1/* 2 * arch/ppc/kernel/except_8xx.S 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP 7 * Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu> 8 * Low-level exception handlers and MMU support 9 * rewritten by Paul Mackerras. 10 * Copyright (C) 1996 Paul Mackerras. 11 * MPC8xx modifications by Dan Malek 12 * Copyright (C) 1997 Dan Malek (dmalek@jlc.net). 13 * 14 * This file contains low-level support and setup for PowerPC 8xx 15 * embedded processors, including trap and interrupt dispatch. 16 * 17 * This program is free software; you can redistribute it and/or 18 * modify it under the terms of the GNU General Public License 19 * as published by the Free Software Foundation; either version 20 * 2 of the License, or (at your option) any later version. 21 * 22 */ 23 24#include <linux/config.h> 25#include <asm/processor.h> 26#include <asm/page.h> 27#include <asm/mmu.h> 28#include <asm/cache.h> 29#include <asm/pgtable.h> 30#include <asm/cputable.h> 31#include <asm/ppc_asm.h> 32#include "ppc_defs.h" 33 34 .text 35 .globl _stext 36_stext: 37 38/* 39 * _start is defined this way because the XCOFF loader in the OpenFirmware 40 * on the powermac expects the entry point to be a procedure descriptor. 41 */ 42 .text 43 .globl _start 44_start: 45 46/* MPC8xx 47 * This port was done on an MBX board with an 860. Right now I only 48 * support an ELF compressed (zImage) boot from EPPC-Bug because the 49 * code there loads up some registers before calling us: 50 * r3: ptr to board info data 51 * r4: initrd_start or if no initrd then 0 52 * r5: initrd_end - unused if r4 is 0 53 * r6: Start of command line string 54 * r7: End of command line string 55 * 56 * I decided to use conditional compilation instead of checking PVR and 57 * adding more processor specific branches around code I don't need. 58 * Since this is an embedded processor, I also appreciate any memory 59 * savings I can get. 60 * 61 * The MPC8xx does not have any BATs, but it supports large page sizes. 62 * We first initialize the MMU to support 8M byte pages, then load one 63 * entry into each of the instruction and data TLBs to map the first 64 * 8M 1:1. I also mapped an additional I/O space 1:1 so we can get to 65 * the "internal" processor registers before MMU_init is called. 66 * 67 * The TLB code currently contains a major hack. Since I use the condition 68 * code register, I have to save and restore it. I am out of registers, so 69 * I just store it in memory location 0 (the TLB handlers are not reentrant). 70 * To avoid making any decisions, I need to use the "segment" valid bit 71 * in the first level table, but that would require many changes to the 72 * Linux page directory/table functions that I don't want to do right now. 73 * 74 * I used to use SPRG2 for a temporary register in the TLB handler, but it 75 * has since been put to other uses. I now use a hack to save a register 76 * and the CCR at memory location 0.....Someday I'll fix this..... 77 * 78 * With regard to resetting the CPM. The UART console has a number of subtle 79 * assumptions built around the initialization to support kgdb/xmon debugging. 80 * The quick answer is we don't want to reset the CPM so we can proper support 81 * this debugging. 82 * 83 * When the kernel is first booted, kgdb/xmon use the CPM as it was set up by 84 * the boot rom. There is a second initialization of the UART driver, but 85 * before the console is initialized. This changes the BDs, but the UART 86 * still operates for kgdb/xmon. The final stage initialization occurs when 87 * the console is initialized, and all of the "normal path" debugging and 88 * messages can occur after this point. So the only time we want to do a CPM 89 * is in the case of a microcode patch. 