1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5 * Maple Tree - An RCU-safe adaptive tree for storing ranges
6 * Copyright (c) 2018-2022 Oracle
7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com>
8 * Matthew Wilcox <willy@infradead.org>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15
16 /*
17 * Allocated nodes are mutable until they have been inserted into the tree,
18 * at which time they cannot change their type until they have been removed
19 * from the tree and an RCU grace period has passed.
20 *
21 * Removed nodes have their ->parent set to point to themselves. RCU readers
22 * check ->parent before relying on the value that they loaded from the
23 * slots array. This lets us reuse the slots array for the RCU head.
24 *
25 * Nodes in the tree point to their parent unless bit 0 is set.
26 */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40
41 #define MAPLE_NODE_MASK 255UL
42
43 /*
44 * The node->parent of the root node has bit 0 set and the rest of the pointer
45 * is a pointer to the tree itself. No more bits are available in this pointer
46 * (on m68k, the data structure may only be 2-byte aligned).
47 *
48 * Internal non-root nodes can only have maple_range_* nodes as parents. The
49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32
50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an
51 * extra bit to store the offset. This extra bit comes from a reuse of the last
52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2
53 * is part of the type or the slot.
54 *
55 * Once the type is decided, the decision of an allocation range type or a range
56 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57 * flag.
58 *
59 * Node types:
60 * 0x??1 = Root
61 * 0x?00 = 16 bit nodes
62 * 0x010 = 32 bit nodes
63 * 0x110 = 64 bit nodes
64 *
65 * Slot size and location in the parent pointer:
66 * type : slot location
67 * 0x??1 : Root
68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6
69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6
70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6
71 */
72
73 /*
74 * This metadata is used to optimize the gap updating code and in reverse
75 * searching for gaps or any other code that needs to find the end of the data.
76 */
77 struct maple_metadata {
78 unsigned char end;
79 unsigned char gap;
80 };
81
82 /*
83 * Leaf nodes do not store pointers to nodes, they store user data. Users may
84 * store almost any bit pattern. As noted above, the optimisation of storing an
85 * entry at 0 in the root pointer cannot be done for data which have the bottom
86 * two bits set to '10'. We also reserve values with the bottom two bits set to
87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs
88 * return errnos as a negative errno shifted right by two bits and the bottom
89 * two bits set to '10', and while choosing to store these values in the array
90 * is not an error, it may lead to confusion if you're testing for an error with
91 * mas_is_err().
92 *
93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now.
95 *
96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
97 * indicate that the tree is specifying ranges, Pivots may appear in the
98 * subtree with an entry attached to the value whereas keys are unique to a
99 * specific position of a B-tree. Pivot values are inclusive of the slot with
100 * the same index.
101 */
102
103 struct maple_range_64 {
104 struct maple_pnode *parent;
105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 union {
107 void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 struct {
109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 struct maple_metadata meta;
111 };
112 };
113 };
114
115 /*
116 * At tree creation time, the user can specify that they're willing to trade off
117 * storing fewer entries in a tree in return for storing more information in
118 * each node.
119 *
120 * The maple tree supports recording the largest range of NULL entries available
121 * in this node, also called gaps. This optimises the tree for allocating a
122 * range.
