1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63
64 #include <asm/apic.h>
65
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 for (entry = head; entry; entry = entry->next)
69
70 /*
71 * Is the SiS APIC rmw bug present ?
72 * -1 = don't know, 0 = no, 1 = yes
73 */
74 int sis_apic_bug = -1;
75
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
78
79 /*
80 * # of IRQ routing registers
81 */
82 int nr_ioapic_registers[MAX_IO_APICS];
83
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
90
91 /* The one past the highest gsi number used */
92 u32 gsi_top;
93
94 /* MP IRQ source entries */
95 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
96
97 /* # of MP IRQ source entries */
98 int mp_irq_entries;
99
100 /* GSI interrupts */
101 static int nr_irqs_gsi = NR_IRQS_LEGACY;
102
103 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
104 int mp_bus_id_to_type[MAX_MP_BUSSES];
105 #endif
106
107 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
108
109 int skip_ioapic_setup;
110
111 /**
112 * disable_ioapic_support() - disables ioapic support at runtime
113 */
disable_ioapic_support(void)114 void disable_ioapic_support(void)
115 {
116 #ifdef CONFIG_PCI
117 noioapicquirk = 1;
118 noioapicreroute = -1;
119 #endif
120 skip_ioapic_setup = 1;
121 }
122
parse_noapic(char * str)123 static int __init parse_noapic(char *str)
124 {
125 /* disable IO-APIC */
126 disable_ioapic_support();
127 return 0;
128 }
129 early_param("noapic", parse_noapic);
130
131 static int io_apic_setup_irq_pin(unsigned int irq, int node,
132 struct io_apic_irq_attr *attr);
133
134 /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
mp_save_irq(struct mpc_intsrc * m)135 void mp_save_irq(struct mpc_intsrc *m)
136 {
137 int i;
138
139 apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
140 " IRQ %02x, APIC ID %x, APIC INT %02x\n",
141 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
142 m->srcbusirq, m->dstapic, m->dstirq);
143
144 for (i = 0; i < mp_irq_entries; i++) {
145 if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
146 return;
147 }
148
149 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
150 if (++mp_irq_entries == MAX_IRQ_SOURCES)
151 panic("Max # of irq sources exceeded!!\n");
152 }
153
154 struct irq_pin_list {
155 int apic, pin;
156 struct irq_pin_list *next;
157 };
158
alloc_irq_pin_list(int node)159 static struct irq_pin_list *alloc_irq_pin_list(int node)
160 {
161 return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
162 }
163
164
165 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
166 #ifdef CONFIG_SPARSE_IRQ
167 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
168 #else
169 static struct irq_cfg irq_cfgx[NR_IRQS];
170 #endif
171
arch_early_irq_init(void)172 int __init arch_early_irq_init(void)
173 {
174 struct irq_cfg *cfg;
175 int count, node, i;
176
177 if (!legacy_pic->nr_legacy_irqs) {
178 nr_irqs_gsi = 0;
179 io_apic_irqs = ~0UL;
180 }
181
182 cfg = irq_cfgx;
183 count = ARRAY_SIZE(irq_cfgx);
184 node = cpu_to_node(0);
185
186 /* Make sure the legacy interrupts are marked in the bitmap */
187 irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
188
189 for (i = 0; i < count; i++) {
190 irq_set_chip_data(i, &cfg[i]);
191 zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
192 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
193 /*
194 * For legacy IRQ's, start with assigning irq0 to irq15 to
195 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
196 */
197 if (i < legacy_pic->nr_legacy_irqs) {
198 cfg[i].vector = IRQ0_VECTOR + i;
199 cpumask_set_cpu(0, cfg[i].domain);
200 }
201 }
202
203 return 0;
204 }
205
206 #ifdef CONFIG_SPARSE_IRQ
irq_cfg(unsigned int irq)207 static struct irq_cfg *irq_cfg(unsigned int irq)
208 {
209 return irq_get_chip_data(irq);
210 }
211
alloc_irq_cfg(unsigned int irq,int node)212 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
213 {
214 struct irq_cfg *cfg;
215
216 cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
217 if (!cfg)
218 return NULL;
219 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
220 goto out_cfg;
221 if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
222 goto out_domain;
223 return cfg;
224 out_domain:
225 free_cpumask_var(cfg->domain);
226 out_cfg:
227 kfree(cfg);
228 return NULL;
229 }
230
free_irq_cfg(unsigned int at,struct irq_cfg * cfg)231 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
232 {
233 if (!cfg)
234 return;
235 irq_set_chip_data(at, NULL);
236 free_cpumask_var(cfg->domain);
237 free_cpumask_var(cfg->old_domain);
238 kfree(cfg);
239 }
240
241 #else
242
irq_cfg(unsigned int irq)243 struct irq_cfg *irq_cfg(unsigned int irq)
244 {
245 return irq < nr_irqs ? irq_cfgx + irq : NULL;
246 }
247
alloc_irq_cfg(unsigned int irq,int node)248 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
249 {
250 return irq_cfgx + irq;
251 }
252
free_irq_cfg(unsigned int at,struct irq_cfg * cfg)253 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
254
255 #endif
256
alloc_irq_and_cfg_at(unsigned int at,int node)257 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
258 {
259 int res = irq_alloc_desc_at(at, node);
260 struct irq_cfg *cfg;
261
262 if (res < 0) {
263 if (res != -EEXIST)
264 return NULL;
265 cfg = irq_get_chip_data(at);
266 if (cfg)
267 return cfg;
268 }
269
270 cfg = alloc_irq_cfg(at, node);
271 if (cfg)
272 irq_set_chip_data(at, cfg);
273 else
274 irq_free_desc(at);
275 return cfg;
276 }
277
alloc_irq_from(unsigned int from,int node)278 static int alloc_irq_from(unsigned int from, int node)
279 {
280 return irq_alloc_desc_from(from, node);
281 }
282
free_irq_at(unsigned int at,struct irq_cfg * cfg)283 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
284 {
285 free_irq_cfg(at, cfg);
286 irq_free_desc(at);
287 }
288
289 struct io_apic {
290 unsigned int index;
291 unsigned int unused[3];
292 unsigned int data;
293 unsigned int unused2[11];
294 unsigned int eoi;
295 };
296
io_apic_base(int idx)297 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
298 {
299 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
300 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
301 }
302
io_apic_eoi(unsigned int apic,unsigned int vector)303 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
304 {
305 struct io_apic __iomem *io_apic = io_apic_base(apic);
306 writel(vector, &io_apic->eoi);
307 }
308
io_apic_read(unsigned int apic,unsigned int reg)309 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
310 {
311 struct io_apic __iomem *io_apic = io_apic_base(apic);
312 writel(reg, &io_apic->index);
313 return readl(&io_apic->data);
314 }
315
io_apic_write(unsigned int apic,unsigned int reg,unsigned int value)316 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
317 {
318 struct io_apic __iomem *io_apic = io_apic_base(apic);
319 writel(reg, &io_apic->index);
320 writel(value, &io_apic->data);
321 }
322
323 /*
324 * Re-write a value: to be used for read-modify-write
325 * cycles where the read already set up the index register.
326 *
327 * Older SiS APIC requires we rewrite the index register
328 */
io_apic_modify(unsigned int apic,unsigned int reg,unsigned int value)329 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
330 {
331 struct io_apic __iomem *io_apic = io_apic_base(apic);
332
333 if (sis_apic_bug)
334 writel(reg, &io_apic->index);
335 writel(value, &io_apic->data);
336 }
337
io_apic_level_ack_pending(struct irq_cfg * cfg)338 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
339 {
340 struct irq_pin_list *entry;
341 unsigned long flags;
342
343 raw_spin_lock_irqsave(&ioapic_lock, flags);
344 for_each_irq_pin(entry, cfg->irq_2_pin) {
345 unsigned int reg;
346 int pin;
347
348 pin = entry->pin;
349 reg = io_apic_read(entry->apic, 0x10 + pin*2);
350 /* Is the remote IRR bit set? */
351 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
352 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
353 return true;
354 }
355 }
356 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
357
358 return false;
359 }
360
361 union entry_union {
362 struct { u32 w1, w2; };
363 struct IO_APIC_route_entry entry;
364 };
365
ioapic_read_entry(int apic,int pin)366 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
367 {
368 union entry_union eu;
369 unsigned long flags;
370 raw_spin_lock_irqsave(&ioapic_lock, flags);
371 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
372 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
373 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
374 return eu.entry;
375 }
376
377 /*
378 * When we write a new IO APIC routing entry, we need to write the high
379 * word first! If the mask bit in the low word is clear, we will enable
380 * the interrupt, and we need to make sure the entry is fully populated
381 * before that happens.
382 */
383 static void
__ioapic_write_entry(int apic,int pin,struct IO_APIC_route_entry e)384 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
385 {
386 union entry_union eu = {{0, 0}};
387
388 eu.entry = e;
389 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
390 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
391 }
392
ioapic_write_entry(int apic,int pin,struct IO_APIC_route_entry e)393 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
394 {
395 unsigned long flags;
396 raw_spin_lock_irqsave(&ioapic_lock, flags);
397 __ioapic_write_entry(apic, pin, e);
398 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
399 }
400
401 /*
402 * When we mask an IO APIC routing entry, we need to write the low
403 * word first, in order to set the mask bit before we change the
404 * high bits!
405 */
ioapic_mask_entry(int apic,int pin)406 static void ioapic_mask_entry(int apic, int pin)
407 {
408 unsigned long flags;
409 union entry_union eu = { .entry.mask = 1 };
410
411 raw_spin_lock_irqsave(&ioapic_lock, flags);
412 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
413 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
414 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
415 }
416
417 /*
418 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
419 * shared ISA-space IRQs, so we have to support them. We are super
420 * fast in the common case, and fast for shared ISA-space IRQs.
421 */
422 static int
__add_pin_to_irq_node(struct irq_cfg * cfg,int node,int apic,int pin)423 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
424 {
425 struct irq_pin_list **last, *entry;
426
427 /* don't allow duplicates */
428 last = &cfg->irq_2_pin;
429 for_each_irq_pin(entry, cfg->irq_2_pin) {
430 if (entry->apic == apic && entry->pin == pin)
431 return 0;
432 last = &entry->next;
433 }
434
435 entry = alloc_irq_pin_list(node);
436 if (!entry) {
437 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
438 node, apic, pin);
439 return -ENOMEM;
440 }
441 entry->apic = apic;
442 entry->pin = pin;
443
444 *last = entry;
445 return 0;
446 }
447
add_pin_to_irq_node(struct irq_cfg * cfg,int node,int apic,int pin)448 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
449 {
450 if (__add_pin_to_irq_node(cfg, node, apic, pin))
451 panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
452 }
453
454 /*
455 * Reroute an IRQ to a different pin.
456 */
replace_pin_at_irq_node(struct irq_cfg * cfg,int node,int oldapic,int oldpin,int newapic,int newpin)457 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
458 int oldapic, int oldpin,
459 int newapic, int newpin)
460 {
461 struct irq_pin_list *entry;
462
463 for_each_irq_pin(entry, cfg->irq_2_pin) {
464 if (entry->apic == oldapic && entry->pin == oldpin) {
465 entry->apic = newapic;
466 entry->pin = newpin;
467 /* every one is different, right? */
468 return;
469 }
470 }
471
472 /* old apic/pin didn't exist, so just add new ones */
473 add_pin_to_irq_node(cfg, node, newapic, newpin);
474 }
475
__io_apic_modify_irq(struct irq_pin_list * entry,int mask_and,int mask_or,void (* final)(struct irq_pin_list * entry))476 static void __io_apic_modify_irq(struct irq_pin_list *entry,
477 int mask_and, int mask_or,
478 void (*final)(struct irq_pin_list *entry))
479 {
480 unsigned int reg, pin;
481
482 pin = entry->pin;
483 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
484 reg &= mask_and;
485 reg |= mask_or;
486 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
487 if (final)
488 final(entry);
489 }
490
io_apic_modify_irq(struct irq_cfg * cfg,int mask_and,int mask_or,void (* final)(struct irq_pin_list * entry))491 static void io_apic_modify_irq(struct irq_cfg *cfg,
492 int mask_and, int mask_or,
493 void (*final)(struct irq_pin_list *entry))
494 {
495 struct irq_pin_list *entry;
496
497 for_each_irq_pin(entry, cfg->irq_2_pin)
498 __io_apic_modify_irq(entry, mask_and, mask_or, final);
499 }
500
__mask_and_edge_IO_APIC_irq(struct irq_pin_list * entry)501 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
502 {
503 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
504 IO_APIC_REDIR_MASKED, NULL);
505 }
506
__unmask_and_level_IO_APIC_irq(struct irq_pin_list * entry)507 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
508 {
509 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
510 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
511 }
512
io_apic_sync(struct irq_pin_list * entry)513 static void io_apic_sync(struct irq_pin_list *entry)
514 {
515 /*
516 * Synchronize the IO-APIC and the CPU by doing
517 * a dummy read from the IO-APIC
518 */
519 struct io_apic __iomem *io_apic;
520 io_apic = io_apic_base(entry->apic);
521 readl(&io_apic->data);
522 }
523
mask_ioapic(struct irq_cfg * cfg)524 static void mask_ioapic(struct irq_cfg *cfg)
525 {
526 unsigned long flags;
527
528 raw_spin_lock_irqsave(&ioapic_lock, flags);
529 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
530 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
531 }
532
mask_ioapic_irq(struct irq_data * data)533 static void mask_ioapic_irq(struct irq_data *data)
534 {
535 mask_ioapic(data->chip_data);
536 }
537
__unmask_ioapic(struct irq_cfg * cfg)538 static void __unmask_ioapic(struct irq_cfg *cfg)
539 {
540 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
541 }
542
unmask_ioapic(struct irq_cfg * cfg)543 static void unmask_ioapic(struct irq_cfg *cfg)
544 {
545 unsigned long flags;
546
547 raw_spin_lock_irqsave(&ioapic_lock, flags);
548 __unmask_ioapic(cfg);
549 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
550 }
551
unmask_ioapic_irq(struct irq_data * data)552 static void unmask_ioapic_irq(struct irq_data *data)
553 {
554 unmask_ioapic(data->chip_data);
555 }
556
clear_IO_APIC_pin(unsigned int apic,unsigned int pin)557 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
558 {
559 struct IO_APIC_route_entry entry;
560
561 /* Check delivery_mode to be sure we're not clearing an SMI pin */
562 entry = ioapic_read_entry(apic, pin);
563 if (entry.delivery_mode == dest_SMI)
564 return;
565 /*
566 * Disable it in the IO-APIC irq-routing table:
567 */
568 ioapic_mask_entry(apic, pin);
569 }
570
clear_IO_APIC(void)571 static void clear_IO_APIC (void)
572 {
573 int apic, pin;
574
575 for (apic = 0; apic < nr_ioapics; apic++)
576 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
577 clear_IO_APIC_pin(apic, pin);
578 }
579
580 #ifdef CONFIG_X86_32
581 /*
582 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
583 * specific CPU-side IRQs.
584 */
585
586 #define MAX_PIRQS 8
587 static int pirq_entries[MAX_PIRQS] = {
588 [0 ... MAX_PIRQS - 1] = -1
589 };
590
ioapic_pirq_setup(char * str)591 static int __init ioapic_pirq_setup(char *str)
592 {
593 int i, max;
594 int ints[MAX_PIRQS+1];
595
596 get_options(str, ARRAY_SIZE(ints), ints);
597
598 apic_printk(APIC_VERBOSE, KERN_INFO
599 "PIRQ redirection, working around broken MP-BIOS.\n");
600 max = MAX_PIRQS;
601 if (ints[0] < MAX_PIRQS)
602 max = ints[0];
603
604 for (i = 0; i < max; i++) {
605 apic_printk(APIC_VERBOSE, KERN_DEBUG
606 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
607 /*
608 * PIRQs are mapped upside down, usually.
