static inline int page_to_nid(const struct page *page)
1305 {
1306 struct page *p = (struct page *)page;
1307
1308 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1309 }
1310 #endif
1311
folio_nid(const struct folio * folio)1312 static inline int folio_nid(const struct folio *folio)
1313 {
1314 return page_to_nid(&folio->page);
1315 }
1316
1317 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1318 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1319 {
1320 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1321 }
1322
cpupid_to_pid(int cpupid)1323 static inline int cpupid_to_pid(int cpupid)
1324 {
1325 return cpupid & LAST__PID_MASK;
1326 }
1327
cpupid_to_cpu(int cpupid)1328 static inline int cpupid_to_cpu(int cpupid)
1329 {
1330 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1331 }
1332
cpupid_to_nid(int cpupid)1333 static inline int cpupid_to_nid(int cpupid)
1334 {
1335 return cpu_to_node(cpupid_to_cpu(cpupid));
1336 }
1337
cpupid_pid_unset(int cpupid)1338 static inline bool cpupid_pid_unset(int cpupid)
1339 {
1340 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1341 }
1342
cpupid_cpu_unset(int cpupid)1343 static inline bool cpupid_cpu_unset(int cpupid)
1344 {
1345 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1346 }
1347
__cpupid_match_pid(pid_t task_pid,int cpupid)1348 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1349 {
1350 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1351 }
1352
1353 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1354 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1355 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1356 {
1357 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1358 }
1359
page_cpupid_last(struct page * page)1360 static inline int page_cpupid_last(struct page *page)
1361 {
1362 return page->_last_cpupid;
1363 }
page_cpupid_reset_last(struct page * page)1364 static inline void page_cpupid_reset_last(struct page *page)
1365 {
1366 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1367 }
1368 #else
page_cpupid_last(struct page * page)1369 static inline int page_cpupid_last(struct page *page)
1370 {
1371 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1372 }
1373
1374 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1375
page_cpupid_reset_last(struct page * page)1376 static inline void page_cpupid_reset_last(struct page *page)
1377 {
1378 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1379 }
1380 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1381 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1382 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1383 {
1384 return page_to_nid(page); /* XXX */
1385 }
1386
page_cpupid_last(struct page * page)1387 static inline int page_cpupid_last(struct page *page)
1388 {
1389 return page_to_nid(page); /* XXX */
1390 }
1391
cpupid_to_nid(int cpupid)1392 static inline int cpupid_to_nid(int cpupid)
1393 {
1394 return -1;
1395 }
1396
cpupid_to_pid(int cpupid)1397 static inline int cpupid_to_pid(int cpupid)
1398 {
1399 return -1;
1400 }
1401
cpupid_to_cpu(int cpupid)1402 static inline int cpupid_to_cpu(int cpupid)
1403 {
1404 return -1;
1405 }
1406
cpu_pid_to_cpupid(int nid,int pid)1407 static inline int cpu_pid_to_cpupid(int nid, int pid)
1408 {
1409 return -1;
1410 }
1411
cpupid_pid_unset(int cpupid)1412 static inline bool cpupid_pid_unset(int cpupid)
1413 {
1414 return true;
1415 }
1416
page_cpupid_reset_last(struct page * page)1417 static inline void page_cpupid_reset_last(struct page *page)
1418 {
1419 }
1420
cpupid_match_pid(struct task_struct * task,int cpupid)1421 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1422 {
1423 return false;
1424 }
1425 #endif /* CONFIG_NUMA_BALANCING */
1426
1427 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1428
1429 /*
1430 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1431 * setting tags for all pages to native kernel tag value 0xff, as the default
1432 * value 0x00 maps to 0xff.
1433 */
1434
page_kasan_tag(const struct page * page)1435 static inline u8 page_kasan_tag(const struct page *page)
1436 {
1437 u8 tag = 0xff;
1438
1439 if (kasan_enabled()) {
1440 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1441 tag ^= 0xff;
1442 }
1443
1444 return tag;
1445 }
1446
page_kasan_tag_set(struct page * page,u8 tag)1447 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1448 {
1449 unsigned long old_flags, flags;
1450
1451 if (!kasan_enabled())
1452 return;
1453
1454 tag ^= 0xff;
1455 old_flags = READ_ONCE(page->flags);
1456 do {
1457 flags = old_flags;
1458 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1459 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1460 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1461 }
1462
page_kasan_tag_reset(struct page * page)1463 static inline void page_kasan_tag_reset(struct page *page)
1464 {
1465 if (kasan_enabled())
1466 page_kasan_tag_set(page, 0xff);
1467 }
1468
1469 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1470
page_kasan_tag(const struct page * page)1471 static inline u8 page_kasan_tag(const struct page *page)
1472 {
1473 return 0xff;
1474 }
1475
page_kasan_tag_set(struct page * page,u8 tag)1476 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1477 static inline void page_kasan_tag_reset(struct page *page) { }
1478
1479 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1480
page_zone(const struct page * page)1481 static inline struct zone *page_zone(const struct page *page)
1482 {
1483 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1484 }
1485
page_pgdat(const struct page * page)1486 static inline pg_data_t *page_pgdat(const struct page *page)
1487 {
1488 return NODE_DATA(page_to_nid(page));
1489 }
1490
folio_zone(const struct folio * folio)1491 static inline struct zone *folio_zone(const struct folio *folio)
1492 {
1493 return page_zone(&folio->page);
1494 }
1495
folio_pgdat(const struct folio * folio)1496 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1497 {
1498 return page_pgdat(&folio->page);
1499 }
1500
1501 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1502 static inline void set_page_section(struct page *page, unsigned long section)
1503 {
1504 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1505 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1506 }
1507
page_to_section(const struct page * page)1508 static inline unsigned long page_to_section(const struct page *page)
1509 {
1510 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1511 }
1512 #endif
1513
1514 /**
1515 * folio_pfn - Return the Page Frame Number of a folio.
1516 * @folio: The folio.
1517 *
1518 * A folio may contain multiple pages. The pages have consecutive
1519 * Page Frame Numbers.
1520 *
1521 * Return: The Page Frame Number of the first page in the folio.
1522 */
folio_pfn(struct folio * folio)1523 static inline unsigned long folio_pfn(struct folio *folio)
1524 {
1525 return page_to_pfn(&folio->page);
1526 }
1527
folio_pincount_ptr(struct folio * folio)1528 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1529 {
1530 return &folio_page(folio, 1)->compound_pincount;
1531 }
1532
1533 /**
1534 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1535 * @folio: The folio.
1536 *
1537 * This function checks if a folio has been pinned via a call to
1538 * a function in the pin_user_pages() family.
1539 *
1540 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1541 * because it means "definitely not pinned for DMA", but true means "probably
1542 * pinned for DMA, but possibly a false positive due to having at least
1543 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1544 *
1545 * False positives are OK, because: a) it's unlikely for a folio to
1546 * get that many refcounts, and b) all the callers of this routine are
1547 * expected to be able to deal gracefully with a false positive.
1548 *
1549 * For large folios, the result will be exactly correct. That's because
1550 * we have more tracking data available: the compound_pincount is used
1551 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1552 *
1553 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1554 *
1555 * Return: True, if it is likely that the page has been "dma-pinned".
1556 * False, if the page is definitely not dma-pinned.
1557 */
folio_maybe_dma_pinned(struct folio * folio)1558 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1559 {
1560 if (folio_test_large(folio))
1561 return atomic_read(folio_pincount_ptr(folio)) > 0;
1562
1563 /*
1564 * folio_ref_count() is signed. If that refcount overflows, then
1565 * folio_ref_count() returns a negative value, and callers will avoid
1566 * further incrementing the refcount.
1567 *
1568 * Here, for that overflow case, use the sign bit to count a little
1569 * bit higher via unsigned math, and thus still get an accurate result.
1570 */
1571 return ((unsigned int)folio_ref_count(folio)) >=
1572 GUP_PIN_COUNTING_BIAS;
1573 }
1574
page_maybe_dma_pinned(struct page * page)1575 static inline bool page_maybe_dma_pinned(struct page *page)
1576 {
1577 return folio_maybe_dma_pinned(page_folio(page));
1578 }
1579
1580 /*
1581 * This should most likely only be called during fork() to see whether we
1582 * should break the cow immediately for an anon page on the src mm.
