1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
pid_entry_count_dirs(const struct pid_entry * entries,unsigned int n)137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
get_task_root(struct task_struct * task,struct path * root)152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
proc_cwd_link(struct inode * inode,struct path * path)165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
proc_root_link(struct inode * inode,struct path * path)182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
__check_mem_permission(struct task_struct * task)194 static struct mm_struct *__check_mem_permission(struct task_struct *task)
195 {
196 	struct mm_struct *mm;
197 
198 	mm = get_task_mm(task);
199 	if (!mm)
200 		return ERR_PTR(-EINVAL);
201 
202 	/*
203 	 * A task can always look at itself, in case it chooses
204 	 * to use system calls instead of load instructions.
205 	 */
206 	if (task == current)
207 		return mm;
208 
209 	/*
210 	 * If current is actively ptrace'ing, and would also be
211 	 * permitted to freshly attach with ptrace now, permit it.
212 	 */
213 	if (task_is_stopped_or_traced(task)) {
214 		int match;
215 		rcu_read_lock();
216 		match = (tracehook_tracer_task(task) == current);
217 		rcu_read_unlock();
218 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
219 			return mm;
220 	}
221 
222 	/*
223 	 * No one else is allowed.
224 	 */
225 	mmput(mm);
226 	return ERR_PTR(-EPERM);
227 }
228 
229 /*
230  * If current may access user memory in @task return a reference to the
231  * corresponding mm, otherwise ERR_PTR.
232  */
check_mem_permission(struct task_struct * task)233 static struct mm_struct *check_mem_permission(struct task_struct *task)
234 {
235 	struct mm_struct *mm;
236 	int err;
237 
238 	/*
239 	 * Avoid racing if task exec's as we might get a new mm but validate
240 	 * against old credentials.
241 	 */
242 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
243 	if (err)
244 		return ERR_PTR(err);
245 
246 	mm = __check_mem_permission(task);
247 	mutex_unlock(&task->signal->cred_guard_mutex);
248 
249 	return mm;
250 }
251 
mm_for_maps(struct task_struct * task)252 struct mm_struct *mm_for_maps(struct task_struct *task)
253 {
254 	struct mm_struct *mm;
255 	int err;
256 
257 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
258 	if (err)
259 		return ERR_PTR(err);
260 
261 	mm = get_task_mm(task);
262 	if (mm && mm != current->mm &&
263 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
264 		mmput(mm);
265 		mm = ERR_PTR(-EACCES);
266 	}
267 	mutex_unlock(&task->signal->cred_guard_mutex);
268 
269 	return mm;
270 }
271 
proc_pid_cmdline(struct task_struct * task,char * buffer)272 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
273 {
274 	int res = 0;
275 	unsigned int len;
276 	struct mm_struct *mm = get_task_mm(task);
277 	if (!mm)
278 		goto out;
279 	if (!mm->arg_end)
280 		goto out_mm;	/* Shh! No looking before we're done */
281 
282  	len = mm->arg_end - mm->arg_start;
283 
284 	if (len > PAGE_SIZE)
285 		len = PAGE_SIZE;
286 
287 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
288 
289 	// If the nul at the end of args has been overwritten, then
290 	// assume application is using setproctitle(3).
291 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
292 		len = strnlen(buffer, res);
293 		if (len < res) {
294 		    res = len;
295 		} else {
296 			len = mm->env_end - mm->env_start;
297 			if (len > PAGE_SIZE - res)
298 				len = PAGE_SIZE - res;
299 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
300 			res = strnlen(buffer, res);
301 		}
302 	}
303 out_mm:
304 	mmput(mm);
305 out:
306 	return res;
307 }
308 
proc_pid_auxv(struct task_struct * task,char * buffer)309 static int proc_pid_auxv(struct task_struct *task, char *buffer)
310 {
311 	struct mm_struct *mm = mm_for_maps(task);
312 	int res = PTR_ERR(mm);
313 	if (mm && !IS_ERR(mm)) {
314 		unsigned int nwords = 0;
315 		do {
316 			nwords += 2;
317 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
318 		res = nwords * sizeof(mm->saved_auxv[0]);
319 		if (res > PAGE_SIZE)
320 			res = PAGE_SIZE;
321 		memcpy(buffer, mm->saved_auxv, res);
322 		mmput(mm);
323 	}
324 	return res;
325 }
326 
327 
328 #ifdef CONFIG_KALLSYMS
329 /*
330  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
331  * Returns the resolved symbol.  If that fails, simply return the address.
332  */
proc_pid_wchan(struct task_struct * task,char * buffer)333 static int proc_pid_wchan(struct task_struct *task, char *buffer)
334 {
335 	unsigned long wchan;
336 	char symname[KSYM_NAME_LEN];
337 
338 	wchan = get_wchan(task);
339 
340 	if (lookup_symbol_name(wchan, symname) < 0)
341 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
342 			return 0;
343 		else
344 			return sprintf(buffer, "%lu", wchan);
345 	else
346 		return sprintf(buffer, "%s", symname);
347 }
348 #endif /* CONFIG_KALLSYMS */
349 
lock_trace(struct task_struct * task)350 static int lock_trace(struct task_struct *task)
351 {
352 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
353 	if (err)
354 		return err;
355 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
356 		mutex_unlock(&task->signal->cred_guard_mutex);
357 		return -EPERM;
358 	}
359 	return 0;
360 }
361 
unlock_trace(struct task_struct * task)362 static void unlock_trace(struct task_struct *task)
363 {
364 	mutex_unlock(&task->signal->cred_guard_mutex);
365 }
366 
367 #ifdef CONFIG_STACKTRACE
368 
369 #define MAX_STACK_TRACE_DEPTH	64
370 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)371 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
372 			  struct pid *pid, struct task_struct *task)
373 {
374 	struct stack_trace trace;
375 	unsigned long *entries;
376 	int err;
377 	int i;
378 
379 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
380 	if (!entries)
381 		return -ENOMEM;
382 
383 	trace.nr_entries	= 0;
384 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
385 	trace.entries		= entries;
386 	trace.skip		= 0;
387 
388 	err = lock_trace(task);
389 	if (!err) {
390 		save_stack_trace_tsk(task, &trace);
391 
392 		for (i = 0; i < trace.nr_entries; i++) {
393 			seq_printf(m, "[<%pK>] %pS\n",
394 				   (void *)entries[i], (void *)entries[i]);
395 		}
396 		unlock_trace(task);
397 	}
398 	kfree(entries);
399 
400 	return err;
401 }
402 #endif
403 
404 #ifdef CONFIG_SCHEDSTATS
405 /*
406  * Provides /proc/PID/schedstat
407  */
proc_pid_schedstat(struct task_struct * task,char * buffer)408 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
409 {
410 	return sprintf(buffer, "%llu %llu %lu\n",
411 			(unsigned long long)task->se.sum_exec_runtime,
412 			(unsigned long long)task->sched_info.run_delay,
413 			task->sched_info.pcount);
414 }
415 #endif
416 
417 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)418 static int lstats_show_proc(struct seq_file *m, void *v)
419 {
420 	int i;
421 	struct inode *inode = m->private;
422 	struct task_struct *task = get_proc_task(inode);
423 
424 	if (!task)
425 		return -ESRCH;
426 	seq_puts(m, "Latency Top version : v0.1\n");
427 	for (i = 0; i < 32; i++) {
428 		struct latency_record *lr = &task->latency_record[i];
429 		if (lr->backtrace[0]) {
430 			int q;
431 			seq_printf(m, "%i %li %li",
432 				   lr->count, lr->time, lr->max);
433 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
434 				unsigned long bt = lr->backtrace[q];
435 				if (!bt)
436 					break;
437 				if (bt == ULONG_MAX)
438 					break;
439 				seq_printf(m, " %ps", (void *)bt);
440 			}
441 			seq_putc(m, '\n');
442 		}
443 
444 	}
445 	put_task_struct(task);
446 	return 0;
447 }
448 
lstats_open(struct inode * inode,struct file * file)449 static int lstats_open(struct inode *inode, struct file *file)
450 {
451 	return single_open(file, lstats_show_proc, inode);
452 }
453 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)454 static ssize_t lstats_write(struct file *file, const char __user *buf,
455 			    size_t count, loff_t *offs)
456 {
457 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
458 
459 	if (!task)
460 		return -ESRCH;
461 	clear_all_latency_tracing(task);
462 	put_task_struct(task);
463 
464 	return count;
465 }
466 
467 static const struct file_operations proc_lstats_operations = {
468 	.open		= lstats_open,
469 	.read		= seq_read,
470 	.write		= lstats_write,
471 	.llseek		= seq_lseek,
472 	.release	= single_release,
473 };
474 
475 #endif
476 
proc_oom_score(struct task_struct * task,char * buffer)477 static int proc_oom_score(struct task_struct *task, char *buffer)
478 {
479 	unsigned long points = 0;
480 
481 	read_lock(&tasklist_lock);
482 	if (pid_alive(task))
483 		points = oom_badness(task, NULL, NULL,
484 					totalram_pages + total_swap_pages);
485 	read_unlock(&tasklist_lock);
486 	return sprintf(buffer, "%lu\n", points);
487 }
488 
489 struct limit_names {
490 	char *name;
491 	char *unit;
492 };
493 
494 static const struct limit_names lnames[RLIM_NLIMITS] = {
495 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
496 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
497 	[RLIMIT_DATA] = {"Max data size", "bytes"},
498 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
499 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
500 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
501 	[RLIMIT_NPROC] = {"Max processes", "processes"},
502 	[RLIMIT_NOFILE] = {"Max open files", "files"},
503 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
504 	[RLIMIT_AS] = {"Max address space", "bytes"},
505 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
506 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
507 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
508 	[RLIMIT_NICE] = {"Max nice priority", NULL},
509 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
510 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
511 };
512 
513 /* Display limits for a process */
proc_pid_limits(struct task_struct * task,char * buffer)514 static int proc_pid_limits(struct task_struct *task, char *buffer)
515 {
516 	unsigned int i;
517 	int count = 0;
518 	unsigned long flags;
519 	char *bufptr = buffer;
520 
521 	struct rlimit rlim[RLIM_NLIMITS];
522 
523 	if (!lock_task_sighand(task, &flags))
524 		return 0;
525 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
526 	unlock_task_sighand(task, &flags);
527 
528 	/*
529 	 * print the file header
530 	 */
531 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
532 			"Limit", "Soft Limit", "Hard Limit", "Units");
533 
534 	for (i = 0; i < RLIM_NLIMITS; i++) {
535 		if (rlim[i].rlim_cur == RLIM_INFINITY)
536 			count += sprintf(&bufptr[count], "%-25s %-20s ",
537 					 lnames[i].name, "unlimited");
538 		else
539 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
540 					 lnames[i].name, rlim[i].rlim_cur);
541 
542 		if (rlim[i].rlim_max == RLIM_INFINITY)
543 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
544 		else
545 			count += sprintf(&bufptr[count], "%-20lu ",
546 					 rlim[i].rlim_max);
547 
548 		if (lnames[i].unit)
549 			count += sprintf(&bufptr[count], "%-10s\n",
550 					 lnames[i].unit);
551 		else
552 			count += sprintf(&bufptr[count], "\n");
553 	}
554 
555 	return count;
556 }
557 
558 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct task_struct * task,char * buffer)559 static int proc_pid_syscall(struct task_struct *task, char *buffer)
560 {
561 	long nr;
562 	unsigned long args[6], sp, pc;
563 	int res = lock_trace(task);
564 	if (res)
565 		return res;
566 
567 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
568 		res = sprintf(buffer, "running\n");
569 	else if (nr < 0)
570 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
571 	else
572 		res = sprintf(buffer,
573 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
574 		       nr,
575 		       args[0], args[1], args[2], args[3], args[4], args[5],
576 		       sp, pc);
577 	unlock_trace(task);
578 	return res;
579 }
580 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
581 
582 /************************************************************************/
583 /*                       Here the fs part begins                        */
584 /************************************************************************/
585 
586 /* permission checks */
proc_fd_access_allowed(struct inode * inode)587 static int proc_fd_access_allowed(struct inode *inode)
588 {
589 	struct task_struct *task;
590 	int allowed = 0;
591 	/* Allow access to a task's file descriptors if it is us or we
592 	 * may use ptrace attach to the process and find out that
593 	 * information.
