1 /*!**************************************************************************
2 *!
3 *! FILE NAME  : kgdb.c
4 *!
5 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6 *!              It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7 *!
8 *!---------------------------------------------------------------------------
9 *! HISTORY
10 *!
11 *! DATE         NAME            CHANGES
12 *! ----         ----            -------
13 *! Apr 26 1999  Hendrik Ruijter Initial version.
14 *! May  6 1999  Hendrik Ruijter Removed call to strlen in libc and removed
15 *!                              struct assignment as it generates calls to
16 *!                              memcpy in libc.
17 *! Jun 17 1999  Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18 *! Jul 21 1999  Bjorn Wesen     eLinux port
19 *!
20 *!---------------------------------------------------------------------------
21 *!
22 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23 *!
24 *!**************************************************************************/
25 /* @(#) cris_stub.c 1.3 06/17/99 */
26 
27 /*
28  *  kgdb usage notes:
29  *  -----------------
30  *
31  * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32  * built with different gcc flags: "-g" is added to get debug infos, and
33  * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34  * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35  * before compresion. Such a kernel will behave just as usually, except if
36  * given a "debug=<device>" command line option. (Only serial devices are
37  * allowed for <device>, i.e. no printers or the like; possible values are
38  * machine depedend and are the same as for the usual debug device, the one
39  * for logging kernel messages.) If that option is given and the device can be
40  * initialized, the kernel will connect to the remote gdb in trap_init(). The
41  * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42  * implementation.
43  *
44  * To start a debugging session, start that gdb with the debugging kernel
45  * image (the one with the symbols, vmlinux.debug) named on the command line.
46  * This file will be used by gdb to get symbol and debugging infos about the
47  * kernel. Next, select remote debug mode by
48  *    target remote <device>
49  * where <device> is the name of the serial device over which the debugged
50  * machine is connected. Maybe you have to adjust the baud rate by
51  *    set remotebaud <rate>
52  * or also other parameters with stty:
53  *    shell stty ... </dev/...
54  * If the kernel to debug has already booted, it waited for gdb and now
55  * connects, and you'll see a breakpoint being reported. If the kernel isn't
56  * running yet, start it now. The order of gdb and the kernel doesn't matter.
57  * Another thing worth knowing about in the getting-started phase is how to
58  * debug the remote protocol itself. This is activated with
59  *    set remotedebug 1
60  * gdb will then print out each packet sent or received. You'll also get some
61  * messages about the gdb stub on the console of the debugged machine.
62  *
63  * If all that works, you can use lots of the usual debugging techniques on
64  * the kernel, e.g. inspecting and changing variables/memory, setting
65  * breakpoints, single stepping and so on. It's also possible to interrupt the
66  * debugged kernel by pressing C-c in gdb. Have fun! :-)
67  *
68  * The gdb stub is entered (and thus the remote gdb gets control) in the
69  * following situations:
70  *
71  *  - If breakpoint() is called. This is just after kgdb initialization, or if
72  *    a breakpoint() call has been put somewhere into the kernel source.
73  *    (Breakpoints can of course also be set the usual way in gdb.)
74  *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75  *
76  *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77  *    are entered. All the CPU exceptions are mapped to (more or less..., see
78  *    the hard_trap_info array below) appropriate signal, which are reported
79  *    to gdb. die_if_kernel() is usually called after some kind of access
80  *    error and thus is reported as SIGSEGV.
81  *
82  *  - When panic() is called. This is reported as SIGABRT.
83  *
84  *  - If C-c is received over the serial line, which is treated as
85  *    SIGINT.
86  *
87  * Of course, all these signals are just faked for gdb, since there is no
88  * signal concept as such for the kernel. It also isn't possible --obviously--
89  * to set signal handlers from inside gdb, or restart the kernel with a
90  * signal.
91  *
92  * Current limitations:
93  *
94  *  - While the kernel is stopped, interrupts are disabled for safety reasons
95  *    (i.e., variables not changing magically or the like). But this also
96  *    means that the clock isn't running anymore, and that interrupts from the
97  *    hardware may get lost/not be served in time. This can cause some device
98  *    errors...
99  *
100  *  - When single-stepping, only one instruction of the current thread is
101  *    executed, but interrupts are allowed for that time and will be serviced
102  *    if pending. Be prepared for that.
103  *
104  *  - All debugging happens in kernel virtual address space. There's no way to
105  *    access physical memory not mapped in kernel space, or to access user
106  *    space. A way to work around this is using get_user_long & Co. in gdb
107  *    expressions, but only for the current process.
108  *
109  *  - Interrupting the kernel only works if interrupts are currently allowed,
110  *    and the interrupt of the serial line isn't blocked by some other means
111  *    (IPL too high, disabled, ...)
112  *
113  *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
114  *    (e.g. accessing invalid memory) may not be caught correctly. This could
115  *    be removed in future by introducing a stack of struct registers.
116  *
117  */
118 
119 /*
120  *  To enable debugger support, two things need to happen.  One, a
121  *  call to kgdb_init() is necessary in order to allow any breakpoints
122  *  or error conditions to be properly intercepted and reported to gdb.
123  *  Two, a breakpoint needs to be generated to begin communication.  This
124  *  is most easily accomplished by a call to breakpoint().
125  *
126  *    The following gdb commands are supported:
127  *
128  * command          function                               Return value
129  *
130  *    g             return the value of the CPU registers  hex data or ENN
131  *    G             set the value of the CPU registers     OK or ENN
132  *
133  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
134  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
135  *
136  *    c             Resume at current address              SNN   ( signal NN)
137  *    cAA..AA       Continue at address AA..AA             SNN
138  *
139  *    s             Step one instruction                   SNN
140  *    sAA..AA       Step one instruction from AA..AA       SNN
141  *
142  *    k             kill
143  *
144  *    ?             What was the last sigval ?             SNN   (signal NN)
145  *
146  *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
147  *							   baud rate
148  *
149  * All commands and responses are sent with a packet which includes a
150  * checksum.  A packet consists of
151  *
152  * $<packet info>#<checksum>.
153  *
154  * where
155  * <packet info> :: <characters representing the command or response>
156  * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157  *
158  * When a packet is received, it is first acknowledged with either '+' or '-'.
159  * '+' indicates a successful transfer.  '-' indicates a failed transfer.
160  *
161  * Example:
162  *
163  * Host:                  Reply:
164  * $m0,10#2a               +$00010203040506070809101112131415#42
165  *
166  */
167 
168 
169 #include <linux/string.h>
170 #include <linux/signal.h>
171 #include <linux/kernel.h>
172 #include <linux/delay.h>
173 #include <linux/linkage.h>
174 #include <linux/reboot.h>
175 
176 #include <asm/setup.h>
177 #include <asm/ptrace.h>
178 
179 #include <arch/svinto.h>
180 #include <asm/irq.h>
181 
182 static int kgdb_started = 0;
183 
184 /********************************* Register image ****************************/
185 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186    Reference", p. 1-1, with the additional register definitions of the
187    ETRAX 100LX in cris-opc.h.
188    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189    pointer, SP, and R15 is the program counter, PC.