1583 *
1584 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1585 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1586 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1587 struct page *page)
1588 {
1589 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1590
1591 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1592 return false;
1593
1594 return page_maybe_dma_pinned(page);
1595 }
1596
1597 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1598 #ifdef CONFIG_MIGRATION
is_pinnable_page(struct page * page)1599 static inline bool is_pinnable_page(struct page *page)
1600 {
1601 #ifdef CONFIG_CMA
1602 int mt = get_pageblock_migratetype(page);
1603
1604 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1605 return false;
1606 #endif
1607 return !is_zone_movable_page(page) || is_zero_pfn(page_to_pfn(page));
1608 }
1609 #else
is_pinnable_page(struct page * page)1610 static inline bool is_pinnable_page(struct page *page)
1611 {
1612 return true;
1613 }
1614 #endif
1615
folio_is_pinnable(struct folio * folio)1616 static inline bool folio_is_pinnable(struct folio *folio)
1617 {
1618 return is_pinnable_page(&folio->page);
1619 }
1620
set_page_zone(struct page * page,enum zone_type zone)1621 static inline void set_page_zone(struct page *page, enum zone_type zone)
1622 {
1623 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1624 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1625 }
1626
set_page_node(struct page * page,unsigned long node)1627 static inline void set_page_node(struct page *page, unsigned long node)
1628 {
1629 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1630 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1631 }
1632
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1633 static inline void set_page_links(struct page *page, enum zone_type zone,
1634 unsigned long node, unsigned long pfn)
1635 {
1636 set_page_zone(page, zone);
1637 set_page_node(page, node);
1638 #ifdef SECTION_IN_PAGE_FLAGS
1639 set_page_section(page, pfn_to_section_nr(pfn));
1640 #endif
1641 }
1642
1643 /**
1644 * folio_nr_pages - The number of pages in the folio.
1645 * @folio: The folio.
1646 *
1647 * Return: A positive power of two.
1648 */
folio_nr_pages(struct folio * folio)1649 static inline long folio_nr_pages(struct folio *folio)
1650 {
1651 return compound_nr(&folio->page);
1652 }
1653
1654 /**
1655 * folio_next - Move to the next physical folio.
1656 * @folio: The folio we're currently operating on.
1657 *
1658 * If you have physically contiguous memory which may span more than
1659 * one folio (eg a &struct bio_vec), use this function to move from one
1660 * folio to the next. Do not use it if the memory is only virtually
1661 * contiguous as the folios are almost certainly not adjacent to each
1662 * other. This is the folio equivalent to writing ``page++``.
1663 *
1664 * Context: We assume that the folios are refcounted and/or locked at a
1665 * higher level and do not adjust the reference counts.
1666 * Return: The next struct folio.
1667 */
folio_next(struct folio * folio)1668 static inline struct folio *folio_next(struct folio *folio)
1669 {
1670 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1671 }
1672
1673 /**
1674 * folio_shift - The size of the memory described by this folio.
1675 * @folio: The folio.
1676 *
1677 * A folio represents a number of bytes which is a power-of-two in size.
1678 * This function tells you which power-of-two the folio is. See also
1679 * folio_size() and folio_order().
1680 *
1681 * Context: The caller should have a reference on the folio to prevent
1682 * it from being split. It is not necessary for the folio to be locked.
1683 * Return: The base-2 logarithm of the size of this folio.
1684 */
folio_shift(struct folio * folio)1685 static inline unsigned int folio_shift(struct folio *folio)
1686 {
1687 return PAGE_SHIFT + folio_order(folio);
1688 }
1689
1690 /**
1691 * folio_size - The number of bytes in a folio.
1692 * @folio: The folio.
1693 *
1694 * Context: The caller should have a reference on the folio to prevent
1695 * it from being split. It is not necessary for the folio to be locked.
1696 * Return: The number of bytes in this folio.
1697 */
folio_size(struct folio * folio)1698 static inline size_t folio_size(struct folio *folio)
1699 {
1700 return PAGE_SIZE << folio_order(folio);
1701 }
1702
1703 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)1704 static inline int arch_make_page_accessible(struct page *page)
1705 {
1706 return 0;
1707 }
1708 #endif
1709
1710 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)1711 static inline int arch_make_folio_accessible(struct folio *folio)
1712 {
1713 int ret;
1714 long i, nr = folio_nr_pages(folio);
1715
1716 for (i = 0; i < nr; i++) {
1717 ret = arch_make_page_accessible(folio_page(folio, i));
1718 if (ret)
1719 break;
1720 }
1721
1722 return ret;
1723 }
1724 #endif
1725
1726 /*
1727 * Some inline functions in vmstat.h depend on page_zone()
1728 */
1729 #include <linux/vmstat.h>
1730
lowmem_page_address(const struct page * page)1731 static __always_inline void *lowmem_page_address(const struct page *page)
1732 {
1733 return page_to_virt(page);
1734 }
1735
1736 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1737 #define HASHED_PAGE_VIRTUAL
1738 #endif
1739
1740 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1741 static inline void *page_address(const struct page *page)
1742 {
1743 return page->virtual;
1744 }
set_page_address(struct page * page,void * address)1745 static inline void set_page_address(struct page *page, void *address)
1746 {
1747 page->virtual = address;
1748 }
1749 #define page_address_init() do { } while(0)
1750 #endif
1751
1752 #if defined(HASHED_PAGE_VIRTUAL)
1753 void *page_address(const struct page *page);
1754 void set_page_address(struct page *page, void *virtual);
1755 void page_address_init(void);
1756 #endif
1757
1758 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1759 #define page_address(page) lowmem_page_address(page)
1760 #define set_page_address(page, address) do { } while(0)
1761 #define page_address_init() do { } while(0)
1762 #endif
1763
folio_address(const struct folio * folio)1764 static inline void *folio_address(const struct folio *folio)
1765 {
1766 return page_address(&folio->page);
1767 }
1768
1769 extern void *page_rmapping(struct page *page);
1770 extern pgoff_t __page_file_index(struct page *page);
1771
1772 /*
1773 * Return the pagecache index of the passed page. Regular pagecache pages
1774 * use ->index whereas swapcache pages use swp_offset(->private)
1775 */
page_index(struct page * page)1776 static inline pgoff_t page_index(struct page *page)
1777 {
1778 if (unlikely(PageSwapCache(page)))
1779 return __page_file_index(page);
1780 return page->index;
1781 }
1782
1783 bool page_mapped(struct page *page);
1784 bool folio_mapped(struct folio *folio);
1785
1786 /*
1787 * Return true only if the page has been allocated with
1788 * ALLOC_NO_WATERMARKS and the low watermark was not
1789 * met implying that the system is under some pressure.
1790 */
page_is_pfmemalloc(const struct page * page)1791 static inline bool page_is_pfmemalloc(const struct page *page)
1792 {
1793 /*
1794 * lru.next has bit 1 set if the page is allocated from the
1795 * pfmemalloc reserves. Callers may simply overwrite it if
1796 * they do not need to preserve that information.
1797 */
1798 return (uintptr_t)page->lru.next & BIT(1);
1799 }
1800
1801 /*
1802 * Only to be called by the page allocator on a freshly allocated
1803 * page.
1804 */
set_page_pfmemalloc(struct page * page)1805 static inline void set_page_pfmemalloc(struct page *page)
1806 {
1807 page->lru.next = (void *)BIT(1);
1808 }
1809
clear_page_pfmemalloc(struct page * page)1810 static inline void clear_page_pfmemalloc(struct page *page)
1811 {
1812 page->lru.next = NULL;
1813 }
1814
1815 /*
1816 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1817 */
1818 extern void pagefault_out_of_memory(void);
1819
1820 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1821 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1822 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1823
1824 /*
1825 * Flags passed to show_mem() and show_free_areas() to suppress output in
1826 * various contexts.
