1 /*
2 * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3 *
4 * This file is derived from the powermac console "imstt" driver:
5 * Copyright (C) 1997 Sigurdur Asgeirsson
6 * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7 * Modified by Danilo Beuche 1998
8 * Some register values added by Damien Doligez, INRIA Rocquencourt
9 * Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10 *
11 * This file was written by Ryan Nielsen (ran@krazynet.com)
12 * Most of the frame buffer device stuff was copied from atyfb.c
13 *
14 * This file is subject to the terms and conditions of the GNU General Public
15 * License. See the file COPYING in the main directory of this archive for
16 * more details.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/fb.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32
33 #if defined(CONFIG_PPC_PMAC)
34 #include <linux/nvram.h>
35 #include "macmodes.h"
36 #endif
37
38 #ifndef __powerpc__
39 #define eieio() /* Enforce In-order Execution of I/O */
40 #endif
41
42 /* TwinTurbo (Cosmo) registers */
43 enum {
44 S1SA = 0, /* 0x00 */
45 S2SA = 1, /* 0x04 */
46 SP = 2, /* 0x08 */
47 DSA = 3, /* 0x0C */
48 CNT = 4, /* 0x10 */
49 DP_OCTL = 5, /* 0x14 */
50 CLR = 6, /* 0x18 */
51 BI = 8, /* 0x20 */
52 MBC = 9, /* 0x24 */
53 BLTCTL = 10, /* 0x28 */
54
55 /* Scan Timing Generator Registers */
56 HES = 12, /* 0x30 */
57 HEB = 13, /* 0x34 */
58 HSB = 14, /* 0x38 */
59 HT = 15, /* 0x3C */
60 VES = 16, /* 0x40 */
61 VEB = 17, /* 0x44 */
62 VSB = 18, /* 0x48 */
63 VT = 19, /* 0x4C */
64 HCIV = 20, /* 0x50 */
65 VCIV = 21, /* 0x54 */
66 TCDR = 22, /* 0x58 */
67 VIL = 23, /* 0x5C */
68 STGCTL = 24, /* 0x60 */
69
70 /* Screen Refresh Generator Registers */
71 SSR = 25, /* 0x64 */
72 HRIR = 26, /* 0x68 */
73 SPR = 27, /* 0x6C */
74 CMR = 28, /* 0x70 */
75 SRGCTL = 29, /* 0x74 */
76
77 /* RAM Refresh Generator Registers */
78 RRCIV = 30, /* 0x78 */
79 RRSC = 31, /* 0x7C */
80 RRCR = 34, /* 0x88 */
81
82 /* System Registers */
83 GIOE = 32, /* 0x80 */
84 GIO = 33, /* 0x84 */
85 SCR = 35, /* 0x8C */
86 SSTATUS = 36, /* 0x90 */
87 PRC = 37, /* 0x94 */
88
89 #if 0
90 /* PCI Registers */
91 DVID = 0x00000000L,
92 SC = 0x00000004L,
93 CCR = 0x00000008L,
94 OG = 0x0000000CL,
95 BARM = 0x00000010L,
96 BARER = 0x00000030L,
97 #endif
98 };
99
100 /* IBM 624 RAMDAC Direct Registers */
101 enum {
102 PADDRW = 0x00,
103 PDATA = 0x04,
104 PPMASK = 0x08,
105 PADDRR = 0x0c,
106 PIDXLO = 0x10,
107 PIDXHI = 0x14,
108 PIDXDATA= 0x18,
109 PIDXCTL = 0x1c
110 };
111
112 /* IBM 624 RAMDAC Indirect Registers */
113 enum {
114 CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
115 SYNCCTL = 0x03, /* (0x00) Sync Control */
116 HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
117 PWRMNGMT = 0x05, /* (0x00) Power Management */
118 DACOP = 0x06, /* (0x02) DAC Operation */
119 PALETCTL = 0x07, /* (0x00) Palette Control */
120 SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
121 PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
122 BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
123 BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
124 BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
125 BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
126 PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
127 PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
128 SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
129 SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
130 SYSCLKP = 0x17, /* () System Clock P */
131 SYSCLKC = 0x18, /* () System Clock C */
132 /*
133 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
134 * c is charge pump bias which depends on the VCO frequency
135 */
136 PIXM0 = 0x20, /* () Pixel M 0 */
137 PIXN0 = 0x21, /* () Pixel N 0 */
138 PIXP0 = 0x22, /* () Pixel P 0 */
139 PIXC0 = 0x23, /* () Pixel C 0 */
140 CURSCTL = 0x30, /* (0x00) Cursor Control */
141 CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
142 CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
143 CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
144 CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
145 CURSHOTX = 0x35, /* () Cursor Hot Spot X */
146 CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
147 CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
148 CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
149 CURS1R = 0x40, /* () Cursor 1 Red */
150 CURS1G = 0x41, /* () Cursor 1 Green */
151 CURS1B = 0x42, /* () Cursor 1 Blue */
152 CURS2R = 0x43, /* () Cursor 2 Red */
153 CURS2G = 0x44, /* () Cursor 2 Green */
154 CURS2B = 0x45, /* () Cursor 2 Blue */
155 CURS3R = 0x46, /* () Cursor 3 Red */
156 CURS3G = 0x47, /* () Cursor 3 Green */
157 CURS3B = 0x48, /* () Cursor 3 Blue */
158 BORDR = 0x60, /* () Border Color Red */
159 BORDG = 0x61, /* () Border Color Green */
160 BORDB = 0x62, /* () Border Color Blue */
161 MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
162 MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
163 MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