190    There are 16 special registers, P0-P15, where three of the unimplemented
191    registers, P0, P4 and P8, are reserved as zero-registers. A read from
192    any of these registers returns zero and a write has no effect. */
193 
194 typedef
195 struct register_image
196 {
197 	/* Offset */
198 	unsigned int     r0;   /* 0x00 */
199 	unsigned int     r1;   /* 0x04 */
200 	unsigned int     r2;   /* 0x08 */
201 	unsigned int     r3;   /* 0x0C */
202 	unsigned int     r4;   /* 0x10 */
203 	unsigned int     r5;   /* 0x14 */
204 	unsigned int     r6;   /* 0x18 */
205 	unsigned int     r7;   /* 0x1C */
206 	unsigned int     r8;   /* 0x20 Frame pointer */
207 	unsigned int     r9;   /* 0x24 */
208 	unsigned int    r10;   /* 0x28 */
209 	unsigned int    r11;   /* 0x2C */
210 	unsigned int    r12;   /* 0x30 */
211 	unsigned int    r13;   /* 0x34 */
212 	unsigned int     sp;   /* 0x38 Stack pointer */
213 	unsigned int     pc;   /* 0x3C Program counter */
214 
215         unsigned char    p0;   /* 0x40 8-bit zero-register */
216 	unsigned char    vr;   /* 0x41 Version register */
217 
218         unsigned short   p4;   /* 0x42 16-bit zero-register */
219 	unsigned short  ccr;   /* 0x44 Condition code register */
220 
221 	unsigned int    mof;   /* 0x46 Multiply overflow register */
222 
223         unsigned int     p8;   /* 0x4A 32-bit zero-register */
224 	unsigned int    ibr;   /* 0x4E Interrupt base register */
225 	unsigned int    irp;   /* 0x52 Interrupt return pointer */
226 	unsigned int    srp;   /* 0x56 Subroutine return pointer */
227 	unsigned int    bar;   /* 0x5A Breakpoint address register */
228 	unsigned int   dccr;   /* 0x5E Double condition code register */
229 	unsigned int    brp;   /* 0x62 Breakpoint return pointer (pc in caller) */
230 	unsigned int    usp;   /* 0x66 User mode stack pointer */
231 } registers;
232 
233 /************** Prototypes for local library functions ***********************/
234 
235 /* Copy of strcpy from libc. */
236 static char *gdb_cris_strcpy (char *s1, const char *s2);
237 
238 /* Copy of strlen from libc. */
239 static int gdb_cris_strlen (const char *s);
240 
241 /* Copy of memchr from libc. */
242 static void *gdb_cris_memchr (const void *s, int c, int n);
243 
244 /* Copy of strtol from libc. Does only support base 16. */
245 static int gdb_cris_strtol (const char *s, char **endptr, int base);
246 
247 /********************** Prototypes for local functions. **********************/
248 /* Copy the content of a register image into another. The size n is
249    the size of the register image. Due to struct assignment generation of
250    memcpy in libc. */
251 static void copy_registers (registers *dptr, registers *sptr, int n);
252 
253 /* Copy the stored registers from the stack. Put the register contents
254    of thread thread_id in the struct reg. */
255 static void copy_registers_from_stack (int thread_id, registers *reg);
256 
257 /* Copy the registers to the stack. Put the register contents of thread
258    thread_id from struct reg to the stack. */
259 static void copy_registers_to_stack (int thread_id, registers *reg);
260 
261 /* Write a value to a specified register regno in the register image
262    of the current thread. */
263 static int write_register (int regno, char *val);
264 
265 /* Write a value to a specified register in the stack of a thread other
266    than the current thread. */
267 static write_stack_register (int thread_id, int regno, char *valptr);
268 
269 /* Read a value from a specified register in the register image. Returns the
270    status of the read operation. The register value is returned in valptr. */
271 static int read_register (char regno, unsigned int *valptr);
272 
273 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
274 int getDebugChar (void);
275 
276 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
277 void putDebugChar (int val);
278 
279 void enableDebugIRQ (void);
280 
281 /* Returns the integer equivalent of a hexadecimal character. */
282 static int hex (char ch);
283 
284 /* Convert the memory, pointed to by mem into hexadecimal representation.
285    Put the result in buf, and return a pointer to the last character
286    in buf (null). */
287 static char *mem2hex (char *buf, unsigned char *mem, int count);
288 
289 /* Convert the array, in hexadecimal representation, pointed to by buf into
290    binary representation. Put the result in mem, and return a pointer to
291    the character after the last byte written. */
292 static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
293 
294 /* Put the content of the array, in binary representation, pointed to by buf
295    into memory pointed to by mem, and return a pointer to
296    the character after the last byte written. */
297 static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
298 
299 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
300    returned. */
301 static void getpacket (char *buffer);
302 
303 /* Send $<data>#<checksum> from the <data> in the array buffer. */
304 static void putpacket (char *buffer);
305 
306 /* Build and send a response packet in order to inform the host the
307    stub is stopped. */
308 static void stub_is_stopped (int sigval);
309 
310 /* All expected commands are sent from remote.c. Send a response according
311    to the description in remote.c. */
312 static void handle_exception (int sigval);
313 
314 /* Performs a complete re-start from scratch. ETRAX specific. */
315 static void kill_restart (void);
316 
317 /******************** Prototypes for global functions. ***********************/
318 
319 /* The string str is prepended with the GDB printout token and sent. */
320 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
321 
322 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
323    ETRAX 100 specific. */
324 void handle_breakpoint (void);                          /* used by irq.c */
325 
326 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
327 void handle_interrupt (void);                           /* used by irq.c */
328 
329 /* A static breakpoint to be used at startup. */
330 void breakpoint (void);                                 /* called by init/main.c */
331 
332 /* From osys_int.c, executing_task contains the number of the current
333    executing task in osys. Does not know of object-oriented threads. */
334 extern unsigned char executing_task;
335 
336 /* The number of characters used for a 64 bit thread identifier. */
337 #define HEXCHARS_IN_THREAD_ID 16
338 
339 /* Avoid warning as the internal_stack is not used in the C-code. */
340 #define USEDVAR(name)    { if (name) { ; } }
341 #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
342 
343 /********************************** Packet I/O ******************************/
344 /* BUFMAX defines the maximum number of characters in
345    inbound/outbound buffers */
346 #define BUFMAX 512
347 
348 /* Run-length encoding maximum length. Send 64 at most. */
349 #define RUNLENMAX 64
350 
351 /* The inbound/outbound buffers used in packet I/O */
352 static char remcomInBuffer[BUFMAX];
353 static char remcomOutBuffer[BUFMAX];
354 
355 /* Error and warning messages. */
356 enum error_type
357 {
358 	SUCCESS, E01, E02, E03, E04, E05, E06, E07
359 };
360 static char *error_message[] =
361 {
362 	"",
363 	"E01 Set current or general thread - H[c,g] - internal error.",
364 	"E02 Change register content - P - cannot change read-only register.",
365 	"E03 Thread is not alive.", /* T, not used. */
366 	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
367 	"E05 Change register content - P - the register is not implemented..",
368 	"E06 Change memory content - M - internal error.",
369 	"E07 Change register content - P - the register is not stored on the stack"
370 };
371 /********************************* Register image ****************************/
372 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
373    Reference", p. 1-1, with the additional register definitions of the
374    ETRAX 100LX in cris-opc.h.
375    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
376    pointer, SP, and R15 is the program counter, PC.