1827 */
1828 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1829
1830 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1831
1832 #ifdef CONFIG_MMU
1833 extern bool can_do_mlock(void);
1834 #else
can_do_mlock(void)1835 static inline bool can_do_mlock(void) { return false; }
1836 #endif
1837 extern int user_shm_lock(size_t, struct ucounts *);
1838 extern void user_shm_unlock(size_t, struct ucounts *);
1839
1840 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1841 pte_t pte);
1842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1843 pmd_t pmd);
1844
1845 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1846 unsigned long size);
1847 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1848 unsigned long size);
1849 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1850 unsigned long start, unsigned long end);
1851
1852 struct mmu_notifier_range;
1853
1854 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1855 unsigned long end, unsigned long floor, unsigned long ceiling);
1856 int
1857 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1858 int follow_pte(struct mm_struct *mm, unsigned long address,
1859 pte_t **ptepp, spinlock_t **ptlp);
1860 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1861 unsigned long *pfn);
1862 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1863 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1864 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1865 void *buf, int len, int write);
1866
1867 extern void truncate_pagecache(struct inode *inode, loff_t new);
1868 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1869 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1870 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1871 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1872
1873 #ifdef CONFIG_MMU
1874 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1875 unsigned long address, unsigned int flags,
1876 struct pt_regs *regs);
1877 extern int fixup_user_fault(struct mm_struct *mm,
1878 unsigned long address, unsigned int fault_flags,
1879 bool *unlocked);
1880 void unmap_mapping_pages(struct address_space *mapping,
1881 pgoff_t start, pgoff_t nr, bool even_cows);
1882 void unmap_mapping_range(struct address_space *mapping,
1883 loff_t const holebegin, loff_t const holelen, int even_cows);
1884 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1885 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1886 unsigned long address, unsigned int flags,
1887 struct pt_regs *regs)
1888 {
1889 /* should never happen if there's no MMU */
1890 BUG();
1891 return VM_FAULT_SIGBUS;
1892 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1893 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1894 unsigned int fault_flags, bool *unlocked)
1895 {
1896 /* should never happen if there's no MMU */
1897 BUG();
1898 return -EFAULT;
1899 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1900 static inline void unmap_mapping_pages(struct address_space *mapping,
1901 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1902 static inline void unmap_mapping_range(struct address_space *mapping,
1903 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1904 #endif
1905
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1906 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1907 loff_t const holebegin, loff_t const holelen)
1908 {
1909 unmap_mapping_range(mapping, holebegin, holelen, 0);
1910 }
1911
1912 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1913 void *buf, int len, unsigned int gup_flags);
1914 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1915 void *buf, int len, unsigned int gup_flags);
1916 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1917 void *buf, int len, unsigned int gup_flags);
1918
1919 long get_user_pages_remote(struct mm_struct *mm,
1920 unsigned long start, unsigned long nr_pages,
1921 unsigned int gup_flags, struct page **pages,
1922 struct vm_area_struct **vmas, int *locked);
1923 long pin_user_pages_remote(struct mm_struct *mm,
1924 unsigned long start, unsigned long nr_pages,
1925 unsigned int gup_flags, struct page **pages,
1926 struct vm_area_struct **vmas, int *locked);
1927 long get_user_pages(unsigned long start, unsigned long nr_pages,
1928 unsigned int gup_flags, struct page **pages,
1929 struct vm_area_struct **vmas);
1930 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1931 unsigned int gup_flags, struct page **pages,
1932 struct vm_area_struct **vmas);
1933 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1934 struct page **pages, unsigned int gup_flags);
1935 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1936 struct page **pages, unsigned int gup_flags);
1937
1938 int get_user_pages_fast(unsigned long start, int nr_pages,
1939 unsigned int gup_flags, struct page **pages);
1940 int pin_user_pages_fast(unsigned long start, int nr_pages,
1941 unsigned int gup_flags, struct page **pages);
1942
1943 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1944 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1945 struct task_struct *task, bool bypass_rlim);
1946
1947 struct kvec;
1948 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1949 struct page **pages);
1950 struct page *get_dump_page(unsigned long addr);
1951
1952 bool folio_mark_dirty(struct folio *folio);
1953 bool set_page_dirty(struct page *page);
1954 int set_page_dirty_lock(struct page *page);
1955
1956 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1957
1958 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1959 unsigned long old_addr, struct vm_area_struct *new_vma,
1960 unsigned long new_addr, unsigned long len,
1961 bool need_rmap_locks);
1962
1963 /*
1964 * Flags used by change_protection(). For now we make it a bitmap so
1965 * that we can pass in multiple flags just like parameters. However
1966 * for now all the callers are only use one of the flags at the same
1967 * time.
1968 */
1969 /* Whether we should allow dirty bit accounting */
1970 #define MM_CP_DIRTY_ACCT (1UL << 0)
1971 /* Whether this protection change is for NUMA hints */
1972 #define MM_CP_PROT_NUMA (1UL << 1)
1973 /* Whether this change is for write protecting */
1974 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1975 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1976 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1977 MM_CP_UFFD_WP_RESOLVE)
1978
1979 extern unsigned long change_protection(struct mmu_gather *tlb,
1980 struct vm_area_struct *vma, unsigned long start,
1981 unsigned long end, pgprot_t newprot,
1982 unsigned long cp_flags);
1983 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
1984 struct vm_area_struct **pprev, unsigned long start,
1985 unsigned long end, unsigned long newflags);
1986
1987 /*
1988 * doesn't attempt to fault and will return short.
1989 */
1990 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1991 unsigned int gup_flags, struct page **pages);
1992 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1993 unsigned int gup_flags, struct page **pages);
1994
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1995 static inline bool get_user_page_fast_only(unsigned long addr,
1996 unsigned int gup_flags, struct page **pagep)
1997 {
1998 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1999 }
2000 /*
2001 * per-process(per-mm_struct) statistics.
2002 */
get_mm_counter(struct mm_struct * mm,int member)2003 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2004 {
2005 long val = atomic_long_read(&mm->rss_stat.count[member]);
2006
2007 #ifdef SPLIT_RSS_COUNTING
2008 /*
2009 * counter is updated in asynchronous manner and may go to minus.
2010 * But it's never be expected number for users.