123 */
124 struct maple_arange_64 {
125 struct maple_pnode *parent;
126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 struct maple_metadata meta;
130 };
131
132 struct maple_alloc {
133 unsigned long total;
134 unsigned char node_count;
135 unsigned int request_count;
136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138
139 struct maple_topiary {
140 struct maple_pnode *parent;
141 struct maple_enode *next; /* Overlaps the pivot */
142 };
143
144 enum maple_type {
145 maple_dense,
146 maple_leaf_64,
147 maple_range_64,
148 maple_arange_64,
149 };
150
151
152 /**
153 * DOC: Maple tree flags
154 *
155 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree
156 * * MT_FLAGS_USE_RCU - Operate in RCU mode
157 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags
158 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value
159 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used
160 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe
161 * * MT_FLAGS_LOCK_BH - Acquired bh-safe
162 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used
163 *
164 * MAPLE_HEIGHT_MAX The largest height that can be stored
165 */
166 #define MT_FLAGS_ALLOC_RANGE 0x01
167 #define MT_FLAGS_USE_RCU 0x02
168 #define MT_FLAGS_HEIGHT_OFFSET 0x02
169 #define MT_FLAGS_HEIGHT_MASK 0x7C
170 #define MT_FLAGS_LOCK_MASK 0x300
171 #define MT_FLAGS_LOCK_IRQ 0x100
172 #define MT_FLAGS_LOCK_BH 0x200
173 #define MT_FLAGS_LOCK_EXTERN 0x300
174
175 #define MAPLE_HEIGHT_MAX 31
176
177
178 #define MAPLE_NODE_TYPE_MASK 0x0F
179 #define MAPLE_NODE_TYPE_SHIFT 0x03
180
181 #define MAPLE_RESERVED_RANGE 4096
182
183 #ifdef CONFIG_LOCKDEP
184 typedef struct lockdep_map *lockdep_map_p;
185 #define mt_lock_is_held(mt) \
186 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
187
188 #define mt_write_lock_is_held(mt) \
189 (!(mt)->ma_external_lock || \
190 lock_is_held_type((mt)->ma_external_lock, 0))
191
192 #define mt_set_external_lock(mt, lock) \
193 (mt)->ma_external_lock = &(lock)->dep_map
194
195 #define mt_on_stack(mt) (mt).ma_external_lock = NULL
196 #else
197 typedef struct { /* nothing */ } lockdep_map_p;
198 #define mt_lock_is_held(mt) 1
199 #define mt_write_lock_is_held(mt) 1
200 #define mt_set_external_lock(mt, lock) do { } while (0)
201 #define mt_on_stack(mt) do { } while (0)
202 #endif
203
204 /*
205 * If the tree contains a single entry at index 0, it is usually stored in
206 * tree->ma_root. To optimise for the page cache, an entry which ends in '00',
207 * '01' or '11' is stored in the root, but an entry which ends in '10' will be
208 * stored in a node. Bits 3-6 are used to store enum maple_type.
209 *
210 * The flags are used both to store some immutable information about this tree
211 * (set at tree creation time) and dynamic information set under the spinlock.
212 *
213 * Another use of flags are to indicate global states of the tree. This is the
214 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
215 * RCU mode. This mode was added to allow the tree to reuse nodes instead of
216 * re-allocating and RCU freeing nodes when there is a single user.
217 */
218 struct maple_tree {
219 union {
220 spinlock_t ma_lock;
221 lockdep_map_p ma_external_lock;
222 };
223 unsigned int ma_flags;
224 void __rcu *ma_root;
225 };
226
227 /**
228 * MTREE_INIT() - Initialize a maple tree
229 * @name: The maple tree name
230 * @__flags: The maple tree flags
231 *
232 */
233 #define MTREE_INIT(name, __flags) { \
234 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \
235 .ma_flags = __flags, \
236 .ma_root = NULL, \
237 }
238
239 /**
240 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
241 * @name: The tree name
242 * @__flags: The maple tree flags
243 * @__lock: The external lock
244 */
245 #ifdef CONFIG_LOCKDEP
246 #define MTREE_INIT_EXT(name, __flags, __lock) { \
247 .ma_external_lock = &(__lock).dep_map, \
248 .ma_flags = (__flags), \
249 .ma_root = NULL, \
250 }
251 #else
252 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags)
253 #endif
254
255 #define DEFINE_MTREE(name) \
256 struct maple_tree name = MTREE_INIT(name, 0)
257
258 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock))
259 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock))
260
261 /*
262 * The Maple Tree squeezes various bits in at various points which aren't
263 * necessarily obvious. Usually, this is done by observing that pointers are
264 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We
265 * don't use the high bits of pointers to store additional information because
266 * we don't know what bits are unused on any given architecture.
267 *
268 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
269 * low bits for our own purposes. Nodes are currently of 4 types:
270 * 1. Single pointer (Range is 0-0)
271 * 2. Non-leaf Allocation Range nodes
272 * 3. Non-leaf Range nodes
273 * 4. Leaf Range nodes All nodes consist of a number of node slots,
274 * pivots, and a parent pointer.