90 * 91 * -- Dan 92 */ 93 94 .globl __start 95__start: 96 /* To accomodate some SMP systems that overwrite the first few 97 * locations before cpu 0 starts, the bootloader starts us at 0xc. 98 */ 99 nop 100 nop 101 nop 102 mr r31,r3 /* save parameters */ 103 mr r30,r4 104 mr r29,r5 105 mr r28,r6 106 mr r27,r7 107 li r24,0 /* cpu # */ 108 109 /* We have to turn on the MMU right away so we get cache modes 110 * set correctly. 111 */ 112 bl initial_mmu 113 114/* We now have the lower 8 Meg mapped into TLB entries, and the caches 115 * ready to work. 116 */ 117 118turn_on_mmu: 119 mfmsr r0 120 ori r0,r0,MSR_DR|MSR_IR 121 mtspr SRR1,r0 122 lis r0,start_here@h 123 ori r0,r0,start_here@l 124 mtspr SRR0,r0 125 SYNC 126 rfi /* enables MMU */ 127 128/* 129 * Exception entry code. This code runs with address translation 130 * turned off, i.e. using physical addresses. 131 * We assume sprg3 has the physical address of the current 132 * task's thread_struct. 133 */ 134#define EXCEPTION_PROLOG \ 135 mtspr SPRG0,r20; \ 136 mtspr SPRG1,r21; \ 137 mfcr r20; \ 138 mfspr r21,SPRG2; /* exception stack to use from */ \ 139 cmpwi 0,r21,0; /* user mode or RTAS */ \ 140 bne 1f; \ 141 tophys(r21,r1); /* use tophys(kernel sp) otherwise */ \ 142 subi r21,r21,INT_FRAME_SIZE; /* alloc exc. frame */\ 1431: stw r20,_CCR(r21); /* save registers */ \ 144 stw r22,GPR22(r21); \ 145 stw r23,GPR23(r21); \ 146 mfspr r20,SPRG0; \ 147 stw r20,GPR20(r21); \ 148 mfspr r22,SPRG1; \ 149 stw r22,GPR21(r21); \ 150 mflr r20; \ 151 stw r20,_LINK(r21); \ 152 mfctr r22; \ 153 stw r22,_CTR(r21); \ 154 mfspr r20,XER; \ 155 stw r20,_XER(r21); \ 156 mfspr r22,SRR0; \ 157 mfspr r23,SRR1; \ 158 stw r0,GPR0(r21); \ 159 stw r1,GPR1(r21); \ 160 stw r2,GPR2(r21); \ 161 stw r1,0(r21); \ 162 tovirt(r1,r21); /* set new kernel sp */ \ 163 SAVE_4GPRS(3, r21); \ 164 SAVE_GPR(7, r21); 165/* 166 * Note: code which follows this uses cr0.eq (set if from kernel), 167 * r21, r22 (SRR0), and r23 (SRR1). 168 */ 169 170/* 171 * Exception vectors. 172 */ 173 174#define FINISH_EXCEPTION(func) \ 175 bl transfer_to_handler; \ 176 .long func; \ 177 .long ret_from_except 178 179#define STD_EXCEPTION(n, label, hdlr) \ 180 . = n; \ 181label: \ 182 EXCEPTION_PROLOG; \ 183 addi r3,r1,STACK_FRAME_OVERHEAD; \ 184 li r20,MSR_KERNEL; \ 185 FINISH_EXCEPTION(hdlr) 186 187/* System reset */ 188 STD_EXCEPTION(0x100, Reset, UnknownException) 189 190/* Machine check */ 191 STD_EXCEPTION(0x200, MachineCheck, MachineCheckException) 192 193/* Data access exception. 194 * This is "never generated" by the MPC8xx. We jump to it for other 195 * translation errors. 196 */ 197 . = 0x300 198DataAccess: 199 EXCEPTION_PROLOG 200 mfspr r20,DSISR 201 stw r20,_DSISR(r21) 202 mr r5,r20 203 mfspr r4,DAR 204 stw r4,_DAR(r21) 205 addi r3,r1,STACK_FRAME_OVERHEAD 206 li r20,MSR_KERNEL 207 rlwimi r20,r23,0,16,16 /* copy EE bit from saved MSR */ 208 FINISH_EXCEPTION(do_page_fault) 209 210/* Instruction access exception. 211 * This is "never generated" by the MPC8xx. We jump to it for other 212 * translation errors. 213 */ 214 . = 0x400 215InstructionAccess: 216 EXCEPTION_PROLOG 217 addi r3,r1,STACK_FRAME_OVERHEAD 218 mr r4,r22 219 mr r5,r23 220 li r20,MSR_KERNEL 221 rlwimi r20,r23,0,16,16 /* copy EE bit from saved MSR */ 222 FINISH_EXCEPTION(do_page_fault) 223 224/* External interrupt */ 225 . = 0x500; 226HardwareInterrupt: 227 EXCEPTION_PROLOG; 228 addi r3,r1,STACK_FRAME_OVERHEAD 229 li r20,MSR_KERNEL 230 li r4,0 231 bl transfer_to_handler 232 .globl do_IRQ_intercept 233do_IRQ_intercept: 234 .long do_IRQ; 235 .long ret_from_intercept 236 237/* Alignment exception */ 238 . = 