2011 */
2012 if (val < 0)
2013 val = 0;
2014 #endif
2015 return (unsigned long)val;
2016 }
2017
2018 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2019
add_mm_counter(struct mm_struct * mm,int member,long value)2020 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2021 {
2022 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2023
2024 mm_trace_rss_stat(mm, member, count);
2025 }
2026
inc_mm_counter(struct mm_struct * mm,int member)2027 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2028 {
2029 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2030
2031 mm_trace_rss_stat(mm, member, count);
2032 }
2033
dec_mm_counter(struct mm_struct * mm,int member)2034 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2035 {
2036 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2037
2038 mm_trace_rss_stat(mm, member, count);
2039 }
2040
2041 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2042 static inline int mm_counter_file(struct page *page)
2043 {
2044 if (PageSwapBacked(page))
2045 return MM_SHMEMPAGES;
2046 return MM_FILEPAGES;
2047 }
2048
mm_counter(struct page * page)2049 static inline int mm_counter(struct page *page)
2050 {
2051 if (PageAnon(page))
2052 return MM_ANONPAGES;
2053 return mm_counter_file(page);
2054 }
2055
get_mm_rss(struct mm_struct * mm)2056 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2057 {
2058 return get_mm_counter(mm, MM_FILEPAGES) +
2059 get_mm_counter(mm, MM_ANONPAGES) +
2060 get_mm_counter(mm, MM_SHMEMPAGES);
2061 }
2062
get_mm_hiwater_rss(struct mm_struct * mm)2063 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2064 {
2065 return max(mm->hiwater_rss, get_mm_rss(mm));
2066 }
2067
get_mm_hiwater_vm(struct mm_struct * mm)2068 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2069 {
2070 return max(mm->hiwater_vm, mm->total_vm);
2071 }
2072
update_hiwater_rss(struct mm_struct * mm)2073 static inline void update_hiwater_rss(struct mm_struct *mm)
2074 {
2075 unsigned long _rss = get_mm_rss(mm);
2076
2077 if ((mm)->hiwater_rss < _rss)
2078 (mm)->hiwater_rss = _rss;
2079 }
2080
update_hiwater_vm(struct mm_struct * mm)2081 static inline void update_hiwater_vm(struct mm_struct *mm)
2082 {
2083 if (mm->hiwater_vm < mm->total_vm)
2084 mm->hiwater_vm = mm->total_vm;
2085 }
2086
reset_mm_hiwater_rss(struct mm_struct * mm)2087 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2088 {
2089 mm->hiwater_rss = get_mm_rss(mm);
2090 }
2091
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2092 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2093 struct mm_struct *mm)
2094 {
2095 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2096
2097 if (*maxrss < hiwater_rss)
2098 *maxrss = hiwater_rss;
2099 }
2100
2101 #if defined(SPLIT_RSS_COUNTING)
2102 void sync_mm_rss(struct mm_struct *mm);
2103 #else
sync_mm_rss(struct mm_struct * mm)2104 static inline void sync_mm_rss(struct mm_struct *mm)
2105 {
2106 }
2107 #endif
2108
2109 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2110 static inline int pte_special(pte_t pte)
2111 {
2112 return 0;
2113 }
2114
pte_mkspecial(pte_t pte)2115 static inline pte_t pte_mkspecial(pte_t pte)
2116 {
2117 return pte;
2118 }
2119 #endif
2120
2121 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2122 static inline int pte_devmap(pte_t pte)
2123 {
2124 return 0;
2125 }
2126 #endif
2127
2128 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2129
2130 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2131 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2132 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2133 spinlock_t **ptl)
2134 {
2135 pte_t *ptep;
2136 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2137 return ptep;
2138 }
2139
2140 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2141 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2142 unsigned long address)
2143 {
2144 return 0;
2145 }
2146 #else
2147 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2148 #endif
2149
2150 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2151 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2152 unsigned long address)
2153 {
2154 return 0;
2155 }
mm_inc_nr_puds(struct mm_struct * mm)2156 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2157 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2158
2159 #else
2160 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2161
mm_inc_nr_puds(struct mm_struct * mm)2162 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2163 {
2164 if (mm_pud_folded(mm))
2165 return;
2166 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2167 }
2168
mm_dec_nr_puds(struct mm_struct * mm)2169 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2170 {
2171 if (mm_pud_folded(mm))
2172 return;
2173 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2174 }
2175 #endif
2176
2177 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2178 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2179 unsigned long address)
2180 {
2181 return 0;
2182 }
2183
mm_inc_nr_pmds(struct mm_struct * mm)2184 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2185 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2186
2187 #else
2188 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2189
mm_inc_nr_pmds(struct mm_struct * mm)2190 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2191 {
2192 if (mm_pmd_folded(mm))
2193 return;
2194 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2195 }
2196
mm_dec_nr_pmds(struct mm_struct * mm)2197 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2198 {
2199 if (mm_pmd_folded(mm))
2200 return;
2201 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2202 }
2203 #endif
2204
2205 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2206 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2207 {
2208 atomic_long_set(&mm->pgtables_bytes, 0);
2209 }
2210
mm_pgtables_bytes(const struct mm_struct * mm)2211 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2212 {
2213 return atomic_long_read(&mm->pgtables_bytes);
2214 }
2215
mm_inc_nr_ptes(struct mm_struct * mm)2216 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2217 {
2218 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2219 }
2220
mm_dec_nr_ptes(struct mm_struct * mm)2221 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2222 {
2223 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2224 }
2225 #else
2226
mm_pgtables_bytes_init(struct mm_struct * mm)2227 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2228 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2229 {
2230 return 0;
2231 }
2232
mm_inc_nr_ptes(struct mm_struct * mm)2233 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2234 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2235 #endif
2236
2237 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2238 int __pte_alloc_kernel(pmd_t *pmd);
2239
2240 #if defined(CONFIG_MMU)
2241
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2242 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2243 unsigned long address)
2244 {
2245 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2246 NULL : p4d_offset(pgd, address);
2247 }
2248
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2249 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2250 unsigned long address)
2251 {
2252 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2253 NULL : pud_offset(p4d, address);
2254 }
2255
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2256 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2257 {
2258 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2259 NULL: pmd_offset(pud, address);
2260 }
2261 #endif /* CONFIG_MMU */
2262
2263 #if USE_SPLIT_PTE_PTLOCKS
2264 #if ALLOC_SPLIT_PTLOCKS
2265 void __init ptlock_cache_init(void);
2266 extern bool ptlock_alloc(struct page *page);
2267 extern void ptlock_free(struct page *page);
2268
ptlock_ptr(struct page * page)2269 static inline spinlock_t *ptlock_ptr(struct page *page)
2270 {
2271 return page->ptl;
2272 }
2273 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2274 static inline void ptlock_cache_init(void)
2275 {
2276 }
2277
ptlock_alloc(struct page * page)2278 static inline bool ptlock_alloc(struct page *page)
2279 {
2280 return true;
2281 }
2282
ptlock_free(struct page * page)2283 static inline void ptlock_free(struct page *page)
2284 {
2285 }
2286
ptlock_ptr(struct page * page)2287 static inline spinlock_t *ptlock_ptr(struct page *page)
2288 {
2289 return &page->ptl;
2290 }
2291 #endif /* ALLOC_SPLIT_PTLOCKS */
2292
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2293 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2294 {
2295 return ptlock_ptr(pmd_page(*pmd));
2296 }
2297
ptlock_init(struct page * page)2298 static inline bool ptlock_init(struct page *page)
2299 {
2300 /*
2301 * prep_new_page() initialize page->private (and therefore page->ptl)
2302 * with 0. Make sure nobody took it in use in between.
2303 *
2304 * It can happen if arch try to use slab for page table allocation:
2305 * slab code uses page->slab_cache, which share storage with page->ptl.
2306 */
2307 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2308 if (!ptlock_alloc(page))
2309 return false;
2310 spin_lock_init(ptlock_ptr(page));
2311 return true;
2312 }
2313
2314 #else /* !USE_SPLIT_PTE_PTLOCKS */
2315 /*
2316 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2317 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2318 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2319 {
2320 return &mm->page_table_lock;
2321 }
ptlock_cache_init(void)2322 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2323 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2324 static inline void ptlock_free(struct page *page) {}
2325 #endif /* USE_SPLIT_PTE_PTLOCKS */
2326
pgtable_init(void)2327 static inline void pgtable_init(void)
2328 {
2329 ptlock_cache_init();
2330 pgtable_cache_init();
2331 }
2332
pgtable_pte_page_ctor(struct page * page)2333 static inline bool pgtable_pte_page_ctor(struct page *page)
2334 {
2335 if (!ptlock_init(page))
2336 return false;
2337 __SetPageTable(page);
2338 inc_lruvec_page_state(page, NR_PAGETABLE);
2339 return true;
2340 }
2341
pgtable_pte_page_dtor(struct page * page)2342 static inline void pgtable_pte_page_dtor(struct page *page)
2343 {
2344 ptlock_free(page);
2345 __ClearPageTable(page);
2346 dec_lruvec_page_state(page, NR_PAGETABLE);
2347 }
2348
2349 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2350 ({ \
2351 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2352 pte_t *__pte = pte_offset_map(pmd, address); \
2353 *(ptlp) = __ptl; \
2354 spin_lock(__ptl); \
2355 __pte; \
2356 })
2357
2358 #define pte_unmap_unlock(pte, ptl) do { \
2359 spin_unlock(ptl); \
2360 pte_unmap(pte); \
2361 } while (0)
2362
2363 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2364
2365 #define pte_alloc_map(mm, pmd, address) \
2366 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2367
2368 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2369 (pte_alloc(mm, pmd) ? \
2370 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2371
2372 #define pte_alloc_kernel(pmd, address) \
2373 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2374 NULL: pte_offset_kernel(pmd, address))
2375
2376 #if USE_SPLIT_PMD_PTLOCKS
2377
pmd_to_page(pmd_t * pmd)2378 static struct page *pmd_to_page(pmd_t *pmd)
2379 {
2380 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2381 return virt_to_page((void *)((unsigned long) pmd & mask));
2382 }
2383
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2384 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2385 {
2386 return ptlock_ptr(pmd_to_page(pmd));
2387 }
2388
pmd_ptlock_init(struct page * page)2389 static inline bool pmd_ptlock_init(struct page *page)
2390 {
2391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2392 page->pmd_huge_pte = NULL;
2393 #endif
2394 return ptlock_init(page);
2395 }
2396
pmd_ptlock_free(struct page * page)2397 static inline void pmd_ptlock_free(struct page *page)
2398 {
2399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2400 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2401 #endif
2402 ptlock_free(page);
2403 }
2404
2405 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2406
2407 #else
2408
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2409 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2410 {
2411 return &mm->page_table_lock;
2412 }
2413
pmd_ptlock_init(struct page * page)2414 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2415 static inline void pmd_ptlock_free(struct page *page) {}
2416
2417 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2418
2419 #endif
2420
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2421 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2422 {
2423 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2424 spin_lock(ptl);
2425 return ptl;
2426 }
2427
pgtable_pmd_page_ctor(struct page * page)2428 static inline bool pgtable_pmd_page_ctor(struct page *page)
2429 {
2430 if (!pmd_ptlock_init(page))
2431 return false;
2432 __SetPageTable(page);
2433 inc_lruvec_page_state(page, NR_PAGETABLE);
2434 return true;
2435 }
2436
pgtable_pmd_page_dtor(struct page * page)2437 static inline void pgtable_pmd_page_dtor(struct page *page)
2438 {
2439 pmd_ptlock_free(page);
2440 __ClearPageTable(page);
2441 dec_lruvec_page_state(page, NR_PAGETABLE);
2442 }
2443
2444 /*
2445 * No scalability reason to split PUD locks yet, but follow the same pattern
2446 * as the PMD locks to make it easier if we decide to. The VM should not be
2447 * considered ready to switch to split PUD locks yet; there may be places
2448 * which need to be converted from page_table_lock.