609 */
610 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
611 }
612 return 1;
613 }
614
615 __setup("pirq=", ioapic_pirq_setup);
616 #endif /* CONFIG_X86_32 */
617
alloc_ioapic_entries(void)618 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
619 {
620 int apic;
621 struct IO_APIC_route_entry **ioapic_entries;
622
623 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
624 GFP_KERNEL);
625 if (!ioapic_entries)
626 return 0;
627
628 for (apic = 0; apic < nr_ioapics; apic++) {
629 ioapic_entries[apic] =
630 kzalloc(sizeof(struct IO_APIC_route_entry) *
631 nr_ioapic_registers[apic], GFP_KERNEL);
632 if (!ioapic_entries[apic])
633 goto nomem;
634 }
635
636 return ioapic_entries;
637
638 nomem:
639 while (--apic >= 0)
640 kfree(ioapic_entries[apic]);
641 kfree(ioapic_entries);
642
643 return 0;
644 }
645
646 /*
647 * Saves all the IO-APIC RTE's
648 */
save_IO_APIC_setup(struct IO_APIC_route_entry ** ioapic_entries)649 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
650 {
651 int apic, pin;
652
653 if (!ioapic_entries)
654 return -ENOMEM;
655
656 for (apic = 0; apic < nr_ioapics; apic++) {
657 if (!ioapic_entries[apic])
658 return -ENOMEM;
659
660 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
661 ioapic_entries[apic][pin] =
662 ioapic_read_entry(apic, pin);
663 }
664
665 return 0;
666 }
667
668 /*
669 * Mask all IO APIC entries.
670 */
mask_IO_APIC_setup(struct IO_APIC_route_entry ** ioapic_entries)671 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
672 {
673 int apic, pin;
674
675 if (!ioapic_entries)
676 return;
677
678 for (apic = 0; apic < nr_ioapics; apic++) {
679 if (!ioapic_entries[apic])
680 break;
681
682 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
683 struct IO_APIC_route_entry entry;
684
685 entry = ioapic_entries[apic][pin];
686 if (!entry.mask) {
687 entry.mask = 1;
688 ioapic_write_entry(apic, pin, entry);
689 }
690 }
691 }
692 }
693
694 /*
695 * Restore IO APIC entries which was saved in ioapic_entries.
696 */
restore_IO_APIC_setup(struct IO_APIC_route_entry ** ioapic_entries)697 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
698 {
699 int apic, pin;
700
701 if (!ioapic_entries)
702 return -ENOMEM;
703
704 for (apic = 0; apic < nr_ioapics; apic++) {
705 if (!ioapic_entries[apic])
706 return -ENOMEM;
707
708 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
709 ioapic_write_entry(apic, pin,
710 ioapic_entries[apic][pin]);
711 }
712 return 0;
713 }
714
free_ioapic_entries(struct IO_APIC_route_entry ** ioapic_entries)715 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
716 {
717 int apic;
718
719 for (apic = 0; apic < nr_ioapics; apic++)
720 kfree(ioapic_entries[apic]);
721
722 kfree(ioapic_entries);
723 }
724
725 /*
726 * Find the IRQ entry number of a certain pin.
727 */
find_irq_entry(int apic,int pin,int type)728 static int find_irq_entry(int apic, int pin, int type)
729 {
730 int i;
731
732 for (i = 0; i < mp_irq_entries; i++)
733 if (mp_irqs[i].irqtype == type &&
734 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
735 mp_irqs[i].dstapic == MP_APIC_ALL) &&
736 mp_irqs[i].dstirq == pin)
737 return i;
738
739 return -1;
740 }
741
742 /*
743 * Find the pin to which IRQ[irq] (ISA) is connected
744 */
find_isa_irq_pin(int irq,int type)745 static int __init find_isa_irq_pin(int irq, int type)
746 {
747 int i;
748
749 for (i = 0; i < mp_irq_entries; i++) {
750 int lbus = mp_irqs[i].srcbus;
751
752 if (test_bit(lbus, mp_bus_not_pci) &&
753 (mp_irqs[i].irqtype == type) &&
754 (mp_irqs[i].srcbusirq == irq))
755
756 return mp_irqs[i].dstirq;
757 }
758 return -1;
759 }
760
find_isa_irq_apic(int irq,int type)761 static int __init find_isa_irq_apic(int irq, int type)
762 {
763 int i;
764
765 for (i = 0; i < mp_irq_entries; i++) {
766 int lbus = mp_irqs[i].srcbus;
767
768 if (test_bit(lbus, mp_bus_not_pci) &&
769 (mp_irqs[i].irqtype == type) &&
770 (mp_irqs[i].srcbusirq == irq))
771 break;
772 }
773 if (i < mp_irq_entries) {
774 int apic;
775 for(apic = 0; apic < nr_ioapics; apic++) {
776 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
777 return apic;
778 }
779 }
780
781 return -1;
782 }
783
784 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
785 /*
786 * EISA Edge/Level control register, ELCR
787 */
EISA_ELCR(unsigned int irq)788 static int EISA_ELCR(unsigned int irq)
789 {
790 if (irq < legacy_pic->nr_legacy_irqs) {
791 unsigned int port = 0x4d0 + (irq >> 3);
792 return (inb(port) >> (irq & 7)) & 1;
793 }
794 apic_printk(APIC_VERBOSE, KERN_INFO
795 "Broken MPtable reports ISA irq %d\n", irq);
796 return 0;
797 }
798
799 #endif
800
801 /* ISA interrupts are always polarity zero edge triggered,
802 * when listed as conforming in the MP table. */
803
804 #define default_ISA_trigger(idx) (0)
805 #define default_ISA_polarity(idx) (0)
806
807 /* EISA interrupts are always polarity zero and can be edge or level
808 * trigger depending on the ELCR value. If an interrupt is listed as
809 * EISA conforming in the MP table, that means its trigger type must
810 * be read in from the ELCR */
811
812 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
813 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
814
815 /* PCI interrupts are always polarity one level triggered,
816 * when listed as conforming in the MP table. */
817
818 #define default_PCI_trigger(idx) (1)
819 #define default_PCI_polarity(idx) (1)
820
821 /* MCA interrupts are always polarity zero level triggered,
822 * when listed as conforming in the MP table. */
823
824 #define default_MCA_trigger(idx) (1)
825 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
826
irq_polarity(int idx)827 static int irq_polarity(int idx)
828 {
829 int bus = mp_irqs[idx].srcbus;
830 int polarity;
831
832 /*
833 * Determine IRQ line polarity (high active or low active):
834 */
835 switch (mp_irqs[idx].irqflag & 3)
836 {
837 case 0: /* conforms, ie. bus-type dependent polarity */
838 if (test_bit(bus, mp_bus_not_pci))
839 polarity = default_ISA_polarity(idx);
840 else
841 polarity = default_PCI_polarity(idx);
842 break;
843 case 1: /* high active */
844 {
845 polarity = 0;
846 break;
847 }
848 case 2: /* reserved */
849 {
850 printk(KERN_WARNING "broken BIOS!!\n");
851 polarity = 1;
852 break;
853 }
854 case 3: /* low active */
855 {
856 polarity = 1;
857 break;
858 }
859 default: /* invalid */
860 {
861 printk(KERN_WARNING "broken BIOS!!\n");
862 polarity = 1;
863 break;
864 }
865 }
866 return polarity;
867 }
868
irq_trigger(int idx)869 static int irq_trigger(int idx)
870 {
871 int bus = mp_irqs[idx].srcbus;
872 int trigger;
873
874 /*
875 * Determine IRQ trigger mode (edge or level sensitive):
876 */
877 switch ((mp_irqs[idx].irqflag>>2) & 3)
878 {
879 case 0: /* conforms, ie. bus-type dependent */
880 if (test_bit(bus, mp_bus_not_pci))
881 trigger = default_ISA_trigger(idx);
882 else
883 trigger = default_PCI_trigger(idx);
884 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
885 switch (mp_bus_id_to_type[bus]) {
886 case MP_BUS_ISA: /* ISA pin */
887 {
888 /* set before the switch */
889 break;
890 }
891 case MP_BUS_EISA: /* EISA pin */
892 {
893 trigger = default_EISA_trigger(idx);
894 break;
895 }
896 case MP_BUS_PCI: /* PCI pin */
897 {
898 /* set before the switch */
899 break;
900 }
901 case MP_BUS_MCA: /* MCA pin */
902 {
903 trigger = default_MCA_trigger(idx);
904 break;
905 }
906 default:
907 {
908 printk(KERN_WARNING "broken BIOS!!\n");
909 trigger = 1;
910 break;
911 }
912 }
913 #endif
914 break;
915 case 1: /* edge */
916 {
917 trigger = 0;
918 break;
919 }
920 case 2: /* reserved */
921 {
922 printk(KERN_WARNING "broken BIOS!!\n");
923 trigger = 1;
924 break;
925 }
926 case 3: /* level */
927 {
928 trigger = 1;
929 break;
930 }
931 default: /* invalid */
932 {
933 printk(KERN_WARNING "broken BIOS!!\n");
934 trigger = 0;
935 break;
936 }
937 }
938 return trigger;
939 }
940
pin_2_irq(int idx,int apic,int pin)941 static int pin_2_irq(int idx, int apic, int pin)
942 {
943 int irq;
944 int bus = mp_irqs[idx].srcbus;
945
946 /*
947 * Debugging check, we are in big trouble if this message pops up!
948 */
949 if (mp_irqs[idx].dstirq != pin)
950 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
951
952 if (test_bit(bus, mp_bus_not_pci)) {
953 irq = mp_irqs[idx].srcbusirq;
954 } else {
955 u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
956
957 if (gsi >= NR_IRQS_LEGACY)
958 irq = gsi;
959 else
960 irq = gsi_top + gsi;
961 }
962
963 #ifdef CONFIG_X86_32
964 /*
965 * PCI IRQ command line redirection. Yes, limits are hardcoded.
966 */
967 if ((pin >= 16) && (pin <= 23)) {
968 if (pirq_entries[pin-16] != -1) {
969 if (!pirq_entries[pin-16]) {
970 apic_printk(APIC_VERBOSE, KERN_DEBUG
971 "disabling PIRQ%d\n", pin-16);
972 } else {
973 irq = pirq_entries[pin-16];
974 apic_printk(APIC_VERBOSE, KERN_DEBUG
975 "using PIRQ%d -> IRQ %d\n",
976 pin-16, irq);
977 }
978 }
979 }
980 #endif
981
982 return irq;
983 }
984
985 /*
986 * Find a specific PCI IRQ entry.
987 * Not an __init, possibly needed by modules
988 */
IO_APIC_get_PCI_irq_vector(int bus,int slot,int pin,struct io_apic_irq_attr * irq_attr)989 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
990 struct io_apic_irq_attr *irq_attr)
991 {
992 int apic, i, best_guess = -1;
993
994 apic_printk(APIC_DEBUG,
995 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
996 bus, slot, pin);
997 if (test_bit(bus, mp_bus_not_pci)) {
998 apic_printk(APIC_VERBOSE,
999 "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1000 return -1;
1001 }
1002 for (i = 0; i < mp_irq_entries; i++) {
1003 int lbus = mp_irqs[i].srcbus;
1004
1005 for (apic = 0; apic < nr_ioapics; apic++)
1006 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1007 mp_irqs[i].dstapic == MP_APIC_ALL)
1008 break;
1009
1010 if (!test_bit(lbus, mp_bus_not_pci) &&
1011 !mp_irqs[i].irqtype &&
1012 (bus == lbus) &&
1013 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1014 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1015
1016 if (!(apic || IO_APIC_IRQ(irq)))
1017 continue;
1018
1019 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1020 set_io_apic_irq_attr(irq_attr, apic,
1021 mp_irqs[i].dstirq,
1022 irq_trigger(i),
1023 irq_polarity(i));
1024 return irq;
1025 }
1026 /*
1027 * Use the first all-but-pin matching entry as a
1028 * best-guess fuzzy result for broken mptables.
1029 */
1030 if (best_guess < 0) {
1031 set_io_apic_irq_attr(irq_attr, apic,
1032 mp_irqs[i].dstirq,
1033 irq_trigger(i),
1034 irq_polarity(i));
1035 best_guess = irq;
1036 }
1037 }
1038 }
1039 return best_guess;
1040 }
1041 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1042
lock_vector_lock(void)1043 void lock_vector_lock(void)
1044 {
1045 /* Used to the online set of cpus does not change
1046 * during assign_irq_vector.
1047 */
1048 raw_spin_lock(&vector_lock);
1049 }
1050
unlock_vector_lock(void)1051 void unlock_vector_lock(void)
1052 {
1053 raw_spin_unlock(&vector_lock);
1054 }
1055
1056 static int
__assign_irq_vector(int irq,struct irq_cfg * cfg,const struct cpumask * mask)1057 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1058 {
1059 /*
1060 * NOTE! The local APIC isn't very good at handling
1061 * multiple interrupts at the same interrupt level.
1062 * As the interrupt level is determined by taking the
1063 * vector number and shifting that right by 4, we
1064 * want to spread these out a bit so that they don't
1065 * all fall in the same interrupt level.
1066 *
1067 * Also, we've got to be careful not to trash gate
1068 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1069 */
1070 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1071 static int current_offset = VECTOR_OFFSET_START % 8;
1072 unsigned int old_vector;
1073 int cpu, err;
1074 cpumask_var_t tmp_mask;
1075
1076 if (cfg->move_in_progress)
1077 return -EBUSY;
1078
1079 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1080 return -ENOMEM;
1081
1082 old_vector = cfg->vector;
1083 if (old_vector) {
1084 cpumask_and(tmp_mask, mask, cpu_online_mask);
1085 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1086 if (!cpumask_empty(tmp_mask)) {
1087 free_cpumask_var(tmp_mask);
1088 return 0;
1089 }
1090 }
1091
1092 /* Only try and allocate irqs on cpus that are present */
1093 err = -ENOSPC;
1094 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1095 int new_cpu;
1096 int vector, offset;
1097
1098 apic->vector_allocation_domain(cpu, tmp_mask);
1099
1100 vector = current_vector;
1101 offset = current_offset;
1102 next:
1103 vector += 8;
1104 if (vector >= first_system_vector) {
1105 /* If out of vectors on large boxen, must share them. */
1106 offset = (offset + 1) % 8;
1107 vector = FIRST_EXTERNAL_VECTOR + offset;
1108 }
1109 if (unlikely(current_vector == vector))
1110 continue;
1111
1112 if (test_bit(vector, used_vectors))
1113 goto next;
1114
1115 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1116 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1117 goto next;
1118 /* Found one! */
1119 current_vector = vector;
1120 current_offset = offset;
1121 if (old_vector) {
1122 cfg->move_in_progress = 1;
1123 cpumask_copy(cfg->old_domain, cfg->domain);
1124 }
1125 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1126 per_cpu(vector_irq, new_cpu)[vector] = irq;
1127 cfg->vector = vector;
1128 cpumask_copy(cfg->domain, tmp_mask);
1129 err = 0;
1130 break;
1131 }
1132 free_cpumask_var(tmp_mask);
1133 return err;
1134 }
1135
assign_irq_vector(int irq,struct irq_cfg * cfg,const struct cpumask * mask)1136 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1137 {
1138 int err;
1139 unsigned long flags;
1140
1141 raw_spin_lock_irqsave(&vector_lock, flags);
1142 err = __assign_irq_vector(irq, cfg, mask);
1143 raw_spin_unlock_irqrestore(&vector_lock, flags);
1144 return err;
1145 }
1146
__clear_irq_vector(int irq,struct irq_cfg * cfg)1147 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1148 {
1149 int cpu, vector;
1150
1151 BUG_ON(!cfg->vector);
1152
1153 vector = cfg->vector;
1154 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1155 per_cpu(vector_irq, cpu)[vector] = -1;
1156
1157 cfg->vector = 0;
1158 cpumask_clear(cfg->domain);
1159
1160 if (likely(!cfg->move_in_progress))
1161 return;
1162 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1163 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1164 vector++) {
1165 if (per_cpu(vector_irq, cpu)[vector] != irq)
1166 continue;
1167 per_cpu(vector_irq, cpu)[vector] = -1;
1168 break;
1169 }
1170 }
1171 cfg->move_in_progress = 0;
1172 }
1173
__setup_vector_irq(int cpu)1174 void __setup_vector_irq(int cpu)
1175 {
1176 /* Initialize vector_irq on a new cpu */
1177 int irq, vector;
1178 struct irq_cfg *cfg;
1179
1180 /*
1181 * vector_lock will make sure that we don't run into irq vector
1182 * assignments that might be happening on another cpu in parallel,
1183 * while we setup our initial vector to irq mappings.