0x600 239Alignment: 240 EXCEPTION_PROLOG 241 mfspr r4,DAR 242 stw r4,_DAR(r21) 243 mfspr r5,DSISR 244 stw r5,_DSISR(r21) 245 addi r3,r1,STACK_FRAME_OVERHEAD 246 li r20,MSR_KERNEL 247 rlwimi r20,r23,0,16,16 /* copy EE bit from saved MSR */ 248 FINISH_EXCEPTION(AlignmentException) 249 250/* Program check exception */ 251 . = 0x700 252ProgramCheck: 253 EXCEPTION_PROLOG 254 addi r3,r1,STACK_FRAME_OVERHEAD 255 li r20,MSR_KERNEL 256 rlwimi r20,r23,0,16,16 /* copy EE bit from saved MSR */ 257 FINISH_EXCEPTION(ProgramCheckException) 258 259/* No FPU on MPC8xx. This exception is not supposed to happen. 260*/ 261 STD_EXCEPTION(0x800, FPUnavailable, UnknownException) 262 263 . = 0x900 264Decrementer: 265 EXCEPTION_PROLOG 266 addi r3,r1,STACK_FRAME_OVERHEAD 267 li r20,MSR_KERNEL 268 bl transfer_to_handler 269 .globl timer_interrupt_intercept 270timer_interrupt_intercept: 271 .long timer_interrupt 272 .long ret_from_intercept 273 274 STD_EXCEPTION(0xa00, Trap_0a, UnknownException) 275 STD_EXCEPTION(0xb00, Trap_0b, UnknownException) 276 277/* System call */ 278 . = 0xc00 279SystemCall: 280 EXCEPTION_PROLOG 281 stw r3,ORIG_GPR3(r21) 282 li r20,MSR_KERNEL 283 rlwimi r20,r23,0,16,16 /* copy EE bit from saved MSR */ 284 FINISH_EXCEPTION(DoSyscall) 285 286/* Single step - not used on 601 */ 287 STD_EXCEPTION(0xd00, SingleStep, SingleStepException) 288 289 STD_EXCEPTION(0xe00, Trap_0e, UnknownException) 290 STD_EXCEPTION(0xf00, Trap_0f, UnknownException) 291 292/* On the MPC8xx, this is a software emulation interrupt. It occurs 293 * for all unimplemented and illegal instructions. 294 */ 295 STD_EXCEPTION(0x1000, SoftEmu, SoftwareEmulation) 296 297 . = 0x1100 298/* 299 * For the MPC8xx, this is a software tablewalk to load the instruction 300 * TLB. It is modelled after the example in the Motorola manual. The task 301 * switch loads the M_TWB register with the pointer to the first level table. 302 * If we discover there is no second level table (the value is zero), the 303 * plan was to load that into the TLB, which causes another fault into the 304 * TLB Error interrupt where we can handle such problems. However, that did 305 * not work, so if we discover there is no second level table, we restore 306 * registers and branch to the error exception. We have to use the MD_xxx 307 * registers for the tablewalk because the equivalent MI_xxx registers 308 * only perform the attribute functions. 309 */ 310InstructionTLBMiss: 311#ifdef CONFIG_8xx_CPU6 312 stw r3, 8(r0) 313 li r3, 0x3f80 314 stw r3, 12(r0) 315 lwz r3, 12(r0) 316#endif 317 mtspr M_TW, r20 /* Save a couple of working registers */ 318 mfcr r20 319 stw r20, 0(r0) 320 stw r21, 4(r0) 321 mfspr r20, SRR0 /* Get effective address of fault */ 322#ifdef CONFIG_8xx_CPU6 323 li r3, 0x3780 324 stw r3, 12(r0) 325 lwz r3, 12(r0) 326#endif 327 mtspr MD_EPN, r20 /* Have to use MD_EPN for walk, MI_EPN can't */ 328 mfspr r20, M_TWB /* Get level 1 table entry address */ 329 330 /* If we are faulting a kernel address, we have to use the 331 * kernel page tables. 332 */ 333 andi. r21, r20, 0x0800 /* Address >= 0x80000000 */ 334 beq 3f 335 lis r21, swapper_pg_dir@h 336 ori r21, r21, swapper_pg_dir@l 337 rlwimi r20, r21, 0, 2, 19 3383: 339 lwz r21, 0(r20) /* Get the level 1 entry */ 340 rlwinm. r20, r21,0,0,19 /* Extract page descriptor page address */ 341 342 /* We have a pte table, so load the MI_TWC with the attributes 343 * for this "segment." 