275 */
276
277 struct maple_node {
278 union {
279 struct {
280 struct maple_pnode *parent;
281 void __rcu *slot[MAPLE_NODE_SLOTS];
282 };
283 struct {
284 void *pad;
285 struct rcu_head rcu;
286 struct maple_enode *piv_parent;
287 unsigned char parent_slot;
288 enum maple_type type;
289 unsigned char slot_len;
290 unsigned int ma_flags;
291 };
292 struct maple_range_64 mr64;
293 struct maple_arange_64 ma64;
294 struct maple_alloc alloc;
295 };
296 };
297
298 /*
299 * More complicated stores can cause two nodes to become one or three and
300 * potentially alter the height of the tree. Either half of the tree may need
301 * to be rebalanced against the other. The ma_topiary struct is used to track
302 * which nodes have been 'cut' from the tree so that the change can be done
303 * safely at a later date. This is done to support RCU.
304 */
305 struct ma_topiary {
306 struct maple_enode *head;
307 struct maple_enode *tail;
308 struct maple_tree *mtree;
309 };
310
311 void *mtree_load(struct maple_tree *mt, unsigned long index);
312
313 int mtree_insert(struct maple_tree *mt, unsigned long index,
314 void *entry, gfp_t gfp);
315 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
316 unsigned long last, void *entry, gfp_t gfp);
317 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
318 void *entry, unsigned long size, unsigned long min,
319 unsigned long max, gfp_t gfp);
320 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
321 void *entry, unsigned long size, unsigned long min,
322 unsigned long max, gfp_t gfp);
323
324 int mtree_store_range(struct maple_tree *mt, unsigned long first,
325 unsigned long last, void *entry, gfp_t gfp);
326 int mtree_store(struct maple_tree *mt, unsigned long index,
327 void *entry, gfp_t gfp);
328 void *mtree_erase(struct maple_tree *mt, unsigned long index);
329
330 void mtree_destroy(struct maple_tree *mt);
331 void __mt_destroy(struct maple_tree *mt);
332
333 /**
334 * mtree_empty() - Determine if a tree has any present entries.
335 * @mt: Maple Tree.
336 *
337 * Context: Any context.
338 * Return: %true if the tree contains only NULL pointers.
339 */
mtree_empty(const struct maple_tree * mt)340 static inline bool mtree_empty(const struct maple_tree *mt)
341 {
342 return mt->ma_root == NULL;
343 }
344
345 /* Advanced API */
346
347 /*
348 * The maple state is defined in the struct ma_state and is used to keep track
349 * of information during operations, and even between operations when using the
350 * advanced API.
351 *
352 * If state->node has bit 0 set then it references a tree location which is not
353 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative
354 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the
355 * node type.
356 *
357 * state->alloc either has a request number of nodes or an allocated node. If
358 * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
359 * and the remaining bits are the value. If state->alloc is a node, then the
360 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for
361 * storing more allocated nodes, a total number of nodes allocated, and the
362 * node_count in this node. node_count is the number of allocated nodes in this
363 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
364 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc
365 * by removing a node from the state->alloc node until state->alloc->node_count
366 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
367 * to state->alloc. Nodes are pushed onto state->alloc by putting the current
368 * state->alloc into the pushed node's slot[0].
369 *
370 * The state also contains the implied min/max of the state->node, the depth of
371 * this search, and the offset. The implied min/max are either from the parent
372 * node or are 0-oo for the root node. The depth is incremented or decremented
373 * every time a node is walked down or up. The offset is the slot/pivot of
374 * interest in the node - either for reading or writing.
375 *
376 * When returning a value the maple state index and last respectively contain
377 * the start and end of the range for the entry. Ranges are inclusive in the
378 * Maple Tree.