2449 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2450 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2451 {
2452 return &mm->page_table_lock;
2453 }
2454
pud_lock(struct mm_struct * mm,pud_t * pud)2455 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2456 {
2457 spinlock_t *ptl = pud_lockptr(mm, pud);
2458
2459 spin_lock(ptl);
2460 return ptl;
2461 }
2462
2463 extern void __init pagecache_init(void);
2464 extern void free_initmem(void);
2465
2466 /*
2467 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2468 * into the buddy system. The freed pages will be poisoned with pattern
2469 * "poison" if it's within range [0, UCHAR_MAX].
2470 * Return pages freed into the buddy system.
2471 */
2472 extern unsigned long free_reserved_area(void *start, void *end,
2473 int poison, const char *s);
2474
2475 extern void adjust_managed_page_count(struct page *page, long count);
2476 extern void mem_init_print_info(void);
2477
2478 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2479
2480 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2481 static inline void free_reserved_page(struct page *page)
2482 {
2483 ClearPageReserved(page);
2484 init_page_count(page);
2485 __free_page(page);
2486 adjust_managed_page_count(page, 1);
2487 }
2488 #define free_highmem_page(page) free_reserved_page(page)
2489
mark_page_reserved(struct page * page)2490 static inline void mark_page_reserved(struct page *page)
2491 {
2492 SetPageReserved(page);
2493 adjust_managed_page_count(page, -1);
2494 }
2495
2496 /*
2497 * Default method to free all the __init memory into the buddy system.
2498 * The freed pages will be poisoned with pattern "poison" if it's within
2499 * range [0, UCHAR_MAX].
2500 * Return pages freed into the buddy system.
2501 */
free_initmem_default(int poison)2502 static inline unsigned long free_initmem_default(int poison)
2503 {
2504 extern char __init_begin[], __init_end[];
2505
2506 return free_reserved_area(&__init_begin, &__init_end,
2507 poison, "unused kernel image (initmem)");
2508 }
2509
get_num_physpages(void)2510 static inline unsigned long get_num_physpages(void)
2511 {
2512 int nid;
2513 unsigned long phys_pages = 0;
2514
2515 for_each_online_node(nid)
2516 phys_pages += node_present_pages(nid);
2517
2518 return phys_pages;
2519 }
2520
2521 /*
2522 * Using memblock node mappings, an architecture may initialise its
2523 * zones, allocate the backing mem_map and account for memory holes in an
2524 * architecture independent manner.
2525 *
2526 * An architecture is expected to register range of page frames backed by
2527 * physical memory with memblock_add[_node]() before calling
2528 * free_area_init() passing in the PFN each zone ends at. At a basic
2529 * usage, an architecture is expected to do something like
2530 *
2531 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2532 * max_highmem_pfn};
2533 * for_each_valid_physical_page_range()
2534 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2535 * free_area_init(max_zone_pfns);
2536 */
2537 void free_area_init(unsigned long *max_zone_pfn);
2538 unsigned long node_map_pfn_alignment(void);
2539 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2540 unsigned long end_pfn);
2541 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2542 unsigned long end_pfn);
2543 extern void get_pfn_range_for_nid(unsigned int nid,
2544 unsigned long *start_pfn, unsigned long *end_pfn);
2545 extern unsigned long find_min_pfn_with_active_regions(void);
2546
2547 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2548 static inline int early_pfn_to_nid(unsigned long pfn)
2549 {
2550 return 0;
2551 }
2552 #else
2553 /* please see mm/page_alloc.c */
2554 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2555 #endif
2556
2557 extern void set_dma_reserve(unsigned long new_dma_reserve);
2558 extern void memmap_init_range(unsigned long, int, unsigned long,
2559 unsigned long, unsigned long, enum meminit_context,
2560 struct vmem_altmap *, int migratetype);
2561 extern void setup_per_zone_wmarks(void);
2562 extern void calculate_min_free_kbytes(void);
2563 extern int __meminit init_per_zone_wmark_min(void);
2564 extern void mem_init(void);
2565 extern void __init mmap_init(void);
2566 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2567 extern long si_mem_available(void);
2568 extern void si_meminfo(struct sysinfo * val);
2569 extern void si_meminfo_node(struct sysinfo *val, int nid);
2570 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2571 extern unsigned long arch_reserved_kernel_pages(void);
2572 #endif
2573
2574 extern __printf(3, 4)
2575 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2576
2577 extern void setup_per_cpu_pageset(void);
2578
2579 /* page_alloc.c */
2580 extern int min_free_kbytes;
2581 extern int watermark_boost_factor;
2582 extern int watermark_scale_factor;
2583 extern bool arch_has_descending_max_zone_pfns(void);
2584
2585 /* nommu.c */
2586 extern atomic_long_t mmap_pages_allocated;
2587 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2588
2589 /* interval_tree.c */
2590 void vma_interval_tree_insert(struct vm_area_struct *node,
2591 struct rb_root_cached *root);
2592 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2593 struct vm_area_struct *prev,
2594 struct rb_root_cached *root);
2595 void vma_interval_tree_remove(struct vm_area_struct *node,
2596 struct rb_root_cached *root);
2597 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2598 unsigned long start, unsigned long last);
2599 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2600 unsigned long start, unsigned long last);
2601
2602 #define vma_interval_tree_foreach(vma, root, start, last) \
2603 for (vma = vma_interval_tree_iter_first(root, start, last); \
2604 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2605
2606 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2607 struct rb_root_cached *root);
2608 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2609 struct rb_root_cached *root);
2610 struct anon_vma_chain *
2611 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2612 unsigned long start, unsigned long last);
2613 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2614 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2615 #ifdef CONFIG_DEBUG_VM_RB
2616 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2617 #endif
2618
2619 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2620 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2621 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2622
2623 /* mmap.c */
2624 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2625 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2626 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2627 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2628 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2629 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2630 {
2631 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2632 }
2633 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2634 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2635 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2636 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2637 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2638 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2639 unsigned long addr, int new_below);
2640 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2641 unsigned long addr, int new_below);
2642 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2643 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2644 struct rb_node **, struct rb_node *);
2645 extern void unlink_file_vma(struct vm_area_struct *);
2646 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2647 unsigned long addr, unsigned long len, pgoff_t pgoff,
2648 bool *need_rmap_locks);
2649 extern void exit_mmap(struct mm_struct *);
2650
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2651 static inline int check_data_rlimit(unsigned long rlim,
2652 unsigned long new,
2653 unsigned long start,
2654 unsigned long end_data,
2655 unsigned long start_data)
2656 {
2657 if (rlim < RLIM_INFINITY) {
2658 if (((new - start) + (end_data - start_data)) > rlim)
2659 return -ENOSPC;
2660 }
2661
2662 return 0;
2663 }
2664
2665 extern int mm_take_all_locks(struct mm_struct *mm);
2666 extern void mm_drop_all_locks(struct mm_struct *mm);
2667
2668 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2669 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2670 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2671 extern struct file *get_task_exe_file(struct task_struct *task);
2672
2673 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2674 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2675
2676 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2677 const struct vm_special_mapping *sm);
2678 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2679 unsigned long addr, unsigned long len,
2680 unsigned long flags,
2681 const struct vm_special_mapping *spec);
2682 /* This is an obsolete alternative to _install_special_mapping. */
2683 extern int install_special_mapping(struct mm_struct *mm,
2684 unsigned long addr, unsigned long len,
2685 unsigned long flags, struct page **pages);
2686
2687 unsigned long randomize_stack_top(unsigned long stack_top);
2688 unsigned long randomize_page(unsigned long start, unsigned long range);
2689
2690 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2691
2692 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2693 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2694 struct list_head *uf);