377    There are 16 special registers, P0-P15, where three of the unimplemented
378    registers, P0, P4 and P8, are reserved as zero-registers. A read from
379    any of these registers returns zero and a write has no effect. */
380 enum register_name
381 {
382 	R0,  R1,   R2,  R3,
383 	R4,  R5,   R6,  R7,
384 	R8,  R9,   R10, R11,
385 	R12, R13,  SP,  PC,
386 	P0,  VR,   P2,  P3,
387 	P4,  CCR,  P6,  MOF,
388 	P8,  IBR,  IRP, SRP,
389 	BAR, DCCR, BRP, USP
390 };
391 
392 /* The register sizes of the registers in register_name. An unimplemented register
393    is designated by size 0 in this array. */
394 static int register_size[] =
395 {
396 	4, 4, 4, 4,
397 	4, 4, 4, 4,
398 	4, 4, 4, 4,
399 	4, 4, 4, 4,
400 	1, 1, 0, 0,
401 	2, 2, 0, 4,
402 	4, 4, 4, 4,
403 	4, 4, 4, 4
404 };
405 
406 /* Contains the register image of the executing thread in the assembler
407    part of the code in order to avoid horrible addressing modes. */
408 static registers reg;
409 
410 /* FIXME: Should this be used? Delete otherwise. */
411 /* Contains the assumed consistency state of the register image. Uses the
412    enum error_type for state information. */
413 static int consistency_status = SUCCESS;
414 
415 /********************************** Handle exceptions ************************/
416 /* The variable reg contains the register image associated with the
417    current_thread_c variable. It is a complete register image created at
418    entry. The reg_g contains a register image of a task where the general
419    registers are taken from the stack and all special registers are taken
420    from the executing task. It is associated with current_thread_g and used
421    in order to provide access mainly for 'g', 'G' and 'P'.
422 */
423 
424 /* Need two task id pointers in order to handle Hct and Hgt commands. */
425 static int current_thread_c = 0;
426 static int current_thread_g = 0;
427 
428 /* Need two register images in order to handle Hct and Hgt commands. The
429    variable reg_g is in addition to reg above. */
430 static registers reg_g;
431 
432 /********************************** Breakpoint *******************************/
433 /* Use an internal stack in the breakpoint and interrupt response routines */
434 #define INTERNAL_STACK_SIZE 1024
435 static char internal_stack[INTERNAL_STACK_SIZE];
436 
437 /* Due to the breakpoint return pointer, a state variable is needed to keep
438    track of whether it is a static (compiled) or dynamic (gdb-invoked)
439    breakpoint to be handled. A static breakpoint uses the content of register
440    BRP as it is whereas a dynamic breakpoint requires subtraction with 2
441    in order to execute the instruction. The first breakpoint is static. */
442 static unsigned char is_dyn_brkp = 0;
443 
444 /********************************* String library ****************************/
445 /* Single-step over library functions creates trap loops. */
446 
447 /* Copy char s2[] to s1[]. */
448 static char*
gdb_cris_strcpy(char * s1,const char * s2)449 gdb_cris_strcpy (char *s1, const char *s2)
450 {
451 	char *s = s1;
452 
453 	for (s = s1; (*s++ = *s2++) != '\0'; )
454 		;
455 	return (s1);
456 }
457 
458 /* Find length of s[]. */
459 static int
gdb_cris_strlen(const char * s)460 gdb_cris_strlen (const char *s)
461 {
462 	const char *sc;
463 
464 	for (sc = s; *sc != '\0'; sc++)
465 		;
466 	return (sc - s);
467 }
468 
469 /* Find first occurrence of c in s[n]. */
470 static void*
gdb_cris_memchr(const void * s,int c,int n)471 gdb_cris_memchr (const void *s, int c, int n)
472 {
473 	const unsigned char uc = c;
474 	const unsigned char *su;
475 
476 	for (su = s; 0 < n; ++su, --n)
477 		if (*su == uc)
478 			return ((void *)su);
479 	return (NULL);
480 }
481 /******************************* Standard library ****************************/
482 /* Single-step over library functions creates trap loops. */
483 /* Convert string to long. */
484 static int
gdb_cris_strtol(const char * s,char ** endptr,int base)485 gdb_cris_strtol (const char *s, char **endptr, int base)
486 {
487 	char *s1;
488 	char *sd;
489 	int x = 0;
490 
491 	for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
492 		x = x * base + (sd - hex_asc);
493 
494         if (endptr)
495         {
496                 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
497                 *endptr = s1;
498         }
499 
500 	return x;
501 }
502 
503 /********************************* Register image ****************************/
504 /* Copy the content of a register image into another. The size n is
505    the size of the register image. Due to struct assignment generation of
506    memcpy in libc. */
507 static void
copy_registers(registers * dptr,registers * sptr,int n)508 copy_registers (registers *dptr, registers *sptr, int n)
509 {
510 	unsigned char *dreg;
511 	unsigned char *sreg;
512 
513 	for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
514 		*dreg++ = *sreg++;
515 }
516 
517 #ifdef PROCESS_SUPPORT
518 /* Copy the stored registers from the stack. Put the register contents
519    of thread thread_id in the struct reg. */
520 static void
copy_registers_from_stack(int thread_id,registers * regptr)521 copy_registers_from_stack (int thread_id, registers *regptr)
522 {
523 	int j;
524 	stack_registers *s = (stack_registers *)stack_list[thread_id];
525 	unsigned int *d = (unsigned int *)regptr;
526 
527 	for (j = 13; j >= 0; j--)
528 		*d++ = s->r[j];
529 	regptr->sp = (unsigned int)stack_list[thread_id];
530 	regptr->pc = s->pc;
531 	regptr->dccr = s->dccr;
532 	regptr->srp = s->srp;
533 }
534 
535 /* Copy the registers to the stack. Put the register contents of thread
536    thread_id from struct reg to the stack. */
537 static void
copy_registers_to_stack(int thread_id,registers * regptr)538 copy_registers_to_stack (int thread_id, registers *regptr)
539 {
540 	int i;
541 	stack_registers *d = (stack_registers *)stack_list[thread_id];
542 	unsigned int *s = (unsigned int *)regptr;
543 
544 	for (i = 0; i < 14; i++) {
545 		d->r[i] = *s++;
546 	}