1184 */
1185 raw_spin_lock(&vector_lock);
1186 /* Mark the inuse vectors */
1187 for_each_active_irq(irq) {
1188 cfg = irq_get_chip_data(irq);
1189 if (!cfg)
1190 continue;
1191 /*
1192 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1193 * will be part of the irq_cfg's domain.
1194 */
1195 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1196 cpumask_set_cpu(cpu, cfg->domain);
1197
1198 if (!cpumask_test_cpu(cpu, cfg->domain))
1199 continue;
1200 vector = cfg->vector;
1201 per_cpu(vector_irq, cpu)[vector] = irq;
1202 }
1203 /* Mark the free vectors */
1204 for (vector = 0; vector < NR_VECTORS; ++vector) {
1205 irq = per_cpu(vector_irq, cpu)[vector];
1206 if (irq < 0)
1207 continue;
1208
1209 cfg = irq_cfg(irq);
1210 if (!cpumask_test_cpu(cpu, cfg->domain))
1211 per_cpu(vector_irq, cpu)[vector] = -1;
1212 }
1213 raw_spin_unlock(&vector_lock);
1214 }
1215
1216 static struct irq_chip ioapic_chip;
1217 static struct irq_chip ir_ioapic_chip;
1218
1219 #ifdef CONFIG_X86_32
IO_APIC_irq_trigger(int irq)1220 static inline int IO_APIC_irq_trigger(int irq)
1221 {
1222 int apic, idx, pin;
1223
1224 for (apic = 0; apic < nr_ioapics; apic++) {
1225 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1226 idx = find_irq_entry(apic, pin, mp_INT);
1227 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1228 return irq_trigger(idx);
1229 }
1230 }
1231 /*
1232 * nonexistent IRQs are edge default
1233 */
1234 return 0;
1235 }
1236 #else
IO_APIC_irq_trigger(int irq)1237 static inline int IO_APIC_irq_trigger(int irq)
1238 {
1239 return 1;
1240 }
1241 #endif
1242
ioapic_register_intr(unsigned int irq,struct irq_cfg * cfg,unsigned long trigger)1243 static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg,
1244 unsigned long trigger)
1245 {
1246 struct irq_chip *chip = &ioapic_chip;
1247 irq_flow_handler_t hdl;
1248 bool fasteoi;
1249
1250 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1251 trigger == IOAPIC_LEVEL) {
1252 irq_set_status_flags(irq, IRQ_LEVEL);
1253 fasteoi = true;
1254 } else {
1255 irq_clear_status_flags(irq, IRQ_LEVEL);
1256 fasteoi = false;
1257 }
1258
1259 if (irq_remapped(cfg)) {
1260 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1261 chip = &ir_ioapic_chip;
1262 fasteoi = trigger != 0;
1263 }
1264
1265 hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
1266 irq_set_chip_and_handler_name(irq, chip, hdl,
1267 fasteoi ? "fasteoi" : "edge");
1268 }
1269
setup_ioapic_entry(int apic_id,int irq,struct IO_APIC_route_entry * entry,unsigned int destination,int trigger,int polarity,int vector,int pin)1270 static int setup_ioapic_entry(int apic_id, int irq,
1271 struct IO_APIC_route_entry *entry,
1272 unsigned int destination, int trigger,
1273 int polarity, int vector, int pin)
1274 {
1275 /*
1276 * add it to the IO-APIC irq-routing table:
1277 */
1278 memset(entry,0,sizeof(*entry));
1279
1280 if (intr_remapping_enabled) {
1281 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1282 struct irte irte;
1283 struct IR_IO_APIC_route_entry *ir_entry =
1284 (struct IR_IO_APIC_route_entry *) entry;
1285 int index;
1286
1287 if (!iommu)
1288 panic("No mapping iommu for ioapic %d\n", apic_id);
1289
1290 index = alloc_irte(iommu, irq, 1);
1291 if (index < 0)
1292 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1293
1294 prepare_irte(&irte, vector, destination);
1295
1296 /* Set source-id of interrupt request */
1297 set_ioapic_sid(&irte, apic_id);
1298
1299 modify_irte(irq, &irte);
1300
1301 ir_entry->index2 = (index >> 15) & 0x1;
1302 ir_entry->zero = 0;
1303 ir_entry->format = 1;
1304 ir_entry->index = (index & 0x7fff);
1305 /*
1306 * IO-APIC RTE will be configured with virtual vector.
1307 * irq handler will do the explicit EOI to the io-apic.
1308 */
1309 ir_entry->vector = pin;
1310 } else {
1311 entry->delivery_mode = apic->irq_delivery_mode;
1312 entry->dest_mode = apic->irq_dest_mode;
1313 entry->dest = destination;
1314 entry->vector = vector;
1315 }
1316
1317 entry->mask = 0; /* enable IRQ */
1318 entry->trigger = trigger;
1319 entry->polarity = polarity;
1320
1321 /* Mask level triggered irqs.
1322 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1323 */
1324 if (trigger)
1325 entry->mask = 1;
1326 return 0;
1327 }
1328
setup_ioapic_irq(int apic_id,int pin,unsigned int irq,struct irq_cfg * cfg,int trigger,int polarity)1329 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1330 struct irq_cfg *cfg, int trigger, int polarity)
1331 {
1332 struct IO_APIC_route_entry entry;
1333 unsigned int dest;
1334
1335 if (!IO_APIC_IRQ(irq))
1336 return;
1337 /*
1338 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1339 * controllers like 8259. Now that IO-APIC can handle this irq, update
1340 * the cfg->domain.
1341 */
1342 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1343 apic->vector_allocation_domain(0, cfg->domain);
1344
1345 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1346 return;
1347
1348 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1349
1350 apic_printk(APIC_VERBOSE,KERN_DEBUG
1351 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1352 "IRQ %d Mode:%i Active:%i)\n",
1353 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1354 irq, trigger, polarity);
1355
1356
1357 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1358 dest, trigger, polarity, cfg->vector, pin)) {
1359 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1360 mp_ioapics[apic_id].apicid, pin);
1361 __clear_irq_vector(irq, cfg);
1362 return;
1363 }
1364
1365 ioapic_register_intr(irq, cfg, trigger);
1366 if (irq < legacy_pic->nr_legacy_irqs)
1367 legacy_pic->mask(irq);
1368
1369 ioapic_write_entry(apic_id, pin, entry);
1370 }
1371
1372 static struct {
1373 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1374 } mp_ioapic_routing[MAX_IO_APICS];
1375
io_apic_pin_not_connected(int idx,int apic_id,int pin)1376 static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin)
1377 {
1378 if (idx != -1)
1379 return false;
1380
1381 apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
1382 mp_ioapics[apic_id].apicid, pin);
1383 return true;
1384 }
1385
__io_apic_setup_irqs(unsigned int apic_id)1386 static void __init __io_apic_setup_irqs(unsigned int apic_id)
1387 {
1388 int idx, node = cpu_to_node(0);
1389 struct io_apic_irq_attr attr;
1390 unsigned int pin, irq;
1391
1392 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1393 idx = find_irq_entry(apic_id, pin, mp_INT);
1394 if (io_apic_pin_not_connected(idx, apic_id, pin))
1395 continue;
1396
1397 irq = pin_2_irq(idx, apic_id, pin);
1398
1399 if ((apic_id > 0) && (irq > 16))
1400 continue;
1401
1402 /*
1403 * Skip the timer IRQ if there's a quirk handler
1404 * installed and if it returns 1:
1405 */
1406 if (apic->multi_timer_check &&
1407 apic->multi_timer_check(apic_id, irq))
1408 continue;
1409
1410 set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1411 irq_polarity(idx));
1412
1413 io_apic_setup_irq_pin(irq, node, &attr);
1414 }
1415 }
1416
setup_IO_APIC_irqs(void)1417 static void __init setup_IO_APIC_irqs(void)
1418 {
1419 unsigned int apic_id;
1420
1421 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1422
1423 for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1424 __io_apic_setup_irqs(apic_id);
1425 }
1426
1427 /*
1428 * for the gsit that is not in first ioapic
1429 * but could not use acpi_register_gsi()
1430 * like some special sci in IBM x3330
1431 */
setup_IO_APIC_irq_extra(u32 gsi)1432 void setup_IO_APIC_irq_extra(u32 gsi)
1433 {
1434 int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1435 struct io_apic_irq_attr attr;
1436
1437 /*
1438 * Convert 'gsi' to 'ioapic.pin'.
1439 */
1440 apic_id = mp_find_ioapic(gsi);
1441 if (apic_id < 0)
1442 return;
1443
1444 pin = mp_find_ioapic_pin(apic_id, gsi);
1445 idx = find_irq_entry(apic_id, pin, mp_INT);
1446 if (idx == -1)
1447 return;
1448
1449 irq = pin_2_irq(idx, apic_id, pin);
1450
1451 /* Only handle the non legacy irqs on secondary ioapics */
1452 if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1453 return;
1454
1455 set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1456 irq_polarity(idx));
1457
1458 io_apic_setup_irq_pin_once(irq, node, &attr);
1459 }
1460
1461 /*
1462 * Set up the timer pin, possibly with the 8259A-master behind.
1463 */
setup_timer_IRQ0_pin(unsigned int apic_id,unsigned int pin,int vector)1464 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1465 int vector)
1466 {
1467 struct IO_APIC_route_entry entry;
1468
1469 if (intr_remapping_enabled)
1470 return;
1471
1472 memset(&entry, 0, sizeof(entry));
1473
1474 /*
1475 * We use logical delivery to get the timer IRQ
1476 * to the first CPU.
1477 */
1478 entry.dest_mode = apic->irq_dest_mode;
1479 entry.mask = 0; /* don't mask IRQ for edge */
1480 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1481 entry.delivery_mode = apic->irq_delivery_mode;
1482 entry.polarity = 0;
1483 entry.trigger = 0;
1484 entry.vector = vector;
1485
1486 /*
1487 * The timer IRQ doesn't have to know that behind the
1488 * scene we may have a 8259A-master in AEOI mode ...
1489 */
1490 irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
1491 "edge");
1492
1493 /*
1494 * Add it to the IO-APIC irq-routing table:
1495 */
1496 ioapic_write_entry(apic_id, pin, entry);
1497 }
1498
1499
print_IO_APIC(void)1500 __apicdebuginit(void) print_IO_APIC(void)
1501 {
1502 int apic, i;
1503 union IO_APIC_reg_00 reg_00;
1504 union IO_APIC_reg_01 reg_01;
1505 union IO_APIC_reg_02 reg_02;
1506 union IO_APIC_reg_03 reg_03;
1507 unsigned long flags;
1508 struct irq_cfg *cfg;
1509 unsigned int irq;
1510
1511 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1512 for (i = 0; i < nr_ioapics; i++)
1513 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1514 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1515
1516 /*
1517 * We are a bit conservative about what we expect. We have to
1518 * know about every hardware change ASAP.
1519 */
1520 printk(KERN_INFO "testing the IO APIC.......................\n");
1521
1522 for (apic = 0; apic < nr_ioapics; apic++) {
1523
1524 raw_spin_lock_irqsave(&ioapic_lock, flags);
1525 reg_00.raw = io_apic_read(apic, 0);
1526 reg_01.raw = io_apic_read(apic, 1);
1527 if (reg_01.bits.version >= 0x10)
1528 reg_02.raw = io_apic_read(apic, 2);
1529 if (reg_01.bits.version >= 0x20)
1530 reg_03.raw = io_apic_read(apic, 3);
1531 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1532
1533 printk("\n");
1534 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1535 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1536 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1537 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1538 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1539
1540 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01);
1541 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1542
1543 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1544 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1545
1546 /*
1547 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1548 * but the value of reg_02 is read as the previous read register
1549 * value, so ignore it if reg_02 == reg_01.
1550 */
1551 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1552 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1553 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1554 }
1555
1556 /*
1557 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1558 * or reg_03, but the value of reg_0[23] is read as the previous read
1559 * register value, so ignore it if reg_03 == reg_0[12].
1560 */
1561 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1562 reg_03.raw != reg_01.raw) {
1563 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1564 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1565 }
1566
1567 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1568
1569 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1570 " Stat Dmod Deli Vect:\n");
1571
1572 for (i = 0; i <= reg_01.bits.entries; i++) {
1573 struct IO_APIC_route_entry entry;
1574
1575 entry = ioapic_read_entry(apic, i);
1576
1577 printk(KERN_DEBUG " %02x %03X ",
1578 i,
1579 entry.dest
1580 );
1581
1582 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1583 entry.mask,
1584 entry.trigger,
1585 entry.irr,
1586 entry.polarity,
1587 entry.delivery_status,
1588 entry.dest_mode,
1589 entry.delivery_mode,
1590 entry.vector
1591 );
1592 }
1593 }
1594 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1595 for_each_active_irq(irq) {
1596 struct irq_pin_list *entry;
1597
1598 cfg = irq_get_chip_data(irq);
1599 if (!cfg)
1600 continue;
1601 entry = cfg->irq_2_pin;
1602 if (!entry)
1603 continue;
1604 printk(KERN_DEBUG "IRQ%d ", irq);
1605 for_each_irq_pin(entry, cfg->irq_2_pin)
1606 printk("-> %d:%d", entry->apic, entry->pin);
1607 printk("\n");
1608 }
1609
1610 printk(KERN_INFO ".................................... done.\n");
1611
1612 return;
1613 }
1614
print_APIC_field(int base)1615 __apicdebuginit(void) print_APIC_field(int base)
1616 {
1617 int i;
1618
1619 printk(KERN_DEBUG);
1620
1621 for (i = 0; i < 8; i++)
1622 printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1623
1624 printk(KERN_CONT "\n");
1625 }
1626
print_local_APIC(void * dummy)1627 __apicdebuginit(void) print_local_APIC(void *dummy)
1628 {
1629 unsigned int i, v, ver, maxlvt;
1630 u64 icr;
1631
1632 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1633 smp_processor_id(), hard_smp_processor_id());
1634 v = apic_read(APIC_ID);
1635 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1636 v = apic_read(APIC_LVR);
1637 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1638 ver = GET_APIC_VERSION(v);
1639 maxlvt = lapic_get_maxlvt();
1640
1641 v = apic_read(APIC_TASKPRI);
1642 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1643
1644 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1645 if (!APIC_XAPIC(ver)) {
1646 v = apic_read(APIC_ARBPRI);
1647 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1648 v & APIC_ARBPRI_MASK);
1649 }
1650 v = apic_read(APIC_PROCPRI);
1651 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1652 }
1653
1654 /*
1655 * Remote read supported only in the 82489DX and local APIC for
1656 * Pentium processors.