2695 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2696 unsigned long len, unsigned long prot, unsigned long flags,
2697 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2698 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2699 struct list_head *uf, bool downgrade);
2700 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2701 struct list_head *uf);
2702 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2703
2704 #ifdef CONFIG_MMU
2705 extern int __mm_populate(unsigned long addr, unsigned long len,
2706 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2707 static inline void mm_populate(unsigned long addr, unsigned long len)
2708 {
2709 /* Ignore errors */
2710 (void) __mm_populate(addr, len, 1);
2711 }
2712 #else
mm_populate(unsigned long addr,unsigned long len)2713 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2714 #endif
2715
2716 /* These take the mm semaphore themselves */
2717 extern int __must_check vm_brk(unsigned long, unsigned long);
2718 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2719 extern int vm_munmap(unsigned long, size_t);
2720 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2721 unsigned long, unsigned long,
2722 unsigned long, unsigned long);
2723
2724 struct vm_unmapped_area_info {
2725 #define VM_UNMAPPED_AREA_TOPDOWN 1
2726 unsigned long flags;
2727 unsigned long length;
2728 unsigned long low_limit;
2729 unsigned long high_limit;
2730 unsigned long align_mask;
2731 unsigned long align_offset;
2732 };
2733
2734 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2735
2736 /* truncate.c */
2737 extern void truncate_inode_pages(struct address_space *, loff_t);
2738 extern void truncate_inode_pages_range(struct address_space *,
2739 loff_t lstart, loff_t lend);
2740 extern void truncate_inode_pages_final(struct address_space *);
2741
2742 /* generic vm_area_ops exported for stackable file systems */
2743 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2744 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2745 pgoff_t start_pgoff, pgoff_t end_pgoff);
2746 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2747
2748 extern unsigned long stack_guard_gap;
2749 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2750 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2751
2752 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2753 extern int expand_downwards(struct vm_area_struct *vma,
2754 unsigned long address);
2755 #if VM_GROWSUP
2756 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2757 #else
2758 #define expand_upwards(vma, address) (0)
2759 #endif
2760
2761 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2762 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2763 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2764 struct vm_area_struct **pprev);
2765
2766 /**
2767 * find_vma_intersection() - Look up the first VMA which intersects the interval
2768 * @mm: The process address space.
2769 * @start_addr: The inclusive start user address.
2770 * @end_addr: The exclusive end user address.
2771 *
2772 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2773 * start_addr < end_addr.
2774 */
2775 static inline
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2776 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2777 unsigned long start_addr,
2778 unsigned long end_addr)
2779 {
2780 struct vm_area_struct *vma = find_vma(mm, start_addr);
2781
2782 if (vma && end_addr <= vma->vm_start)
2783 vma = NULL;
2784 return vma;
2785 }
2786
2787 /**
2788 * vma_lookup() - Find a VMA at a specific address
2789 * @mm: The process address space.
2790 * @addr: The user address.
2791 *
2792 * Return: The vm_area_struct at the given address, %NULL otherwise.
2793 */
2794 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2795 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2796 {
2797 struct vm_area_struct *vma = find_vma(mm, addr);
2798
2799 if (vma && addr < vma->vm_start)
2800 vma = NULL;
2801
2802 return vma;
2803 }
2804
vm_start_gap(struct vm_area_struct * vma)2805 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2806 {
2807 unsigned long vm_start = vma->vm_start;
2808
2809 if (vma->vm_flags & VM_GROWSDOWN) {
2810 vm_start -= stack_guard_gap;
2811 if (vm_start > vma->vm_start)
2812 vm_start = 0;
2813 }
2814 return vm_start;
2815 }
2816
vm_end_gap(struct vm_area_struct * vma)2817 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2818 {
2819 unsigned long vm_end = vma->vm_end;
2820
2821 if (vma->vm_flags & VM_GROWSUP) {
2822 vm_end += stack_guard_gap;
2823 if (vm_end < vma->vm_end)
2824 vm_end = -PAGE_SIZE;
2825 }
2826 return vm_end;
2827 }
2828
vma_pages(struct vm_area_struct * vma)2829 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2830 {
2831 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2832 }
2833
2834 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2835 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2836 unsigned long vm_start, unsigned long vm_end)
2837 {
2838 struct vm_area_struct *vma = find_vma(mm, vm_start);
2839
2840 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2841 vma = NULL;
2842
2843 return vma;
2844 }
2845
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2846 static inline bool range_in_vma(struct vm_area_struct *vma,
2847 unsigned long start, unsigned long end)
2848 {
2849 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2850 }
2851
2852 #ifdef CONFIG_MMU
2853 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2854 void vma_set_page_prot(struct vm_area_struct *vma);
2855 #else
vm_get_page_prot(unsigned long vm_flags)2856 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2857 {
2858 return __pgprot(0);
2859 }
vma_set_page_prot(struct vm_area_struct * vma)2860 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2861 {
2862 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2863 }
2864 #endif
2865
2866 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2867
2868 #ifdef CONFIG_NUMA_BALANCING
2869 unsigned long change_prot_numa(struct vm_area_struct *vma,
2870 unsigned long start, unsigned long end);
2871 #endif
2872
2873 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2874 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2875 unsigned long pfn, unsigned long size, pgprot_t);
2876 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2877 unsigned long pfn, unsigned long size, pgprot_t prot);
2878 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2879 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2880 struct page **pages, unsigned long *num);
2881 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2882 unsigned long num);
2883 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2884 unsigned long num);
2885 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2886 unsigned long pfn);
2887 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2888 unsigned long pfn, pgprot_t pgprot);
2889 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2890 pfn_t pfn);
2891 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2892 pfn_t pfn, pgprot_t pgprot);
2893 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2894 unsigned long addr, pfn_t pfn);
2895 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2896
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2897 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2898 unsigned long addr, struct page *page)
2899 {
2900 int err = vm_insert_page(vma, addr, page);
2901
2902 if (err == -ENOMEM)
2903 return VM_FAULT_OOM;
2904 if (err < 0 && err != -EBUSY)
2905 return VM_FAULT_SIGBUS;
2906
2907 return VM_FAULT_NOPAGE;
2908 }
2909
2910 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2911 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2912 unsigned long addr, unsigned long pfn,
2913 unsigned long size, pgprot_t prot)
2914 {
2915 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2916 }
2917 #endif
2918
vmf_error(int err)2919 static inline vm_fault_t vmf_error(int err)
2920 {
2921 if (err == -ENOMEM)
2922 return VM_FAULT_OOM;
2923 return VM_FAULT_SIGBUS;
2924 }
2925
2926 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2927 unsigned int foll_flags);
2928
2929 #define FOLL_WRITE 0x01 /* check pte is writable */
2930 #define FOLL_TOUCH 0x02 /* mark page accessed */
2931 #define FOLL_GET 0x04 /* do get_page on page */
2932 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2933 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2934 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2935 * and return without waiting upon it */
2936 #define FOLL_NOFAULT 0x80 /* do not fault in pages */
2937 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2938 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2939 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2940 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2941 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2942 #define FOLL_ANON 0x8000 /* don't do file mappings */
2943 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2944 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2945 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2946 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2947
2948 /*
2949 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2950 * other. Here is what they mean, and how to use them:
2951 *
2952 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2953 * period _often_ under userspace control. This is in contrast to
2954 * iov_iter_get_pages(), whose usages are transient.