547 	d->pc = regptr->pc;
548 	d->dccr = regptr->dccr;
549 	d->srp = regptr->srp;
550 }
551 #endif
552 
553 /* Write a value to a specified register in the register image of the current
554    thread. Returns status code SUCCESS, E02 or E05. */
555 static int
write_register(int regno,char * val)556 write_register (int regno, char *val)
557 {
558 	int status = SUCCESS;
559 	registers *current_reg = &reg;
560 
561         if (regno >= R0 && regno <= PC) {
562 		/* 32-bit register with simple offset. */
563 		hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
564 			 val, sizeof(unsigned int));
565 	}
566         else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
567 		/* Do not support read-only registers. */
568 		status = E02;
569 	}
570         else if (regno == CCR) {
571 		/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
572                    and P7 (MOF) is 32 bits in ETRAX 100LX. */
573 		hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
574 			 val, sizeof(unsigned short));
575 	}
576 	else if (regno >= MOF && regno <= USP) {
577 		/* 32 bit register with complex offset.  (P8 has been taken care of.) */
578 		hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
579 			 val, sizeof(unsigned int));
580 	}
581         else {
582 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
583 		status = E05;
584 	}
585 	return status;
586 }
587 
588 #ifdef PROCESS_SUPPORT
589 /* Write a value to a specified register in the stack of a thread other
590    than the current thread. Returns status code SUCCESS or E07. */
591 static int
write_stack_register(int thread_id,int regno,char * valptr)592 write_stack_register (int thread_id, int regno, char *valptr)
593 {
594 	int status = SUCCESS;
595 	stack_registers *d = (stack_registers *)stack_list[thread_id];
596 	unsigned int val;
597 
598 	hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
599 	if (regno >= R0 && regno < SP) {
600 		d->r[regno] = val;
601 	}
602 	else if (regno == SP) {
603 		stack_list[thread_id] = val;
604 	}
605 	else if (regno == PC) {
606 		d->pc = val;
607 	}
608 	else if (regno == SRP) {
609 		d->srp = val;
610 	}
611 	else if (regno == DCCR) {
612 		d->dccr = val;
613 	}
614 	else {
615 		/* Do not support registers in the current thread. */
616 		status = E07;
617 	}
618 	return status;
619 }
620 #endif
621 
622 /* Read a value from a specified register in the register image. Returns the
623    value in the register or -1 for non-implemented registers.
624    Should check consistency_status after a call which may be E05 after changes
625    in the implementation. */
626 static int
read_register(char regno,unsigned int * valptr)627 read_register (char regno, unsigned int *valptr)
628 {
629 	registers *current_reg = &reg;
630 
631 	if (regno >= R0 && regno <= PC) {
632 		/* 32-bit register with simple offset. */
633 		*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
634                 return SUCCESS;
635 	}
636 	else if (regno == P0 || regno == VR) {
637 		/* 8 bit register with complex offset. */
638 		*valptr = (unsigned int)(*(unsigned char *)
639                                          ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
640                 return SUCCESS;
641 	}
642 	else if (regno == P4 || regno == CCR) {
643 		/* 16 bit register with complex offset. */
644 		*valptr = (unsigned int)(*(unsigned short *)
645                                          ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
646                 return SUCCESS;
647 	}
648 	else if (regno >= MOF && regno <= USP) {
649 		/* 32 bit register with complex offset. */
650 		*valptr = *(unsigned int *)((char *)&(current_reg->p8)
651                                             + (regno-P8) * sizeof(unsigned int));
652                 return SUCCESS;
653 	}
654 	else {
655 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
656 		consistency_status = E05;
657 		return E05;
658 	}
659 }
660 
661 /********************************** Packet I/O ******************************/
662 /* Returns the integer equivalent of a hexadecimal character. */
663 static int
hex(char ch)664 hex (char ch)
665 {
666 	if ((ch >= 'a') && (ch <= 'f'))
667 		return (ch - 'a' + 10);
668 	if ((ch >= '0') && (ch <= '9'))
669 		return (ch - '0');
670 	if ((ch >= 'A') && (ch <= 'F'))
671 		return (ch - 'A' + 10);
672 	return (-1);
673 }
674 
675 /* Convert the memory, pointed to by mem into hexadecimal representation.
676    Put the result in buf, and return a pointer to the last character
677    in buf (null). */
678 
679 static int do_printk = 0;
680 
681 static char *
mem2hex(char * buf,unsigned char * mem,int count)682 mem2hex(char *buf, unsigned char *mem, int count)
683 {
684 	int i;
685 	int ch;
686 
687         if (mem == NULL) {
688                 /* Bogus read from m0. FIXME: What constitutes a valid address? */
689                 for (i = 0; i < count; i++) {
690                         *buf++ = '0';
691                         *buf++ = '0';
692                 }
693         } else {
694                 /* Valid mem address. */
695                 for (i = 0; i < count; i++) {
696                         ch = *mem++;
697 			buf = pack_hex_byte(buf, ch);
698                 }
699         }
700 
701         /* Terminate properly. */
702 	*buf = '\0';
703 	return (buf);
704 }
705 
706 /* Convert the array, in hexadecimal representation, pointed to by buf into
707    binary representation. Put the result in mem, and return a pointer to
708    the character after the last byte written. */
709 static unsigned char*
hex2mem(unsigned char * mem,char * buf,int count)710 hex2mem (unsigned char *mem, char *buf, int count)
711 {
712 	int i;
713 	unsigned char ch;
714 	for (i = 0; i < count; i++) {
715 		ch = hex (*buf++) << 4;
716 		ch = ch + hex (*buf++);
717 		*mem++ = ch;
718 	}
719 	return (mem);
720 }
721 
722 /* Put the content of the array, in binary representation, pointed to by buf
723    into memory pointed to by mem, and return a pointer to the character after
724    the last byte written.