379 */
380 struct ma_state {
381 struct maple_tree *tree; /* The tree we're operating in */
382 unsigned long index; /* The index we're operating on - range start */
383 unsigned long last; /* The last index we're operating on - range end */
384 struct maple_enode *node; /* The node containing this entry */
385 unsigned long min; /* The minimum index of this node - implied pivot min */
386 unsigned long max; /* The maximum index of this node - implied pivot max */
387 struct maple_alloc *alloc; /* Allocated nodes for this operation */
388 unsigned char depth; /* depth of tree descent during write */
389 unsigned char offset;
390 unsigned char mas_flags;
391 };
392
393 struct ma_wr_state {
394 struct ma_state *mas;
395 struct maple_node *node; /* Decoded mas->node */
396 unsigned long r_min; /* range min */
397 unsigned long r_max; /* range max */
398 enum maple_type type; /* mas->node type */
399 unsigned char offset_end; /* The offset where the write ends */
400 unsigned char node_end; /* mas->node end */
401 unsigned long *pivots; /* mas->node->pivots pointer */
402 unsigned long end_piv; /* The pivot at the offset end */
403 void __rcu **slots; /* mas->node->slots pointer */
404 void *entry; /* The entry to write */
405 void *content; /* The existing entry that is being overwritten */
406 };
407
408 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock))
409 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock))
410
411
412 /*
413 * Special values for ma_state.node.
414 * MAS_START means we have not searched the tree.
415 * MAS_ROOT means we have searched the tree and the entry we found lives in
416 * the root of the tree (ie it has index 0, length 1 and is the only entry in
417 * the tree).
418 * MAS_NONE means we have searched the tree and there is no node in the
419 * tree for this entry. For example, we searched for index 1 in an empty
420 * tree. Or we have a tree which points to a full leaf node and we
421 * searched for an entry which is larger than can be contained in that
422 * leaf node.
423 * MA_ERROR represents an errno. After dropping the lock and attempting
424 * to resolve the error, the walk would have to be restarted from the
425 * top of the tree as the tree may have been modified.
426 */
427 #define MAS_START ((struct maple_enode *)1UL)
428 #define MAS_ROOT ((struct maple_enode *)5UL)
429 #define MAS_NONE ((struct maple_enode *)9UL)
430 #define MAS_PAUSE ((struct maple_enode *)17UL)
431 #define MAS_OVERFLOW ((struct maple_enode *)33UL)
432 #define MAS_UNDERFLOW ((struct maple_enode *)65UL)
433 #define MA_ERROR(err) \
434 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
435
436 #define MA_STATE(name, mt, first, end) \
437 struct ma_state name = { \
438 .tree = mt, \
439 .index = first, \
440 .last = end, \
441 .node = MAS_START, \
442 .min = 0, \
443 .max = ULONG_MAX, \
444 .alloc = NULL, \
445 .mas_flags = 0, \
446 }
447
448 #define MA_WR_STATE(name, ma_state, wr_entry) \
449 struct ma_wr_state name = { \
450 .mas = ma_state, \
451 .content = NULL, \
452 .entry = wr_entry, \
453 }
454
455 #define MA_TOPIARY(name, tree) \
456 struct ma_topiary name = { \
457 .head = NULL, \
458 .tail = NULL, \
459 .mtree = tree, \
460 }
461
462 void *mas_walk(struct ma_state *mas);
463 void *mas_store(struct ma_state *mas, void *entry);
464 void *mas_erase(struct ma_state *mas);
465 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
466 void mas_store_prealloc(struct ma_state *mas, void *entry);
467 void *mas_find(struct ma_state *mas, unsigned long max);
468 void *mas_find_range(struct ma_state *mas, unsigned long max);
469 void *mas_find_rev(struct ma_state *mas, unsigned long min);
470 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
471 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
472 bool mas_is_err(struct ma_state *mas);
473
474 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
475 void mas_pause(struct ma_state *mas);
476 void maple_tree_init(void);
477 void mas_destroy(struct ma_state *mas);
478 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
479
480 void *mas_prev(struct ma_state *mas, unsigned long min);
481 void *mas_prev_range(struct ma_state *mas, unsigned long max);
482 void *mas_next(struct ma_state *mas, unsigned long max);
483 void *mas_next_range(struct ma_state *mas, unsigned long max);
484
485 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
486 unsigned long size);
487 /*
488 * This finds an empty area from the highest address to the lowest.