2955 *
2956 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2957 * lifetime enforced by the filesystem and we need guarantees that longterm
2958 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2959 * the filesystem. Ideas for this coordination include revoking the longterm
2960 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2961 * added after the problem with filesystems was found FS DAX VMAs are
2962 * specifically failed. Filesystem pages are still subject to bugs and use of
2963 * FOLL_LONGTERM should be avoided on those pages.
2964 *
2965 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2966 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2967 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2968 * is due to an incompatibility with the FS DAX check and
2969 * FAULT_FLAG_ALLOW_RETRY.
2970 *
2971 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2972 * that region. And so, CMA attempts to migrate the page before pinning, when
2973 * FOLL_LONGTERM is specified.
2974 *
2975 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2976 * but an additional pin counting system) will be invoked. This is intended for
2977 * anything that gets a page reference and then touches page data (for example,
2978 * Direct IO). This lets the filesystem know that some non-file-system entity is
2979 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2980 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2981 * a call to unpin_user_page().
2982 *
2983 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2984 * and separate refcounting mechanisms, however, and that means that each has
2985 * its own acquire and release mechanisms:
2986 *
2987 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2988 *
2989 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2990 *
2991 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2992 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2993 * calls applied to them, and that's perfectly OK. This is a constraint on the
2994 * callers, not on the pages.)
2995 *
2996 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2997 * directly by the caller. That's in order to help avoid mismatches when
2998 * releasing pages: get_user_pages*() pages must be released via put_page(),
2999 * while pin_user_pages*() pages must be released via unpin_user_page().
3000 *
3001 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3002 */
3003
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3004 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3005 {
3006 if (vm_fault & VM_FAULT_OOM)
3007 return -ENOMEM;
3008 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3009 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3010 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3011 return -EFAULT;
3012 return 0;
3013 }
3014
3015 /*
3016 * Indicates for which pages that are write-protected in the page table,
3017 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3018 * GUP pin will remain consistent with the pages mapped into the page tables
3019 * of the MM.
3020 *
3021 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3022 * PageAnonExclusive() has to protect against concurrent GUP:
3023 * * Ordinary GUP: Using the PT lock
3024 * * GUP-fast and fork(): mm->write_protect_seq
3025 * * GUP-fast and KSM or temporary unmapping (swap, migration):
3026 * clear/invalidate+flush of the page table entry
3027 *
3028 * Must be called with the (sub)page that's actually referenced via the
3029 * page table entry, which might not necessarily be the head page for a
3030 * PTE-mapped THP.
3031 */
gup_must_unshare(unsigned int flags,struct page * page)3032 static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3033 {
3034 /*
3035 * FOLL_WRITE is implicitly handled correctly as the page table entry
3036 * has to be writable -- and if it references (part of) an anonymous
3037 * folio, that part is required to be marked exclusive.
3038 */
3039 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3040 return false;
3041 /*
3042 * Note: PageAnon(page) is stable until the page is actually getting
3043 * freed.
3044 */
3045 if (!PageAnon(page))
3046 return false;
3047 /*
3048 * Note that PageKsm() pages cannot be exclusive, and consequently,
3049 * cannot get pinned.
3050 */
3051 return !PageAnonExclusive(page);
3052 }
3053
3054 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3055 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3056 unsigned long size, pte_fn_t fn, void *data);
3057 extern int apply_to_existing_page_range(struct mm_struct *mm,
3058 unsigned long address, unsigned long size,
3059 pte_fn_t fn, void *data);
3060
3061 extern void init_mem_debugging_and_hardening(void);
3062 #ifdef CONFIG_PAGE_POISONING
3063 extern void __kernel_poison_pages(struct page *page, int numpages);
3064 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3065 extern bool _page_poisoning_enabled_early;
3066 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3067 static inline bool page_poisoning_enabled(void)
3068 {
3069 return _page_poisoning_enabled_early;
3070 }
3071 /*
3072 * For use in fast paths after init_mem_debugging() has run, or when a
3073 * false negative result is not harmful when called too early.
3074 */
page_poisoning_enabled_static(void)3075 static inline bool page_poisoning_enabled_static(void)
3076 {
3077 return static_branch_unlikely(&_page_poisoning_enabled);
3078 }
kernel_poison_pages(struct page * page,int numpages)3079 static inline void kernel_poison_pages(struct page *page, int numpages)
3080 {
3081 if (page_poisoning_enabled_static())
3082 __kernel_poison_pages(page, numpages);
3083 }
kernel_unpoison_pages(struct page * page,int numpages)3084 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3085 {
3086 if (page_poisoning_enabled_static())
3087 __kernel_unpoison_pages(page, numpages);
3088 }
3089 #else
page_poisoning_enabled(void)3090 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3091 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3092 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3093 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3094 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3095 #endif
3096
3097 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3098 static inline bool want_init_on_alloc(gfp_t flags)
3099 {
3100 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3101 &init_on_alloc))
3102 return true;
3103 return flags & __GFP_ZERO;
3104 }
3105
3106 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3107 static inline bool want_init_on_free(void)
3108 {
3109 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3110 &init_on_free);
3111 }
3112
3113 extern bool _debug_pagealloc_enabled_early;
3114 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3115
debug_pagealloc_enabled(void)3116 static inline bool debug_pagealloc_enabled(void)
3117 {
3118 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3119 _debug_pagealloc_enabled_early;
3120 }
3121
3122 /*
3123 * For use in fast paths after init_debug_pagealloc() has run, or when a
3124 * false negative result is not harmful when called too early.
3125 */
debug_pagealloc_enabled_static(void)3126 static inline bool debug_pagealloc_enabled_static(void)
3127 {
3128 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3129 return false;
3130
3131 return static_branch_unlikely(&_debug_pagealloc_enabled);
3132 }
3133
3134 #ifdef CONFIG_DEBUG_PAGEALLOC
3135 /*
3136 * To support DEBUG_PAGEALLOC architecture must ensure that
3137 * __kernel_map_pages() never fails
3138 */
3139 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3140
debug_pagealloc_map_pages(struct page * page,int numpages)3141 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3142 {
3143 if (debug_pagealloc_enabled_static())
3144 __kernel_map_pages(page, numpages, 1);
3145 }
3146
debug_pagealloc_unmap_pages(struct page * page,int numpages)3147 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3148 {
3149 if (debug_pagealloc_enabled_static())
3150 __kernel_map_pages(page, numpages, 0);
3151 }
3152 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3153 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3154 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3155 #endif /* CONFIG_DEBUG_PAGEALLOC */
3156
3157 #ifdef __HAVE_ARCH_GATE_AREA
3158 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3159 extern int in_gate_area_no_mm(unsigned long addr);
3160 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3161 #else
get_gate_vma(struct mm_struct * mm)3162 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3163 {
3164 return NULL;
3165 }
in_gate_area_no_mm(unsigned long addr)3166 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3167 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3168 {
3169 return 0;
3170 }
3171 #endif /* __HAVE_ARCH_GATE_AREA */
3172
3173 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3174
3175 #ifdef CONFIG_SYSCTL
3176 extern int sysctl_drop_caches;
3177 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3178 loff_t *);
3179 #endif
3180
3181 void drop_slab(void);
3182
3183 #ifndef CONFIG_MMU
3184 #define randomize_va_space 0
3185 #else
3186 extern int randomize_va_space;
3187 #endif
3188
3189 const char * arch_vma_name(struct vm_area_struct *vma);
3190 #ifdef CONFIG_MMU
3191 void print_vma_addr(char *prefix, unsigned long rip);
3192 #else
print_vma_addr(char * prefix,unsigned long rip)3193 static inline void print_vma_addr(char *prefix, unsigned long rip)
3194 {
3195 }
3196 #endif
3197
3198 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
3199 int vmemmap_remap_free(unsigned long start, unsigned long end,
3200 unsigned long reuse);
3201 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3202 unsigned long reuse, gfp_t gfp_mask);
3203 #endif
3204
3205 void *sparse_buffer_alloc(unsigned long size);
3206 struct page * __populate_section_memmap(unsigned long pfn,
3207 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3208 struct dev_pagemap *pgmap);
3209 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3210 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3211 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3212 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3213 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3214 struct vmem_altmap *altmap, struct page *reuse);
3215 void *vmemmap_alloc_block(unsigned long size, int node);
3216 struct vmem_altmap;
3217 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3218 struct vmem_altmap *altmap);
3219 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3220 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3221 int node, struct vmem_altmap *altmap);
3222 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3223 struct vmem_altmap *altmap);
3224 void vmemmap_populate_print_last(void);
3225 #ifdef CONFIG_MEMORY_HOTPLUG
3226 void vmemmap_free(unsigned long start, unsigned long end,
3227 struct vmem_altmap *altmap);
3228 #endif
3229 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3230 unsigned long nr_pages);
3231
3232 enum mf_flags {
3233 MF_COUNT_INCREASED = 1 << 0,
3234 MF_ACTION_REQUIRED = 1 << 1,
3235 MF_MUST_KILL = 1 << 2,
3236 MF_SOFT_OFFLINE = 1 << 3,
3237 MF_UNPOISON = 1 << 4,
3238 MF_SW_SIMULATED = 1 << 5,
3239 };
3240 extern int memory_failure(unsigned long pfn, int flags);
3241 extern void memory_failure_queue(unsigned long pfn, int flags);
3242 extern void memory_failure_queue_kick(int cpu);
3243 extern int unpoison_memory(unsigned long pfn);
3244 extern int sysctl_memory_failure_early_kill;
3245 extern int sysctl_memory_failure_recovery;
3246 extern void shake_page(struct page *p);
3247 extern atomic_long_t num_poisoned_pages __read_mostly;
3248 extern int soft_offline_page(unsigned long pfn, int flags);
3249 #ifdef CONFIG_MEMORY_FAILURE
3250 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3251 #else
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)3252 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3253 {
3254 return 0;
3255 }
3256 #endif
3257
3258 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3259 static inline int arch_memory_failure(unsigned long pfn, int flags)
3260 {
3261 return -ENXIO;
3262 }
3263 #endif
3264
3265 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3266 static inline bool arch_is_platform_page(u64 paddr)
3267 {
3268 return false;
3269 }
3270 #endif
3271
3272 /*
3273 * Error handlers for various types of pages.