725    Gdb will escape $, #, and the escape char (0x7d). */
726 static unsigned char*
bin2mem(unsigned char * mem,unsigned char * buf,int count)727 bin2mem (unsigned char *mem, unsigned char *buf, int count)
728 {
729 	int i;
730 	unsigned char *next;
731 	for (i = 0; i < count; i++) {
732 		/* Check for any escaped characters. Be paranoid and
733 		   only unescape chars that should be escaped. */
734 		if (*buf == 0x7d) {
735 			next = buf + 1;
736 			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
737 				{
738 					buf++;
739 					*buf += 0x20;
740 				}
741 		}
742 		*mem++ = *buf++;
743 	}
744 	return (mem);
745 }
746 
747 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
748    returned. */
749 static void
getpacket(char * buffer)750 getpacket (char *buffer)
751 {
752 	unsigned char checksum;
753 	unsigned char xmitcsum;
754 	int i;
755 	int count;
756 	char ch;
757 	do {
758 		while ((ch = getDebugChar ()) != '$')
759 			/* Wait for the start character $ and ignore all other characters */;
760 		checksum = 0;
761 		xmitcsum = -1;
762 		count = 0;
763 		/* Read until a # or the end of the buffer is reached */
764 		while (count < BUFMAX) {
765 			ch = getDebugChar ();
766 			if (ch == '#')
767 				break;
768 			checksum = checksum + ch;
769 			buffer[count] = ch;
770 			count = count + 1;
771 		}
772 		buffer[count] = '\0';
773 
774 		if (ch == '#') {
775 			xmitcsum = hex (getDebugChar ()) << 4;
776 			xmitcsum += hex (getDebugChar ());
777 			if (checksum != xmitcsum) {
778 				/* Wrong checksum */
779 				putDebugChar ('-');
780 			}
781 			else {
782 				/* Correct checksum */
783 				putDebugChar ('+');
784 				/* If sequence characters are received, reply with them */
785 				if (buffer[2] == ':') {
786 					putDebugChar (buffer[0]);
787 					putDebugChar (buffer[1]);
788 					/* Remove the sequence characters from the buffer */
789 					count = gdb_cris_strlen (buffer);
790 					for (i = 3; i <= count; i++)
791 						buffer[i - 3] = buffer[i];
792 				}
793 			}
794 		}
795 	} while (checksum != xmitcsum);
796 }
797 
798 /* Send $<data>#<checksum> from the <data> in the array buffer. */
799 
800 static void
putpacket(char * buffer)801 putpacket(char *buffer)
802 {
803 	int checksum;
804 	int runlen;
805 	int encode;
806 
807 	do {
808 		char *src = buffer;
809 		putDebugChar ('$');
810 		checksum = 0;
811 		while (*src) {
812 			/* Do run length encoding */
813 			putDebugChar (*src);
814 			checksum += *src;
815 			runlen = 0;
816 			while (runlen < RUNLENMAX && *src == src[runlen]) {
817 				runlen++;
818 			}
819 			if (runlen > 3) {
820 				/* Got a useful amount */
821 				putDebugChar ('*');
822 				checksum += '*';
823 				encode = runlen + ' ' - 4;
824 				putDebugChar (encode);
825 				checksum += encode;
826 				src += runlen;
827 			}
828 			else {
829 				src++;
830 			}
831 		}
832 		putDebugChar('#');
833 		putDebugChar(hex_asc_hi(checksum));
834 		putDebugChar(hex_asc_lo(checksum));
835 	} while(kgdb_started && (getDebugChar() != '+'));
836 }
837 
838 /* The string str is prepended with the GDB printout token and sent. Required
839    in traditional implementations. */
840 void
putDebugString(const unsigned char * str,int length)841 putDebugString (const unsigned char *str, int length)
842 {
843         remcomOutBuffer[0] = 'O';
844         mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
845         putpacket(remcomOutBuffer);
846 }
847 
848 /********************************** Handle exceptions ************************/
849 /* Build and send a response packet in order to inform the host the
850    stub is stopped. TAAn...:r...;n...:r...;n...:r...;
851                     AA = signal number
852                     n... = register number (hex)
853                     r... = register contents
854                     n... = `thread'
855                     r... = thread process ID.  This is a hex integer.
856                     n... = other string not starting with valid hex digit.
857                     gdb should ignore this n,r pair and go on to the next.
858                     This way we can extend the protocol. */
859 static void
stub_is_stopped(int sigval)860 stub_is_stopped(int sigval)
861 {
862 	char *ptr = remcomOutBuffer;
863 	int regno;
864 
865 	unsigned int reg_cont;
866 	int status;
867 
868 	/* Send trap type (converted to signal) */
869 
870 	*ptr++ = 'T';
871 	ptr = pack_hex_byte(ptr, sigval);
872 
873 	/* Send register contents. We probably only need to send the
874 	 * PC, frame pointer and stack pointer here. Other registers will be
875 	 * explicitly asked for. But for now, send all.
876 	 */
877 
878 	for (regno = R0; regno <= USP; regno++) {
879 		/* Store n...:r...; for the registers in the buffer. */
880 
881                 status = read_register (regno, &reg_cont);
882 
883 		if (status == SUCCESS) {
884 			ptr = pack_hex_byte(ptr, regno);
885                         *ptr++ = ':';
886 
887                         ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
888                                       register_size[regno]);
889                         *ptr++ = ';';
890                 }
891 
892 	}
893 
894 #ifdef PROCESS_SUPPORT
895 	/* Store the registers of the executing thread. Assume that both step,
896 	   continue, and register content requests are with respect to this
897 	   thread. The executing task is from the operating system scheduler. */
898 
899 	current_thread_c = executing_task;
900 	current_thread_g = executing_task;
901 
902 	/* A struct assignment translates into a libc memcpy call. Avoid
903 	   all libc functions in order to prevent recursive break points. */
904 	copy_registers (&reg_g, &reg, sizeof(registers));
905 
906 	/* Store thread:r...; with the executing task TID. */
907 	gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
908 	pos += gdb_cris_strlen ("thread:");
909 	remcomOutBuffer[pos++] = hex_asc_hi(executing_task);
910 	remcomOutBuffer[pos++] = hex_asc_lo(executing_task);
911 	gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
912 #endif
913 
914 	/* null-terminate and send it off */
915 
916 	*ptr = 0;
917 
918 	putpacket (remcomOutBuffer);
919 }
920 
921 /* All expected commands are sent from remote.c. Send a response according
922    to the description in remote.c. */
923 static void
handle_exception(int sigval)924 handle_exception (int sigval)
925 {
926 	/* Avoid warning of not used. */
927 
928 	USEDFUN(handle_exception);
929 	USEDVAR(internal_stack[0]);
930 
931 	/* Send response. */
932 
933 	stub_is_stopped (sigval);
934 
935 	for (;;) {
936 		remcomOutBuffer[0] = '\0';
937 		getpacket (remcomInBuffer);
938 		switch (remcomInBuffer[0]) {
939 			case 'g':
940 				/* Read registers: g
941 				   Success: Each byte of register data is described by two hex digits.
942 				   Registers are in the internal order for GDB, and the bytes
943 				   in a register  are in the same order the machine uses.
944 				   Failure: void. */
945 
946 				{
947 #ifdef PROCESS_SUPPORT
948 					/* Use the special register content in the executing thread. */
949 					copy_registers (&reg_g, &reg, sizeof(registers));
950 					/* Replace the content available on the stack. */
951 					if (current_thread_g != executing_task) {
952 						copy_registers_from_stack (current_thread_g, &reg_g);
953 					}
954 					mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
955 #else
956 					mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
957 #endif
958 				}
959 				break;
960 
961 			case 'G':
962 				/* Write registers. GXX..XX
963 				   Each byte of register data  is described by two hex digits.
964 				   Success: OK
965 				   Failure: void. */
966 #ifdef PROCESS_SUPPORT
967 				hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
968 				if (current_thread_g == executing_task) {
969 					copy_registers (&reg, &reg_g, sizeof(registers));
970 				}
971 				else {
972 					copy_registers_to_stack(current_thread_g, &reg_g);
973 				}
974 #else
975 				hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
976 #endif
977 				gdb_cris_strcpy (remcomOutBuffer, "OK");
978 				break;
979 
980 			case 'P':
981 				/* Write register. Pn...=r...