594 	 */
595 	task = get_proc_task(inode);
596 	if (task) {
597 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
598 		put_task_struct(task);
599 	}
600 	return allowed;
601 }
602 
proc_setattr(struct dentry * dentry,struct iattr * attr)603 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605 	int error;
606 	struct inode *inode = dentry->d_inode;
607 
608 	if (attr->ia_valid & ATTR_MODE)
609 		return -EPERM;
610 
611 	error = inode_change_ok(inode, attr);
612 	if (error)
613 		return error;
614 
615 	if ((attr->ia_valid & ATTR_SIZE) &&
616 	    attr->ia_size != i_size_read(inode)) {
617 		error = vmtruncate(inode, attr->ia_size);
618 		if (error)
619 			return error;
620 	}
621 
622 	setattr_copy(inode, attr);
623 	mark_inode_dirty(inode);
624 	return 0;
625 }
626 
627 static const struct inode_operations proc_def_inode_operations = {
628 	.setattr	= proc_setattr,
629 };
630 
mounts_open_common(struct inode * inode,struct file * file,const struct seq_operations * op)631 static int mounts_open_common(struct inode *inode, struct file *file,
632 			      const struct seq_operations *op)
633 {
634 	struct task_struct *task = get_proc_task(inode);
635 	struct nsproxy *nsp;
636 	struct mnt_namespace *ns = NULL;
637 	struct path root;
638 	struct proc_mounts *p;
639 	int ret = -EINVAL;
640 
641 	if (task) {
642 		rcu_read_lock();
643 		nsp = task_nsproxy(task);
644 		if (nsp) {
645 			ns = nsp->mnt_ns;
646 			if (ns)
647 				get_mnt_ns(ns);
648 		}
649 		rcu_read_unlock();
650 		if (ns && get_task_root(task, &root) == 0)
651 			ret = 0;
652 		put_task_struct(task);
653 	}
654 
655 	if (!ns)
656 		goto err;
657 	if (ret)
658 		goto err_put_ns;
659 
660 	ret = -ENOMEM;
661 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
662 	if (!p)
663 		goto err_put_path;
664 
665 	file->private_data = &p->m;
666 	ret = seq_open(file, op);
667 	if (ret)
668 		goto err_free;
669 
670 	p->m.private = p;
671 	p->ns = ns;
672 	p->root = root;
673 	p->event = ns->event;
674 
675 	return 0;
676 
677  err_free:
678 	kfree(p);
679  err_put_path:
680 	path_put(&root);
681  err_put_ns:
682 	put_mnt_ns(ns);
683  err:
684 	return ret;
685 }
686 
mounts_release(struct inode * inode,struct file * file)687 static int mounts_release(struct inode *inode, struct file *file)
688 {
689 	struct proc_mounts *p = file->private_data;
690 	path_put(&p->root);
691 	put_mnt_ns(p->ns);
692 	return seq_release(inode, file);
693 }
694 
mounts_poll(struct file * file,poll_table * wait)695 static unsigned mounts_poll(struct file *file, poll_table *wait)
696 {
697 	struct proc_mounts *p = file->private_data;
698 	unsigned res = POLLIN | POLLRDNORM;
699 
700 	poll_wait(file, &p->ns->poll, wait);
701 	if (mnt_had_events(p))
702 		res |= POLLERR | POLLPRI;
703 
704 	return res;
705 }
706 
mounts_open(struct inode * inode,struct file * file)707 static int mounts_open(struct inode *inode, struct file *file)
708 {
709 	return mounts_open_common(inode, file, &mounts_op);
710 }
711 
712 static const struct file_operations proc_mounts_operations = {
713 	.open		= mounts_open,
714 	.read		= seq_read,
715 	.llseek		= seq_lseek,
716 	.release	= mounts_release,
717 	.poll		= mounts_poll,
718 };
719 
mountinfo_open(struct inode * inode,struct file * file)720 static int mountinfo_open(struct inode *inode, struct file *file)
721 {
722 	return mounts_open_common(inode, file, &mountinfo_op);
723 }
724 
725 static const struct file_operations proc_mountinfo_operations = {
726 	.open		= mountinfo_open,
727 	.read		= seq_read,
728 	.llseek		= seq_lseek,
729 	.release	= mounts_release,
730 	.poll		= mounts_poll,
731 };
732 
mountstats_open(struct inode * inode,struct file * file)733 static int mountstats_open(struct inode *inode, struct file *file)
734 {
735 	return mounts_open_common(inode, file, &mountstats_op);
736 }
737 
738 static const struct file_operations proc_mountstats_operations = {
739 	.open		= mountstats_open,
740 	.read		= seq_read,
741 	.llseek		= seq_lseek,
742 	.release	= mounts_release,
743 };
744 
745 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
746 
proc_info_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)747 static ssize_t proc_info_read(struct file * file, char __user * buf,
748 			  size_t count, loff_t *ppos)
749 {
750 	struct inode * inode = file->f_path.dentry->d_inode;
751 	unsigned long page;
752 	ssize_t length;
753 	struct task_struct *task = get_proc_task(inode);
754 
755 	length = -ESRCH;
756 	if (!task)
757 		goto out_no_task;
758 
759 	if (count > PROC_BLOCK_SIZE)
760 		count = PROC_BLOCK_SIZE;
761 
762 	length = -ENOMEM;
763 	if (!(page = __get_free_page(GFP_TEMPORARY)))
764 		goto out;
765 
766 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
767 
768 	if (length >= 0)
769 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
770 	free_page(page);
771 out:
772 	put_task_struct(task);
773 out_no_task:
774 	return length;
775 }
776 
777 static const struct file_operations proc_info_file_operations = {
778 	.read		= proc_info_read,
779 	.llseek		= generic_file_llseek,
780 };
781 
proc_single_show(struct seq_file * m,void * v)782 static int proc_single_show(struct seq_file *m, void *v)
783 {
784 	struct inode *inode = m->private;
785 	struct pid_namespace *ns;
786 	struct pid *pid;
787 	struct task_struct *task;
788 	int ret;
789 
790 	ns = inode->i_sb->s_fs_info;
791 	pid = proc_pid(inode);
792 	task = get_pid_task(pid, PIDTYPE_PID);
793 	if (!task)
794 		return -ESRCH;
795 
796 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
797 
798 	put_task_struct(task);
799 	return ret;
800 }
801 
proc_single_open(struct inode * inode,struct file * filp)802 static int proc_single_open(struct inode *inode, struct file *filp)
803 {
804 	return single_open(filp, proc_single_show, inode);
805 }
806 
807 static const struct file_operations proc_single_file_operations = {
808 	.open		= proc_single_open,
809 	.read		= seq_read,
810 	.llseek		= seq_lseek,
811 	.release	= single_release,
812 };
813 
mem_open(struct inode * inode,struct file * file)814 static int mem_open(struct inode* inode, struct file* file)
815 {
816 	file->private_data = (void*)((long)current->self_exec_id);
817 	/* OK to pass negative loff_t, we can catch out-of-range */
818 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
819 	return 0;
820 }
821 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)822 static ssize_t mem_read(struct file * file, char __user * buf,
823 			size_t count, loff_t *ppos)
824 {
825 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
826 	char *page;
827 	unsigned long src = *ppos;
828 	int ret = -ESRCH;
829 	struct mm_struct *mm;
830 
831 	if (!task)
832 		goto out_no_task;
833 
834 	ret = -ENOMEM;
835 	page = (char *)__get_free_page(GFP_TEMPORARY);
836 	if (!page)
837 		goto out;
838 
839 	mm = check_mem_permission(task);
840 	ret = PTR_ERR(mm);
841 	if (IS_ERR(mm))
842 		goto out_free;
843 
844 	ret = -EIO;
845 
846 	if (file->private_data != (void*)((long)current->self_exec_id))
847 		goto out_put;
848 
849 	ret = 0;
850 
851 	while (count > 0) {
852 		int this_len, retval;
853 
854 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
855 		retval = access_remote_vm(mm, src, page, this_len, 0);
856 		if (!retval) {
857 			if (!ret)
858 				ret = -EIO;
859 			break;
860 		}
861 
862 		if (copy_to_user(buf, page, retval)) {
863 			ret = -EFAULT;
864 			break;
865 		}
866 
867 		ret += retval;
868 		src += retval;
869 		buf += retval;
870 		count -= retval;
871 	}
872 	*ppos = src;
873 
874 out_put:
875 	mmput(mm);
876 out_free:
877 	free_page((unsigned long) page);
878 out:
879 	put_task_struct(task);
880 out_no_task:
881 	return ret;
882 }
883 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)884 static ssize_t mem_write(struct file * file, const char __user *buf,
885 			 size_t count, loff_t *ppos)
886 {
887 	int copied;
888 	char *page;
889 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
890 	unsigned long dst = *ppos;
891 	struct mm_struct *mm;
892 
893 	copied = -ESRCH;
894 	if (!task)
895 		goto out_no_task;
896 
897 	mm = check_mem_permission(task);
898 	copied = PTR_ERR(mm);
899 	if (IS_ERR(mm))
900 		goto out_task;
901 
902 	copied = -EIO;
903 	if (file->private_data != (void *)((long)current->self_exec_id))
904 		goto out_mm;
905 
906 	copied = -ENOMEM;
907 	page = (char *)__get_free_page(GFP_TEMPORARY);
908 	if (!page)
909 		goto out_mm;
910 
911 	copied = 0;
912 	while (count > 0) {
913 		int this_len, retval;
914 
915 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
916 		if (copy_from_user(page, buf, this_len)) {
917 			copied = -EFAULT;
918 			break;
919 		}
920 		retval = access_remote_vm(mm, dst, page, this_len, 1);
921 		if (!retval) {
922 			if (!copied)
923 				copied = -EIO;
924 			break;
925 		}
926 		copied += retval;
927 		buf += retval;
928 		dst += retval;
929 		count -= retval;
930 	}
931 	*ppos = dst;
932 	free_page((unsigned long) page);
933 out_mm:
934 	mmput(mm);
935 out_task:
936 	put_task_struct(task);
937 out_no_task:
938 	return copied;
939 }
940 
mem_lseek(struct file * file,loff_t offset,int orig)941 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
942 {
943 	switch (orig) {
944 	case 0:
945 		file->f_pos = offset;
946 		break;
947 	case 1:
948 		file->f_pos += offset;
949 		break;
950 	default:
951 		return -EINVAL;
952 	}
953 	force_successful_syscall_return();
954 	return file->f_pos;
955 }
956 
957 static const struct file_operations proc_mem_operations = {
958 	.llseek		= mem_lseek,
959 	.read		= mem_read,
960 	.write		= mem_write,
961 	.open		= mem_open,
962 };
963 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)964 static ssize_t environ_read(struct file *file, char __user *buf,
965 			size_t count, loff_t *ppos)
966 {
967 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
968 	char *page;
969 	unsigned long src = *ppos;
970 	int ret = -ESRCH;
971 	struct mm_struct *mm;
972 
973 	if (!task)
974 		goto out_no_task;
975 
976 	ret = -ENOMEM;
977 	page = (char *)__get_free_page(GFP_TEMPORARY);
978 	if (!page)
979 		goto out;
980 
981 
982 	mm = mm_for_maps(task);
983 	ret = PTR_ERR(mm);
984 	if (!mm || IS_ERR(mm))
985 		goto out_free;
986 
987 	ret = 0;
988 	while (count > 0) {
989 		int this_len, retval, max_len;
990 
991 		this_len = mm->env_end - (mm->env_start + src);
992 
993 		if (this_len <= 0)
994 			break;
995 
996 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
997 		this_len = (this_len > max_len) ? max_len : this_len;
998 
999 		retval = access_process_vm(task, (mm->env_start + src),
1000 			page, this_len, 0);
1001 
1002 		if (retval <= 0) {
1003 			ret = retval;
1004 			break;
1005 		}
1006 
1007 		if (copy_to_user(buf, page, retval)) {
1008 			ret = -EFAULT;
1009 			break;
1010 		}
1011 
1012 		ret += retval;
1013 		src += retval;
1014 		buf += retval;
1015 		count -= retval;
1016 	}
1017 	*ppos = src;
1018 
1019 	mmput(mm);
1020 out_free:
1021 	free_page((unsigned long) page);
1022 out:
1023 	put_task_struct(task);
1024 out_no_task:
1025 	return ret;
1026 }
1027 
1028 static const struct file_operations proc_environ_operations = {
1029 	.read		= environ_read,
1030 	.llseek		= generic_file_llseek,
1031 };
1032 
oom_adjust_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1033 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1034 				size_t count, loff_t *ppos)
1035 {
1036 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1037 	char buffer[PROC_NUMBUF];
1038 	size_t len;
1039 	int oom_adjust = OOM_DISABLE;
1040 	unsigned long flags;
1041 
1042 	if (!task)
1043 		return -ESRCH;
1044 
1045 	if (lock_task_sighand(task, &flags)) {
1046 		oom_adjust = task->signal->oom_adj;
1047 		unlock_task_sighand(task, &flags);
1048 	}
1049 
1050 	put_task_struct(task);
1051 
1052 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1053 
1054 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055 }
1056 
oom_adjust_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1057 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1058 				size_t count, loff_t *ppos)
1059 {
1060 	struct task_struct *task;
1061 	char buffer[PROC_NUMBUF];
1062 	long oom_adjust;
1063 	unsigned long flags;
1064 	int err;
1065 
1066 	memset(buffer, 0, sizeof(buffer));
1067 	if (count > sizeof(buffer) - 1)
1068 		count = sizeof(buffer) - 1;
1069 	if (copy_from_user(buffer, buf, count)) {
1070 		err = -EFAULT;
1071 		goto out;
1072 	}
1073 
1074 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1075 	if (err)
1076 		goto out;
1077 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1078 	     oom_adjust != OOM_DISABLE) {
1079 		err = -EINVAL;
1080 		goto out;
1081 	}
1082 
1083 	task = get_proc_task(file->f_path.dentry->d_inode);
1084 	if (!task) {
1085 		err = -ESRCH;
1086 		goto out;
1087 	}
1088 
1089 	task_lock(task);
1090 	if (!task->mm) {
1091 		err = -EINVAL;
1092 		goto err_task_lock;
1093 	}
1094 
1095 	if (!lock_task_sighand(task, &flags)) {
1096 		err = -ESRCH;
1097 		goto err_task_lock;
1098 	}
1099 
1100 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1101 		err = -EACCES;
1102 		goto err_sighand;
1103 	}
1104 
1105 	if (oom_adjust != task->signal->oom_adj) {
1106 		if (oom_adjust == OOM_DISABLE)
1107 			atomic_inc(&task->mm->oom_disable_count);
1108 		if (task->signal->oom_adj == OOM_DISABLE)
1109 			atomic_dec(&task->mm->oom_disable_count);
1110 	}
1111 
1112 	/*
1113 	 * Warn that /proc/pid/oom_adj is deprecated, see
1114 	 * Documentation/feature-removal-schedule.txt.