1657 */
1658 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1659 v = apic_read(APIC_RRR);
1660 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1661 }
1662
1663 v = apic_read(APIC_LDR);
1664 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1665 if (!x2apic_enabled()) {
1666 v = apic_read(APIC_DFR);
1667 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1668 }
1669 v = apic_read(APIC_SPIV);
1670 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1671
1672 printk(KERN_DEBUG "... APIC ISR field:\n");
1673 print_APIC_field(APIC_ISR);
1674 printk(KERN_DEBUG "... APIC TMR field:\n");
1675 print_APIC_field(APIC_TMR);
1676 printk(KERN_DEBUG "... APIC IRR field:\n");
1677 print_APIC_field(APIC_IRR);
1678
1679 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1680 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1681 apic_write(APIC_ESR, 0);
1682
1683 v = apic_read(APIC_ESR);
1684 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1685 }
1686
1687 icr = apic_icr_read();
1688 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1689 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1690
1691 v = apic_read(APIC_LVTT);
1692 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1693
1694 if (maxlvt > 3) { /* PC is LVT#4. */
1695 v = apic_read(APIC_LVTPC);
1696 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1697 }
1698 v = apic_read(APIC_LVT0);
1699 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1700 v = apic_read(APIC_LVT1);
1701 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1702
1703 if (maxlvt > 2) { /* ERR is LVT#3. */
1704 v = apic_read(APIC_LVTERR);
1705 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1706 }
1707
1708 v = apic_read(APIC_TMICT);
1709 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1710 v = apic_read(APIC_TMCCT);
1711 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1712 v = apic_read(APIC_TDCR);
1713 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1714
1715 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1716 v = apic_read(APIC_EFEAT);
1717 maxlvt = (v >> 16) & 0xff;
1718 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1719 v = apic_read(APIC_ECTRL);
1720 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1721 for (i = 0; i < maxlvt; i++) {
1722 v = apic_read(APIC_EILVTn(i));
1723 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1724 }
1725 }
1726 printk("\n");
1727 }
1728
print_local_APICs(int maxcpu)1729 __apicdebuginit(void) print_local_APICs(int maxcpu)
1730 {
1731 int cpu;
1732
1733 if (!maxcpu)
1734 return;
1735
1736 preempt_disable();
1737 for_each_online_cpu(cpu) {
1738 if (cpu >= maxcpu)
1739 break;
1740 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1741 }
1742 preempt_enable();
1743 }
1744
print_PIC(void)1745 __apicdebuginit(void) print_PIC(void)
1746 {
1747 unsigned int v;
1748 unsigned long flags;
1749
1750 if (!legacy_pic->nr_legacy_irqs)
1751 return;
1752
1753 printk(KERN_DEBUG "\nprinting PIC contents\n");
1754
1755 raw_spin_lock_irqsave(&i8259A_lock, flags);
1756
1757 v = inb(0xa1) << 8 | inb(0x21);
1758 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1759
1760 v = inb(0xa0) << 8 | inb(0x20);
1761 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1762
1763 outb(0x0b,0xa0);
1764 outb(0x0b,0x20);
1765 v = inb(0xa0) << 8 | inb(0x20);
1766 outb(0x0a,0xa0);
1767 outb(0x0a,0x20);
1768
1769 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1770
1771 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1772
1773 v = inb(0x4d1) << 8 | inb(0x4d0);
1774 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1775 }
1776
1777 static int __initdata show_lapic = 1;
setup_show_lapic(char * arg)1778 static __init int setup_show_lapic(char *arg)
1779 {
1780 int num = -1;
1781
1782 if (strcmp(arg, "all") == 0) {
1783 show_lapic = CONFIG_NR_CPUS;
1784 } else {
1785 get_option(&arg, &num);
1786 if (num >= 0)
1787 show_lapic = num;
1788 }
1789
1790 return 1;
1791 }
1792 __setup("show_lapic=", setup_show_lapic);
1793
print_ICs(void)1794 __apicdebuginit(int) print_ICs(void)
1795 {
1796 if (apic_verbosity == APIC_QUIET)
1797 return 0;
1798
1799 print_PIC();
1800
1801 /* don't print out if apic is not there */
1802 if (!cpu_has_apic && !apic_from_smp_config())
1803 return 0;
1804
1805 print_local_APICs(show_lapic);
1806 print_IO_APIC();
1807
1808 return 0;
1809 }
1810
1811 fs_initcall(print_ICs);
1812
1813
1814 /* Where if anywhere is the i8259 connect in external int mode */
1815 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1816
enable_IO_APIC(void)1817 void __init enable_IO_APIC(void)
1818 {
1819 int i8259_apic, i8259_pin;
1820 int apic;
1821
1822 if (!legacy_pic->nr_legacy_irqs)
1823 return;
1824
1825 for(apic = 0; apic < nr_ioapics; apic++) {
1826 int pin;
1827 /* See if any of the pins is in ExtINT mode */
1828 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1829 struct IO_APIC_route_entry entry;
1830 entry = ioapic_read_entry(apic, pin);
1831
1832 /* If the interrupt line is enabled and in ExtInt mode
1833 * I have found the pin where the i8259 is connected.
1834 */
1835 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1836 ioapic_i8259.apic = apic;
1837 ioapic_i8259.pin = pin;
1838 goto found_i8259;
1839 }
1840 }
1841 }
1842 found_i8259:
1843 /* Look to see what if the MP table has reported the ExtINT */
1844 /* If we could not find the appropriate pin by looking at the ioapic
1845 * the i8259 probably is not connected the ioapic but give the
1846 * mptable a chance anyway.
1847 */
1848 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1849 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1850 /* Trust the MP table if nothing is setup in the hardware */
1851 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1852 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1853 ioapic_i8259.pin = i8259_pin;
1854 ioapic_i8259.apic = i8259_apic;
1855 }
1856 /* Complain if the MP table and the hardware disagree */
1857 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1858 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1859 {
1860 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1861 }
1862
1863 /*
1864 * Do not trust the IO-APIC being empty at bootup
1865 */
1866 clear_IO_APIC();
1867 }
1868
1869 /*
1870 * Not an __init, needed by the reboot code
1871 */
disable_IO_APIC(void)1872 void disable_IO_APIC(void)
1873 {
1874 /*
1875 * Clear the IO-APIC before rebooting:
1876 */
1877 clear_IO_APIC();
1878
1879 if (!legacy_pic->nr_legacy_irqs)
1880 return;
1881
1882 /*
1883 * If the i8259 is routed through an IOAPIC
1884 * Put that IOAPIC in virtual wire mode
1885 * so legacy interrupts can be delivered.
1886 *
1887 * With interrupt-remapping, for now we will use virtual wire A mode,
1888 * as virtual wire B is little complex (need to configure both
1889 * IOAPIC RTE as well as interrupt-remapping table entry).
1890 * As this gets called during crash dump, keep this simple for now.
1891 */
1892 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1893 struct IO_APIC_route_entry entry;
1894
1895 memset(&entry, 0, sizeof(entry));
1896 entry.mask = 0; /* Enabled */
1897 entry.trigger = 0; /* Edge */
1898 entry.irr = 0;
1899 entry.polarity = 0; /* High */
1900 entry.delivery_status = 0;
1901 entry.dest_mode = 0; /* Physical */
1902 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1903 entry.vector = 0;
1904 entry.dest = read_apic_id();
1905
1906 /*
1907 * Add it to the IO-APIC irq-routing table:
1908 */
1909 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1910 }
1911
1912 /*
1913 * Use virtual wire A mode when interrupt remapping is enabled.
1914 */
1915 if (cpu_has_apic || apic_from_smp_config())
1916 disconnect_bsp_APIC(!intr_remapping_enabled &&
1917 ioapic_i8259.pin != -1);
1918 }
1919
1920 #ifdef CONFIG_X86_32
1921 /*
1922 * function to set the IO-APIC physical IDs based on the
1923 * values stored in the MPC table.
1924 *
1925 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1926 */
setup_ioapic_ids_from_mpc_nocheck(void)1927 void __init setup_ioapic_ids_from_mpc_nocheck(void)
1928 {
1929 union IO_APIC_reg_00 reg_00;
1930 physid_mask_t phys_id_present_map;
1931 int apic_id;
1932 int i;
1933 unsigned char old_id;
1934 unsigned long flags;
1935
1936 /*
1937 * This is broken; anything with a real cpu count has to
1938 * circumvent this idiocy regardless.
1939 */
1940 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1941
1942 /*
1943 * Set the IOAPIC ID to the value stored in the MPC table.
1944 */
1945 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1946
1947 /* Read the register 0 value */
1948 raw_spin_lock_irqsave(&ioapic_lock, flags);
1949 reg_00.raw = io_apic_read(apic_id, 0);
1950 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1951
1952 old_id = mp_ioapics[apic_id].apicid;
1953
1954 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1955 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1956 apic_id, mp_ioapics[apic_id].apicid);
1957 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1958 reg_00.bits.ID);
1959 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1960 }
1961
1962 /*
1963 * Sanity check, is the ID really free? Every APIC in a
1964 * system must have a unique ID or we get lots of nice
1965 * 'stuck on smp_invalidate_needed IPI wait' messages.
1966 */
1967 if (apic->check_apicid_used(&phys_id_present_map,
1968 mp_ioapics[apic_id].apicid)) {
1969 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1970 apic_id, mp_ioapics[apic_id].apicid);
1971 for (i = 0; i < get_physical_broadcast(); i++)
1972 if (!physid_isset(i, phys_id_present_map))
1973 break;
1974 if (i >= get_physical_broadcast())
1975 panic("Max APIC ID exceeded!\n");
1976 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1977 i);
1978 physid_set(i, phys_id_present_map);
1979 mp_ioapics[apic_id].apicid = i;
1980 } else {
1981 physid_mask_t tmp;
1982 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
1983 apic_printk(APIC_VERBOSE, "Setting %d in the "
1984 "phys_id_present_map\n",
1985 mp_ioapics[apic_id].apicid);
1986 physids_or(phys_id_present_map, phys_id_present_map, tmp);
1987 }
1988
1989 /*
1990 * We need to adjust the IRQ routing table
1991 * if the ID changed.
1992 */
1993 if (old_id != mp_ioapics[apic_id].apicid)
1994 for (i = 0; i < mp_irq_entries; i++)
1995 if (mp_irqs[i].dstapic == old_id)
1996 mp_irqs[i].dstapic
1997 = mp_ioapics[apic_id].apicid;
1998
1999 /*
2000 * Update the ID register according to the right value
2001 * from the MPC table if they are different.
2002 */
2003 if (mp_ioapics[apic_id].apicid == reg_00.bits.ID)
2004 continue;
2005
2006 apic_printk(APIC_VERBOSE, KERN_INFO
2007 "...changing IO-APIC physical APIC ID to %d ...",
2008 mp_ioapics[apic_id].apicid);
2009
2010 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2011 raw_spin_lock_irqsave(&ioapic_lock, flags);
2012 io_apic_write(apic_id, 0, reg_00.raw);
2013 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2014
2015 /*
2016 * Sanity check
2017 */
2018 raw_spin_lock_irqsave(&ioapic_lock, flags);
2019 reg_00.raw = io_apic_read(apic_id, 0);
2020 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2021 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2022 printk("could not set ID!\n");
2023 else
2024 apic_printk(APIC_VERBOSE, " ok.\n");
2025 }
2026 }
2027
setup_ioapic_ids_from_mpc(void)2028 void __init setup_ioapic_ids_from_mpc(void)
2029 {
2030
2031 if (acpi_ioapic)
2032 return;
2033 /*
2034 * Don't check I/O APIC IDs for xAPIC systems. They have
2035 * no meaning without the serial APIC bus.
2036 */
2037 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2038 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2039 return;
2040 setup_ioapic_ids_from_mpc_nocheck();
2041 }
2042 #endif
2043
2044 int no_timer_check __initdata;
2045
notimercheck(char * s)2046 static int __init notimercheck(char *s)
2047 {
2048 no_timer_check = 1;
2049 return 1;
2050 }
2051 __setup("no_timer_check", notimercheck);
2052
2053 /*
2054 * There is a nasty bug in some older SMP boards, their mptable lies
2055 * about the timer IRQ. We do the following to work around the situation:
2056 *
2057 * - timer IRQ defaults to IO-APIC IRQ
2058 * - if this function detects that timer IRQs are defunct, then we fall
2059 * back to ISA timer IRQs
2060 */
timer_irq_works(void)2061 static int __init timer_irq_works(void)
2062 {
2063 unsigned long t1 = jiffies;
2064 unsigned long flags;
2065
2066 if (no_timer_check)
2067 return 1;
2068
2069 local_save_flags(flags);
2070 local_irq_enable();
2071 /* Let ten ticks pass... */
2072 mdelay((10 * 1000) / HZ);
2073 local_irq_restore(flags);
2074
2075 /*
2076 * Expect a few ticks at least, to be sure some possible
2077 * glue logic does not lock up after one or two first
2078 * ticks in a non-ExtINT mode. Also the local APIC
2079 * might have cached one ExtINT interrupt. Finally, at
2080 * least one tick may be lost due to delays.
2081 */
2082
2083 /* jiffies wrap? */
2084 if (time_after(jiffies, t1 + 4))
2085 return 1;
2086 return 0;
2087 }
2088
2089 /*
2090 * In the SMP+IOAPIC case it might happen that there are an unspecified
2091 * number of pending IRQ events unhandled. These cases are very rare,
2092 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2093 * better to do it this way as thus we do not have to be aware of
2094 * 'pending' interrupts in the IRQ path, except at this point.
2095 */
2096 /*
2097 * Edge triggered needs to resend any interrupt
2098 * that was delayed but this is now handled in the device
2099 * independent code.
2100 */
2101
2102 /*
2103 * Starting up a edge-triggered IO-APIC interrupt is
2104 * nasty - we need to make sure that we get the edge.
2105 * If it is already asserted for some reason, we need
2106 * return 1 to indicate that is was pending.
2107 *
2108 * This is not complete - we should be able to fake
2109 * an edge even if it isn't on the 8259A...
2110 */
2111
startup_ioapic_irq(struct irq_data * data)2112 static unsigned int startup_ioapic_irq(struct irq_data *data)
2113 {
2114 int was_pending = 0, irq = data->irq;
2115 unsigned long flags;
2116
2117 raw_spin_lock_irqsave(&ioapic_lock, flags);
2118 if (irq < legacy_pic->nr_legacy_irqs) {
2119 legacy_pic->mask(irq);
2120 if (legacy_pic->irq_pending(irq))
2121 was_pending = 1;
2122 }
2123 __unmask_ioapic(data->chip_data);
2124 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2125
2126 return was_pending;
2127 }
2128
ioapic_retrigger_irq(struct irq_data * data)2129 static int ioapic_retrigger_irq(struct irq_data *data)
2130 {
2131 struct irq_cfg *cfg = data->chip_data;
2132 unsigned long flags;
2133
2134 raw_spin_lock_irqsave(&vector_lock, flags);
2135 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2136 raw_spin_unlock_irqrestore(&vector_lock, flags);
2137
2138 return 1;
2139 }
2140
2141 /*
2142 * Level and edge triggered IO-APIC interrupts need different handling,
2143 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2144 * handled with the level-triggered descriptor, but that one has slightly
2145 * more overhead. Level-triggered interrupts cannot be handled with the
2146 * edge-triggered handler, without risking IRQ storms and other ugly
2147 * races.