982 				   Write register n..., hex value without 0x, with value r...,
983 				   which contains a hex value without 0x and two hex digits
984 				   for each byte in the register (target byte order). P1f=11223344 means
985 				   set register 31 to 44332211.
986 				   Success: OK
987 				   Failure: E02, E05 */
988 				{
989 					char *suffix;
990 					int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
991 					int status;
992 #ifdef PROCESS_SUPPORT
993 					if (current_thread_g != executing_task)
994 						status = write_stack_register (current_thread_g, regno, suffix+1);
995 					else
996 #endif
997 						status = write_register (regno, suffix+1);
998 
999 					switch (status) {
1000 						case E02:
1001 							/* Do not support read-only registers. */
1002 							gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1003 							break;
1004 						case E05:
1005 							/* Do not support non-existing registers. */
1006 							gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1007 							break;
1008 						case E07:
1009 							/* Do not support non-existing registers on the stack. */
1010 							gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1011 							break;
1012 						default:
1013 							/* Valid register number. */
1014 							gdb_cris_strcpy (remcomOutBuffer, "OK");
1015 							break;
1016 					}
1017 				}
1018 				break;
1019 
1020 			case 'm':
1021 				/* Read from memory. mAA..AA,LLLL
1022 				   AA..AA is the address and LLLL is the length.
1023 				   Success: XX..XX is the memory content.  Can be fewer bytes than
1024 				   requested if only part of the data may be read. m6000120a,6c means
1025 				   retrieve 108 byte from base address 6000120a.
1026 				   Failure: void. */
1027 				{
1028                                         char *suffix;
1029 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1030                                                                                                &suffix, 16);                                        int length = gdb_cris_strtol(suffix+1, 0, 16);
1031 
1032                                         mem2hex(remcomOutBuffer, addr, length);
1033                                 }
1034 				break;
1035 
1036 			case 'X':
1037 				/* Write to memory. XAA..AA,LLLL:XX..XX
1038 				   AA..AA is the start address,  LLLL is the number of bytes, and
1039 				   XX..XX is the binary data.
1040 				   Success: OK
1041 				   Failure: void. */
1042 			case 'M':
1043 				/* Write to memory. MAA..AA,LLLL:XX..XX
1044 				   AA..AA is the start address,  LLLL is the number of bytes, and
1045 				   XX..XX is the hexadecimal data.
1046 				   Success: OK
1047 				   Failure: void. */
1048 				{
1049 					char *lenptr;
1050 					char *dataptr;
1051 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1052 										      &lenptr, 16);
1053 					int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1054 					if (*lenptr == ',' && *dataptr == ':') {
1055 						if (remcomInBuffer[0] == 'M') {
1056 							hex2mem(addr, dataptr + 1, length);
1057 						}
1058 						else /* X */ {
1059 							bin2mem(addr, dataptr + 1, length);
1060 						}
1061 						gdb_cris_strcpy (remcomOutBuffer, "OK");
1062 					}
1063 					else {
1064 						gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1065 					}
1066 				}
1067 				break;
1068 
1069 			case 'c':
1070 				/* Continue execution. cAA..AA
1071 				   AA..AA is the address where execution is resumed. If AA..AA is
1072 				   omitted, resume at the present address.
1073 				   Success: return to the executing thread.
1074 				   Failure: will never know. */
1075 				if (remcomInBuffer[1] != '\0') {
1076 					reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1077 				}
1078 				enableDebugIRQ();
1079 				return;
1080 
1081 			case 's':
1082 				/* Step. sAA..AA
1083 				   AA..AA is the address where execution is resumed. If AA..AA is
1084 				   omitted, resume at the present address. Success: return to the
1085 				   executing thread. Failure: will never know.
1086 
1087 				   Should never be invoked. The single-step is implemented on
1088 				   the host side. If ever invoked, it is an internal error E04. */
1089 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1090 				putpacket (remcomOutBuffer);
1091 				return;
1092 
1093 			case '?':
1094 				/* The last signal which caused a stop. ?
1095 				   Success: SAA, where AA is the signal number.
1096 				   Failure: void. */
1097 				remcomOutBuffer[0] = 'S';
1098 				remcomOutBuffer[1] = hex_asc_hi(sigval);
1099 				remcomOutBuffer[2] = hex_asc_lo(sigval);
1100 				remcomOutBuffer[3] = 0;
1101 				break;
1102 
1103 			case 'D':
1104 				/* Detach from host. D
1105 				   Success: OK, and return to the executing thread.
1106 				   Failure: will never know */
1107 				putpacket ("OK");
1108 				return;
1109 
1110 			case 'k':
1111 			case 'r':
1112 				/* kill request or reset request.
1113 				   Success: restart of target.
1114 				   Failure: will never know. */
1115 				kill_restart ();
1116 				break;
1117 
1118 			case 'C':
1119 			case 'S':
1120 			case '!':
1121 			case 'R':
1122 			case 'd':
1123 				/* Continue with signal sig. Csig;AA..AA
1124 				   Step with signal sig. Ssig;AA..AA
1125 				   Use the extended remote protocol. !
1126 				   Restart the target system. R0
1127 				   Toggle debug flag. d
1128 				   Search backwards. tAA:PP,MM
1129 				   Not supported: E04 */
1130 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1131 				break;
1132 #ifdef PROCESS_SUPPORT
1133 
1134 			case 'T':
1135 				/* Thread alive. TXX
1136 				   Is thread XX alive?
1137 				   Success: OK, thread XX is alive.
1138 				   Failure: E03, thread XX is dead. */
1139 				{
1140 					int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1141 					/* Cannot tell whether it is alive or not. */
1142 					if (thread_id >= 0 && thread_id < number_of_tasks)
1143 						gdb_cris_strcpy (remcomOutBuffer, "OK");
1144 				}
1145 				break;
1146 
1147 			case 'H':
1148 				/* Set thread for subsequent operations: Hct
1149 				   c = 'c' for thread used in step and continue;
1150 				   t can be -1 for all threads.
1151 				   c = 'g' for thread used in other  operations.
1152 				   t = 0 means pick any thread.
1153 				   Success: OK
1154 				   Failure: E01 */
1155 				{
1156 					int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1157 					if (remcomInBuffer[1] == 'c') {
1158 						/* c = 'c' for thread used in step and continue */
1159 						/* Do not change current_thread_c here. It would create a mess in
1160 						   the scheduler. */
1161 						gdb_cris_strcpy (remcomOutBuffer, "OK");
1162 					}
1163 					else if (remcomInBuffer[1] == 'g') {
1164 						/* c = 'g' for thread used in other  operations.