1115 	 */
1116 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1117 			"please use /proc/%d/oom_score_adj instead.\n",
1118 			current->comm, task_pid_nr(current),
1119 			task_pid_nr(task), task_pid_nr(task));
1120 	task->signal->oom_adj = oom_adjust;
1121 	/*
1122 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1123 	 * value is always attainable.
1124 	 */
1125 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1126 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1127 	else
1128 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1129 								-OOM_DISABLE;
1130 err_sighand:
1131 	unlock_task_sighand(task, &flags);
1132 err_task_lock:
1133 	task_unlock(task);
1134 	put_task_struct(task);
1135 out:
1136 	return err < 0 ? err : count;
1137 }
1138 
1139 static const struct file_operations proc_oom_adjust_operations = {
1140 	.read		= oom_adjust_read,
1141 	.write		= oom_adjust_write,
1142 	.llseek		= generic_file_llseek,
1143 };
1144 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1145 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1146 					size_t count, loff_t *ppos)
1147 {
1148 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1149 	char buffer[PROC_NUMBUF];
1150 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1151 	unsigned long flags;
1152 	size_t len;
1153 
1154 	if (!task)
1155 		return -ESRCH;
1156 	if (lock_task_sighand(task, &flags)) {
1157 		oom_score_adj = task->signal->oom_score_adj;
1158 		unlock_task_sighand(task, &flags);
1159 	}
1160 	put_task_struct(task);
1161 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1162 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1163 }
1164 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1165 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1166 					size_t count, loff_t *ppos)
1167 {
1168 	struct task_struct *task;
1169 	char buffer[PROC_NUMBUF];
1170 	unsigned long flags;
1171 	long oom_score_adj;
1172 	int err;
1173 
1174 	memset(buffer, 0, sizeof(buffer));
1175 	if (count > sizeof(buffer) - 1)
1176 		count = sizeof(buffer) - 1;
1177 	if (copy_from_user(buffer, buf, count)) {
1178 		err = -EFAULT;
1179 		goto out;
1180 	}
1181 
1182 	err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1183 	if (err)
1184 		goto out;
1185 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1186 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1187 		err = -EINVAL;
1188 		goto out;
1189 	}
1190 
1191 	task = get_proc_task(file->f_path.dentry->d_inode);
1192 	if (!task) {
1193 		err = -ESRCH;
1194 		goto out;
1195 	}
1196 
1197 	task_lock(task);
1198 	if (!task->mm) {
1199 		err = -EINVAL;
1200 		goto err_task_lock;
1201 	}
1202 
1203 	if (!lock_task_sighand(task, &flags)) {
1204 		err = -ESRCH;
1205 		goto err_task_lock;
1206 	}
1207 
1208 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1209 			!capable(CAP_SYS_RESOURCE)) {
1210 		err = -EACCES;
1211 		goto err_sighand;
1212 	}
1213 
1214 	if (oom_score_adj != task->signal->oom_score_adj) {
1215 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1216 			atomic_inc(&task->mm->oom_disable_count);
1217 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1218 			atomic_dec(&task->mm->oom_disable_count);
1219 	}
1220 	task->signal->oom_score_adj = oom_score_adj;
1221 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1222 		task->signal->oom_score_adj_min = oom_score_adj;
1223 	/*
1224 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1225 	 * always attainable.
1226 	 */
1227 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1228 		task->signal->oom_adj = OOM_DISABLE;
1229 	else
1230 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1231 							OOM_SCORE_ADJ_MAX;
1232 err_sighand:
1233 	unlock_task_sighand(task, &flags);
1234 err_task_lock:
1235 	task_unlock(task);
1236 	put_task_struct(task);
1237 out:
1238 	return err < 0 ? err : count;
1239 }
1240 
1241 static const struct file_operations proc_oom_score_adj_operations = {
1242 	.read		= oom_score_adj_read,
1243 	.write		= oom_score_adj_write,
1244 	.llseek		= default_llseek,
1245 };
1246 
1247 #ifdef CONFIG_AUDITSYSCALL
1248 #define TMPBUFLEN 21
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1249 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1250 				  size_t count, loff_t *ppos)
1251 {
1252 	struct inode * inode = file->f_path.dentry->d_inode;
1253 	struct task_struct *task = get_proc_task(inode);
1254 	ssize_t length;
1255 	char tmpbuf[TMPBUFLEN];
1256 
1257 	if (!task)
1258 		return -ESRCH;
1259 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1260 				audit_get_loginuid(task));
1261 	put_task_struct(task);
1262 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1263 }
1264 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1266 				   size_t count, loff_t *ppos)
1267 {
1268 	struct inode * inode = file->f_path.dentry->d_inode;
1269 	char *page, *tmp;
1270 	ssize_t length;
1271 	uid_t loginuid;
1272 
1273 	if (!capable(CAP_AUDIT_CONTROL))
1274 		return -EPERM;
1275 
1276 	rcu_read_lock();
1277 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278 		rcu_read_unlock();
1279 		return -EPERM;
1280 	}
1281 	rcu_read_unlock();
1282 
1283 	if (count >= PAGE_SIZE)
1284 		count = PAGE_SIZE - 1;
1285 
1286 	if (*ppos != 0) {
1287 		/* No partial writes. */
1288 		return -EINVAL;
1289 	}
1290 	page = (char*)__get_free_page(GFP_TEMPORARY);
1291 	if (!page)
1292 		return -ENOMEM;
1293 	length = -EFAULT;
1294 	if (copy_from_user(page, buf, count))
1295 		goto out_free_page;
1296 
1297 	page[count] = '\0';
1298 	loginuid = simple_strtoul(page, &tmp, 10);
1299 	if (tmp == page) {
1300 		length = -EINVAL;
1301 		goto out_free_page;
1302 
1303 	}
1304 	length = audit_set_loginuid(current, loginuid);
1305 	if (likely(length == 0))
1306 		length = count;
1307 
1308 out_free_page:
1309 	free_page((unsigned long) page);
1310 	return length;
1311 }
1312 
1313 static const struct file_operations proc_loginuid_operations = {
1314 	.read		= proc_loginuid_read,
1315 	.write		= proc_loginuid_write,
1316 	.llseek		= generic_file_llseek,
1317 };
1318 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1319 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1320 				  size_t count, loff_t *ppos)
1321 {
1322 	struct inode * inode = file->f_path.dentry->d_inode;
1323 	struct task_struct *task = get_proc_task(inode);
1324 	ssize_t length;
1325 	char tmpbuf[TMPBUFLEN];
1326 
1327 	if (!task)
1328 		return -ESRCH;
1329 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1330 				audit_get_sessionid(task));
1331 	put_task_struct(task);
1332 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1333 }
1334 
1335 static const struct file_operations proc_sessionid_operations = {
1336 	.read		= proc_sessionid_read,
1337 	.llseek		= generic_file_llseek,
1338 };
1339 #endif
1340 
1341 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1342 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1343 				      size_t count, loff_t *ppos)
1344 {
1345 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1346 	char buffer[PROC_NUMBUF];
1347 	size_t len;
1348 	int make_it_fail;
1349 
1350 	if (!task)
1351 		return -ESRCH;
1352 	make_it_fail = task->make_it_fail;
1353 	put_task_struct(task);
1354 
1355 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1356 
1357 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1358 }
1359 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1360 static ssize_t proc_fault_inject_write(struct file * file,
1361 			const char __user * buf, size_t count, loff_t *ppos)
1362 {
1363 	struct task_struct *task;
1364 	char buffer[PROC_NUMBUF], *end;
1365 	int make_it_fail;
1366 
1367 	if (!capable(CAP_SYS_RESOURCE))
1368 		return -EPERM;
1369 	memset(buffer, 0, sizeof(buffer));
1370 	if (count > sizeof(buffer) - 1)
1371 		count = sizeof(buffer) - 1;
1372 	if (copy_from_user(buffer, buf, count))
1373 		return -EFAULT;
1374 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1375 	if (*end)
1376 		return -EINVAL;
1377 	task = get_proc_task(file->f_dentry->d_inode);
1378 	if (!task)
1379 		return -ESRCH;
1380 	task->make_it_fail = make_it_fail;
1381 	put_task_struct(task);
1382 
1383 	return count;
1384 }
1385 
1386 static const struct file_operations proc_fault_inject_operations = {
1387 	.read		= proc_fault_inject_read,
1388 	.write		= proc_fault_inject_write,
1389 	.llseek		= generic_file_llseek,
1390 };
1391 #endif
1392 
1393 
1394 #ifdef CONFIG_SCHED_DEBUG
1395 /*
1396  * Print out various scheduling related per-task fields:
1397  */
sched_show(struct seq_file * m,void * v)1398 static int sched_show(struct seq_file *m, void *v)
1399 {
1400 	struct inode *inode = m->private;
1401 	struct task_struct *p;
1402 
1403 	p = get_proc_task(inode);
1404 	if (!p)
1405 		return -ESRCH;
1406 	proc_sched_show_task(p, m);
1407 
1408 	put_task_struct(p);
1409 
1410 	return 0;
1411 }
1412 
1413 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1414 sched_write(struct file *file, const char __user *buf,
1415 	    size_t count, loff_t *offset)
1416 {
1417 	struct inode *inode = file->f_path.dentry->d_inode;
1418 	struct task_struct *p;
1419 
1420 	p = get_proc_task(inode);
1421 	if (!p)
1422 		return -ESRCH;
1423 	proc_sched_set_task(p);
1424 
1425 	put_task_struct(p);
1426 
1427 	return count;
1428 }
1429 
sched_open(struct inode * inode,struct file * filp)1430 static int sched_open(struct inode *inode, struct file *filp)
1431 {
1432 	return single_open(filp, sched_show, inode);
1433 }
1434 
1435 static const struct file_operations proc_pid_sched_operations = {
1436 	.open		= sched_open,
1437 	.read		= seq_read,
1438 	.write		= sched_write,
1439 	.llseek		= seq_lseek,
1440 	.release	= single_release,
1441 };
1442 
1443 #endif
1444 
1445 #ifdef CONFIG_SCHED_AUTOGROUP
1446 /*
1447  * Print out autogroup related information:
1448  */
sched_autogroup_show(struct seq_file * m,void * v)1449 static int sched_autogroup_show(struct seq_file *m, void *v)
1450 {
1451 	struct inode *inode = m->private;
1452 	struct task_struct *p;
1453 
1454 	p = get_proc_task(inode);
1455 	if (!p)
1456 		return -ESRCH;
1457 	proc_sched_autogroup_show_task(p, m);
1458 
1459 	put_task_struct(p);
1460 
1461 	return 0;
1462 }
1463 
1464 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1465 sched_autogroup_write(struct file *file, const char __user *buf,
1466 	    size_t count, loff_t *offset)
1467 {
1468 	struct inode *inode = file->f_path.dentry->d_inode;
1469 	struct task_struct *p;
1470 	char buffer[PROC_NUMBUF];
1471 	long nice;
1472 	int err;
1473 
1474 	memset(buffer, 0, sizeof(buffer));
1475 	if (count > sizeof(buffer) - 1)
1476 		count = sizeof(buffer) - 1;
1477 	if (copy_from_user(buffer, buf, count))
1478 		return -EFAULT;
1479 
1480 	err = strict_strtol(strstrip(buffer), 0, &nice);
1481 	if (err)
1482 		return -EINVAL;
1483 
1484 	p = get_proc_task(inode);
1485 	if (!p)
1486 		return -ESRCH;
1487 
1488 	err = nice;
1489 	err = proc_sched_autogroup_set_nice(p, &err);
1490 	if (err)
1491 		count = err;
1492 
1493 	put_task_struct(p);
1494 
1495 	return count;
1496 }
1497 
sched_autogroup_open(struct inode * inode,struct file * filp)1498 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1499 {
1500 	int ret;
1501 
1502 	ret = single_open(filp, sched_autogroup_show, NULL);
1503 	if (!ret) {
1504 		struct seq_file *m = filp->private_data;
1505 
1506 		m->private = inode;
1507 	}
1508 	return ret;
1509 }
1510 
1511 static const struct file_operations proc_pid_sched_autogroup_operations = {
1512 	.open		= sched_autogroup_open,
1513 	.read		= seq_read,
1514 	.write		= sched_autogroup_write,
1515 	.llseek		= seq_lseek,
1516 	.release	= single_release,
1517 };
1518 
1519 #endif /* CONFIG_SCHED_AUTOGROUP */
1520 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1521 static ssize_t comm_write(struct file *file, const char __user *buf,
1522 				size_t count, loff_t *offset)
1523 {
1524 	struct inode *inode = file->f_path.dentry->d_inode;
1525 	struct task_struct *p;
1526 	char buffer[TASK_COMM_LEN];
1527 
1528 	memset(buffer, 0, sizeof(buffer));
1529 	if (count > sizeof(buffer) - 1)
1530 		count = sizeof(buffer) - 1;
1531 	if (copy_from_user(buffer, buf, count))
1532 		return -EFAULT;
1533 
1534 	p = get_proc_task(inode);
1535 	if (!p)
1536 		return -ESRCH;
1537 
1538 	if (same_thread_group(current, p))
1539 		set_task_comm(p, buffer);
1540 	else
1541 		count = -EINVAL;
1542 
1543 	put_task_struct(p);
1544 
1545 	return count;
1546 }
1547 
comm_show(struct seq_file * m,void * v)1548 static int comm_show(struct seq_file *m, void *v)
1549 {
1550 	struct inode *inode = m->private;
1551 	struct task_struct *p;
1552 
1553 	p = get_proc_task(inode);
1554 	if (!p)
1555 		return -ESRCH;
1556 
1557 	task_lock(p);
1558 	seq_printf(m, "%s\n", p->comm);
1559 	task_unlock(p);
1560 
1561 	put_task_struct(p);
1562 
1563 	return 0;
1564 }
1565 
comm_open(struct inode * inode,struct file * filp)1566 static int comm_open(struct inode *inode, struct file *filp)
1567 {
1568 	return single_open(filp, comm_show, inode);
1569 }
1570 
1571 static const struct file_operations proc_pid_set_comm_operations = {
1572 	.open		= comm_open,
1573 	.read		= seq_read,
1574 	.write		= comm_write,
1575 	.llseek		= seq_lseek,
1576 	.release	= single_release,
1577 };
1578 
1579 /*
1580  * We added or removed a vma mapping the executable. The vmas are only mapped
1581  * during exec and are not mapped with the mmap system call.