344 */ 345 tophys(r21,r21) 346 ori r21,r21,1 /* Set valid bit */ 347 beq- 2f /* If zero, don't try to find a pte */ 348#ifdef CONFIG_8xx_CPU6 349 li r3, 0x2b80 350 stw r3, 12(r0) 351 lwz r3, 12(r0) 352#endif 353 mtspr MI_TWC, r21 /* Set segment attributes */ 354#ifdef CONFIG_8xx_CPU6 355 li r3, 0x3b80 356 stw r3, 12(r0) 357 lwz r3, 12(r0) 358#endif 359 mtspr MD_TWC, r21 /* Load pte table base address */ 360 mfspr r21, MD_TWC /* ....and get the pte address */ 361 lwz r20, 0(r21) /* Get the pte */ 362 363 ori r20, r20, _PAGE_ACCESSED 364 stw r20, 0(r21) 365 366 /* The Linux PTE won't go exactly into the MMU TLB. 367 * Software indicator bits 21, 22 and 28 must be clear. 368 * Software indicator bits 24, 25, 26, and 27 must be 369 * set. All other Linux PTE bits control the behavior 370 * of the MMU. 371 */ 3722: li r21, 0x00f0 373 rlwimi r20, r21, 0, 24, 28 /* Set 24-27, clear 28 */ 374 375#ifdef CONFIG_8xx_CPU6 376 li r3, 0x2d80 377 stw r3, 12(r0) 378 lwz r3, 12(r0) 379#endif 380 mtspr MI_RPN, r20 /* Update TLB entry */ 381 382 mfspr r20, M_TW /* Restore registers */ 383 lwz r21, 0(r0) 384 mtcr r21 385 lwz r21, 4(r0) 386#ifdef CONFIG_8xx_CPU6 387 lwz r3, 8(r0) 388#endif 389 rfi 390 391 . = 0x1200 392DataStoreTLBMiss: 393#ifdef CONFIG_8xx_CPU6 394 stw r3, 8(r0) 395 li r3, 0x3f80 396 stw r3, 12(r0) 397 lwz r3, 12(r0) 398#endif 399 mtspr M_TW, r20 /* Save a couple of working registers */ 400 mfcr r20 401 stw r20, 0(r0) 402 stw r21, 4(r0) 403 mfspr r20, M_TWB /* Get level 1 table entry address */ 404 405 /* If we are faulting a kernel address, we have to use the 406 * kernel page tables. 407 */ 408 andi. r21, r20, 0x0800 409 beq 3f 410 lis r21, swapper_pg_dir@h 411 ori r21, r21, swapper_pg_dir@l 412 rlwimi r20, r21, 0, 2, 19 4133: 414 lwz r21, 0(r20) /* Get the level 1 entry */ 415 rlwinm. r20, r21,0,0,19 /* Extract page descriptor page address */ 416 417 /* We have a pte table, so load fetch the pte from the table. 418 */ 419 tophys(r21, r21) 420 ori r21, r21, 1 /* Set valid bit in physical L2 page */ 421 beq- 2f /* If zero, don't try to find a pte */ 422#ifdef CONFIG_8xx_CPU6 423 li r3, 0x3b80 424 stw r3, 12(r0) 425 lwz r3, 12(r0) 426#endif 427 mtspr MD_TWC, r21 /* Load pte table base address */ 428 mfspr r20, MD_TWC /* ....and get the pte address */ 429 lwz r20, 0(r20) /* Get the pte */ 430 431 /* Insert the Guarded flag into the TWC from the Linux PTE. 432 * It is bit 27 of both the Linux PTE and the TWC (at least 433 * I got that right :-). It will be better when we can put 434 * this into the Linux pgd/pmd and load it in the operation 435 * above. 436 */ 437 rlwimi r21, r20, 0, 27, 27 438#ifdef CONFIG_8xx_CPU6 439 li r3, 0x3b80 440 stw r3, 12(r0) 441 lwz r3, 12(r0) 442#endif 443 mtspr MD_TWC, r21 444 445 mfspr r21, MD_TWC /* get the pte address again */ 446 ori r20, r20, _PAGE_ACCESSED 447 stw r20, 0(r21) 448 449 /* The Linux PTE won't go exactly into the MMU TLB. 450 * Software indicator bits 21, 22 and 28 must be clear. 451 * Software indicator bits 24, 25, 26, and 27 must be 452 * set. All other Linux PTE bits control the behavior 453 * of the MMU. 454 */ 4552: li r21, 0x00f0 456 rlwimi r20, r21, 0, 24, 28 /* Set 24-27, clear 28 */ 457 458#ifdef CONFIG_8xx_CPU6 459 li r3, 0x3d80 460 stw r3, 12(r0) 461 lwz r3, 12(r0) 462#endif 463 mtspr MD_RPN, r20 /* Update TLB entry */ 464 465 mfspr r20, M_TW /* Restore registers */ 466 lwz r21, 0(r0) 467 mtcr r21 468 lwz r21, 4(r0) 469#ifdef CONFIG_8xx_CPU6 470 lwz r3, 8(r0) 471#endif 472 rfi 473 474/* This is an instruction TLB error on the MPC8xx. This could be due 475 * to many reasons, such as executing guarded memory or illegal instruction 476 * addresses. There is nothing to do but handle a big time error fault. 