1165 						   t = 0 means pick any thread. Impossible since the scheduler does
1166 						   not allow that. */
1167 						if (thread_id >= 0 && thread_id < number_of_tasks) {
1168 							current_thread_g = thread_id;
1169 							gdb_cris_strcpy (remcomOutBuffer, "OK");
1170 						}
1171 						else {
1172 							/* Not expected - send an error message. */
1173 							gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1174 						}
1175 					}
1176 					else {
1177 						/* Not expected - send an error message. */
1178 						gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1179 					}
1180 				}
1181 				break;
1182 
1183 			case 'q':
1184 			case 'Q':
1185 				/* Query of general interest. qXXXX
1186 				   Set general value XXXX. QXXXX=yyyy */
1187 				{
1188 					int pos;
1189 					int nextpos;
1190 					int thread_id;
1191 
1192 					switch (remcomInBuffer[1]) {
1193 						case 'C':
1194 							/* Identify the remote current thread. */
1195 							gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1196 							remcomOutBuffer[2] = hex_asc_hi(current_thread_c);
1197 							remcomOutBuffer[3] = hex_asc_lo(current_thread_c);
1198 							remcomOutBuffer[4] = '\0';
1199 							break;
1200 						case 'L':
1201 							gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1202 							/* Reply with number of threads. */
1203 							if (os_is_started()) {
1204 								remcomOutBuffer[2] = hex_asc_hi(number_of_tasks);
1205 								remcomOutBuffer[3] = hex_asc_lo(number_of_tasks);
1206 							}
1207 							else {
1208 								remcomOutBuffer[2] = hex_asc_hi(0);
1209 								remcomOutBuffer[3] = hex_asc_lo(1);
1210 							}
1211 							/* Done with the reply. */
1212 							remcomOutBuffer[4] = hex_asc_lo(1);
1213 							pos = 5;
1214 							/* Expects the argument thread id. */
1215 							for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1216 								remcomOutBuffer[pos] = remcomInBuffer[pos];
1217 							/* Reply with the thread identifiers. */
1218 							if (os_is_started()) {
1219 								/* Store the thread identifiers of all tasks. */
1220 								for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1221 									nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1222 									for (; pos < nextpos; pos ++)
1223 										remcomOutBuffer[pos] = hex_asc_lo(0);
1224 									remcomOutBuffer[pos++] = hex_asc_lo(thread_id);
1225 								}
1226 							}
1227 							else {
1228 								/* Store the thread identifier of the boot task. */
1229 								nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1230 								for (; pos < nextpos; pos ++)
1231 									remcomOutBuffer[pos] = hex_asc_lo(0);
1232 								remcomOutBuffer[pos++] = hex_asc_lo(current_thread_c);
1233 							}
1234 							remcomOutBuffer[pos] = '\0';
1235 							break;
1236 						default:
1237 							/* Not supported: "" */
1238 							/* Request information about section offsets: qOffsets. */
1239 							remcomOutBuffer[0] = 0;
1240 							break;
1241 					}
1242 				}
1243 				break;
1244 #endif /* PROCESS_SUPPORT */
1245 
1246 			default:
1247 				/* The stub should ignore other request and send an empty
1248 				   response ($#<checksum>). This way we can extend the protocol and GDB
1249 				   can tell whether the stub it is talking to uses the old or the new. */
1250 				remcomOutBuffer[0] = 0;
1251 				break;
1252 		}
1253 		putpacket(remcomOutBuffer);
1254 	}
1255 }
1256 
1257 /* Performs a complete re-start from scratch. */
1258 static void
kill_restart()1259 kill_restart ()
1260 {
1261 	machine_restart("");
1262 }
1263 
1264 /********************************** Breakpoint *******************************/
1265 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1266    An internal stack is used by the stub. The register image of the caller is
1267    stored in the structure register_image.
1268    Interactive communication with the host is handled by handle_exception and
1269    finally the register image is restored. */
1270 
1271 void kgdb_handle_breakpoint(void);
1272 
1273 asm ("
1274   .global kgdb_handle_breakpoint
1275 kgdb_handle_breakpoint:
1276 ;;
1277 ;; Response to the break-instruction
1278 ;;
1279 ;; Create a register image of the caller
1280 ;;
1281   move     $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1282   di                        ; Disable interrupts
1283   move.d   $r0,[reg]        ; Save R0
1284   move.d   $r1,[reg+0x04]   ; Save R1
1285   move.d   $r2,[reg+0x08]   ; Save R2
1286   move.d   $r3,[reg+0x0C]   ; Save R3
1287   move.d   $r4,[reg+0x10]   ; Save R4
1288   move.d   $r5,[reg+0x14]   ; Save R5
1289   move.d   $r6,[reg+0x18]   ; Save R6
1290   move.d   $r7,[reg+0x1C]   ; Save R7
1291   move.d   $r8,[reg+0x20]   ; Save R8
1292   move.d   $r9,[reg+0x24]   ; Save R9
1293   move.d   $r10,[reg+0x28]  ; Save R10
1294   move.d   $r11,[reg+0x2C]  ; Save R11
1295   move.d   $r12,[reg+0x30]  ; Save R12
1296   move.d   $r13,[reg+0x34]  ; Save R13
1297   move.d   $sp,[reg+0x38]   ; Save SP (R14)
1298 ;; Due to the old assembler-versions BRP might not be recognized
1299   .word 0xE670              ; move brp,$r0
1300   subq     2,$r0             ; Set to address of previous instruction.
1301   move.d   $r0,[reg+0x3c]   ; Save the address in PC (R15)
1302   clear.b  [reg+0x40]      ; Clear P0
1303   move     $vr,[reg+0x41]   ; Save special register P1
1304   clear.w  [reg+0x42]      ; Clear P4
1305   move     $ccr,[reg+0x44]  ; Save special register CCR
1306   move     $mof,[reg+0x46]  ; P7
1307   clear.d  [reg+0x4A]      ; Clear P8
1308   move     $ibr,[reg+0x4E]  ; P9,
1309   move     $irp,[reg+0x52]  ; P10,
1310   move     $srp,[reg+0x56]  ; P11,
1311   move     $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1312                             ; P13, register DCCR already saved
1313 ;; Due to the old assembler-versions BRP might not be recognized
1314   .word 0xE670              ; move brp,r0
1315 ;; Static (compiled) breakpoints must return to the next instruction in order
1316 ;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1317 ;; in order to execute it when execution is continued.
1318   test.b   [is_dyn_brkp]    ; Is this a dynamic breakpoint?