2148 */
2149
2150 #ifdef CONFIG_SMP
send_cleanup_vector(struct irq_cfg * cfg)2151 void send_cleanup_vector(struct irq_cfg *cfg)
2152 {
2153 cpumask_var_t cleanup_mask;
2154
2155 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2156 unsigned int i;
2157 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2158 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2159 } else {
2160 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2161 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2162 free_cpumask_var(cleanup_mask);
2163 }
2164 cfg->move_in_progress = 0;
2165 }
2166
__target_IO_APIC_irq(unsigned int irq,unsigned int dest,struct irq_cfg * cfg)2167 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2168 {
2169 int apic, pin;
2170 struct irq_pin_list *entry;
2171 u8 vector = cfg->vector;
2172
2173 for_each_irq_pin(entry, cfg->irq_2_pin) {
2174 unsigned int reg;
2175
2176 apic = entry->apic;
2177 pin = entry->pin;
2178 /*
2179 * With interrupt-remapping, destination information comes
2180 * from interrupt-remapping table entry.
2181 */
2182 if (!irq_remapped(cfg))
2183 io_apic_write(apic, 0x11 + pin*2, dest);
2184 reg = io_apic_read(apic, 0x10 + pin*2);
2185 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2186 reg |= vector;
2187 io_apic_modify(apic, 0x10 + pin*2, reg);
2188 }
2189 }
2190
2191 /*
2192 * Either sets data->affinity to a valid value, and returns
2193 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2194 * leaves data->affinity untouched.
2195 */
__ioapic_set_affinity(struct irq_data * data,const struct cpumask * mask,unsigned int * dest_id)2196 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2197 unsigned int *dest_id)
2198 {
2199 struct irq_cfg *cfg = data->chip_data;
2200
2201 if (!cpumask_intersects(mask, cpu_online_mask))
2202 return -1;
2203
2204 if (assign_irq_vector(data->irq, data->chip_data, mask))
2205 return -1;
2206
2207 cpumask_copy(data->affinity, mask);
2208
2209 *dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2210 return 0;
2211 }
2212
2213 static int
ioapic_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)2214 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2215 bool force)
2216 {
2217 unsigned int dest, irq = data->irq;
2218 unsigned long flags;
2219 int ret;
2220
2221 raw_spin_lock_irqsave(&ioapic_lock, flags);
2222 ret = __ioapic_set_affinity(data, mask, &dest);
2223 if (!ret) {
2224 /* Only the high 8 bits are valid. */
2225 dest = SET_APIC_LOGICAL_ID(dest);
2226 __target_IO_APIC_irq(irq, dest, data->chip_data);
2227 }
2228 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2229 return ret;
2230 }
2231
2232 #ifdef CONFIG_INTR_REMAP
2233
2234 /*
2235 * Migrate the IO-APIC irq in the presence of intr-remapping.
2236 *
2237 * For both level and edge triggered, irq migration is a simple atomic
2238 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2239 *
2240 * For level triggered, we eliminate the io-apic RTE modification (with the
2241 * updated vector information), by using a virtual vector (io-apic pin number).
2242 * Real vector that is used for interrupting cpu will be coming from
2243 * the interrupt-remapping table entry.
2244 */
2245 static int
ir_ioapic_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)2246 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2247 bool force)
2248 {
2249 struct irq_cfg *cfg = data->chip_data;
2250 unsigned int dest, irq = data->irq;
2251 struct irte irte;
2252
2253 if (!cpumask_intersects(mask, cpu_online_mask))
2254 return -EINVAL;
2255
2256 if (get_irte(irq, &irte))
2257 return -EBUSY;
2258
2259 if (assign_irq_vector(irq, cfg, mask))
2260 return -EBUSY;
2261
2262 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2263
2264 irte.vector = cfg->vector;
2265 irte.dest_id = IRTE_DEST(dest);
2266
2267 /*
2268 * Modified the IRTE and flushes the Interrupt entry cache.
2269 */
2270 modify_irte(irq, &irte);
2271
2272 if (cfg->move_in_progress)
2273 send_cleanup_vector(cfg);
2274
2275 cpumask_copy(data->affinity, mask);
2276 return 0;
2277 }
2278
2279 #else
2280 static inline int
ir_ioapic_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)2281 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2282 bool force)
2283 {
2284 return 0;
2285 }
2286 #endif
2287
smp_irq_move_cleanup_interrupt(void)2288 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2289 {
2290 unsigned vector, me;
2291
2292 ack_APIC_irq();
2293 exit_idle();
2294 irq_enter();
2295
2296 me = smp_processor_id();
2297 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2298 unsigned int irq;
2299 unsigned int irr;
2300 struct irq_desc *desc;
2301 struct irq_cfg *cfg;
2302 irq = __this_cpu_read(vector_irq[vector]);
2303
2304 if (irq == -1)
2305 continue;
2306
2307 desc = irq_to_desc(irq);
2308 if (!desc)
2309 continue;
2310
2311 cfg = irq_cfg(irq);
2312 raw_spin_lock(&desc->lock);
2313
2314 /*
2315 * Check if the irq migration is in progress. If so, we
2316 * haven't received the cleanup request yet for this irq.
2317 */
2318 if (cfg->move_in_progress)
2319 goto unlock;
2320
2321 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2322 goto unlock;
2323
2324 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2325 /*
2326 * Check if the vector that needs to be cleanedup is
2327 * registered at the cpu's IRR. If so, then this is not
2328 * the best time to clean it up. Lets clean it up in the
2329 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2330 * to myself.
2331 */
2332 if (irr & (1 << (vector % 32))) {
2333 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2334 goto unlock;
2335 }
2336 __this_cpu_write(vector_irq[vector], -1);
2337 unlock:
2338 raw_spin_unlock(&desc->lock);
2339 }
2340
2341 irq_exit();
2342 }
2343
__irq_complete_move(struct irq_cfg * cfg,unsigned vector)2344 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2345 {
2346 unsigned me;
2347
2348 if (likely(!cfg->move_in_progress))
2349 return;
2350
2351 me = smp_processor_id();
2352
2353 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2354 send_cleanup_vector(cfg);
2355 }
2356
irq_complete_move(struct irq_cfg * cfg)2357 static void irq_complete_move(struct irq_cfg *cfg)
2358 {
2359 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2360 }
2361
irq_force_complete_move(int irq)2362 void irq_force_complete_move(int irq)
2363 {
2364 struct irq_cfg *cfg = irq_get_chip_data(irq);
2365
2366 if (!cfg)
2367 return;
2368
2369 __irq_complete_move(cfg, cfg->vector);
2370 }
2371 #else
irq_complete_move(struct irq_cfg * cfg)2372 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2373 #endif
2374
ack_apic_edge(struct irq_data * data)2375 static void ack_apic_edge(struct irq_data *data)
2376 {
2377 irq_complete_move(data->chip_data);
2378 irq_move_irq(data);
2379 ack_APIC_irq();
2380 }
2381
2382 atomic_t irq_mis_count;
2383
2384 /*
2385 * IO-APIC versions below 0x20 don't support EOI register.
2386 * For the record, here is the information about various versions:
2387 * 0Xh 82489DX
2388 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2389 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2390 * 30h-FFh Reserved
2391 *
2392 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2393 * version as 0x2. This is an error with documentation and these ICH chips
2394 * use io-apic's of version 0x20.
2395 *
2396 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2397 * Otherwise, we simulate the EOI message manually by changing the trigger
2398 * mode to edge and then back to level, with RTE being masked during this.
2399 */
eoi_ioapic_irq(unsigned int irq,struct irq_cfg * cfg)2400 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2401 {
2402 struct irq_pin_list *entry;
2403 unsigned long flags;
2404
2405 raw_spin_lock_irqsave(&ioapic_lock, flags);
2406 for_each_irq_pin(entry, cfg->irq_2_pin) {
2407 if (mp_ioapics[entry->apic].apicver >= 0x20) {
2408 /*
2409 * Intr-remapping uses pin number as the virtual vector
2410 * in the RTE. Actual vector is programmed in
2411 * intr-remapping table entry. Hence for the io-apic
2412 * EOI we use the pin number.
2413 */
2414 if (irq_remapped(cfg))
2415 io_apic_eoi(entry->apic, entry->pin);
2416 else
2417 io_apic_eoi(entry->apic, cfg->vector);
2418 } else {
2419 __mask_and_edge_IO_APIC_irq(entry);
2420 __unmask_and_level_IO_APIC_irq(entry);
2421 }
2422 }
2423 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2424 }
2425
ack_apic_level(struct irq_data * data)2426 static void ack_apic_level(struct irq_data *data)
2427 {
2428 struct irq_cfg *cfg = data->chip_data;
2429 int i, do_unmask_irq = 0, irq = data->irq;
2430 unsigned long v;
2431
2432 irq_complete_move(cfg);
2433 #ifdef CONFIG_GENERIC_PENDING_IRQ
2434 /* If we are moving the irq we need to mask it */
2435 if (unlikely(irqd_is_setaffinity_pending(data))) {
2436 do_unmask_irq = 1;
2437 mask_ioapic(cfg);
2438 }
2439 #endif
2440
2441 /*
2442 * It appears there is an erratum which affects at least version 0x11
2443 * of I/O APIC (that's the 82093AA and cores integrated into various
2444 * chipsets). Under certain conditions a level-triggered interrupt is
2445 * erroneously delivered as edge-triggered one but the respective IRR
2446 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2447 * message but it will never arrive and further interrupts are blocked
2448 * from the source. The exact reason is so far unknown, but the
2449 * phenomenon was observed when two consecutive interrupt requests
2450 * from a given source get delivered to the same CPU and the source is
2451 * temporarily disabled in between.
2452 *
2453 * A workaround is to simulate an EOI message manually. We achieve it
2454 * by setting the trigger mode to edge and then to level when the edge
2455 * trigger mode gets detected in the TMR of a local APIC for a
2456 * level-triggered interrupt. We mask the source for the time of the
2457 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2458 * The idea is from Manfred Spraul. --macro
2459 *
2460 * Also in the case when cpu goes offline, fixup_irqs() will forward
2461 * any unhandled interrupt on the offlined cpu to the new cpu
2462 * destination that is handling the corresponding interrupt. This
2463 * interrupt forwarding is done via IPI's. Hence, in this case also
2464 * level-triggered io-apic interrupt will be seen as an edge
2465 * interrupt in the IRR. And we can't rely on the cpu's EOI
2466 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2467 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2468 * supporting EOI register, we do an explicit EOI to clear the
2469 * remote IRR and on IO-APIC's which don't have an EOI register,
2470 * we use the above logic (mask+edge followed by unmask+level) from
2471 * Manfred Spraul to clear the remote IRR.
2472 */
2473 i = cfg->vector;
2474 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2475
2476 /*
2477 * We must acknowledge the irq before we move it or the acknowledge will
2478 * not propagate properly.
2479 */
2480 ack_APIC_irq();
2481
2482 /*
2483 * Tail end of clearing remote IRR bit (either by delivering the EOI
2484 * message via io-apic EOI register write or simulating it using
2485 * mask+edge followed by unnask+level logic) manually when the
2486 * level triggered interrupt is seen as the edge triggered interrupt
2487 * at the cpu.
2488 */
2489 if (!(v & (1 << (i & 0x1f)))) {
2490 atomic_inc(&irq_mis_count);
2491
2492 eoi_ioapic_irq(irq, cfg);
2493 }
2494
2495 /* Now we can move and renable the irq */
2496 if (unlikely(do_unmask_irq)) {
2497 /* Only migrate the irq if the ack has been received.
2498 *
2499 * On rare occasions the broadcast level triggered ack gets
2500 * delayed going to ioapics, and if we reprogram the
2501 * vector while Remote IRR is still set the irq will never
2502 * fire again.
2503 *
2504 * To prevent this scenario we read the Remote IRR bit
2505 * of the ioapic. This has two effects.
2506 * - On any sane system the read of the ioapic will
2507 * flush writes (and acks) going to the ioapic from
2508 * this cpu.
2509 * - We get to see if the ACK has actually been delivered.
2510 *
2511 * Based on failed experiments of reprogramming the
2512 * ioapic entry from outside of irq context starting
2513 * with masking the ioapic entry and then polling until
2514 * Remote IRR was clear before reprogramming the
2515 * ioapic I don't trust the Remote IRR bit to be
2516 * completey accurate.
2517 *
2518 * However there appears to be no other way to plug
2519 * this race, so if the Remote IRR bit is not
2520 * accurate and is causing problems then it is a hardware bug
2521 * and you can go talk to the chipset vendor about it.
2522 */
2523 if (!io_apic_level_ack_pending(cfg))
2524 irq_move_masked_irq(data);
2525 unmask_ioapic(cfg);
2526 }
2527 }
2528
2529 #ifdef CONFIG_INTR_REMAP
ir_ack_apic_edge(struct irq_data * data)2530 static void ir_ack_apic_edge(struct irq_data *data)
2531 {
2532 ack_APIC_irq();
2533 }
2534
ir_ack_apic_level(struct irq_data * data)2535 static void ir_ack_apic_level(struct irq_data *data)
2536 {
2537 ack_APIC_irq();
2538 eoi_ioapic_irq(data->irq, data->chip_data);
2539 }
2540 #endif /* CONFIG_INTR_REMAP */
2541
2542 static struct irq_chip ioapic_chip __read_mostly = {
2543 .name = "IO-APIC",
2544 .irq_startup = startup_ioapic_irq,
2545 .irq_mask = mask_ioapic_irq,
2546 .irq_unmask = unmask_ioapic_irq,
2547 .irq_ack = ack_apic_edge,
2548 .irq_eoi = ack_apic_level,
2549 #ifdef CONFIG_SMP
2550 .irq_set_affinity = ioapic_set_affinity,
2551 #endif
2552 .irq_retrigger = ioapic_retrigger_irq,
2553 };
2554
2555 static struct irq_chip ir_ioapic_chip __read_mostly = {
2556 .name = "IR-IO-APIC",
2557 .irq_startup = startup_ioapic_irq,
2558 .irq_mask = mask_ioapic_irq,
2559 .irq_unmask = unmask_ioapic_irq,
2560 #ifdef CONFIG_INTR_REMAP
2561 .irq_ack = ir_ack_apic_edge,
2562 .irq_eoi = ir_ack_apic_level,
2563 #ifdef CONFIG_SMP
2564 .irq_set_affinity = ir_ioapic_set_affinity,
2565 #endif
2566 #endif
2567 .irq_retrigger = ioapic_retrigger_irq,
2568 };
2569
init_IO_APIC_traps(void)2570 static inline void init_IO_APIC_traps(void)
2571 {
2572 struct irq_cfg *cfg;
2573 unsigned int irq;
2574
2575 /*
2576 * NOTE! The local APIC isn't very good at handling
2577 * multiple interrupts at the same interrupt level.
2578 * As the interrupt level is determined by taking the
2579 * vector number and shifting that right by 4, we
2580 * want to spread these out a bit so that they don't
2581 * all fall in the same interrupt level.