1582  * Callers must hold down_write() on the mm's mmap_sem for these
1583  */
added_exe_file_vma(struct mm_struct * mm)1584 void added_exe_file_vma(struct mm_struct *mm)
1585 {
1586 	mm->num_exe_file_vmas++;
1587 }
1588 
removed_exe_file_vma(struct mm_struct * mm)1589 void removed_exe_file_vma(struct mm_struct *mm)
1590 {
1591 	mm->num_exe_file_vmas--;
1592 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1593 		fput(mm->exe_file);
1594 		mm->exe_file = NULL;
1595 	}
1596 
1597 }
1598 
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1599 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1600 {
1601 	if (new_exe_file)
1602 		get_file(new_exe_file);
1603 	if (mm->exe_file)
1604 		fput(mm->exe_file);
1605 	mm->exe_file = new_exe_file;
1606 	mm->num_exe_file_vmas = 0;
1607 }
1608 
get_mm_exe_file(struct mm_struct * mm)1609 struct file *get_mm_exe_file(struct mm_struct *mm)
1610 {
1611 	struct file *exe_file;
1612 
1613 	/* We need mmap_sem to protect against races with removal of
1614 	 * VM_EXECUTABLE vmas */
1615 	down_read(&mm->mmap_sem);
1616 	exe_file = mm->exe_file;
1617 	if (exe_file)
1618 		get_file(exe_file);
1619 	up_read(&mm->mmap_sem);
1620 	return exe_file;
1621 }
1622 
dup_mm_exe_file(struct mm_struct * oldmm,struct mm_struct * newmm)1623 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1624 {
1625 	/* It's safe to write the exe_file pointer without exe_file_lock because
1626 	 * this is called during fork when the task is not yet in /proc */
1627 	newmm->exe_file = get_mm_exe_file(oldmm);
1628 }
1629 
proc_exe_link(struct inode * inode,struct path * exe_path)1630 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1631 {
1632 	struct task_struct *task;
1633 	struct mm_struct *mm;
1634 	struct file *exe_file;
1635 
1636 	task = get_proc_task(inode);
1637 	if (!task)
1638 		return -ENOENT;
1639 	mm = get_task_mm(task);
1640 	put_task_struct(task);
1641 	if (!mm)
1642 		return -ENOENT;
1643 	exe_file = get_mm_exe_file(mm);
1644 	mmput(mm);
1645 	if (exe_file) {
1646 		*exe_path = exe_file->f_path;
1647 		path_get(&exe_file->f_path);
1648 		fput(exe_file);
1649 		return 0;
1650 	} else
1651 		return -ENOENT;
1652 }
1653 
proc_pid_follow_link(struct dentry * dentry,struct nameidata * nd)1654 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1655 {
1656 	struct inode *inode = dentry->d_inode;
1657 	int error = -EACCES;
1658 
1659 	/* We don't need a base pointer in the /proc filesystem */
1660 	path_put(&nd->path);
1661 
1662 	/* Are we allowed to snoop on the tasks file descriptors? */
1663 	if (!proc_fd_access_allowed(inode))
1664 		goto out;
1665 
1666 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1667 out:
1668 	return ERR_PTR(error);
1669 }
1670 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1671 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1672 {
1673 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1674 	char *pathname;
1675 	int len;
1676 
1677 	if (!tmp)
1678 		return -ENOMEM;
1679 
1680 	pathname = d_path(path, tmp, PAGE_SIZE);
1681 	len = PTR_ERR(pathname);
1682 	if (IS_ERR(pathname))
1683 		goto out;
1684 	len = tmp + PAGE_SIZE - 1 - pathname;
1685 
1686 	if (len > buflen)
1687 		len = buflen;
1688 	if (copy_to_user(buffer, pathname, len))
1689 		len = -EFAULT;
1690  out:
1691 	free_page((unsigned long)tmp);
1692 	return len;
1693 }
1694 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1695 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1696 {
1697 	int error = -EACCES;
1698 	struct inode *inode = dentry->d_inode;
1699 	struct path path;
1700 
1701 	/* Are we allowed to snoop on the tasks file descriptors? */
1702 	if (!proc_fd_access_allowed(inode))
1703 		goto out;
1704 
1705 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1706 	if (error)
1707 		goto out;
1708 
1709 	error = do_proc_readlink(&path, buffer, buflen);
1710 	path_put(&path);
1711 out:
1712 	return error;
1713 }
1714 
1715 static const struct inode_operations proc_pid_link_inode_operations = {
1716 	.readlink	= proc_pid_readlink,
1717 	.follow_link	= proc_pid_follow_link,
1718 	.setattr	= proc_setattr,
1719 };
1720 
1721 
1722 /* building an inode */
1723 
task_dumpable(struct task_struct * task)1724 static int task_dumpable(struct task_struct *task)
1725 {
1726 	int dumpable = 0;
1727 	struct mm_struct *mm;
1728 
1729 	task_lock(task);
1730 	mm = task->mm;
1731 	if (mm)
1732 		dumpable = get_dumpable(mm);
1733 	task_unlock(task);
1734 	if(dumpable == 1)
1735 		return 1;
1736 	return 0;
1737 }
1738 
1739 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task)1740 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1741 {
1742 	struct inode * inode;
1743 	struct proc_inode *ei;
1744 	const struct cred *cred;
1745 
1746 	/* We need a new inode */
1747 
1748 	inode = new_inode(sb);
1749 	if (!inode)
1750 		goto out;
1751 
1752 	/* Common stuff */
1753 	ei = PROC_I(inode);
1754 	inode->i_ino = get_next_ino();
1755 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1756 	inode->i_op = &proc_def_inode_operations;
1757 
1758 	/*
1759 	 * grab the reference to task.
1760 	 */
1761 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1762 	if (!ei->pid)
1763 		goto out_unlock;
1764 
1765 	if (task_dumpable(task)) {
1766 		rcu_read_lock();
1767 		cred = __task_cred(task);
1768 		inode->i_uid = cred->euid;
1769 		inode->i_gid = cred->egid;
1770 		rcu_read_unlock();
1771 	}
1772 	security_task_to_inode(task, inode);
1773 
1774 out:
1775 	return inode;
1776 
1777 out_unlock:
1778 	iput(inode);
1779 	return NULL;
1780 }
1781 
pid_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1782 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1783 {
1784 	struct inode *inode = dentry->d_inode;
1785 	struct task_struct *task;
1786 	const struct cred *cred;
1787 
1788 	generic_fillattr(inode, stat);
1789 
1790 	rcu_read_lock();
1791 	stat->uid = 0;
1792 	stat->gid = 0;
1793 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1794 	if (task) {
1795 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1796 		    task_dumpable(task)) {
1797 			cred = __task_cred(task);
1798 			stat->uid = cred->euid;
1799 			stat->gid = cred->egid;
1800 		}
1801 	}
1802 	rcu_read_unlock();
1803 	return 0;
1804 }
1805 
1806 /* dentry stuff */
1807 
1808 /*
1809  *	Exceptional case: normally we are not allowed to unhash a busy
1810  * directory. In this case, however, we can do it - no aliasing problems
1811  * due to the way we treat inodes.
1812  *
1813  * Rewrite the inode's ownerships here because the owning task may have
1814  * performed a setuid(), etc.
1815  *
1816  * Before the /proc/pid/status file was created the only way to read
1817  * the effective uid of a /process was to stat /proc/pid.  Reading
1818  * /proc/pid/status is slow enough that procps and other packages
1819  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1820  * made this apply to all per process world readable and executable
1821  * directories.
1822  */
pid_revalidate(struct dentry * dentry,struct nameidata * nd)1823 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1824 {
1825 	struct inode *inode;
1826 	struct task_struct *task;
1827 	const struct cred *cred;
1828 
1829 	if (nd && nd->flags & LOOKUP_RCU)
1830 		return -ECHILD;
1831 
1832 	inode = dentry->d_inode;
1833 	task = get_proc_task(inode);
1834 
1835 	if (task) {
1836 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1837 		    task_dumpable(task)) {
1838 			rcu_read_lock();
1839 			cred = __task_cred(task);
1840 			inode->i_uid = cred->euid;
1841 			inode->i_gid = cred->egid;
1842 			rcu_read_unlock();
1843 		} else {
1844 			inode->i_uid = 0;
1845 			inode->i_gid = 0;
1846 		}
1847 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1848 		security_task_to_inode(task, inode);
1849 		put_task_struct(task);
1850 		return 1;
1851 	}
1852 	d_drop(dentry);
1853 	return 0;
1854 }
1855 
pid_delete_dentry(const struct dentry * dentry)1856 static int pid_delete_dentry(const struct dentry * dentry)
1857 {
1858 	/* Is the task we represent dead?
1859 	 * If so, then don't put the dentry on the lru list,
1860 	 * kill it immediately.
1861 	 */
1862 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1863 }
1864 
1865 static const struct dentry_operations pid_dentry_operations =
1866 {
1867 	.d_revalidate	= pid_revalidate,
1868 	.d_delete	= pid_delete_dentry,
1869 };
1870 
1871 /* Lookups */
1872 
1873 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1874 				struct task_struct *, const void *);
1875 
1876 /*
1877  * Fill a directory entry.
1878  *
1879  * If possible create the dcache entry and derive our inode number and
1880  * file type from dcache entry.
1881  *
1882  * Since all of the proc inode numbers are dynamically generated, the inode
1883  * numbers do not exist until the inode is cache.  This means creating the
1884  * the dcache entry in readdir is necessary to keep the inode numbers
1885  * reported by readdir in sync with the inode numbers reported
1886  * by stat.