1319   beq      is_static         ; No, a static breakpoint
1320   nop
1321   subq     2,$r0              ; rerun the instruction the break replaced
1322 is_static:
1323   moveq    1,$r1
1324   move.b   $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1325   move.d   $r0,[reg+0x62]    ; Save the return address in BRP
1326   move     $usp,[reg+0x66]   ; USP
1327 ;;
1328 ;; Handle the communication
1329 ;;
1330   move.d   internal_stack+1020,$sp ; Use the internal stack which grows upward
1331   moveq    5,$r10                   ; SIGTRAP
1332   jsr      handle_exception       ; Interactive routine
1333 ;;
1334 ;; Return to the caller
1335 ;;
1336    move.d  [reg],$r0         ; Restore R0
1337    move.d  [reg+0x04],$r1    ; Restore R1
1338    move.d  [reg+0x08],$r2    ; Restore R2
1339    move.d  [reg+0x0C],$r3    ; Restore R3
1340    move.d  [reg+0x10],$r4    ; Restore R4
1341    move.d  [reg+0x14],$r5    ; Restore R5
1342    move.d  [reg+0x18],$r6    ; Restore R6
1343    move.d  [reg+0x1C],$r7    ; Restore R7
1344    move.d  [reg+0x20],$r8    ; Restore R8
1345    move.d  [reg+0x24],$r9    ; Restore R9
1346    move.d  [reg+0x28],$r10   ; Restore R10
1347    move.d  [reg+0x2C],$r11   ; Restore R11
1348    move.d  [reg+0x30],$r12   ; Restore R12
1349    move.d  [reg+0x34],$r13   ; Restore R13
1350 ;;
1351 ;; FIXME: Which registers should be restored?
1352 ;;
1353    move.d  [reg+0x38],$sp    ; Restore SP (R14)
1354    move    [reg+0x56],$srp   ; Restore the subroutine return pointer.
1355    move    [reg+0x5E],$dccr  ; Restore DCCR
1356    move    [reg+0x66],$usp   ; Restore USP
1357    jump    [reg+0x62]       ; A jump to the content in register BRP works.
1358    nop                       ;
1359 ");
1360 
1361 /* The hook for an interrupt generated by GDB. An internal stack is used
1362    by the stub. The register image of the caller is stored in the structure
1363    register_image. Interactive communication with the host is handled by
1364    handle_exception and finally the register image is restored. Due to the
1365    old assembler which does not recognise the break instruction and the
1366    breakpoint return pointer hex-code is used. */
1367 
1368 void kgdb_handle_serial(void);
1369 
1370 asm ("
1371   .global kgdb_handle_serial
1372 kgdb_handle_serial:
1373 ;;
1374 ;; Response to a serial interrupt
1375 ;;
1376 
1377   move     $dccr,[reg+0x5E] ; Save the flags in DCCR
1378   di                        ; Disable interrupts
1379   move.d   $r0,[reg]        ; Save R0
1380   move.d   $r1,[reg+0x04]   ; Save R1
1381   move.d   $r2,[reg+0x08]   ; Save R2
1382   move.d   $r3,[reg+0x0C]   ; Save R3
1383   move.d   $r4,[reg+0x10]   ; Save R4
1384   move.d   $r5,[reg+0x14]   ; Save R5
1385   move.d   $r6,[reg+0x18]   ; Save R6
1386   move.d   $r7,[reg+0x1C]   ; Save R7
1387   move.d   $r8,[reg+0x20]   ; Save R8
1388   move.d   $r9,[reg+0x24]   ; Save R9
1389   move.d   $r10,[reg+0x28]  ; Save R10
1390   move.d   $r11,[reg+0x2C]  ; Save R11
1391   move.d   $r12,[reg+0x30]  ; Save R12
1392   move.d   $r13,[reg+0x34]  ; Save R13
1393   move.d   $sp,[reg+0x38]   ; Save SP (R14)
1394   move     $irp,[reg+0x3c]  ; Save the address in PC (R15)
1395   clear.b  [reg+0x40]      ; Clear P0
1396   move     $vr,[reg+0x41]   ; Save special register P1,
1397   clear.w  [reg+0x42]      ; Clear P4
1398   move     $ccr,[reg+0x44]  ; Save special register CCR
1399   move     $mof,[reg+0x46]  ; P7
1400   clear.d  [reg+0x4A]      ; Clear P8
1401   move     $ibr,[reg+0x4E]  ; P9,
1402   move     $irp,[reg+0x52]  ; P10,
1403   move     $srp,[reg+0x56]  ; P11,
1404   move     $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1405                             ; P13, register DCCR already saved
1406 ;; Due to the old assembler-versions BRP might not be recognized
1407   .word 0xE670              ; move brp,r0
1408   move.d   $r0,[reg+0x62]   ; Save the return address in BRP
1409   move     $usp,[reg+0x66]  ; USP
1410 
1411 ;; get the serial character (from debugport.c) and check if it is a ctrl-c
1412 
1413   jsr getDebugChar
1414   cmp.b 3, $r10
1415   bne goback
1416   nop
1417 
1418   move.d  [reg+0x5E], $r10		; Get DCCR
1419   btstq	   8, $r10			; Test the U-flag.
1420   bmi	   goback
1421   nop
1422 
1423 ;;
1424 ;; Handle the communication
1425 ;;
1426   move.d   internal_stack+1020,$sp ; Use the internal stack
1427   moveq    2,$r10                   ; SIGINT
1428   jsr      handle_exception       ; Interactive routine
1429 
1430 goback:
1431 ;;
1432 ;; Return to the caller
1433 ;;
1434    move.d  [reg],$r0         ; Restore R0
1435    move.d  [reg+0x04],$r1    ; Restore R1
1436    move.d  [reg+0x08],$r2    ; Restore R2
1437    move.d  [reg+0x0C],$r3    ; Restore R3
1438    move.d  [reg+0x10],$r4    ; Restore R4
1439    move.d  [reg+0x14],$r5    ; Restore R5
1440    move.d  [reg+0x18],$r6    ; Restore R6
1441    move.d  [reg+0x1C],$r7    ; Restore R7
1442    move.d  [reg+0x20],$r8    ; Restore R8
1443    move.d  [reg+0x24],$r9    ; Restore R9
1444    move.d  [reg+0x28],$r10   ; Restore R10
1445    move.d  [reg+0x2C],$r11   ; Restore R11
1446    move.d  [reg+0x30],$r12   ; Restore R12
1447    move.d  [reg+0x34],$r13   ; Restore R13
1448 ;;
1449 ;; FIXME: Which registers should be restored?
1450 ;;
1451    move.d  [reg+0x38],$sp    ; Restore SP (R14)
1452    move    [reg+0x56],$srp   ; Restore the subroutine return pointer.
1453    move    [reg+0x5E],$dccr  ; Restore DCCR
1454    move    [reg+0x66],$usp   ; Restore USP
1455    reti                      ; Return from the interrupt routine
1456    nop
1457 ");
1458 
1459 /* Use this static breakpoint in the start-up only. */
1460 
1461 void
breakpoint(void)1462 breakpoint(void)
1463 {
1464 	kgdb_started = 1;
1465 	is_dyn_brkp = 0;     /* This is a static, not a dynamic breakpoint. */
1466 	__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1467 }
1468 
1469 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1470 
1471 void
kgdb_init(void)1472 kgdb_init(void)
1473 {
1474 	/* could initialize debug port as well but it's done in head.S already... */
1475 
1476         /* breakpoint handler is now set in irq.c */
1477 	set_int_vector(8, kgdb_handle_serial);
1478 
1479 	enableDebugIRQ();
1480 }
1481 
1482 /****************************** End of file **********************************/
1483