2582 *
2583 * Also, we've got to be careful not to trash gate
2584 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2585 */
2586 for_each_active_irq(irq) {
2587 cfg = irq_get_chip_data(irq);
2588 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2589 /*
2590 * Hmm.. We don't have an entry for this,
2591 * so default to an old-fashioned 8259
2592 * interrupt if we can..
2593 */
2594 if (irq < legacy_pic->nr_legacy_irqs)
2595 legacy_pic->make_irq(irq);
2596 else
2597 /* Strange. Oh, well.. */
2598 irq_set_chip(irq, &no_irq_chip);
2599 }
2600 }
2601 }
2602
2603 /*
2604 * The local APIC irq-chip implementation:
2605 */
2606
mask_lapic_irq(struct irq_data * data)2607 static void mask_lapic_irq(struct irq_data *data)
2608 {
2609 unsigned long v;
2610
2611 v = apic_read(APIC_LVT0);
2612 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2613 }
2614
unmask_lapic_irq(struct irq_data * data)2615 static void unmask_lapic_irq(struct irq_data *data)
2616 {
2617 unsigned long v;
2618
2619 v = apic_read(APIC_LVT0);
2620 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2621 }
2622
ack_lapic_irq(struct irq_data * data)2623 static void ack_lapic_irq(struct irq_data *data)
2624 {
2625 ack_APIC_irq();
2626 }
2627
2628 static struct irq_chip lapic_chip __read_mostly = {
2629 .name = "local-APIC",
2630 .irq_mask = mask_lapic_irq,
2631 .irq_unmask = unmask_lapic_irq,
2632 .irq_ack = ack_lapic_irq,
2633 };
2634
lapic_register_intr(int irq)2635 static void lapic_register_intr(int irq)
2636 {
2637 irq_clear_status_flags(irq, IRQ_LEVEL);
2638 irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2639 "edge");
2640 }
2641
2642 /*
2643 * This looks a bit hackish but it's about the only one way of sending
2644 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2645 * not support the ExtINT mode, unfortunately. We need to send these
2646 * cycles as some i82489DX-based boards have glue logic that keeps the
2647 * 8259A interrupt line asserted until INTA. --macro
2648 */
unlock_ExtINT_logic(void)2649 static inline void __init unlock_ExtINT_logic(void)
2650 {
2651 int apic, pin, i;
2652 struct IO_APIC_route_entry entry0, entry1;
2653 unsigned char save_control, save_freq_select;
2654
2655 pin = find_isa_irq_pin(8, mp_INT);
2656 if (pin == -1) {
2657 WARN_ON_ONCE(1);
2658 return;
2659 }
2660 apic = find_isa_irq_apic(8, mp_INT);
2661 if (apic == -1) {
2662 WARN_ON_ONCE(1);
2663 return;
2664 }
2665
2666 entry0 = ioapic_read_entry(apic, pin);
2667 clear_IO_APIC_pin(apic, pin);
2668
2669 memset(&entry1, 0, sizeof(entry1));
2670
2671 entry1.dest_mode = 0; /* physical delivery */
2672 entry1.mask = 0; /* unmask IRQ now */
2673 entry1.dest = hard_smp_processor_id();
2674 entry1.delivery_mode = dest_ExtINT;
2675 entry1.polarity = entry0.polarity;
2676 entry1.trigger = 0;
2677 entry1.vector = 0;
2678
2679 ioapic_write_entry(apic, pin, entry1);
2680
2681 save_control = CMOS_READ(RTC_CONTROL);
2682 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2683 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2684 RTC_FREQ_SELECT);
2685 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2686
2687 i = 100;
2688 while (i-- > 0) {
2689 mdelay(10);
2690 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2691 i -= 10;
2692 }
2693
2694 CMOS_WRITE(save_control, RTC_CONTROL);
2695 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2696 clear_IO_APIC_pin(apic, pin);
2697
2698 ioapic_write_entry(apic, pin, entry0);
2699 }
2700
2701 static int disable_timer_pin_1 __initdata;
2702 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
disable_timer_pin_setup(char * arg)2703 static int __init disable_timer_pin_setup(char *arg)
2704 {
2705 disable_timer_pin_1 = 1;
2706 return 0;
2707 }
2708 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2709
2710 int timer_through_8259 __initdata;
2711
2712 /*
2713 * This code may look a bit paranoid, but it's supposed to cooperate with
2714 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2715 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2716 * fanatically on his truly buggy board.
2717 *
2718 * FIXME: really need to revamp this for all platforms.
2719 */
check_timer(void)2720 static inline void __init check_timer(void)
2721 {
2722 struct irq_cfg *cfg = irq_get_chip_data(0);
2723 int node = cpu_to_node(0);
2724 int apic1, pin1, apic2, pin2;
2725 unsigned long flags;
2726 int no_pin1 = 0;
2727
2728 local_irq_save(flags);
2729
2730 /*
2731 * get/set the timer IRQ vector:
2732 */
2733 legacy_pic->mask(0);
2734 assign_irq_vector(0, cfg, apic->target_cpus());
2735
2736 /*
2737 * As IRQ0 is to be enabled in the 8259A, the virtual
2738 * wire has to be disabled in the local APIC. Also
2739 * timer interrupts need to be acknowledged manually in
2740 * the 8259A for the i82489DX when using the NMI
2741 * watchdog as that APIC treats NMIs as level-triggered.
2742 * The AEOI mode will finish them in the 8259A
2743 * automatically.
2744 */
2745 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2746 legacy_pic->init(1);
2747
2748 pin1 = find_isa_irq_pin(0, mp_INT);
2749 apic1 = find_isa_irq_apic(0, mp_INT);
2750 pin2 = ioapic_i8259.pin;
2751 apic2 = ioapic_i8259.apic;
2752
2753 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2754 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2755 cfg->vector, apic1, pin1, apic2, pin2);
2756
2757 /*
2758 * Some BIOS writers are clueless and report the ExtINTA
2759 * I/O APIC input from the cascaded 8259A as the timer
2760 * interrupt input. So just in case, if only one pin
2761 * was found above, try it both directly and through the
2762 * 8259A.
2763 */
2764 if (pin1 == -1) {
2765 if (intr_remapping_enabled)
2766 panic("BIOS bug: timer not connected to IO-APIC");
2767 pin1 = pin2;
2768 apic1 = apic2;
2769 no_pin1 = 1;
2770 } else if (pin2 == -1) {
2771 pin2 = pin1;
2772 apic2 = apic1;
2773 }
2774
2775 if (pin1 != -1) {
2776 /*
2777 * Ok, does IRQ0 through the IOAPIC work?
2778 */
2779 if (no_pin1) {
2780 add_pin_to_irq_node(cfg, node, apic1, pin1);
2781 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2782 } else {
2783 /* for edge trigger, setup_ioapic_irq already
2784 * leave it unmasked.
2785 * so only need to unmask if it is level-trigger
2786 * do we really have level trigger timer?
2787 */
2788 int idx;
2789 idx = find_irq_entry(apic1, pin1, mp_INT);
2790 if (idx != -1 && irq_trigger(idx))
2791 unmask_ioapic(cfg);
2792 }
2793 if (timer_irq_works()) {
2794 if (disable_timer_pin_1 > 0)
2795 clear_IO_APIC_pin(0, pin1);
2796 goto out;
2797 }
2798 if (intr_remapping_enabled)
2799 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2800 local_irq_disable();
2801 clear_IO_APIC_pin(apic1, pin1);
2802 if (!no_pin1)
2803 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2804 "8254 timer not connected to IO-APIC\n");
2805
2806 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2807 "(IRQ0) through the 8259A ...\n");
2808 apic_printk(APIC_QUIET, KERN_INFO
2809 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2810 /*
2811 * legacy devices should be connected to IO APIC #0
2812 */
2813 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2814 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2815 legacy_pic->unmask(0);
2816 if (timer_irq_works()) {
2817 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2818 timer_through_8259 = 1;
2819 goto out;
2820 }
2821 /*
2822 * Cleanup, just in case ...
2823 */
2824 local_irq_disable();
2825 legacy_pic->mask(0);
2826 clear_IO_APIC_pin(apic2, pin2);
2827 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2828 }
2829
2830 apic_printk(APIC_QUIET, KERN_INFO
2831 "...trying to set up timer as Virtual Wire IRQ...\n");
2832
2833 lapic_register_intr(0);
2834 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2835 legacy_pic->unmask(0);
2836
2837 if (timer_irq_works()) {
2838 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2839 goto out;
2840 }
2841 local_irq_disable();
2842 legacy_pic->mask(0);
2843 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2844 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2845
2846 apic_printk(APIC_QUIET, KERN_INFO
2847 "...trying to set up timer as ExtINT IRQ...\n");
2848
2849 legacy_pic->init(0);
2850 legacy_pic->make_irq(0);
2851 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2852
2853 unlock_ExtINT_logic();
2854
2855 if (timer_irq_works()) {
2856 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2857 goto out;
2858 }
2859 local_irq_disable();
2860 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2861 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2862 "report. Then try booting with the 'noapic' option.\n");
2863 out:
2864 local_irq_restore(flags);
2865 }
2866
2867 /*
2868 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2869 * to devices. However there may be an I/O APIC pin available for
2870 * this interrupt regardless. The pin may be left unconnected, but
2871 * typically it will be reused as an ExtINT cascade interrupt for
2872 * the master 8259A. In the MPS case such a pin will normally be
2873 * reported as an ExtINT interrupt in the MP table. With ACPI
2874 * there is no provision for ExtINT interrupts, and in the absence
2875 * of an override it would be treated as an ordinary ISA I/O APIC
2876 * interrupt, that is edge-triggered and unmasked by default. We
2877 * used to do this, but it caused problems on some systems because
2878 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2879 * the same ExtINT cascade interrupt to drive the local APIC of the
2880 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2881 * the I/O APIC in all cases now. No actual device should request
2882 * it anyway. --macro
2883 */
2884 #define PIC_IRQS (1UL << PIC_CASCADE_IR)
2885
setup_IO_APIC(void)2886 void __init setup_IO_APIC(void)
2887 {
2888
2889 /*
2890 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2891 */
2892 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2893
2894 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2895 /*
2896 * Set up IO-APIC IRQ routing.
2897 */
2898 x86_init.mpparse.setup_ioapic_ids();
2899
2900 sync_Arb_IDs();
2901 setup_IO_APIC_irqs();
2902 init_IO_APIC_traps();
2903 if (legacy_pic->nr_legacy_irqs)
2904 check_timer();
2905 }
2906
2907 /*
2908 * Called after all the initialization is done. If we didn't find any
2909 * APIC bugs then we can allow the modify fast path
2910 */
2911
io_apic_bug_finalize(void)2912 static int __init io_apic_bug_finalize(void)
2913 {
2914 if (sis_apic_bug == -1)
2915 sis_apic_bug = 0;
2916 return 0;
2917 }
2918
2919 late_initcall(io_apic_bug_finalize);
2920
2921 static struct IO_APIC_route_entry *ioapic_saved_data[MAX_IO_APICS];
2922
suspend_ioapic(int ioapic_id)2923 static void suspend_ioapic(int ioapic_id)
2924 {
2925 struct IO_APIC_route_entry *saved_data = ioapic_saved_data[ioapic_id];
2926 int i;
2927
2928 if (!saved_data)
2929 return;
2930
2931 for (i = 0; i < nr_ioapic_registers[ioapic_id]; i++)
2932 saved_data[i] = ioapic_read_entry(ioapic_id, i);
2933 }
2934
ioapic_suspend(void)2935 static int ioapic_suspend(void)
2936 {
2937 int ioapic_id;
2938
2939 for (ioapic_id = 0; ioapic_id < nr_ioapics; ioapic_id++)
2940 suspend_ioapic(ioapic_id);
2941
2942 return 0;
2943 }
2944
resume_ioapic(int ioapic_id)2945 static void resume_ioapic(int ioapic_id)
2946 {
2947 struct IO_APIC_route_entry *saved_data = ioapic_saved_data[ioapic_id];
2948 unsigned long flags;
2949 union IO_APIC_reg_00 reg_00;
2950 int i;
2951
2952 if (!saved_data)
2953 return;
2954
2955 raw_spin_lock_irqsave(&ioapic_lock, flags);
2956 reg_00.raw = io_apic_read(ioapic_id, 0);
2957 if (reg_00.bits.ID != mp_ioapics[ioapic_id].apicid) {
2958 reg_00.bits.ID = mp_ioapics[ioapic_id].apicid;
2959 io_apic_write(ioapic_id, 0, reg_00.raw);
2960 }
2961 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2962 for (i = 0; i < nr_ioapic_registers[ioapic_id]; i++)
2963 ioapic_write_entry(ioapic_id, i, saved_data[i]);
2964 }
2965
ioapic_resume(void)2966 static void ioapic_resume(void)
2967 {
2968 int ioapic_id;
2969
2970 for (ioapic_id = nr_ioapics - 1; ioapic_id >= 0; ioapic_id--)
2971 resume_ioapic(ioapic_id);
2972 }
2973
2974 static struct syscore_ops ioapic_syscore_ops = {
2975 .suspend = ioapic_suspend,
2976 .resume = ioapic_resume,
2977 };
2978
ioapic_init_ops(void)2979 static int __init ioapic_init_ops(void)
2980 {
2981 int i;
2982
2983 for (i = 0; i < nr_ioapics; i++) {
2984 unsigned int size;
2985
2986 size = nr_ioapic_registers[i]
2987 * sizeof(struct IO_APIC_route_entry);
2988 ioapic_saved_data[i] = kzalloc(size, GFP_KERNEL);
2989 if (!ioapic_saved_data[i])
2990 pr_err("IOAPIC %d: suspend/resume impossible!\n", i);
2991 }
2992
2993 register_syscore_ops(&ioapic_syscore_ops);
2994
2995 return 0;
2996 }
2997
2998 device_initcall(ioapic_init_ops);
2999
3000 /*
3001 * Dynamic irq allocate and deallocation
3002 */
create_irq_nr(unsigned int from,int node)3003 unsigned int create_irq_nr(unsigned int from, int node)
3004 {
3005 struct irq_cfg *cfg;
3006 unsigned long flags;
3007 unsigned int ret = 0;
3008 int irq;
3009
3010 if (from < nr_irqs_gsi)
3011 from = nr_irqs_gsi;
3012
3013 irq = alloc_irq_from(from, node);
3014 if (irq < 0)
3015 return 0;
3016 cfg = alloc_irq_cfg(irq, node);
3017 if (!cfg) {
3018 free_irq_at(irq, NULL);
3019 return 0;
3020 }
3021
3022 raw_spin_lock_irqsave(&vector_lock, flags);
3023 if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3024 ret = irq;
3025 raw_spin_unlock_irqrestore(&vector_lock, flags);
3026
3027 if (ret) {
3028 irq_set_chip_data(irq, cfg);
3029 irq_clear_status_flags(irq, IRQ_NOREQUEST);
3030 } else {
3031 free_irq_at(irq, cfg);
3032 }
3033 return ret;
3034 }
3035
create_irq(void)3036 int create_irq(void)
3037 {
3038 int node = cpu_to_node(0);
3039 unsigned int irq_want;
3040 int irq;
3041
3042 irq_want = nr_irqs_gsi;
3043 irq = create_irq_nr(irq_want, node);
3044
3045 if (irq == 0)
3046 irq = -1;
3047
3048 return irq;
3049 }
3050
destroy_irq(unsigned int irq)3051 void destroy_irq(unsigned int irq)
3052 {
3053 struct irq_cfg *cfg = irq_get_chip_data(irq);
3054 unsigned long flags;
3055
3056 irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3057
3058 if (irq_remapped(cfg))
3059 free_irte(irq);
3060 raw_spin_lock_irqsave(&vector_lock, flags);
3061 __clear_irq_vector(irq, cfg);
3062 raw_spin_unlock_irqrestore(&vector_lock, flags);
3063 free_irq_at(irq, cfg);
3064 }
3065
3066 /*
3067 * MSI message composition
3068 */
3069 #ifdef CONFIG_PCI_MSI
msi_compose_msg(struct pci_dev * pdev,unsigned int irq,struct msi_msg * msg,u8 hpet_id)3070 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3071 struct msi_msg *msg, u8 hpet_id)
3072 {
3073 struct irq_cfg *cfg;
3074 int err;
3075 unsigned dest;
3076
3077 if (disable_apic)
3078 return -ENXIO;
3079
3080 cfg = irq_cfg(irq);
3081 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3082 if (err)
3083 return err;
3084
3085 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3086
3087 if (irq_remapped(cfg)) {
3088 struct irte irte;
3089 int ir_index;
3090 u16 sub_handle;
3091
3092 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3093 BUG_ON(ir_index == -1);
3094
3095 prepare_irte(&irte, cfg->vector, dest);
3096
3097 /* Set source-id of interrupt request */
3098 if (pdev)
3099 set_msi_sid(&irte, pdev);
3100 else
3101 set_hpet_sid(&irte, hpet_id);
3102
3103 modify_irte(irq, &irte);
3104
3105 msg->address_hi = MSI_ADDR_BASE_HI;
3106 msg->data = sub_handle;
3107 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3108 MSI_ADDR_IR_SHV |
3109 MSI_ADDR_IR_INDEX1(ir_index) |
3110 MSI_ADDR_IR_INDEX2(ir_index);
3111 } else {
3112 if (x2apic_enabled())
3113 msg->address_hi = MSI_ADDR_BASE_HI |
3114 MSI_ADDR_EXT_DEST_ID(dest);
3115 else
3116 msg->address_hi = MSI_ADDR_BASE_HI;
3117
3118 msg->address_lo =
3119 MSI_ADDR_BASE_LO |
3120 ((apic->irq_dest_mode == 0) ?