489 * AKA "Topdown" version,
490 */
491 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
492 unsigned long max, unsigned long size);
493
mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)494 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
495 unsigned long addr)
496 {
497 memset(mas, 0, sizeof(struct ma_state));
498 mas->tree = tree;
499 mas->index = mas->last = addr;
500 mas->max = ULONG_MAX;
501 mas->node = MAS_START;
502 }
503
504 /* Checks if a mas has not found anything */
mas_is_none(const struct ma_state * mas)505 static inline bool mas_is_none(const struct ma_state *mas)
506 {
507 return mas->node == MAS_NONE;
508 }
509
510 /* Checks if a mas has been paused */
mas_is_paused(const struct ma_state * mas)511 static inline bool mas_is_paused(const struct ma_state *mas)
512 {
513 return mas->node == MAS_PAUSE;
514 }
515
516 /* Check if the mas is pointing to a node or not */
mas_is_active(struct ma_state * mas)517 static inline bool mas_is_active(struct ma_state *mas)
518 {
519 if ((unsigned long)mas->node >= MAPLE_RESERVED_RANGE)
520 return true;
521
522 return false;
523 }
524
525 /**
526 * mas_reset() - Reset a Maple Tree operation state.
527 * @mas: Maple Tree operation state.
528 *
529 * Resets the error or walk state of the @mas so future walks of the
530 * array will start from the root. Use this if you have dropped the
531 * lock and want to reuse the ma_state.
532 *
533 * Context: Any context.
534 */
mas_reset(struct ma_state * mas)535 static inline void mas_reset(struct ma_state *mas)
536 {
537 mas->node = MAS_START;
538 }
539
540 /**
541 * mas_for_each() - Iterate over a range of the maple tree.
542 * @__mas: Maple Tree operation state (maple_state)
543 * @__entry: Entry retrieved from the tree
544 * @__max: maximum index to retrieve from the tree
545 *
546 * When returned, mas->index and mas->last will hold the entire range for the
547 * entry.
548 *
549 * Note: may return the zero entry.
550 */
551 #define mas_for_each(__mas, __entry, __max) \
552 while (((__entry) = mas_find((__mas), (__max))) != NULL)
553 /**
554 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
555 * current location.
556 * @mas: Maple Tree operation state.
557 * @start: New start of range in the Maple Tree.
558 * @last: New end of range in the Maple Tree.
559 *
560 * set the internal maple state values to a sub-range.
561 * Please use mas_set_range() if you do not know where you are in the tree.
562 */
__mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)563 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
564 unsigned long last)
565 {
566 mas->index = start;
567 mas->last = last;
568 }
569
570 /**
571 * mas_set_range() - Set up Maple Tree operation state for a different index.
572 * @mas: Maple Tree operation state.
573 * @start: New start of range in the Maple Tree.
574 * @last: New end of range in the Maple Tree.
575 *
576 * Move the operation state to refer to a different range. This will
577 * have the effect of starting a walk from the top; see mas_next()
578 * to move to an adjacent index.
579 */
580 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)581 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
582 {
583 __mas_set_range(mas, start, last);
584 mas->node = MAS_START;
585 }
586
587 /**
588 * mas_set() - Set up Maple Tree operation state for a different index.
589 * @mas: Maple Tree operation state.
590 * @index: New index into the Maple Tree.
591 *
592 * Move the operation state to refer to a different index. This will
593 * have the effect of starting a walk from the top; see mas_next()
594 * to move to an adjacent index.
595 */
mas_set(struct ma_state * mas,unsigned long index)596 static inline void mas_set(struct ma_state *mas, unsigned long index)
597 {
598
599 mas_set_range(mas, index, index);
600 }
601
mt_external_lock(const struct maple_tree * mt)602 static inline bool mt_external_lock(const struct maple_tree *mt)
603 {
604 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
605 }
606
607 /**
608 * mt_init_flags() - Initialise an empty maple tree with flags.
609 * @mt: Maple Tree
610 * @flags: maple tree flags.