3274 */
3275 enum mf_result {
3276 MF_IGNORED, /* Error: cannot be handled */
3277 MF_FAILED, /* Error: handling failed */
3278 MF_DELAYED, /* Will be handled later */
3279 MF_RECOVERED, /* Successfully recovered */
3280 };
3281
3282 enum mf_action_page_type {
3283 MF_MSG_KERNEL,
3284 MF_MSG_KERNEL_HIGH_ORDER,
3285 MF_MSG_SLAB,
3286 MF_MSG_DIFFERENT_COMPOUND,
3287 MF_MSG_HUGE,
3288 MF_MSG_FREE_HUGE,
3289 MF_MSG_NON_PMD_HUGE,
3290 MF_MSG_UNMAP_FAILED,
3291 MF_MSG_DIRTY_SWAPCACHE,
3292 MF_MSG_CLEAN_SWAPCACHE,
3293 MF_MSG_DIRTY_MLOCKED_LRU,
3294 MF_MSG_CLEAN_MLOCKED_LRU,
3295 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3296 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3297 MF_MSG_DIRTY_LRU,
3298 MF_MSG_CLEAN_LRU,
3299 MF_MSG_TRUNCATED_LRU,
3300 MF_MSG_BUDDY,
3301 MF_MSG_DAX,
3302 MF_MSG_UNSPLIT_THP,
3303 MF_MSG_UNKNOWN,
3304 };
3305
3306 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3307 extern void clear_huge_page(struct page *page,
3308 unsigned long addr_hint,
3309 unsigned int pages_per_huge_page);
3310 extern void copy_user_huge_page(struct page *dst, struct page *src,
3311 unsigned long addr_hint,
3312 struct vm_area_struct *vma,
3313 unsigned int pages_per_huge_page);
3314 extern long copy_huge_page_from_user(struct page *dst_page,
3315 const void __user *usr_src,
3316 unsigned int pages_per_huge_page,
3317 bool allow_pagefault);
3318
3319 /**
3320 * vma_is_special_huge - Are transhuge page-table entries considered special?
3321 * @vma: Pointer to the struct vm_area_struct to consider
3322 *
3323 * Whether transhuge page-table entries are considered "special" following
3324 * the definition in vm_normal_page().
3325 *
3326 * Return: true if transhuge page-table entries should be considered special,
3327 * false otherwise.
3328 */
vma_is_special_huge(const struct vm_area_struct * vma)3329 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3330 {
3331 return vma_is_dax(vma) || (vma->vm_file &&
3332 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3333 }
3334
3335 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3336
3337 #ifdef CONFIG_DEBUG_PAGEALLOC
3338 extern unsigned int _debug_guardpage_minorder;
3339 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3340
debug_guardpage_minorder(void)3341 static inline unsigned int debug_guardpage_minorder(void)
3342 {
3343 return _debug_guardpage_minorder;
3344 }
3345
debug_guardpage_enabled(void)3346 static inline bool debug_guardpage_enabled(void)
3347 {
3348 return static_branch_unlikely(&_debug_guardpage_enabled);
3349 }
3350
page_is_guard(struct page * page)3351 static inline bool page_is_guard(struct page *page)
3352 {
3353 if (!debug_guardpage_enabled())
3354 return false;
3355
3356 return PageGuard(page);
3357 }
3358 #else
debug_guardpage_minorder(void)3359 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3360 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3361 static inline bool page_is_guard(struct page *page) { return false; }
3362 #endif /* CONFIG_DEBUG_PAGEALLOC */
3363
3364 #if MAX_NUMNODES > 1
3365 void __init setup_nr_node_ids(void);
3366 #else
setup_nr_node_ids(void)3367 static inline void setup_nr_node_ids(void) {}
3368 #endif
3369
3370 extern int memcmp_pages(struct page *page1, struct page *page2);
3371
pages_identical(struct page * page1,struct page * page2)3372 static inline int pages_identical(struct page *page1, struct page *page2)
3373 {
3374 return !memcmp_pages(page1, page2);
3375 }
3376
3377 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3378 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3379 pgoff_t first_index, pgoff_t nr,
3380 pgoff_t bitmap_pgoff,
3381 unsigned long *bitmap,
3382 pgoff_t *start,
3383 pgoff_t *end);
3384
3385 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3386 pgoff_t first_index, pgoff_t nr);
3387 #endif
3388
3389 extern int sysctl_nr_trim_pages;
3390
3391 #ifdef CONFIG_PRINTK
3392 void mem_dump_obj(void *object);
3393 #else
mem_dump_obj(void * object)3394 static inline void mem_dump_obj(void *object) {}
3395 #endif
3396
3397 /**
3398 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3399 * @seals: the seals to check
3400 * @vma: the vma to operate on
3401 *
3402 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3403 * the vma flags. Return 0 if check pass, or <0 for errors.
3404 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3405 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3406 {
3407 if (seals & F_SEAL_FUTURE_WRITE) {
3408 /*
3409 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3410 * "future write" seal active.
3411 */
3412 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3413 return -EPERM;
3414
3415 /*
3416 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3417 * MAP_SHARED and read-only, take care to not allow mprotect to
3418 * revert protections on such mappings. Do this only for shared
3419 * mappings. For private mappings, don't need to mask
3420 * VM_MAYWRITE as we still want them to be COW-writable.
3421 */
3422 if (vma->vm_flags & VM_SHARED)
3423 vma->vm_flags &= ~(VM_MAYWRITE);
3424 }
3425
3426 return 0;
3427 }
3428
3429 #ifdef CONFIG_ANON_VMA_NAME
3430 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3431 unsigned long len_in,
3432 struct anon_vma_name *anon_name);
3433 #else
3434 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)3435 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3436 unsigned long len_in, struct anon_vma_name *anon_name) {
3437 return 0;
3438 }
3439 #endif
3440
3441 /*
3442 * Whether to drop the pte markers, for example, the uffd-wp information for
3443 * file-backed memory. This should only be specified when we will completely
3444 * drop the page in the mm, either by truncation or unmapping of the vma. By
3445 * default, the flag is not set.
3446 */
3447 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
3448
3449 #endif /* _LINUX_MM_H */
3450