1887  */
proc_fill_cache(struct file * filp,void * dirent,filldir_t filldir,char * name,int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)1888 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1889 	char *name, int len,
1890 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1891 {
1892 	struct dentry *child, *dir = filp->f_path.dentry;
1893 	struct inode *inode;
1894 	struct qstr qname;
1895 	ino_t ino = 0;
1896 	unsigned type = DT_UNKNOWN;
1897 
1898 	qname.name = name;
1899 	qname.len  = len;
1900 	qname.hash = full_name_hash(name, len);
1901 
1902 	child = d_lookup(dir, &qname);
1903 	if (!child) {
1904 		struct dentry *new;
1905 		new = d_alloc(dir, &qname);
1906 		if (new) {
1907 			child = instantiate(dir->d_inode, new, task, ptr);
1908 			if (child)
1909 				dput(new);
1910 			else
1911 				child = new;
1912 		}
1913 	}
1914 	if (!child || IS_ERR(child) || !child->d_inode)
1915 		goto end_instantiate;
1916 	inode = child->d_inode;
1917 	if (inode) {
1918 		ino = inode->i_ino;
1919 		type = inode->i_mode >> 12;
1920 	}
1921 	dput(child);
1922 end_instantiate:
1923 	if (!ino)
1924 		ino = find_inode_number(dir, &qname);
1925 	if (!ino)
1926 		ino = 1;
1927 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1928 }
1929 
name_to_int(struct dentry * dentry)1930 static unsigned name_to_int(struct dentry *dentry)
1931 {
1932 	const char *name = dentry->d_name.name;
1933 	int len = dentry->d_name.len;
1934 	unsigned n = 0;
1935 
1936 	if (len > 1 && *name == '0')
1937 		goto out;
1938 	while (len-- > 0) {
1939 		unsigned c = *name++ - '0';
1940 		if (c > 9)
1941 			goto out;
1942 		if (n >= (~0U-9)/10)
1943 			goto out;
1944 		n *= 10;
1945 		n += c;
1946 	}
1947 	return n;
1948 out:
1949 	return ~0U;
1950 }
1951 
1952 #define PROC_FDINFO_MAX 64
1953 
proc_fd_info(struct inode * inode,struct path * path,char * info)1954 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1955 {
1956 	struct task_struct *task = get_proc_task(inode);
1957 	struct files_struct *files = NULL;
1958 	struct file *file;
1959 	int fd = proc_fd(inode);
1960 
1961 	if (task) {
1962 		files = get_files_struct(task);
1963 		put_task_struct(task);
1964 	}
1965 	if (files) {
1966 		/*
1967 		 * We are not taking a ref to the file structure, so we must
1968 		 * hold ->file_lock.
1969 		 */
1970 		spin_lock(&files->file_lock);
1971 		file = fcheck_files(files, fd);
1972 		if (file) {
1973 			if (path) {
1974 				*path = file->f_path;
1975 				path_get(&file->f_path);
1976 			}
1977 			if (info)
1978 				snprintf(info, PROC_FDINFO_MAX,
1979 					 "pos:\t%lli\n"
1980 					 "flags:\t0%o\n",
1981 					 (long long) file->f_pos,
1982 					 file->f_flags);
1983 			spin_unlock(&files->file_lock);
1984 			put_files_struct(files);
1985 			return 0;
1986 		}
1987 		spin_unlock(&files->file_lock);
1988 		put_files_struct(files);
1989 	}
1990 	return -ENOENT;
1991 }
1992 
proc_fd_link(struct inode * inode,struct path * path)1993 static int proc_fd_link(struct inode *inode, struct path *path)
1994 {
1995 	return proc_fd_info(inode, path, NULL);
1996 }
1997 
tid_fd_revalidate(struct dentry * dentry,struct nameidata * nd)1998 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1999 {
2000 	struct inode *inode;
2001 	struct task_struct *task;
2002 	int fd;
2003 	struct files_struct *files;
2004 	const struct cred *cred;
2005 
2006 	if (nd && nd->flags & LOOKUP_RCU)
2007 		return -ECHILD;
2008 
2009 	inode = dentry->d_inode;
2010 	task = get_proc_task(inode);
2011 	fd = proc_fd(inode);
2012 
2013 	if (task) {
2014 		files = get_files_struct(task);
2015 		if (files) {
2016 			rcu_read_lock();
2017 			if (fcheck_files(files, fd)) {
2018 				rcu_read_unlock();
2019 				put_files_struct(files);
2020 				if (task_dumpable(task)) {
2021 					rcu_read_lock();
2022 					cred = __task_cred(task);
2023 					inode->i_uid = cred->euid;
2024 					inode->i_gid = cred->egid;
2025 					rcu_read_unlock();
2026 				} else {
2027 					inode->i_uid = 0;
2028 					inode->i_gid = 0;
2029 				}
2030 				inode->i_mode &= ~(S_ISUID | S_ISGID);
2031 				security_task_to_inode(task, inode);
2032 				put_task_struct(task);
2033 				return 1;
2034 			}
2035 			rcu_read_unlock();
2036 			put_files_struct(files);
2037 		}
2038 		put_task_struct(task);
2039 	}
2040 	d_drop(dentry);
2041 	return 0;
2042 }
2043 
2044 static const struct dentry_operations tid_fd_dentry_operations =
2045 {
2046 	.d_revalidate	= tid_fd_revalidate,
2047 	.d_delete	= pid_delete_dentry,
2048 };
2049 
proc_fd_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)2050 static struct dentry *proc_fd_instantiate(struct inode *dir,
2051 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2052 {
2053 	unsigned fd = *(const unsigned *)ptr;
2054 	struct file *file;
2055 	struct files_struct *files;
2056  	struct inode *inode;
2057  	struct proc_inode *ei;
2058 	struct dentry *error = ERR_PTR(-ENOENT);
2059 
2060 	inode = proc_pid_make_inode(dir->i_sb, task);
2061 	if (!inode)
2062 		goto out;
2063 	ei = PROC_I(inode);
2064 	ei->fd = fd;
2065 	files = get_files_struct(task);
2066 	if (!files)
2067 		goto out_iput;
2068 	inode->i_mode = S_IFLNK;
2069 
2070 	/*
2071 	 * We are not taking a ref to the file structure, so we must
2072 	 * hold ->file_lock.
2073 	 */
2074 	spin_lock(&files->file_lock);
2075 	file = fcheck_files(files, fd);
2076 	if (!file)
2077 		goto out_unlock;
2078 	if (file->f_mode & FMODE_READ)
2079 		inode->i_mode |= S_IRUSR | S_IXUSR;
2080 	if (file->f_mode & FMODE_WRITE)
2081 		inode->i_mode |= S_IWUSR | S_IXUSR;
2082 	spin_unlock(&files->file_lock);
2083 	put_files_struct(files);
2084 
2085 	inode->i_op = &proc_pid_link_inode_operations;
2086 	inode->i_size = 64;
2087 	ei->op.proc_get_link = proc_fd_link;
2088 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2089 	d_add(dentry, inode);
2090 	/* Close the race of the process dying before we return the dentry */
2091 	if (tid_fd_revalidate(dentry, NULL))
2092 		error = NULL;
2093 
2094  out:
2095 	return error;
2096 out_unlock:
2097 	spin_unlock(&files->file_lock);
2098 	put_files_struct(files);
2099 out_iput:
2100 	iput(inode);
2101 	goto out;
2102 }
2103 
proc_lookupfd_common(struct inode * dir,struct dentry * dentry,instantiate_t instantiate)2104 static struct dentry *proc_lookupfd_common(struct inode *dir,
2105 					   struct dentry *dentry,
2106 					   instantiate_t instantiate)
2107 {
2108 	struct task_struct *task = get_proc_task(dir);
2109 	unsigned fd = name_to_int(dentry);
2110 	struct dentry *result = ERR_PTR(-ENOENT);
2111 
2112 	if (!task)
2113 		goto out_no_task;
2114 	if (fd == ~0U)
2115 		goto out;
2116 
2117 	result = instantiate(dir, dentry, task, &fd);
2118 out:
2119 	put_task_struct(task);
2120 out_no_task:
2121 	return result;
2122 }
2123 
proc_readfd_common(struct file * filp,void * dirent,filldir_t filldir,instantiate_t instantiate)2124 static int proc_readfd_common(struct file * filp, void * dirent,
2125 			      filldir_t filldir, instantiate_t instantiate)
2126 {
2127 	struct dentry *dentry = filp->f_path.dentry;
2128 	struct inode *inode = dentry->d_inode;
2129 	struct task_struct *p = get_proc_task(inode);
2130 	unsigned int fd, ino;
2131 	int retval;
2132 	struct files_struct * files;
2133 
2134 	retval = -ENOENT;
2135 	if (!p)
2136 		goto out_no_task;
2137 	retval = 0;
2138 
2139 	fd = filp->f_pos;
2140 	switch (fd) {
2141 		case 0:
2142 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2143 				goto out;
2144 			filp->f_pos++;
2145 		case 1:
2146 			ino = parent_ino(dentry);
2147 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2148 				goto out;
2149 			filp->f_pos++;
2150 		default:
2151 			files = get_files_struct(p);
2152 			if (!files)
2153 				goto out;
2154 			rcu_read_lock();
2155 			for (fd = filp->f_pos-2;
2156 			     fd < files_fdtable(files)->max_fds;
2157 			     fd++, filp->f_pos++) {
2158 				char name[PROC_NUMBUF];
2159 				int len;
2160 
2161 				if (!fcheck_files(files, fd))
2162 					continue;
2163 				rcu_read_unlock();
2164 
2165 				len = snprintf(name, sizeof(name), "%d", fd);
2166 				if (proc_fill_cache(filp, dirent, filldir,
2167 						    name, len, instantiate,
2168 						    p, &fd) < 0) {
2169 					rcu_read_lock();
2170 					break;
2171 				}
2172 				rcu_read_lock();
2173 			}
2174 			rcu_read_unlock();
2175 			put_files_struct(files);
2176 	}
2177 out:
2178 	put_task_struct(p);
2179 out_no_task:
2180 	return retval;
2181 }
2182 
proc_lookupfd(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2183 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2184 				    struct nameidata *nd)
2185 {
2186 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2187 }
2188 
proc_readfd(struct file * filp,void * dirent,filldir_t filldir)2189 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2190 {
2191 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2192 }
2193 
proc_fdinfo_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2194 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2195 				      size_t len, loff_t *ppos)
2196 {
2197 	char tmp[PROC_FDINFO_MAX];
2198 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2199 	if (!err)
2200 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2201 	return err;
2202 }
2203 
2204 static const struct file_operations proc_fdinfo_file_operations = {
2205 	.open           = nonseekable_open,
2206 	.read		= proc_fdinfo_read,
2207 	.llseek		= no_llseek,
2208 };
2209 
2210 static const struct file_operations proc_fd_operations = {
2211 	.read		= generic_read_dir,
2212 	.readdir	= proc_readfd,
2213 	.llseek		= default_llseek,
2214 };
2215 
2216 /*
2217  * /proc/pid/fd needs a special permission handler so that a process can still
2218  * access /proc/self/fd after it has executed a setuid().
2219  */
proc_fd_permission(struct inode * inode,int mask,unsigned int flags)2220 static int proc_fd_permission(struct inode *inode, int mask, unsigned int flags)
2221 {
2222 	int rv;
2223 
2224 	if (flags & IPERM_FLAG_RCU)
2225 		return -ECHILD;
2226 	rv = generic_permission(inode, mask, flags, NULL);
2227 	if (rv == 0)
2228 		return 0;
2229 	if (task_pid(current) == proc_pid(inode))
2230 		rv = 0;
2231 	return rv;
2232 }
2233 
2234 /*
2235  * proc directories can do almost nothing..
2236  */
2237 static const struct inode_operations proc_fd_inode_operations = {
2238 	.lookup		= proc_lookupfd,
2239 	.permission	= proc_fd_permission,
2240 	.setattr	= proc_setattr,
2241 };
2242 
proc_fdinfo_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)2243 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2244 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2245 {
2246 	unsigned fd = *(unsigned *)ptr;
2247  	struct inode *inode;
2248  	struct proc_inode *ei;
2249 	struct dentry *error = ERR_PTR(-ENOENT);
2250 
2251 	inode = proc_pid_make_inode(dir->i_sb, task);
2252 	if (!inode)
2253 		goto out;
2254 	ei = PROC_I(inode);
2255 	ei->fd = fd;
2256 	inode->i_mode = S_IFREG | S_IRUSR;
2257 	inode->i_fop = &proc_fdinfo_file_operations;
2258 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2259 	d_add(dentry, inode);
2260 	/* Close the race of the process dying before we return the dentry */
2261 	if (tid_fd_revalidate(dentry, NULL))
2262 		error = NULL;
2263 
2264  out:
2265 	return error;
2266 }
2267 
proc_lookupfdinfo(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2268 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2269 					struct dentry *dentry,
2270 					struct nameidata *nd)
2271 {
2272 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2273 }
2274 
proc_readfdinfo(struct file * filp,void * dirent,filldir_t filldir)2275 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2276 {
2277 	return proc_readfd_common(filp, dirent, filldir,
2278 				  proc_fdinfo_instantiate);
2279 }
2280 
2281 static const struct file_operations proc_fdinfo_operations = {
2282 	.read		= generic_read_dir,
2283 	.readdir	= proc_readfdinfo,
2284 	.llseek		= default_llseek,
2285 };
2286 
2287 /*
2288  * proc directories can do almost nothing..