477 */ 478 . = 0x1300 479InstructionTLBError: 480 b InstructionAccess 481 482/* This is the data TLB error on the MPC8xx. This could be due to 483 * many reasons, including a dirty update to a pte. We can catch that 484 * one here, but anything else is an error. First, we track down the 485 * Linux pte. If it is valid, write access is allowed, but the 486 * page dirty bit is not set, we will set it and reload the TLB. For 487 * any other case, we bail out to a higher level function that can 488 * handle it. 489 */ 490 . = 0x1400 491DataTLBError: 492#ifdef CONFIG_8xx_CPU6 493 stw r3, 8(r0) 494 li r3, 0x3f80 495 stw r3, 12(r0) 496 lwz r3, 12(r0) 497#endif 498 mtspr M_TW, r20 /* Save a couple of working registers */ 499 mfcr r20 500 stw r20, 0(r0) 501 stw r21, 4(r0) 502 503 /* First, make sure this was a store operation. 504 */ 505 mfspr r20, DSISR 506 andis. r21, r20, 0x0200 /* If set, indicates store op */ 507 beq 2f 508 509 /* The EA of a data TLB miss is automatically stored in the MD_EPN 510 * register. The EA of a data TLB error is automatically stored in 511 * the DAR, but not the MD_EPN register. We must copy the 20 most 512 * significant bits of the EA from the DAR to MD_EPN before we 513 * start walking the page tables. We also need to copy the CASID 514 * value from the M_CASID register. 515 * Addendum: The EA of a data TLB error is _supposed_ to be stored 516 * in DAR, but it seems that this doesn't happen in some cases, such 517 * as when the error is due to a dcbi instruction to a page with a 518 * TLB that doesn't have the changed bit set. In such cases, there 519 * does not appear to be any way to recover the EA of the error 520 * since it is neither in DAR nor MD_EPN. As a workaround, the 521 * _PAGE_HWWRITE bit is set for all kernel data pages when the PTEs 522 * are initialized in mapin_ram(). This will avoid the problem, 523 * assuming we only use the dcbi instruction on kernel addresses. 524 */ 525 mfspr r20, DAR 526 rlwinm r21, r20, 0, 0, 19 527 ori r21, r21, MD_EVALID 528 mfspr r20, M_CASID 529 rlwimi r21, r20, 0, 28, 31 530#ifdef CONFIG_8xx_CPU6 531 li r3, 0x3780 532 stw r3, 12(r0) 533 lwz r3, 12(r0) 534#endif 535 mtspr MD_EPN, r21 536 537 mfspr r20, M_TWB /* Get level 1 table entry address */ 538 539 /* If we are faulting a kernel address, we have to use the 540 * kernel page tables. 541 */ 542 andi. r21, r20, 0x0800 543 beq 3f 544 lis r21, swapper_pg_dir@h 545 ori r21, r21, swapper_pg_dir@l 546 rlwimi r20, r21, 0, 2, 19 5473: 548 lwz r21, 0(r20) /* Get the level 1 entry */ 549 rlwinm. r20, r21,0,0,19 /* Extract page descriptor page address */ 550 beq 2f /* If zero, bail */ 551 552 /* We have a pte table, so fetch the pte from the table. 553 */ 554 tophys(r21, r21) 555 ori r21, r21, 1 /* Set valid bit in physical L2 page */ 556#ifdef CONFIG_8xx_CPU6 557 li r3, 0x3b80 558 stw r3, 12(r0) 559 lwz r3, 12(r0) 560#endif 561 mtspr MD_TWC, r21 /* Load pte table base address */ 562 mfspr r21, MD_TWC /* ....and get the pte address */ 563 lwz r20, 0(r21) /* Get the pte */ 564 565 andi. r21, r20, _PAGE_RW /* Is it writeable? */ 566 beq 2f /* Bail out if not */ 567 568 /* Update 'changed', among others. 569 */ 570 ori r20, r20, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE 571 mfspr r21, MD_TWC /* Get pte address again */ 572 stw r20, 0(r21) /* and update pte in table */ 573 574 /* The Linux PTE won't go exactly into the MMU TLB. 575 * Software indicator bits 21, 22 and 28 must be clear. 