611 *
612 * If you need to initialise a Maple Tree with special flags (eg, an
613 * allocation tree), use this function.
614 *
615 * Context: Any context.
616 */
mt_init_flags(struct maple_tree * mt,unsigned int flags)617 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
618 {
619 mt->ma_flags = flags;
620 if (!mt_external_lock(mt))
621 spin_lock_init(&mt->ma_lock);
622 rcu_assign_pointer(mt->ma_root, NULL);
623 }
624
625 /**
626 * mt_init() - Initialise an empty maple tree.
627 * @mt: Maple Tree
628 *
629 * An empty Maple Tree.
630 *
631 * Context: Any context.
632 */
mt_init(struct maple_tree * mt)633 static inline void mt_init(struct maple_tree *mt)
634 {
635 mt_init_flags(mt, 0);
636 }
637
mt_in_rcu(struct maple_tree * mt)638 static inline bool mt_in_rcu(struct maple_tree *mt)
639 {
640 #ifdef CONFIG_MAPLE_RCU_DISABLED
641 return false;
642 #endif
643 return mt->ma_flags & MT_FLAGS_USE_RCU;
644 }
645
646 /**
647 * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
648 * @mt: The Maple Tree
649 */
mt_clear_in_rcu(struct maple_tree * mt)650 static inline void mt_clear_in_rcu(struct maple_tree *mt)
651 {
652 if (!mt_in_rcu(mt))
653 return;
654
655 if (mt_external_lock(mt)) {
656 WARN_ON(!mt_lock_is_held(mt));
657 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
658 } else {
659 mtree_lock(mt);
660 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
661 mtree_unlock(mt);
662 }
663 }
664
665 /**
666 * mt_set_in_rcu() - Switch the tree to RCU safe mode.
667 * @mt: The Maple Tree
668 */
mt_set_in_rcu(struct maple_tree * mt)669 static inline void mt_set_in_rcu(struct maple_tree *mt)
670 {
671 if (mt_in_rcu(mt))
672 return;
673
674 if (mt_external_lock(mt)) {
675 WARN_ON(!mt_lock_is_held(mt));
676 mt->ma_flags |= MT_FLAGS_USE_RCU;
677 } else {
678 mtree_lock(mt);
679 mt->ma_flags |= MT_FLAGS_USE_RCU;
680 mtree_unlock(mt);
681 }
682 }
683
mt_height(const struct maple_tree * mt)684 static inline unsigned int mt_height(const struct maple_tree *mt)
685 {
686 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
687 }
688
689 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
690 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
691 unsigned long max);
692 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min);
693 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
694
695 /**
696 * mt_for_each - Iterate over each entry starting at index until max.
697 * @__tree: The Maple Tree
698 * @__entry: The current entry
699 * @__index: The index to start the search from. Subsequently used as iterator.
700 * @__max: The maximum limit for @index
701 *
702 * This iterator skips all entries, which resolve to a NULL pointer,
703 * e.g. entries which has been reserved with XA_ZERO_ENTRY.