2289  */
2290 static const struct inode_operations proc_fdinfo_inode_operations = {
2291 	.lookup		= proc_lookupfdinfo,
2292 	.setattr	= proc_setattr,
2293 };
2294 
2295 
proc_pident_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)2296 static struct dentry *proc_pident_instantiate(struct inode *dir,
2297 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2298 {
2299 	const struct pid_entry *p = ptr;
2300 	struct inode *inode;
2301 	struct proc_inode *ei;
2302 	struct dentry *error = ERR_PTR(-ENOENT);
2303 
2304 	inode = proc_pid_make_inode(dir->i_sb, task);
2305 	if (!inode)
2306 		goto out;
2307 
2308 	ei = PROC_I(inode);
2309 	inode->i_mode = p->mode;
2310 	if (S_ISDIR(inode->i_mode))
2311 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2312 	if (p->iop)
2313 		inode->i_op = p->iop;
2314 	if (p->fop)
2315 		inode->i_fop = p->fop;
2316 	ei->op = p->op;
2317 	d_set_d_op(dentry, &pid_dentry_operations);
2318 	d_add(dentry, inode);
2319 	/* Close the race of the process dying before we return the dentry */
2320 	if (pid_revalidate(dentry, NULL))
2321 		error = NULL;
2322 out:
2323 	return error;
2324 }
2325 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * ents,unsigned int nents)2326 static struct dentry *proc_pident_lookup(struct inode *dir,
2327 					 struct dentry *dentry,
2328 					 const struct pid_entry *ents,
2329 					 unsigned int nents)
2330 {
2331 	struct dentry *error;
2332 	struct task_struct *task = get_proc_task(dir);
2333 	const struct pid_entry *p, *last;
2334 
2335 	error = ERR_PTR(-ENOENT);
2336 
2337 	if (!task)
2338 		goto out_no_task;
2339 
2340 	/*
2341 	 * Yes, it does not scale. And it should not. Don't add
2342 	 * new entries into /proc/<tgid>/ without very good reasons.
2343 	 */
2344 	last = &ents[nents - 1];
2345 	for (p = ents; p <= last; p++) {
2346 		if (p->len != dentry->d_name.len)
2347 			continue;
2348 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2349 			break;
2350 	}
2351 	if (p > last)
2352 		goto out;
2353 
2354 	error = proc_pident_instantiate(dir, dentry, task, p);
2355 out:
2356 	put_task_struct(task);
2357 out_no_task:
2358 	return error;
2359 }
2360 
proc_pident_fill_cache(struct file * filp,void * dirent,filldir_t filldir,struct task_struct * task,const struct pid_entry * p)2361 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2362 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2363 {
2364 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2365 				proc_pident_instantiate, task, p);
2366 }
2367 
proc_pident_readdir(struct file * filp,void * dirent,filldir_t filldir,const struct pid_entry * ents,unsigned int nents)2368 static int proc_pident_readdir(struct file *filp,
2369 		void *dirent, filldir_t filldir,
2370 		const struct pid_entry *ents, unsigned int nents)
2371 {
2372 	int i;
2373 	struct dentry *dentry = filp->f_path.dentry;
2374 	struct inode *inode = dentry->d_inode;
2375 	struct task_struct *task = get_proc_task(inode);
2376 	const struct pid_entry *p, *last;
2377 	ino_t ino;
2378 	int ret;
2379 
2380 	ret = -ENOENT;
2381 	if (!task)
2382 		goto out_no_task;
2383 
2384 	ret = 0;
2385 	i = filp->f_pos;
2386 	switch (i) {
2387 	case 0:
2388 		ino = inode->i_ino;
2389 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2390 			goto out;
2391 		i++;
2392 		filp->f_pos++;
2393 		/* fall through */
2394 	case 1:
2395 		ino = parent_ino(dentry);
2396 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2397 			goto out;
2398 		i++;
2399 		filp->f_pos++;
2400 		/* fall through */
2401 	default:
2402 		i -= 2;
2403 		if (i >= nents) {
2404 			ret = 1;
2405 			goto out;
2406 		}
2407 		p = ents + i;
2408 		last = &ents[nents - 1];
2409 		while (p <= last) {
2410 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2411 				goto out;
2412 			filp->f_pos++;
2413 			p++;
2414 		}
2415 	}
2416 
2417 	ret = 1;
2418 out:
2419 	put_task_struct(task);
2420 out_no_task:
2421 	return ret;
2422 }
2423 
2424 #ifdef CONFIG_SECURITY
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2425 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2426 				  size_t count, loff_t *ppos)
2427 {
2428 	struct inode * inode = file->f_path.dentry->d_inode;
2429 	char *p = NULL;
2430 	ssize_t length;
2431 	struct task_struct *task = get_proc_task(inode);
2432 
2433 	if (!task)
2434 		return -ESRCH;
2435 
2436 	length = security_getprocattr(task,
2437 				      (char*)file->f_path.dentry->d_name.name,
2438 				      &p);
2439 	put_task_struct(task);
2440 	if (length > 0)
2441 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2442 	kfree(p);
2443 	return length;
2444 }
2445 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2446 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2447 				   size_t count, loff_t *ppos)
2448 {
2449 	struct inode * inode = file->f_path.dentry->d_inode;
2450 	char *page;
2451 	ssize_t length;
2452 	struct task_struct *task = get_proc_task(inode);
2453 
2454 	length = -ESRCH;
2455 	if (!task)
2456 		goto out_no_task;
2457 	if (count > PAGE_SIZE)
2458 		count = PAGE_SIZE;
2459 
2460 	/* No partial writes. */
2461 	length = -EINVAL;
2462 	if (*ppos != 0)
2463 		goto out;
2464 
2465 	length = -ENOMEM;
2466 	page = (char*)__get_free_page(GFP_TEMPORARY);
2467 	if (!page)
2468 		goto out;
2469 
2470 	length = -EFAULT;
2471 	if (copy_from_user(page, buf, count))
2472 		goto out_free;
2473 
2474 	/* Guard against adverse ptrace interaction */
2475 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2476 	if (length < 0)
2477 		goto out_free;
2478 
2479 	length = security_setprocattr(task,
2480 				      (char*)file->f_path.dentry->d_name.name,
2481 				      (void*)page, count);
2482 	mutex_unlock(&task->signal->cred_guard_mutex);
2483 out_free:
2484 	free_page((unsigned long) page);
2485 out:
2486 	put_task_struct(task);
2487 out_no_task:
2488 	return length;
2489 }
2490 
2491 static const struct file_operations proc_pid_attr_operations = {
2492 	.read		= proc_pid_attr_read,
2493 	.write		= proc_pid_attr_write,
2494 	.llseek		= generic_file_llseek,
2495 };
2496 
2497 static const struct pid_entry attr_dir_stuff[] = {
2498 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2499 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2500 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2501 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2502 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2503 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2504 };
2505 
proc_attr_dir_readdir(struct file * filp,void * dirent,filldir_t filldir)2506 static int proc_attr_dir_readdir(struct file * filp,
2507 			     void * dirent, filldir_t filldir)
2508 {
2509 	return proc_pident_readdir(filp,dirent,filldir,
2510 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2511 }
2512 
2513 static const struct file_operations proc_attr_dir_operations = {
2514 	.read		= generic_read_dir,
2515 	.readdir	= proc_attr_dir_readdir,
2516 	.llseek		= default_llseek,
2517 };
2518 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2519 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2520 				struct dentry *dentry, struct nameidata *nd)
2521 {
2522 	return proc_pident_lookup(dir, dentry,
2523 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2524 }
2525 
2526 static const struct inode_operations proc_attr_dir_inode_operations = {
2527 	.lookup		= proc_attr_dir_lookup,
2528 	.getattr	= pid_getattr,
2529 	.setattr	= proc_setattr,
2530 };
2531 
2532 #endif
2533 
2534 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2535 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2536 					 size_t count, loff_t *ppos)
2537 {
2538 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2539 	struct mm_struct *mm;
2540 	char buffer[PROC_NUMBUF];
2541 	size_t len;
2542 	int ret;
2543 
2544 	if (!task)
2545 		return -ESRCH;
2546 
2547 	ret = 0;
2548 	mm = get_task_mm(task);
2549 	if (mm) {
2550 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2551 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2552 				MMF_DUMP_FILTER_SHIFT));
2553 		mmput(mm);
2554 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2555 	}
2556 
2557 	put_task_struct(task);
2558 
2559 	return ret;
2560 }
2561 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2562 static ssize_t proc_coredump_filter_write(struct file *file,
2563 					  const char __user *buf,
2564 					  size_t count,
2565 					  loff_t *ppos)
2566 {
2567 	struct task_struct *task;
2568 	struct mm_struct *mm;
2569 	char buffer[PROC_NUMBUF], *end;
2570 	unsigned int val;
2571 	int ret;
2572 	int i;
2573 	unsigned long mask;
2574 
2575 	ret = -EFAULT;
2576 	memset(buffer, 0, sizeof(buffer));
2577 	if (count > sizeof(buffer) - 1)
2578 		count = sizeof(buffer) - 1;
2579 	if (copy_from_user(buffer, buf, count))
2580 		goto out_no_task;
2581 
2582 	ret = -EINVAL;
2583 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2584 	if (*end == '\n')
2585 		end++;
2586 	if (end - buffer == 0)
2587 		goto out_no_task;
2588 
2589 	ret = -ESRCH;
2590 	task = get_proc_task(file->f_dentry->d_inode);
2591 	if (!task)
2592 		goto out_no_task;
2593 
2594 	ret = end - buffer;
2595 	mm = get_task_mm(task);
2596 	if (!mm)
2597 		goto out_no_mm;
2598 
2599 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2600 		if (val & mask)
2601 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2602 		else
2603 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2604 	}
2605 
2606 	mmput(mm);
2607  out_no_mm:
2608 	put_task_struct(task);
2609  out_no_task:
2610 	return ret;
2611 }
2612 
2613 static const struct file_operations proc_coredump_filter_operations = {
2614 	.read		= proc_coredump_filter_read,
2615 	.write		= proc_coredump_filter_write,
2616 	.llseek		= generic_file_llseek,
2617 };
2618 #endif
2619 
2620 /*
2621  * /proc/self:
2622  */
proc_self_readlink(struct dentry * dentry,char __user * buffer,int buflen)2623 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2624 			      int buflen)
2625 {
2626 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2627 	pid_t tgid = task_tgid_nr_ns(current, ns);
2628 	char tmp[PROC_NUMBUF];
2629 	if (!tgid)
2630 		return -ENOENT;
2631 	sprintf(tmp, "%d", tgid);
2632 	return vfs_readlink(dentry,buffer,buflen,tmp);
2633 }
2634 
proc_self_follow_link(struct dentry * dentry,struct nameidata * nd)2635 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2636 {
2637 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2638 	pid_t tgid = task_tgid_nr_ns(current, ns);
2639 	char *name = ERR_PTR(-ENOENT);
2640 	if (tgid) {
2641 		name = __getname();
2642 		if (!name)
2643 			name = ERR_PTR(-ENOMEM);
2644 		else
2645 			sprintf(name, "%d", tgid);
2646 	}
2647 	nd_set_link(nd, name);
2648 	return NULL;
2649 }
2650 
proc_self_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)2651 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2652 				void *cookie)
2653 {
2654 	char *s = nd_get_link(nd);
2655 	if (!IS_ERR(s))
2656 		__putname(s);
2657 }
2658 
2659 static const struct inode_operations proc_self_inode_operations = {
2660 	.readlink	= proc_self_readlink,
2661 	.follow_link	= proc_self_follow_link,
2662 	.put_link	= proc_self_put_link,
2663 };
2664 
2665 /*
2666  * proc base
2667  *
2668  * These are the directory entries in the root directory of /proc
2669  * that properly belong to the /proc filesystem, as they describe
2670  * describe something that is process related.
2671  */
2672 static const struct pid_entry proc_base_stuff[] = {
2673 	NOD("self", S_IFLNK|S_IRWXUGO,
2674 		&proc_self_inode_operations, NULL, {}),
2675 };
2676 
proc_base_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)2677 static struct dentry *proc_base_instantiate(struct inode *dir,
2678 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2679 {
2680 	const struct pid_entry *p = ptr;
2681 	struct inode *inode;
2682 	struct proc_inode *ei;
2683 	struct dentry *error;
2684 
2685 	/* Allocate the inode */
2686 	error = ERR_PTR(-ENOMEM);
2687 	inode = new_inode(dir->i_sb);
2688 	if (!inode)
2689 		goto out;
2690 
2691 	/* Initialize the inode */
2692 	ei = PROC_I(inode);
2693 	inode->i_ino = get_next_ino();
2694 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2695 
2696 	/*
2697 	 * grab the reference to the task.