576 * Software indicator bits 24, 25, 26, and 27 must be 577 * set. All other Linux PTE bits control the behavior 578 * of the MMU. 579 */ 580 li r21, 0x00f0 581 rlwimi r20, r21, 0, 24, 28 /* Set 24-27, clear 28 */ 582 583#ifdef CONFIG_8xx_CPU6 584 li r3, 0x3d80 585 stw r3, 12(r0) 586 lwz r3, 12(r0) 587#endif 588 mtspr MD_RPN, r20 /* Update TLB entry */ 589 590 mfspr r20, M_TW /* Restore registers */ 591 lwz r21, 0(r0) 592 mtcr r21 593 lwz r21, 4(r0) 594#ifdef CONFIG_8xx_CPU6 595 lwz r3, 8(r0) 596#endif 597 rfi 5982: 599 mfspr r20, M_TW /* Restore registers */ 600 lwz r21, 0(r0) 601 mtcr r21 602 lwz r21, 4(r0) 603#ifdef CONFIG_8xx_CPU6 604 lwz r3, 8(r0) 605#endif 606 b DataAccess 607 608 STD_EXCEPTION(0x1500, Trap_15, UnknownException) 609 STD_EXCEPTION(0x1600, Trap_16, UnknownException) 610 STD_EXCEPTION(0x1700, Trap_17, TAUException) 611 STD_EXCEPTION(0x1800, Trap_18, UnknownException) 612 STD_EXCEPTION(0x1900, Trap_19, UnknownException) 613 STD_EXCEPTION(0x1a00, Trap_1a, UnknownException) 614 STD_EXCEPTION(0x1b00, Trap_1b, UnknownException) 615 616/* On the MPC8xx, these next four traps are used for development 617 * support of breakpoints and such. Someday I will get around to 618 * using them. 619 */ 620 STD_EXCEPTION(0x1c00, Trap_1c, UnknownException) 621 STD_EXCEPTION(0x1d00, Trap_1d, UnknownException) 622 STD_EXCEPTION(0x1e00, Trap_1e, UnknownException) 623 STD_EXCEPTION(0x1f00, Trap_1f, UnknownException) 624 625 . = 0x2000 626 627/* 628 * This code finishes saving the registers to the exception frame 629 * and jumps to the appropriate handler for the exception, turning 630 * on address translation. 631 */ 632 .globl transfer_to_handler 633transfer_to_handler: 634 stw r22,_NIP(r21) 635 lis r22,MSR_POW@h 636 andc r23,r23,r22 637 stw r23,_MSR(r21) 638 SAVE_4GPRS(8, r21) 639 SAVE_8GPRS(12, r21) 640 SAVE_8GPRS(24, r21) 641 andi. r23,r23,MSR_PR 642 mfspr r23,SPRG3 /* if from user, fix up THREAD.regs */ 643 beq 2f 644 addi r24,r1,STACK_FRAME_OVERHEAD 645 stw r24,PT_REGS(r23) 6462: addi r2,r23,-THREAD /* set r2 to current */ 647 tovirt(r2,r2) 648 mflr r23 649 andi. r24,r23,0x3f00 /* get vector offset */ 650 stw r24,TRAP(r21) 651 li r22,0 652 stw r22,RESULT(r21) 653 mtspr SPRG2,r22 /* r1 is now kernel sp */ 654 addi r24,r2,TASK_STRUCT_SIZE /* check for kernel stack overflow */ 655 cmplw 0,r1,r2 656 cmplw 1,r1,r24 657 crand 1,1,4 658 bgt- stack_ovf /* if r2 < r1 < r2+TASK_STRUCT_SIZE */ 659 lwz r24,0(r23) /* virtual address of handler */ 660 lwz r23,4(r23) /* where to go when done */ 661 mtspr SRR0,r24 662 mtspr SRR1,r20 663 mtlr r23 664 SYNC 665 rfi /* jump to handler, enable MMU */ 666 667/* 668 * On kernel stack overflow, load up an initial stack pointer 669 * and call StackOverflow(regs), which should not return. 670 */ 671stack_ovf: 672 addi r3,r1,STACK_FRAME_OVERHEAD 673 lis r1,init_task_union@ha 674 addi r1,r1,init_task_union@l 675 addi r1,r1,TASK_UNION_SIZE-STACK_FRAME_OVERHEAD 676 lis r24,StackOverflow@ha 677 addi r24,r24,StackOverflow@l 678 li r20,MSR_KERNEL 679 mtspr SRR0,r24 680 mtspr SRR1,r20 681 SYNC 682 rfi 683 684 .globl giveup_fpu 685giveup_fpu: 686 blr 687 688/* Maybe someday....... 689*/ 690_GLOBAL(__setup_cpu_8xx) 691 blr 692 693/* 694 * This is where the main kernel code starts. 695 */ 696start_here: 697 698 /* ptr to current */ 699 lis r2,init_task_union@h 700 ori r2,r2,init_task_union@l 701 702 /* ptr to phys current thread */ 703 tophys(r4,r2) 704 addi r4,r4,THREAD /* init task's THREAD */ 705 mtspr SPRG3,r4 706 li r3,0 707 mtspr SPRG2,r3 /* 0 => r1 has kernel sp */ 708 709 /* stack */ 710 addi r1,r2,TASK_UNION_SIZE 711 li r0,0 712 stwu r0,-STACK_FRAME_OVERHEAD(r1) 713 714 bl early_init /* We have to do this with MMU on */ 715 716/* 717 * Decide what sort of machine this is and initialize the MMU. 718 */ 719 mr r3,r31 720 mr r4,r30 721 mr r5,r29 722 mr r6,r28 723 mr r7,r27 724 bl machine_init 725 bl MMU_init 726 727/* 728 * Go back to running unmapped so we can load up new values 729 * and change to using our exception vectors. 730 * On the 8xx, all we have to do is invalidate the TLB to clear 731 * the old 8M byte TLB mappings and load the page table base register. 