3121 MSI_ADDR_DEST_MODE_PHYSICAL:
3122 MSI_ADDR_DEST_MODE_LOGICAL) |
3123 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3124 MSI_ADDR_REDIRECTION_CPU:
3125 MSI_ADDR_REDIRECTION_LOWPRI) |
3126 MSI_ADDR_DEST_ID(dest);
3127
3128 msg->data =
3129 MSI_DATA_TRIGGER_EDGE |
3130 MSI_DATA_LEVEL_ASSERT |
3131 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3132 MSI_DATA_DELIVERY_FIXED:
3133 MSI_DATA_DELIVERY_LOWPRI) |
3134 MSI_DATA_VECTOR(cfg->vector);
3135 }
3136 return err;
3137 }
3138
3139 #ifdef CONFIG_SMP
3140 static int
msi_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3141 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3142 {
3143 struct irq_cfg *cfg = data->chip_data;
3144 struct msi_msg msg;
3145 unsigned int dest;
3146
3147 if (__ioapic_set_affinity(data, mask, &dest))
3148 return -1;
3149
3150 __get_cached_msi_msg(data->msi_desc, &msg);
3151
3152 msg.data &= ~MSI_DATA_VECTOR_MASK;
3153 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3154 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3155 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3156
3157 __write_msi_msg(data->msi_desc, &msg);
3158
3159 return 0;
3160 }
3161 #ifdef CONFIG_INTR_REMAP
3162 /*
3163 * Migrate the MSI irq to another cpumask. This migration is
3164 * done in the process context using interrupt-remapping hardware.
3165 */
3166 static int
ir_msi_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3167 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3168 bool force)
3169 {
3170 struct irq_cfg *cfg = data->chip_data;
3171 unsigned int dest, irq = data->irq;
3172 struct irte irte;
3173
3174 if (get_irte(irq, &irte))
3175 return -1;
3176
3177 if (__ioapic_set_affinity(data, mask, &dest))
3178 return -1;
3179
3180 irte.vector = cfg->vector;
3181 irte.dest_id = IRTE_DEST(dest);
3182
3183 /*
3184 * atomically update the IRTE with the new destination and vector.
3185 */
3186 modify_irte(irq, &irte);
3187
3188 /*
3189 * After this point, all the interrupts will start arriving
3190 * at the new destination. So, time to cleanup the previous
3191 * vector allocation.
3192 */
3193 if (cfg->move_in_progress)
3194 send_cleanup_vector(cfg);
3195
3196 return 0;
3197 }
3198
3199 #endif
3200 #endif /* CONFIG_SMP */
3201
3202 /*
3203 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3204 * which implement the MSI or MSI-X Capability Structure.
3205 */
3206 static struct irq_chip msi_chip = {
3207 .name = "PCI-MSI",
3208 .irq_unmask = unmask_msi_irq,
3209 .irq_mask = mask_msi_irq,
3210 .irq_ack = ack_apic_edge,
3211 #ifdef CONFIG_SMP
3212 .irq_set_affinity = msi_set_affinity,
3213 #endif
3214 .irq_retrigger = ioapic_retrigger_irq,
3215 };
3216
3217 static struct irq_chip msi_ir_chip = {
3218 .name = "IR-PCI-MSI",
3219 .irq_unmask = unmask_msi_irq,
3220 .irq_mask = mask_msi_irq,
3221 #ifdef CONFIG_INTR_REMAP
3222 .irq_ack = ir_ack_apic_edge,
3223 #ifdef CONFIG_SMP
3224 .irq_set_affinity = ir_msi_set_affinity,
3225 #endif
3226 #endif
3227 .irq_retrigger = ioapic_retrigger_irq,
3228 };
3229
3230 /*
3231 * Map the PCI dev to the corresponding remapping hardware unit
3232 * and allocate 'nvec' consecutive interrupt-remapping table entries
3233 * in it.
3234 */
msi_alloc_irte(struct pci_dev * dev,int irq,int nvec)3235 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3236 {
3237 struct intel_iommu *iommu;
3238 int index;
3239
3240 iommu = map_dev_to_ir(dev);
3241 if (!iommu) {
3242 printk(KERN_ERR
3243 "Unable to map PCI %s to iommu\n", pci_name(dev));
3244 return -ENOENT;
3245 }
3246
3247 index = alloc_irte(iommu, irq, nvec);
3248 if (index < 0) {
3249 printk(KERN_ERR
3250 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3251 pci_name(dev));
3252 return -ENOSPC;
3253 }
3254 return index;
3255 }
3256
setup_msi_irq(struct pci_dev * dev,struct msi_desc * msidesc,int irq)3257 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3258 {
3259 struct irq_chip *chip = &msi_chip;
3260 struct msi_msg msg;
3261 int ret;
3262
3263 ret = msi_compose_msg(dev, irq, &msg, -1);
3264 if (ret < 0)
3265 return ret;
3266
3267 irq_set_msi_desc(irq, msidesc);
3268 write_msi_msg(irq, &msg);
3269
3270 if (irq_remapped(irq_get_chip_data(irq))) {
3271 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3272 chip = &msi_ir_chip;
3273 }
3274
3275 irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3276
3277 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3278
3279 return 0;
3280 }
3281
native_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)3282 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3283 {
3284 int node, ret, sub_handle, index = 0;
3285 unsigned int irq, irq_want;
3286 struct msi_desc *msidesc;
3287 struct intel_iommu *iommu = NULL;
3288
3289 /* x86 doesn't support multiple MSI yet */
3290 if (type == PCI_CAP_ID_MSI && nvec > 1)
3291 return 1;
3292
3293 node = dev_to_node(&dev->dev);
3294 irq_want = nr_irqs_gsi;
3295 sub_handle = 0;
3296 list_for_each_entry(msidesc, &dev->msi_list, list) {
3297 irq = create_irq_nr(irq_want, node);
3298 if (irq == 0)
3299 return -1;
3300 irq_want = irq + 1;
3301 if (!intr_remapping_enabled)
3302 goto no_ir;
3303
3304 if (!sub_handle) {
3305 /*
3306 * allocate the consecutive block of IRTE's
3307 * for 'nvec'
3308 */
3309 index = msi_alloc_irte(dev, irq, nvec);
3310 if (index < 0) {
3311 ret = index;
3312 goto error;
3313 }
3314 } else {
3315 iommu = map_dev_to_ir(dev);
3316 if (!iommu) {
3317 ret = -ENOENT;
3318 goto error;
3319 }
3320 /*
3321 * setup the mapping between the irq and the IRTE
3322 * base index, the sub_handle pointing to the
3323 * appropriate interrupt remap table entry.
3324 */
3325 set_irte_irq(irq, iommu, index, sub_handle);
3326 }
3327 no_ir:
3328 ret = setup_msi_irq(dev, msidesc, irq);
3329 if (ret < 0)
3330 goto error;
3331 sub_handle++;
3332 }
3333 return 0;
3334
3335 error:
3336 destroy_irq(irq);
3337 return ret;
3338 }
3339
native_teardown_msi_irq(unsigned int irq)3340 void native_teardown_msi_irq(unsigned int irq)
3341 {
3342 destroy_irq(irq);
3343 }
3344
3345 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3346 #ifdef CONFIG_SMP
3347 static int
dmar_msi_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3348 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3349 bool force)
3350 {
3351 struct irq_cfg *cfg = data->chip_data;
3352 unsigned int dest, irq = data->irq;
3353 struct msi_msg msg;
3354
3355 if (__ioapic_set_affinity(data, mask, &dest))
3356 return -1;
3357
3358 dmar_msi_read(irq, &msg);
3359
3360 msg.data &= ~MSI_DATA_VECTOR_MASK;
3361 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3362 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3363 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3364 msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3365
3366 dmar_msi_write(irq, &msg);
3367
3368 return 0;
3369 }
3370
3371 #endif /* CONFIG_SMP */
3372
3373 static struct irq_chip dmar_msi_type = {
3374 .name = "DMAR_MSI",
3375 .irq_unmask = dmar_msi_unmask,
3376 .irq_mask = dmar_msi_mask,
3377 .irq_ack = ack_apic_edge,
3378 #ifdef CONFIG_SMP
3379 .irq_set_affinity = dmar_msi_set_affinity,
3380 #endif
3381 .irq_retrigger = ioapic_retrigger_irq,
3382 };
3383
arch_setup_dmar_msi(unsigned int irq)3384 int arch_setup_dmar_msi(unsigned int irq)
3385 {
3386 int ret;
3387 struct msi_msg msg;
3388
3389 ret = msi_compose_msg(NULL, irq, &msg, -1);
3390 if (ret < 0)
3391 return ret;
3392 dmar_msi_write(irq, &msg);
3393 irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3394 "edge");
3395 return 0;
3396 }
3397 #endif
3398
3399 #ifdef CONFIG_HPET_TIMER
3400
3401 #ifdef CONFIG_SMP
hpet_msi_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3402 static int hpet_msi_set_affinity(struct irq_data *data,
3403 const struct cpumask *mask, bool force)
3404 {
3405 struct irq_cfg *cfg = data->chip_data;
3406 struct msi_msg msg;
3407 unsigned int dest;
3408
3409 if (__ioapic_set_affinity(data, mask, &dest))
3410 return -1;
3411
3412 hpet_msi_read(data->handler_data, &msg);
3413
3414 msg.data &= ~MSI_DATA_VECTOR_MASK;
3415 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3416 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3417 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3418
3419 hpet_msi_write(data->handler_data, &msg);
3420
3421 return 0;
3422 }
3423
3424 #endif /* CONFIG_SMP */
3425
3426 static struct irq_chip ir_hpet_msi_type = {
3427 .name = "IR-HPET_MSI",
3428 .irq_unmask = hpet_msi_unmask,
3429 .irq_mask = hpet_msi_mask,
3430 #ifdef CONFIG_INTR_REMAP
3431 .irq_ack = ir_ack_apic_edge,
3432 #ifdef CONFIG_SMP
3433 .irq_set_affinity = ir_msi_set_affinity,
3434 #endif
3435 #endif
3436 .irq_retrigger = ioapic_retrigger_irq,
3437 };
3438
3439 static struct irq_chip hpet_msi_type = {
3440 .name = "HPET_MSI",
3441 .irq_unmask = hpet_msi_unmask,
3442 .irq_mask = hpet_msi_mask,
3443 .irq_ack = ack_apic_edge,
3444 #ifdef CONFIG_SMP
3445 .irq_set_affinity = hpet_msi_set_affinity,
3446 #endif
3447 .irq_retrigger = ioapic_retrigger_irq,
3448 };
3449
arch_setup_hpet_msi(unsigned int irq,unsigned int id)3450 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3451 {
3452 struct irq_chip *chip = &hpet_msi_type;
3453 struct msi_msg msg;
3454 int ret;
3455
3456 if (intr_remapping_enabled) {
3457 struct intel_iommu *iommu = map_hpet_to_ir(id);
3458 int index;
3459
3460 if (!iommu)
3461 return -1;
3462
3463 index = alloc_irte(iommu, irq, 1);
3464 if (index < 0)
3465 return -1;
3466 }
3467
3468 ret = msi_compose_msg(NULL, irq, &msg, id);
3469 if (ret < 0)
3470 return ret;
3471
3472 hpet_msi_write(irq_get_handler_data(irq), &msg);
3473 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3474 if (irq_remapped(irq_get_chip_data(irq)))
3475 chip = &ir_hpet_msi_type;
3476
3477 irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3478 return 0;
3479 }
3480 #endif
3481
3482 #endif /* CONFIG_PCI_MSI */
3483 /*
3484 * Hypertransport interrupt support
3485 */
3486 #ifdef CONFIG_HT_IRQ
3487
3488 #ifdef CONFIG_SMP
3489
target_ht_irq(unsigned int irq,unsigned int dest,u8 vector)3490 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3491 {
3492 struct ht_irq_msg msg;
3493 fetch_ht_irq_msg(irq, &msg);
3494
3495 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3496 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3497
3498 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3499 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3500
3501 write_ht_irq_msg(irq, &msg);
3502 }
3503
3504 static int
ht_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3505 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3506 {
3507 struct irq_cfg *cfg = data->chip_data;
3508 unsigned int dest;
3509
3510 if (__ioapic_set_affinity(data, mask, &dest))
3511 return -1;
3512
3513 target_ht_irq(data->irq, dest, cfg->vector);
3514 return 0;
3515 }
3516
3517 #endif
3518
3519 static struct irq_chip ht_irq_chip = {
3520 .name = "PCI-HT",
3521 .irq_mask = mask_ht_irq,
3522 .irq_unmask = unmask_ht_irq,
3523 .irq_ack = ack_apic_edge,
3524 #ifdef CONFIG_SMP
3525 .irq_set_affinity = ht_set_affinity,
3526 #endif
3527 .irq_retrigger = ioapic_retrigger_irq,
3528 };
3529
arch_setup_ht_irq(unsigned int irq,struct pci_dev * dev)3530 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3531 {
3532 struct irq_cfg *cfg;
3533 int err;
3534
3535 if (disable_apic)
3536 return -ENXIO;
3537
3538 cfg = irq_cfg(irq);
3539 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3540 if (!err) {
3541 struct ht_irq_msg msg;
3542 unsigned dest;
3543
3544 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3545 apic->target_cpus());
3546
3547 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3548
3549 msg.address_lo =
3550 HT_IRQ_LOW_BASE |
3551 HT_IRQ_LOW_DEST_ID(dest) |
3552 HT_IRQ_LOW_VECTOR(cfg->vector) |
3553 ((apic->irq_dest_mode == 0) ?