2698 	 */
2699 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2700 	if (!ei->pid)
2701 		goto out_iput;
2702 
2703 	inode->i_mode = p->mode;
2704 	if (S_ISDIR(inode->i_mode))
2705 		inode->i_nlink = 2;
2706 	if (S_ISLNK(inode->i_mode))
2707 		inode->i_size = 64;
2708 	if (p->iop)
2709 		inode->i_op = p->iop;
2710 	if (p->fop)
2711 		inode->i_fop = p->fop;
2712 	ei->op = p->op;
2713 	d_add(dentry, inode);
2714 	error = NULL;
2715 out:
2716 	return error;
2717 out_iput:
2718 	iput(inode);
2719 	goto out;
2720 }
2721 
proc_base_lookup(struct inode * dir,struct dentry * dentry)2722 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2723 {
2724 	struct dentry *error;
2725 	struct task_struct *task = get_proc_task(dir);
2726 	const struct pid_entry *p, *last;
2727 
2728 	error = ERR_PTR(-ENOENT);
2729 
2730 	if (!task)
2731 		goto out_no_task;
2732 
2733 	/* Lookup the directory entry */
2734 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2735 	for (p = proc_base_stuff; p <= last; p++) {
2736 		if (p->len != dentry->d_name.len)
2737 			continue;
2738 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2739 			break;
2740 	}
2741 	if (p > last)
2742 		goto out;
2743 
2744 	error = proc_base_instantiate(dir, dentry, task, p);
2745 
2746 out:
2747 	put_task_struct(task);
2748 out_no_task:
2749 	return error;
2750 }
2751 
proc_base_fill_cache(struct file * filp,void * dirent,filldir_t filldir,struct task_struct * task,const struct pid_entry * p)2752 static int proc_base_fill_cache(struct file *filp, void *dirent,
2753 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2754 {
2755 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2756 				proc_base_instantiate, task, p);
2757 }
2758 
2759 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,char * buffer,int whole)2760 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2761 {
2762 	struct task_io_accounting acct = task->ioac;
2763 	unsigned long flags;
2764 
2765 	if (whole && lock_task_sighand(task, &flags)) {
2766 		struct task_struct *t = task;
2767 
2768 		task_io_accounting_add(&acct, &task->signal->ioac);
2769 		while_each_thread(task, t)
2770 			task_io_accounting_add(&acct, &t->ioac);
2771 
2772 		unlock_task_sighand(task, &flags);
2773 	}
2774 	return sprintf(buffer,
2775 			"rchar: %llu\n"
2776 			"wchar: %llu\n"
2777 			"syscr: %llu\n"
2778 			"syscw: %llu\n"
2779 			"read_bytes: %llu\n"
2780 			"write_bytes: %llu\n"
2781 			"cancelled_write_bytes: %llu\n",
2782 			(unsigned long long)acct.rchar,
2783 			(unsigned long long)acct.wchar,
2784 			(unsigned long long)acct.syscr,
2785 			(unsigned long long)acct.syscw,
2786 			(unsigned long long)acct.read_bytes,
2787 			(unsigned long long)acct.write_bytes,
2788 			(unsigned long long)acct.cancelled_write_bytes);
2789 }
2790 
proc_tid_io_accounting(struct task_struct * task,char * buffer)2791 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2792 {
2793 	return do_io_accounting(task, buffer, 0);
2794 }
2795 
proc_tgid_io_accounting(struct task_struct * task,char * buffer)2796 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2797 {
2798 	return do_io_accounting(task, buffer, 1);
2799 }
2800 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2801 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2802 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2803 				struct pid *pid, struct task_struct *task)
2804 {
2805 	int err = lock_trace(task);
2806 	if (!err) {
2807 		seq_printf(m, "%08x\n", task->personality);
2808 		unlock_trace(task);
2809 	}
2810 	return err;
2811 }
2812 
2813 /*
2814  * Thread groups
2815  */
2816 static const struct file_operations proc_task_operations;
2817 static const struct inode_operations proc_task_inode_operations;
2818 
2819 static const struct pid_entry tgid_base_stuff[] = {
2820 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2821 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2822 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2823 #ifdef CONFIG_NET
2824 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2825 #endif
2826 	REG("environ",    S_IRUSR, proc_environ_operations),
2827 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2828 	ONE("status",     S_IRUGO, proc_pid_status),
2829 	ONE("personality", S_IRUGO, proc_pid_personality),
2830 	INF("limits",	  S_IRUGO, proc_pid_limits),
2831 #ifdef CONFIG_SCHED_DEBUG
2832 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2833 #endif
2834 #ifdef CONFIG_SCHED_AUTOGROUP
2835 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2836 #endif
2837 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2838 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2839 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2840 #endif
2841 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2842 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2843 	ONE("statm",      S_IRUGO, proc_pid_statm),
2844 	REG("maps",       S_IRUGO, proc_maps_operations),
2845 #ifdef CONFIG_NUMA
2846 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2847 #endif
2848 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2849 	LNK("cwd",        proc_cwd_link),
2850 	LNK("root",       proc_root_link),
2851 	LNK("exe",        proc_exe_link),
2852 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2853 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2854 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2855 #ifdef CONFIG_PROC_PAGE_MONITOR
2856 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2857 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2858 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2859 #endif
2860 #ifdef CONFIG_SECURITY
2861 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2862 #endif
2863 #ifdef CONFIG_KALLSYMS
2864 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2865 #endif
2866 #ifdef CONFIG_STACKTRACE
2867 	ONE("stack",      S_IRUGO, proc_pid_stack),
2868 #endif
2869 #ifdef CONFIG_SCHEDSTATS
2870 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2871 #endif
2872 #ifdef CONFIG_LATENCYTOP
2873 	REG("latency",  S_IRUGO, proc_lstats_operations),
2874 #endif
2875 #ifdef CONFIG_PROC_PID_CPUSET
2876 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2877 #endif
2878 #ifdef CONFIG_CGROUPS
2879 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2880 #endif
2881 	INF("oom_score",  S_IRUGO, proc_oom_score),
2882 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2883 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2884 #ifdef CONFIG_AUDITSYSCALL
2885 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2886 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2887 #endif
2888 #ifdef CONFIG_FAULT_INJECTION
2889 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2890 #endif
2891 #ifdef CONFIG_ELF_CORE
2892 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2893 #endif
2894 #ifdef CONFIG_TASK_IO_ACCOUNTING
2895 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2896 #endif
2897 };
2898 
proc_tgid_base_readdir(struct file * filp,void * dirent,filldir_t filldir)2899 static int proc_tgid_base_readdir(struct file * filp,
2900 			     void * dirent, filldir_t filldir)
2901 {
2902 	return proc_pident_readdir(filp,dirent,filldir,
2903 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2904 }
2905 
2906 static const struct file_operations proc_tgid_base_operations = {
2907 	.read		= generic_read_dir,
2908 	.readdir	= proc_tgid_base_readdir,
2909 	.llseek		= default_llseek,
2910 };
2911 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2912 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2913 	return proc_pident_lookup(dir, dentry,
2914 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2915 }
2916 
2917 static const struct inode_operations proc_tgid_base_inode_operations = {
2918 	.lookup		= proc_tgid_base_lookup,
2919 	.getattr	= pid_getattr,
2920 	.setattr	= proc_setattr,
2921 };
2922 
proc_flush_task_mnt(struct vfsmount * mnt,pid_t pid,pid_t tgid)2923 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2924 {
2925 	struct dentry *dentry, *leader, *dir;
2926 	char buf[PROC_NUMBUF];
2927 	struct qstr name;
2928 
2929 	name.name = buf;
2930 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2931 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2932 	if (dentry) {
2933 		shrink_dcache_parent(dentry);
2934 		d_drop(dentry);
2935 		dput(dentry);
2936 	}
2937 
2938 	name.name = buf;
2939 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2940 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2941 	if (!leader)
2942 		goto out;
2943 
2944 	name.name = "task";
2945 	name.len = strlen(name.name);
2946 	dir = d_hash_and_lookup(leader, &name);
2947 	if (!dir)
2948 		goto out_put_leader;
2949 
2950 	name.name = buf;
2951 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2952 	dentry = d_hash_and_lookup(dir, &name);
2953 	if (dentry) {
2954 		shrink_dcache_parent(dentry);
2955 		d_drop(dentry);
2956 		dput(dentry);
2957 	}
2958 
2959 	dput(dir);
2960 out_put_leader:
2961 	dput(leader);
2962 out:
2963 	return;
2964 }
2965 
2966 /**
2967  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2968  * @task: task that should be flushed.
2969  *
2970  * When flushing dentries from proc, one needs to flush them from global
2971  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2972  * in. This call is supposed to do all of this job.
2973  *
2974  * Looks in the dcache for
2975  * /proc/@pid
2976  * /proc/@tgid/task/@pid
2977  * if either directory is present flushes it and all of it'ts children
2978  * from the dcache.
2979  *
2980  * It is safe and reasonable to cache /proc entries for a task until
2981  * that task exits.  After that they just clog up the dcache with
2982  * useless entries, possibly causing useful dcache entries to be
2983  * flushed instead.  This routine is proved to flush those useless
2984  * dcache entries at process exit time.
2985  *
2986  * NOTE: This routine is just an optimization so it does not guarantee
2987  *       that no dcache entries will exist at process exit time it
2988  *       just makes it very unlikely that any will persist.
2989  */
2990 
proc_flush_task(struct task_struct * task)2991 void proc_flush_task(struct task_struct *task)
2992 {
2993 	int i;
2994 	struct pid *pid, *tgid;
2995 	struct upid *upid;
2996 
2997 	pid = task_pid(task);
2998 	tgid = task_tgid(task);
2999 
3000 	for (i = 0; i <= pid->level; i++) {
3001 		upid = &pid->numbers[i];
3002 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3003 					tgid->numbers[i].nr);
3004 	}
3005 
3006 	upid = &pid->numbers[pid->level];
3007 	if (upid->nr == 1)
3008 		pid_ns_release_proc(upid->ns);
3009 }
3010 
proc_pid_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)3011 static struct dentry *proc_pid_instantiate(struct inode *dir,
3012 					   struct dentry * dentry,
3013 					   struct task_struct *task, const void *ptr)
3014 {
3015 	struct dentry *error = ERR_PTR(-ENOENT);
3016 	struct inode *inode;
3017 
3018 	inode = proc_pid_make_inode(dir->i_sb, task);
3019 	if (!inode)
3020 		goto out;
3021 
3022 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3023 	inode->i_op = &proc_tgid_base_inode_operations;
3024 	inode->i_fop = &proc_tgid_base_operations;
3025 	inode->i_flags|=S_IMMUTABLE;
3026 
3027 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
3028 		ARRAY_SIZE(tgid_base_stuff));
3029 
3030 	d_set_d_op(dentry, &pid_dentry_operations);
3031 
3032 	d_add(dentry, inode);
3033 	/* Close the race of the process dying before we return the dentry */
3034 	if (pid_revalidate(dentry, NULL))
3035 		error = NULL;
3036 out:
3037 	return error;
3038 }
3039 
proc_pid_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)3040 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3041 {
3042 	struct dentry *result;
3043 	struct task_struct *task;
3044 	unsigned tgid;
3045 	struct pid_namespace *ns;
3046 
3047 	result = proc_base_lookup(dir, dentry);
3048 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3049 		goto out;
3050 
3051 	tgid = name_to_int(dentry);
3052 	if (tgid == ~0U)
3053 		goto out;
3054 
3055 	ns = dentry->d_sb->s_fs_info;
3056 	rcu_read_lock();
3057 	task = find_task_by_pid_ns(tgid, ns);
3058 	if (task)
3059 		get_task_struct(task);
3060 	rcu_read_unlock();
3061 	if (!task)
3062 		goto out;
3063 
3064 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3065 	put_task_struct(task);
3066 out:
3067 	return result;
3068 }
3069 
3070 /*
3071  * Find the first task with tgid >= tgid
3072  *
3073  */
3074 struct tgid_iter {
3075 	unsigned int tgid;
3076 	struct task_struct *task;
3077 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3078 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3079 {
3080 	struct pid *pid;
3081 
3082 	if (iter.task)
3083 		put_task_struct(iter.task);
3084 	rcu_read_lock();
3085 retry:
3086 	iter.task = NULL;
3087 	pid = find_ge_pid(iter.tgid, ns);
3088 	if (pid) {
3089 		iter.tgid = pid_nr_ns(pid, ns);
3090 		iter.task = pid_task(pid, PIDTYPE_PID);
3091 		/* What we to know is if the pid we have find is the
3092 		 * pid of a thread_group_leader.  Testing for task
3093 		 * being a thread_group_leader is the obvious thing
3094 		 * todo but there is a window when it fails, due to
3095 		 * the pid transfer logic in de_thread.