732 */ 733 /* The right way to do this would be to track it down through 734 * init's THREAD like the context switch code does, but this is 735 * easier......until someone changes init's static structures. 736 */ 737 lis r6, swapper_pg_dir@h 738 ori r6, r6, swapper_pg_dir@l 739 tophys(r6,r6) 740#ifdef CONFIG_8xx_CPU6 741 lis r4, cpu6_errata_word@h 742 ori r4, r4, cpu6_errata_word@l 743 li r3, 0x3980 744 stw r3, 12(r4) 745 lwz r3, 12(r4) 746#endif 747 mtspr M_TWB, r6 748 lis r4,2f@h 749 ori r4,r4,2f@l 750 tophys(r4,r4) 751 li r3,MSR_KERNEL & ~(MSR_IR|MSR_DR) 752 mtspr SRR0,r4 753 mtspr SRR1,r3 754 rfi 755/* Load up the kernel context */ 7562: 757 SYNC /* Force all PTE updates to finish */ 758 tlbia /* Clear all TLB entries */ 759 sync /* wait for tlbia/tlbie to finish */ 760 TLBSYNC /* ... on all CPUs */ 761 762#ifdef CONFIG_BDI_SWITCH 763 /* Add helper information for the Abatron bdiGDB debugger. 764 * We do this here because we know the mmu is disabled, and 765 * will be enabled for real in just a few instructions. 766 */ 767 tovirt(r6,r6) 768 lis r5, abatron_pteptrs@h 769 ori r5, r5, abatron_pteptrs@l 770 stw r5, 0xf0(r0) /* Must match your Abatron config file */ 771 tophys(r5,r5) 772 stw r6, 0(r5) 773#endif 774 775/* Now turn on the MMU for real! */ 776 li r4,MSR_KERNEL 777 lis r3,start_kernel@h 778 ori r3,r3,start_kernel@l 779 mtspr SRR0,r3 780 mtspr SRR1,r4 781 rfi /* enable MMU and jump to start_kernel */ 782 783/* Set up the initial MMU state so we can do the first level of 784 * kernel initialization. This maps the first 8 MBytes of memory 1:1 785 * virtual to physical. Also, set the cache mode since that is defined 786 * by TLB entries and perform any additional mapping (like of the IMMR). 787 * If configured to pin some TLBs, we pin the first 8 Mbytes of kernel, 788 * 24 Mbytes of data, and the 8M IMMR space. Anything not covered by 789 * these mappings is mapped by page tables. 790 */ 791initial_mmu: 792 tlbia /* Invalidate all TLB entries */ 793#ifdef CONFIG_PIN_TLB 794 lis r8, MI_RSV4I@h 795 ori r8, r8, 0x1c00 796#else 797 li r8, 0 798#endif 799 mtspr MI_CTR, r8 /* Set instruction MMU control */ 800 801#ifdef CONFIG_PIN_TLB 802 lis r10, (MD_RSV4I | MD_RESETVAL)@h 803 ori r10, r10, 0x1c00 804 mr r8, r10 805#else 806 lis r10, MD_RESETVAL@h 807#endif 808#ifndef CONFIG_8xx_COPYBACK 809 oris r10, r10, MD_WTDEF@h 810#endif 811 mtspr MD_CTR, r10 /* Set data TLB control */ 812 813 /* Now map the lower 8 Meg into the TLBs. For this quick hack, 814 * we can load the instruction and data TLB registers with the 815 * same values. 816 */ 817 lis r8, KERNELBASE@h /* Create vaddr for TLB */ 818 ori r8, r8, MI_EVALID /* Mark it valid */ 819 mtspr MI_EPN, r8 820 mtspr MD_EPN, r8 821 li r8, MI_PS8MEG /* Set 8M byte page */ 822 ori r8, r8, MI_SVALID /* Make it valid */ 823 mtspr MI_TWC, r8 824 mtspr MD_TWC, r8 825 li r8, MI_BOOTINIT /* Create RPN for address 0 */ 826 mtspr MI_RPN, r8 /* Store TLB entry */ 827 mtspr MD_RPN, r8 828 lis r8, MI_Kp@h /* Set the protection mode */ 829 mtspr MI_AP, r8 830 mtspr MD_AP, r8 831 832 /* Map another 8 MByte at the IMMR to get the processor 833 * internal registers (among other things). 834 */ 835#ifdef CONFIG_PIN_TLB 836 addi r10, r10, 0x0100 837 mtspr MD_CTR, r10 838#endif 839 mfspr r9, 638 /* Get current IMMR */ 840 andis. r9, r9, 0xff80 /* Get 8Mbyte boundary */ 841 842 mr r8, r9 /* Create vaddr for TLB */ 843 ori r8, r8, MD_EVALID /* Mark it valid */ 844 mtspr MD_EPN, r8 845 li r8, MD_PS8MEG /* Set 8M byte page */ 846 ori r8, r8, MD_SVALID /* Make it valid */ 847 mtspr MD_TWC, r8 848 mr r8, r9 /* Create paddr for TLB */ 849 ori r8, r8, MI_BOOTINIT|0x2 /* Inhibit cache -- Cort */ 850 mtspr MD_RPN, r8 851 852#ifdef CONFIG_PIN_TLB 853 /* Map two more 8M kernel data pages. 