3554 HT_IRQ_LOW_DM_PHYSICAL :
3555 HT_IRQ_LOW_DM_LOGICAL) |
3556 HT_IRQ_LOW_RQEOI_EDGE |
3557 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3558 HT_IRQ_LOW_MT_FIXED :
3559 HT_IRQ_LOW_MT_ARBITRATED) |
3560 HT_IRQ_LOW_IRQ_MASKED;
3561
3562 write_ht_irq_msg(irq, &msg);
3563
3564 irq_set_chip_and_handler_name(irq, &ht_irq_chip,
3565 handle_edge_irq, "edge");
3566
3567 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3568 }
3569 return err;
3570 }
3571 #endif /* CONFIG_HT_IRQ */
3572
3573 static int
io_apic_setup_irq_pin(unsigned int irq,int node,struct io_apic_irq_attr * attr)3574 io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
3575 {
3576 struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
3577 int ret;
3578
3579 if (!cfg)
3580 return -EINVAL;
3581 ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
3582 if (!ret)
3583 setup_ioapic_irq(attr->ioapic, attr->ioapic_pin, irq, cfg,
3584 attr->trigger, attr->polarity);
3585 return ret;
3586 }
3587
io_apic_setup_irq_pin_once(unsigned int irq,int node,struct io_apic_irq_attr * attr)3588 int io_apic_setup_irq_pin_once(unsigned int irq, int node,
3589 struct io_apic_irq_attr *attr)
3590 {
3591 unsigned int id = attr->ioapic, pin = attr->ioapic_pin;
3592 int ret;
3593
3594 /* Avoid redundant programming */
3595 if (test_bit(pin, mp_ioapic_routing[id].pin_programmed)) {
3596 pr_debug("Pin %d-%d already programmed\n",
3597 mp_ioapics[id].apicid, pin);
3598 return 0;
3599 }
3600 ret = io_apic_setup_irq_pin(irq, node, attr);
3601 if (!ret)
3602 set_bit(pin, mp_ioapic_routing[id].pin_programmed);
3603 return ret;
3604 }
3605
io_apic_get_redir_entries(int ioapic)3606 static int __init io_apic_get_redir_entries(int ioapic)
3607 {
3608 union IO_APIC_reg_01 reg_01;
3609 unsigned long flags;
3610
3611 raw_spin_lock_irqsave(&ioapic_lock, flags);
3612 reg_01.raw = io_apic_read(ioapic, 1);
3613 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3614
3615 /* The register returns the maximum index redir index
3616 * supported, which is one less than the total number of redir
3617 * entries.
3618 */
3619 return reg_01.bits.entries + 1;
3620 }
3621
probe_nr_irqs_gsi(void)3622 static void __init probe_nr_irqs_gsi(void)
3623 {
3624 int nr;
3625
3626 nr = gsi_top + NR_IRQS_LEGACY;
3627 if (nr > nr_irqs_gsi)
3628 nr_irqs_gsi = nr;
3629
3630 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3631 }
3632
get_nr_irqs_gsi(void)3633 int get_nr_irqs_gsi(void)
3634 {
3635 return nr_irqs_gsi;
3636 }
3637
3638 #ifdef CONFIG_SPARSE_IRQ
arch_probe_nr_irqs(void)3639 int __init arch_probe_nr_irqs(void)
3640 {
3641 int nr;
3642
3643 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3644 nr_irqs = NR_VECTORS * nr_cpu_ids;
3645
3646 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3647 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3648 /*
3649 * for MSI and HT dyn irq
3650 */
3651 nr += nr_irqs_gsi * 16;
3652 #endif
3653 if (nr < nr_irqs)
3654 nr_irqs = nr;
3655
3656 return NR_IRQS_LEGACY;
3657 }
3658 #endif
3659
io_apic_set_pci_routing(struct device * dev,int irq,struct io_apic_irq_attr * irq_attr)3660 int io_apic_set_pci_routing(struct device *dev, int irq,
3661 struct io_apic_irq_attr *irq_attr)
3662 {
3663 int node;
3664
3665 if (!IO_APIC_IRQ(irq)) {
3666 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3667 irq_attr->ioapic);
3668 return -EINVAL;
3669 }
3670
3671 node = dev ? dev_to_node(dev) : cpu_to_node(0);
3672
3673 return io_apic_setup_irq_pin_once(irq, node, irq_attr);
3674 }
3675
3676 #ifdef CONFIG_X86_32
io_apic_get_unique_id(int ioapic,int apic_id)3677 static int __init io_apic_get_unique_id(int ioapic, int apic_id)
3678 {
3679 union IO_APIC_reg_00 reg_00;
3680 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3681 physid_mask_t tmp;
3682 unsigned long flags;
3683 int i = 0;
3684
3685 /*
3686 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3687 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3688 * supports up to 16 on one shared APIC bus.
3689 *
3690 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3691 * advantage of new APIC bus architecture.
3692 */
3693
3694 if (physids_empty(apic_id_map))
3695 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3696
3697 raw_spin_lock_irqsave(&ioapic_lock, flags);
3698 reg_00.raw = io_apic_read(ioapic, 0);
3699 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3700
3701 if (apic_id >= get_physical_broadcast()) {
3702 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3703 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3704 apic_id = reg_00.bits.ID;
3705 }
3706
3707 /*
3708 * Every APIC in a system must have a unique ID or we get lots of nice
3709 * 'stuck on smp_invalidate_needed IPI wait' messages.
3710 */
3711 if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3712
3713 for (i = 0; i < get_physical_broadcast(); i++) {
3714 if (!apic->check_apicid_used(&apic_id_map, i))
3715 break;
3716 }
3717
3718 if (i == get_physical_broadcast())
3719 panic("Max apic_id exceeded!\n");
3720
3721 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3722 "trying %d\n", ioapic, apic_id, i);
3723
3724 apic_id = i;
3725 }
3726
3727 apic->apicid_to_cpu_present(apic_id, &tmp);
3728 physids_or(apic_id_map, apic_id_map, tmp);
3729
3730 if (reg_00.bits.ID != apic_id) {
3731 reg_00.bits.ID = apic_id;
3732
3733 raw_spin_lock_irqsave(&ioapic_lock, flags);
3734 io_apic_write(ioapic, 0, reg_00.raw);
3735 reg_00.raw = io_apic_read(ioapic, 0);
3736 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3737
3738 /* Sanity check */
3739 if (reg_00.bits.ID != apic_id) {
3740 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3741 return -1;
3742 }
3743 }
3744
3745 apic_printk(APIC_VERBOSE, KERN_INFO
3746 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3747
3748 return apic_id;
3749 }
3750
io_apic_unique_id(u8 id)3751 static u8 __init io_apic_unique_id(u8 id)
3752 {
3753 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3754 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3755 return io_apic_get_unique_id(nr_ioapics, id);
3756 else
3757 return id;
3758 }
3759 #else
io_apic_unique_id(u8 id)3760 static u8 __init io_apic_unique_id(u8 id)
3761 {
3762 int i;
3763 DECLARE_BITMAP(used, 256);
3764
3765 bitmap_zero(used, 256);
3766 for (i = 0; i < nr_ioapics; i++) {
3767 struct mpc_ioapic *ia = &mp_ioapics[i];
3768 __set_bit(ia->apicid, used);
3769 }
3770 if (!test_bit(id, used))
3771 return id;
3772 return find_first_zero_bit(used, 256);
3773 }
3774 #endif
3775
io_apic_get_version(int ioapic)3776 static int __init io_apic_get_version(int ioapic)
3777 {
3778 union IO_APIC_reg_01 reg_01;
3779 unsigned long flags;
3780
3781 raw_spin_lock_irqsave(&ioapic_lock, flags);
3782 reg_01.raw = io_apic_read(ioapic, 1);
3783 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3784
3785 return reg_01.bits.version;
3786 }
3787
acpi_get_override_irq(u32 gsi,int * trigger,int * polarity)3788 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3789 {
3790 int ioapic, pin, idx;
3791
3792 if (skip_ioapic_setup)
3793 return -1;
3794
3795 ioapic = mp_find_ioapic(gsi);
3796 if (ioapic < 0)
3797 return -1;
3798
3799 pin = mp_find_ioapic_pin(ioapic, gsi);
3800 if (pin < 0)
3801 return -1;
3802
3803 idx = find_irq_entry(ioapic, pin, mp_INT);
3804 if (idx < 0)
3805 return -1;
3806
3807 *trigger = irq_trigger(idx);
3808 *polarity = irq_polarity(idx);
3809 return 0;
3810 }
3811
3812 /*
3813 * This function currently is only a helper for the i386 smp boot process where
3814 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3815 * so mask in all cases should simply be apic->target_cpus()
3816 */
3817 #ifdef CONFIG_SMP
setup_ioapic_dest(void)3818 void __init setup_ioapic_dest(void)
3819 {
3820 int pin, ioapic, irq, irq_entry;
3821 const struct cpumask *mask;
3822 struct irq_data *idata;
3823
3824 if (skip_ioapic_setup == 1)
3825 return;
3826
3827 for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3828 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3829 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3830 if (irq_entry == -1)
3831 continue;
3832 irq = pin_2_irq(irq_entry, ioapic, pin);
3833
3834 if ((ioapic > 0) && (irq > 16))
3835 continue;
3836
3837 idata = irq_get_irq_data(irq);
3838
3839 /*
3840 * Honour affinities which have been set in early boot
3841 */
3842 if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata))
3843 mask = idata->affinity;
3844 else
3845 mask = apic->target_cpus();
3846
3847 if (intr_remapping_enabled)
3848 ir_ioapic_set_affinity(idata, mask, false);
3849 else
3850 ioapic_set_affinity(idata, mask, false);
3851 }
3852
3853 }
3854 #endif
3855
3856 #define IOAPIC_RESOURCE_NAME_SIZE 11
3857
3858 static struct resource *ioapic_resources;
3859
ioapic_setup_resources(int nr_ioapics)3860 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3861 {
3862 unsigned long n;
3863 struct resource *res;
3864 char *mem;
3865 int i;
3866
3867 if (nr_ioapics <= 0)
3868 return NULL;
3869
3870 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3871 n *= nr_ioapics;
3872
3873 mem = alloc_bootmem(n);
3874 res = (void *)mem;
3875
3876 mem += sizeof(struct resource) * nr_ioapics;
3877
3878 for (i = 0; i < nr_ioapics; i++) {
3879 res[i].name = mem;
3880 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3881 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3882 mem += IOAPIC_RESOURCE_NAME_SIZE;
3883 }
3884
3885 ioapic_resources = res;
3886
3887 return res;
3888 }
3889
ioapic_and_gsi_init(void)3890 void __init ioapic_and_gsi_init(void)
3891 {
3892 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3893 struct resource *ioapic_res;
3894 int i;
3895
3896 ioapic_res = ioapic_setup_resources(nr_ioapics);
3897 for (i = 0; i < nr_ioapics; i++) {
3898 if (smp_found_config) {
3899 ioapic_phys = mp_ioapics[i].apicaddr;
3900 #ifdef CONFIG_X86_32
3901 if (!ioapic_phys) {
3902 printk(KERN_ERR
3903 "WARNING: bogus zero IO-APIC "
3904 "address found in MPTABLE, "
3905 "disabling IO/APIC support!\n");
3906 smp_found_config = 0;
3907 skip_ioapic_setup = 1;
3908 goto fake_ioapic_page;
3909 }
3910 #endif
3911 } else {
3912 #ifdef CONFIG_X86_32
3913 fake_ioapic_page:
3914 #endif
3915 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3916 ioapic_phys = __pa(ioapic_phys);
3917 }
3918 set_fixmap_nocache(idx, ioapic_phys);
3919 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3920 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3921 ioapic_phys);
3922 idx++;
3923
3924 ioapic_res->start = ioapic_phys;
3925 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3926 ioapic_res++;
3927 }
3928
3929 probe_nr_irqs_gsi();
3930 }
3931
ioapic_insert_resources(void)3932 void __init ioapic_insert_resources(void)
3933 {
3934 int i;
3935 struct resource *r = ioapic_resources;
3936
3937 if (!r) {
3938 if (nr_ioapics > 0)
3939 printk(KERN_ERR
3940 "IO APIC resources couldn't be allocated.\n");
3941 return;
3942 }
3943
3944 for (i = 0; i < nr_ioapics; i++) {
3945 insert_resource(&iomem_resource, r);
3946 r++;
3947 }
3948 }
3949
mp_find_ioapic(u32 gsi)3950 int mp_find_ioapic(u32 gsi)
3951 {
3952 int i = 0;
3953
3954 if (nr_ioapics == 0)
3955 return -1;
3956
3957 /* Find the IOAPIC that manages this GSI. */
3958 for (i = 0; i < nr_ioapics; i++) {
3959 if ((gsi >= mp_gsi_routing[i].gsi_base)
3960 && (gsi <= mp_gsi_routing[i].gsi_end))
3961 return i;
3962 }
3963
3964 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3965 return -1;
3966 }
3967
mp_find_ioapic_pin(int ioapic,u32 gsi)3968 int mp_find_ioapic_pin(int ioapic, u32 gsi)
3969 {
3970 if (WARN_ON(ioapic == -1))
3971 return -1;
3972 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
3973 return -1;
3974
3975 return gsi - mp_gsi_routing[ioapic].gsi_base;
3976 }
3977
bad_ioapic(unsigned long address)3978 static __init int bad_ioapic(unsigned long address)
3979 {
3980 if (nr_ioapics >= MAX_IO_APICS) {
3981 printk(KERN_WARNING "WARNING: Max # of I/O APICs (%d) exceeded "
3982 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
3983 return 1;
3984 }
3985 if (!address) {
3986 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
3987 " found in table, skipping!\n");
3988 return 1;
3989 }
3990 return 0;
3991 }
3992
mp_register_ioapic(int id,u32 address,u32 gsi_base)3993 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
3994 {
3995 int idx = 0;
3996 int entries;
3997
3998 if (bad_ioapic(address))
3999 return;
4000
4001 idx = nr_ioapics;
4002
4003 mp_ioapics[idx].type = MP_IOAPIC;
4004 mp_ioapics[idx].flags = MPC_APIC_USABLE;
4005 mp_ioapics[idx].apicaddr = address;
4006
4007 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4008 mp_ioapics[idx].apicid = io_apic_unique_id(id);
4009 mp_ioapics[idx].apicver = io_apic_get_version(idx);
4010
4011 /*
4012 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4013 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4014 */
4015 entries = io_apic_get_redir_entries(idx);
4016 mp_gsi_routing[idx].gsi_base = gsi_base;
4017 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4018
4019 /*
4020 * The number of IO-APIC IRQ registers (== #pins):
4021 */
4022 nr_ioapic_registers[idx] = entries;
4023
4024 if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4025 gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4026
4027 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4028 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4029 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4030 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4031
4032 nr_ioapics++;
4033 }
4034
4035 /* Enable IOAPIC early just for system timer */
pre_init_apic_IRQ0(void)4036 void __init pre_init_apic_IRQ0(void)
4037 {
4038 struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
4039
4040 printk(KERN_INFO "Early APIC setup for system timer0\n");
4041 #ifndef CONFIG_SMP
4042 physid_set_mask_of_physid(boot_cpu_physical_apicid,
4043 &phys_cpu_present_map);
4044 #endif
4045 setup_local_APIC();
4046
4047 io_apic_setup_irq_pin(0, 0, &attr);
4048 irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
4049 "edge");
4050 }
4051