3096 		 *
3097 		 * So we perform the straight forward test of seeing
3098 		 * if the pid we have found is the pid of a thread
3099 		 * group leader, and don't worry if the task we have
3100 		 * found doesn't happen to be a thread group leader.
3101 		 * As we don't care in the case of readdir.
3102 		 */
3103 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3104 			iter.tgid += 1;
3105 			goto retry;
3106 		}
3107 		get_task_struct(iter.task);
3108 	}
3109 	rcu_read_unlock();
3110 	return iter;
3111 }
3112 
3113 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3114 
proc_pid_fill_cache(struct file * filp,void * dirent,filldir_t filldir,struct tgid_iter iter)3115 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3116 	struct tgid_iter iter)
3117 {
3118 	char name[PROC_NUMBUF];
3119 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3120 	return proc_fill_cache(filp, dirent, filldir, name, len,
3121 				proc_pid_instantiate, iter.task, NULL);
3122 }
3123 
3124 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * filp,void * dirent,filldir_t filldir)3125 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3126 {
3127 	unsigned int nr;
3128 	struct task_struct *reaper;
3129 	struct tgid_iter iter;
3130 	struct pid_namespace *ns;
3131 
3132 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3133 		goto out_no_task;
3134 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3135 
3136 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3137 	if (!reaper)
3138 		goto out_no_task;
3139 
3140 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3141 		const struct pid_entry *p = &proc_base_stuff[nr];
3142 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3143 			goto out;
3144 	}
3145 
3146 	ns = filp->f_dentry->d_sb->s_fs_info;
3147 	iter.task = NULL;
3148 	iter.tgid = filp->f_pos - TGID_OFFSET;
3149 	for (iter = next_tgid(ns, iter);
3150 	     iter.task;
3151 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3152 		filp->f_pos = iter.tgid + TGID_OFFSET;
3153 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3154 			put_task_struct(iter.task);
3155 			goto out;
3156 		}
3157 	}
3158 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3159 out:
3160 	put_task_struct(reaper);
3161 out_no_task:
3162 	return 0;
3163 }
3164 
3165 /*
3166  * Tasks
3167  */
3168 static const struct pid_entry tid_base_stuff[] = {
3169 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3170 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3171 	REG("environ",   S_IRUSR, proc_environ_operations),
3172 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3173 	ONE("status",    S_IRUGO, proc_pid_status),
3174 	ONE("personality", S_IRUGO, proc_pid_personality),
3175 	INF("limits",	 S_IRUGO, proc_pid_limits),
3176 #ifdef CONFIG_SCHED_DEBUG
3177 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3178 #endif
3179 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3180 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3181 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3182 #endif
3183 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3184 	ONE("stat",      S_IRUGO, proc_tid_stat),
3185 	ONE("statm",     S_IRUGO, proc_pid_statm),
3186 	REG("maps",      S_IRUGO, proc_maps_operations),
3187 #ifdef CONFIG_NUMA
3188 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3189 #endif
3190 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3191 	LNK("cwd",       proc_cwd_link),
3192 	LNK("root",      proc_root_link),
3193 	LNK("exe",       proc_exe_link),
3194 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3195 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3196 #ifdef CONFIG_PROC_PAGE_MONITOR
3197 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3198 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3199 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3200 #endif
3201 #ifdef CONFIG_SECURITY
3202 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3203 #endif
3204 #ifdef CONFIG_KALLSYMS
3205 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3206 #endif
3207 #ifdef CONFIG_STACKTRACE
3208 	ONE("stack",      S_IRUGO, proc_pid_stack),
3209 #endif
3210 #ifdef CONFIG_SCHEDSTATS
3211 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3212 #endif
3213 #ifdef CONFIG_LATENCYTOP
3214 	REG("latency",  S_IRUGO, proc_lstats_operations),
3215 #endif
3216 #ifdef CONFIG_PROC_PID_CPUSET
3217 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3218 #endif
3219 #ifdef CONFIG_CGROUPS
3220 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3221 #endif
3222 	INF("oom_score", S_IRUGO, proc_oom_score),
3223 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3224 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3225 #ifdef CONFIG_AUDITSYSCALL
3226 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3227 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3228 #endif
3229 #ifdef CONFIG_FAULT_INJECTION
3230 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3231 #endif
3232 #ifdef CONFIG_TASK_IO_ACCOUNTING
3233 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3234 #endif
3235 };
3236 
proc_tid_base_readdir(struct file * filp,void * dirent,filldir_t filldir)3237 static int proc_tid_base_readdir(struct file * filp,
3238 			     void * dirent, filldir_t filldir)
3239 {
3240 	return proc_pident_readdir(filp,dirent,filldir,
3241 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3242 }
3243 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)3244 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3245 	return proc_pident_lookup(dir, dentry,
3246 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3247 }
3248 
3249 static const struct file_operations proc_tid_base_operations = {
3250 	.read		= generic_read_dir,
3251 	.readdir	= proc_tid_base_readdir,
3252 	.llseek		= default_llseek,
3253 };
3254 
3255 static const struct inode_operations proc_tid_base_inode_operations = {
3256 	.lookup		= proc_tid_base_lookup,
3257 	.getattr	= pid_getattr,
3258 	.setattr	= proc_setattr,
3259 };
3260 
proc_task_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)3261 static struct dentry *proc_task_instantiate(struct inode *dir,
3262 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3263 {
3264 	struct dentry *error = ERR_PTR(-ENOENT);
3265 	struct inode *inode;
3266 	inode = proc_pid_make_inode(dir->i_sb, task);
3267 
3268 	if (!inode)
3269 		goto out;
3270 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3271 	inode->i_op = &proc_tid_base_inode_operations;
3272 	inode->i_fop = &proc_tid_base_operations;
3273 	inode->i_flags|=S_IMMUTABLE;
3274 
3275 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3276 		ARRAY_SIZE(tid_base_stuff));
3277 
3278 	d_set_d_op(dentry, &pid_dentry_operations);
3279 
3280 	d_add(dentry, inode);
3281 	/* Close the race of the process dying before we return the dentry */
3282 	if (pid_revalidate(dentry, NULL))
3283 		error = NULL;
3284 out:
3285 	return error;
3286 }
3287 
proc_task_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)3288 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3289 {
3290 	struct dentry *result = ERR_PTR(-ENOENT);
3291 	struct task_struct *task;
3292 	struct task_struct *leader = get_proc_task(dir);
3293 	unsigned tid;
3294 	struct pid_namespace *ns;
3295 
3296 	if (!leader)
3297 		goto out_no_task;
3298 
3299 	tid = name_to_int(dentry);
3300 	if (tid == ~0U)
3301 		goto out;
3302 
3303 	ns = dentry->d_sb->s_fs_info;
3304 	rcu_read_lock();
3305 	task = find_task_by_pid_ns(tid, ns);
3306 	if (task)
3307 		get_task_struct(task);
3308 	rcu_read_unlock();
3309 	if (!task)
3310 		goto out;
3311 	if (!same_thread_group(leader, task))
3312 		goto out_drop_task;
3313 
3314 	result = proc_task_instantiate(dir, dentry, task, NULL);
3315 out_drop_task:
3316 	put_task_struct(task);
3317 out:
3318 	put_task_struct(leader);
3319 out_no_task:
3320 	return result;
3321 }
3322 
3323 /*
3324  * Find the first tid of a thread group to return to user space.
3325  *
3326  * Usually this is just the thread group leader, but if the users
3327  * buffer was too small or there was a seek into the middle of the
3328  * directory we have more work todo.
3329  *
3330  * In the case of a short read we start with find_task_by_pid.
3331  *
3332  * In the case of a seek we start with the leader and walk nr
3333  * threads past it.
3334  */
first_tid(struct task_struct * leader,int tid,int nr,struct pid_namespace * ns)3335 static struct task_struct *first_tid(struct task_struct *leader,
3336 		int tid, int nr, struct pid_namespace *ns)
3337 {
3338 	struct task_struct *pos;
3339 
3340 	rcu_read_lock();
3341 	/* Attempt to start with the pid of a thread */
3342 	if (tid && (nr > 0)) {
3343 		pos = find_task_by_pid_ns(tid, ns);
3344 		if (pos && (pos->group_leader == leader))
3345 			goto found;
3346 	}
3347 
3348 	/* If nr exceeds the number of threads there is nothing todo */
3349 	pos = NULL;
3350 	if (nr && nr >= get_nr_threads(leader))
3351 		goto out;
3352 
3353 	/* If we haven't found our starting place yet start
3354 	 * with the leader and walk nr threads forward.
3355 	 */
3356 	for (pos = leader; nr > 0; --nr) {
3357 		pos = next_thread(pos);
3358 		if (pos == leader) {
3359 			pos = NULL;
3360 			goto out;
3361 		}
3362 	}
3363 found:
3364 	get_task_struct(pos);
3365 out:
3366 	rcu_read_unlock();
3367 	return pos;
3368 }
3369 
3370 /*
3371  * Find the next thread in the thread list.
3372  * Return NULL if there is an error or no next thread.
3373  *
3374  * The reference to the input task_struct is released.
3375  */
next_tid(struct task_struct * start)3376 static struct task_struct *next_tid(struct task_struct *start)
3377 {
3378 	struct task_struct *pos = NULL;
3379 	rcu_read_lock();
3380 	if (pid_alive(start)) {
3381 		pos = next_thread(start);
3382 		if (thread_group_leader(pos))
3383 			pos = NULL;
3384 		else
3385 			get_task_struct(pos);
3386 	}
3387 	rcu_read_unlock();
3388 	put_task_struct(start);
3389 	return pos;
3390 }
3391 
proc_task_fill_cache(struct file * filp,void * dirent,filldir_t filldir,struct task_struct * task,int tid)3392 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3393 	struct task_struct *task, int tid)
3394 {
3395 	char name[PROC_NUMBUF];
3396 	int len = snprintf(name, sizeof(name), "%d", tid);
3397 	return proc_fill_cache(filp, dirent, filldir, name, len,
3398 				proc_task_instantiate, task, NULL);
3399 }
3400 
3401 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * filp,void * dirent,filldir_t filldir)3402 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3403 {
3404 	struct dentry *dentry = filp->f_path.dentry;
3405 	struct inode *inode = dentry->d_inode;
3406 	struct task_struct *leader = NULL;
3407 	struct task_struct *task;
3408 	int retval = -ENOENT;
3409 	ino_t ino;
3410 	int tid;
3411 	struct pid_namespace *ns;
3412 
3413 	task = get_proc_task(inode);
3414 	if (!task)
3415 		goto out_no_task;
3416 	rcu_read_lock();
3417 	if (pid_alive(task)) {
3418 		leader = task->group_leader;
3419 		get_task_struct(leader);
3420 	}
3421 	rcu_read_unlock();
3422 	put_task_struct(task);
3423 	if (!leader)
3424 		goto out_no_task;
3425 	retval = 0;
3426 
3427 	switch ((unsigned long)filp->f_pos) {
3428 	case 0:
3429 		ino = inode->i_ino;
3430 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3431 			goto out;
3432 		filp->f_pos++;
3433 		/* fall through */
3434 	case 1:
3435 		ino = parent_ino(dentry);
3436 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3437 			goto out;
3438 		filp->f_pos++;
3439 		/* fall through */
3440 	}
3441 
3442 	/* f_version caches the tgid value that the last readdir call couldn't
3443 	 * return. lseek aka telldir automagically resets f_version to 0.
3444 	 */
3445 	ns = filp->f_dentry->d_sb->s_fs_info;
3446 	tid = (int)filp->f_version;
3447 	filp->f_version = 0;
3448 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3449 	     task;
3450 	     task = next_tid(task), filp->f_pos++) {
3451 		tid = task_pid_nr_ns(task, ns);
3452 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3453 			/* returning this tgid failed, save it as the first
3454 			 * pid for the next readir call */
3455 			filp->f_version = (u64)tid;
3456 			put_task_struct(task);
3457 			break;
3458 		}
3459 	}
3460 out:
3461 	put_task_struct(leader);
3462 out_no_task:
3463 	return retval;
3464 }
3465 
proc_task_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)3466 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3467 {
3468 	struct inode *inode = dentry->d_inode;
3469 	struct task_struct *p = get_proc_task(inode);
3470 	generic_fillattr(inode, stat);
3471 
3472 	if (p) {
3473 		stat->nlink += get_nr_threads(p);
3474 		put_task_struct(p);
3475 	}
3476 
3477 	return 0;
3478 }
3479 
3480 static const struct inode_operations proc_task_inode_operations = {
3481 	.lookup		= proc_task_lookup,
3482 	.getattr	= proc_task_getattr,
3483 	.setattr	= proc_setattr,
3484 };
3485 
3486 static const struct file_operations proc_task_operations = {
3487 	.read		= generic_read_dir,
3488 	.readdir	= proc_task_readdir,
3489 	.llseek		= default_llseek,
3490 };
3491