854 */ 855 addi r10, r10, 0x0100 856 mtspr MD_CTR, r10 857 858 lis r8, KERNELBASE@h /* Create vaddr for TLB */ 859 addis r8, r8, 0x0080 /* Add 8M */ 860 ori r8, r8, MI_EVALID /* Mark it valid */ 861 mtspr MD_EPN, r8 862 li r9, MI_PS8MEG /* Set 8M byte page */ 863 ori r9, r9, MI_SVALID /* Make it valid */ 864 mtspr MD_TWC, r9 865 li r11, MI_BOOTINIT /* Create RPN for address 0 */ 866 addis r11, r11, 0x0080 /* Add 8M */ 867 mtspr MD_RPN, r8 868 869 addis r8, r8, 0x0080 /* Add 8M */ 870 mtspr MD_EPN, r8 871 mtspr MD_TWC, r9 872 addis r11, r11, 0x0080 /* Add 8M */ 873 mtspr MD_RPN, r8 874#endif 875 876 /* Since the cache is enabled according to the information we 877 * just loaded into the TLB, invalidate and enable the caches here. 878 * We should probably check/set other modes....later. 879 */ 880 lis r8, IDC_INVALL@h 881 mtspr IC_CST, r8 882 mtspr DC_CST, r8 883 lis r8, IDC_ENABLE@h 884 mtspr IC_CST, r8 885#ifdef CONFIG_8xx_COPYBACK 886 mtspr DC_CST, r8 887#else 888 /* For a debug option, I left this here to easily enable 889 * the write through cache mode 890 */ 891 lis r8, DC_SFWT@h 892 mtspr DC_CST, r8 893 lis r8, IDC_ENABLE@h 894 mtspr DC_CST, r8 895#endif 896 blr 897 898 899/* 900 * Set up to use a given MMU context. 901 * r3 is context number, r4 is PGD pointer. 902 * 903 * We place the physical address of the new task page directory loaded 904 * into the MMU base register, and set the ASID compare register with 905 * the new "context." 906 */ 907_GLOBAL(set_context) 908 909#ifdef CONFIG_BDI_SWITCH 910 /* Context switch the PTE pointer for the Abatron BDI2000. 911 * The PGDIR is passed as second argument. 912 */ 913 lis r5, KERNELBASE@h 914 lwz r5, 0xf0(r5) 915 stw r4, 0x4(r5) 916#endif 917 918#ifdef CONFIG_8xx_CPU6 919 lis r6, cpu6_errata_word@h 920 ori r6, r6, cpu6_errata_word@l 921 tophys (r4, r4) 922 li r7, 0x3980 923 stw r7, 12(r6) 924 lwz r7, 12(r6) 925 mtspr M_TWB, r4 /* Update MMU base address */ 926 li r7, 0x3380 927 stw r7, 12(r6) 928 lwz r7, 12(r6) 929 mtspr M_CASID, r3 /* Update context */ 930#else 931 mtspr M_CASID,r3 /* Update context */ 932 tophys (r4, r4) 933 mtspr M_TWB, r4 /* and pgd */ 934#endif 935 SYNC 936 blr 937 938#ifdef CONFIG_8xx_CPU6 939/* It's here because it is unique to the 8xx. 940 * It is important we get called with interrupts disabled. I used to 941 * do that, but it appears that all code that calls this already had 942 * interrupt disabled. 943 */ 944 .globl set_dec_cpu6 945set_dec_cpu6: 946 lis r7, cpu6_errata_word@h 947 ori r7, r7, cpu6_errata_word@l 948 li r4, 0x2c00 949 stw r4, 8(r7) 950 lwz r4, 8(r7) 951 mtspr 22, r3 /* Update Decrementer */ 952 SYNC 953 blr 954#endif 955 956/* 957 * We put a few things here that have to be page-aligned. 958 * This stuff goes at the beginning of the data segment, 959 * which is page-aligned. 960 */ 961 .data 962 .globl sdata 963sdata: 964 .globl empty_zero_page 965empty_zero_page: 966 .space 4096 967 968 .globl swapper_pg_dir 969swapper_pg_dir: 970 .space 4096 971 972/* 973 * This space gets a copy of optional info passed to us by the bootstrap 974 * Used to pass parameters into the kernel like root=/dev/sda1, etc. 975 */ 976 .globl cmd_line 977cmd_line: 978 .space 512 979 980#ifdef CONFIG_BDI_SWITCH 981/* Room for two PTE table poiners, usually the kernel and current user 982 * pointer to their respective root page table (pgdir). 983 */ 984abatron_pteptrs: 985 .space 8 986#endif 987 988#ifdef CONFIG_8xx_CPU6 989 .globl cpu6_errata_word 990cpu6_errata_word: 991 .space 16 992#endif 993