704 */
705 #define mt_for_each(__tree, __entry, __index, __max) \
706 for (__entry = mt_find(__tree, &(__index), __max); \
707 __entry; __entry = mt_find_after(__tree, &(__index), __max))
708
709
710 #ifdef CONFIG_DEBUG_MAPLE_TREE
711 enum mt_dump_format {
712 mt_dump_dec,
713 mt_dump_hex,
714 };
715
716 extern atomic_t maple_tree_tests_run;
717 extern atomic_t maple_tree_tests_passed;
718
719 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
720 void mas_dump(const struct ma_state *mas);
721 void mas_wr_dump(const struct ma_wr_state *wr_mas);
722 void mt_validate(struct maple_tree *mt);
723 void mt_cache_shrink(void);
724 #define MT_BUG_ON(__tree, __x) do { \
725 atomic_inc(&maple_tree_tests_run); \
726 if (__x) { \
727 pr_info("BUG at %s:%d (%u)\n", \
728 __func__, __LINE__, __x); \
729 mt_dump(__tree, mt_dump_hex); \
730 pr_info("Pass: %u Run:%u\n", \
731 atomic_read(&maple_tree_tests_passed), \
732 atomic_read(&maple_tree_tests_run)); \
733 dump_stack(); \
734 } else { \
735 atomic_inc(&maple_tree_tests_passed); \
736 } \
737 } while (0)
738
739 #define MAS_BUG_ON(__mas, __x) do { \
740 atomic_inc(&maple_tree_tests_run); \
741 if (__x) { \
742 pr_info("BUG at %s:%d (%u)\n", \
743 __func__, __LINE__, __x); \
744 mas_dump(__mas); \
745 mt_dump((__mas)->tree, mt_dump_hex); \
746 pr_info("Pass: %u Run:%u\n", \
747 atomic_read(&maple_tree_tests_passed), \
748 atomic_read(&maple_tree_tests_run)); \
749 dump_stack(); \
750 } else { \
751 atomic_inc(&maple_tree_tests_passed); \
752 } \
753 } while (0)
754
755 #define MAS_WR_BUG_ON(__wrmas, __x) do { \
756 atomic_inc(&maple_tree_tests_run); \
757 if (__x) { \
758 pr_info("BUG at %s:%d (%u)\n", \
759 __func__, __LINE__, __x); \
760 mas_wr_dump(__wrmas); \
761 mas_dump((__wrmas)->mas); \
762 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
763 pr_info("Pass: %u Run:%u\n", \
764 atomic_read(&maple_tree_tests_passed), \
765 atomic_read(&maple_tree_tests_run)); \
766 dump_stack(); \
767 } else { \
768 atomic_inc(&maple_tree_tests_passed); \
769 } \
770 } while (0)
771
772 #define MT_WARN_ON(__tree, __x) ({ \
773 int ret = !!(__x); \
774 atomic_inc(&maple_tree_tests_run); \
775 if (ret) { \
776 pr_info("WARN at %s:%d (%u)\n", \
777 __func__, __LINE__, __x); \
778 mt_dump(__tree, mt_dump_hex); \
779 pr_info("Pass: %u Run:%u\n", \
780 atomic_read(&maple_tree_tests_passed), \
781 atomic_read(&maple_tree_tests_run)); \
782 dump_stack(); \
783 } else { \
784 atomic_inc(&maple_tree_tests_passed); \
785 } \
786 unlikely(ret); \
787 })
788
789 #define MAS_WARN_ON(__mas, __x) ({ \
790 int ret = !!(__x); \
791 atomic_inc(&maple_tree_tests_run); \
792 if (ret) { \
793 pr_info("WARN at %s:%d (%u)\n", \
794 __func__, __LINE__, __x); \
795 mas_dump(__mas); \
796 mt_dump((__mas)->tree, mt_dump_hex); \
797 pr_info("Pass: %u Run:%u\n", \
798 atomic_read(&maple_tree_tests_passed), \
799 atomic_read(&maple_tree_tests_run)); \
800 dump_stack(); \
801 } else { \
802 atomic_inc(&maple_tree_tests_passed); \
803 } \
804 unlikely(ret); \
805 })
806
807 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \
808 int ret = !!(__x); \
809 atomic_inc(&maple_tree_tests_run); \
810 if (ret) { \
811 pr_info("WARN at %s:%d (%u)\n", \
812 __func__, __LINE__, __x); \
813 mas_wr_dump(__wrmas); \
814 mas_dump((__wrmas)->mas); \
815 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
816 pr_info("Pass: %u Run:%u\n", \
817 atomic_read(&maple_tree_tests_passed), \
818 atomic_read(&maple_tree_tests_run)); \
819 dump_stack(); \
820 } else { \
821 atomic_inc(&maple_tree_tests_passed); \
822 } \
823 unlikely(ret); \
824 })
825 #else
826 #define MT_BUG_ON(__tree, __x) BUG_ON(__x)
827 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x)
828 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x)
829 #define MT_WARN_ON(__tree, __x) WARN_ON(__x)
830 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x)
831 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x)
832 #endif /* CONFIG_DEBUG_MAPLE_TREE */
833
834 #endif /*_LINUX_MAPLE_TREE_H */
835