164 KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
165 };
166
167 /* TI TVP 3030 RAMDAC Direct Registers */
168 enum {
169 TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
170 TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
171 TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
172 TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
173 TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
174 TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
175 /* 6 reserved */
176 TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
177 /* 8 reserved */
178 TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
179 TVPIDATA = 0x28, /* 10 Index Data */
180 TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
181 TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
182 TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
183 TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
184 TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
185 };
186
187 /* TI TVP 3030 RAMDAC Indirect Registers */
188 enum {
189 TVPIRREV = 0x01, /* Silicon Revision [RO] */
190 TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
191 TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
192 TVPIRLAC = 0x0f, /* Latch Control (0x06) */
193 TVPIRTCC = 0x18, /* True Color Control (0x80) */
194 TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
195 TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
196 TVPIRPPG = 0x1c, /* Palette Page (0x00) */
197 TVPIRGEC = 0x1d, /* General Control (0x00) */
198 TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
199 TVPIRPLA = 0x2c, /* PLL Address */
200 TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
201 TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
202 TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
203 TVPIRCKL = 0x30, /* Color-Key Overlay Low */
204 TVPIRCKH = 0x31, /* Color-Key Overlay High */
205 TVPIRCRL = 0x32, /* Color-Key Red Low */
206 TVPIRCRH = 0x33, /* Color-Key Red High */
207 TVPIRCGL = 0x34, /* Color-Key Green Low */
208 TVPIRCGH = 0x35, /* Color-Key Green High */
209 TVPIRCBL = 0x36, /* Color-Key Blue Low */
210 TVPIRCBH = 0x37, /* Color-Key Blue High */
211 TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
212 TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
213 TVPIRSEN = 0x3a, /* Sense Test (0x00) */
214 TVPIRTMD = 0x3b, /* Test Mode Data */
215 TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
216 TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
217 TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
218 TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
219 TVPIRRES = 0xff /* Software Reset [WO] */
220 };
221
222 struct initvalues {
223 __u8 addr, value;
224 };
225
226 static struct initvalues ibm_initregs[] = {
227 { CLKCTL, 0x21 },
228 { SYNCCTL, 0x00 },
229 { HSYNCPOS, 0x00 },
230 { PWRMNGMT, 0x00 },
231 { DACOP, 0x02 },
232 { PALETCTL, 0x00 },
233 { SYSCLKCTL, 0x01 },
234
235 /*
236 * Note that colors in X are correct only if all video data is
237 * passed through the palette in the DAC. That is, "indirect
238 * color" must be configured. This is the case for the IBM DAC
239 * used in the 2MB and 4MB cards, at least.
240 */
241 { BPP8, 0x00 },
242 { BPP16, 0x01 },
243 { BPP24, 0x00 },
244 { BPP32, 0x00 },
245
246 { PIXCTL1, 0x05 },
247 { PIXCTL2, 0x00 },
248 { SYSCLKN, 0x08 },
249 { SYSCLKM, 0x4f },
250 { SYSCLKP, 0x00 },
251 { SYSCLKC, 0x00 },
252 { CURSCTL, 0x00 },
253 { CURSACCTL, 0x01 },
254 { CURSACATTR, 0xa8 },
255 { CURS1R, 0xff },
256 { CURS1G, 0xff },
257 { CURS1B, 0xff },
258 { CURS2R, 0xff },
259 { CURS2G, 0xff },
260 { CURS2B, 0xff },
261 { CURS3R, 0xff },
262 { CURS3G, 0xff },
263 { CURS3B, 0xff },
264 { BORDR, 0xff },
265 { BORDG, 0xff },
266 { BORDB, 0xff },
267 { MISCTL1, 0x01 },
268 { MISCTL2, 0x45 },
269 { MISCTL3, 0x00 },
270 { KEYCTL, 0x00 }
271 };
272
273 static struct initvalues tvp_initregs[] = {
274 { TVPIRICC, 0x00 },
275 { TVPIRBRC, 0xe4 },
276 { TVPIRLAC, 0x06 },
277 { TVPIRTCC, 0x80 },
278 { TVPIRMXC, 0x4d },
279 { TVPIRCLS, 0x05 },
280 { TVPIRPPG, 0x00 },
281 { TVPIRGEC, 0x00 },
282 { TVPIRMIC, 0x08 },
283 { TVPIRCKL, 0xff },
284 { TVPIRCKH, 0xff },
285 { TVPIRCRL, 0xff },
286 { TVPIRCRH, 0xff },
287 { TVPIRCGL, 0xff },
288 { TVPIRCGH, 0xff },
289 { TVPIRCBL, 0xff },
290 { TVPIRCBH, 0xff },
291 { TVPIRCKC, 0x00 },
292 { TVPIRPLA, 0x00 },
293 { TVPIRPPD, 0xc0 },
294 { TVPIRPPD, 0xd5 },
295 { TVPIRPPD, 0xea },
296 { TVPIRPLA, 0x00 },
297 { TVPIRMPD, 0xb9 },
298 { TVPIRMPD, 0x3a },
299 { TVPIRMPD, 0xb1 },
300 { TVPIRPLA, 0x00 },
301 { TVPIRLPD, 0xc1 },
302 { TVPIRLPD, 0x3d },
303 { TVPIRLPD, 0xf3 },
304 };
305
306 struct imstt_regvals {
307 __u32 pitch;
308 __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
309 __u8 pclk_m, pclk_n, pclk_p;
310 /* Values of the tvp which change depending on colormode x resolution */
311 __u8 mlc[3]; /* Memory Loop Config 0x39 */
312 __u8 lckl_p[3]; /* P value of LCKL PLL */
313 };
314
315 struct imstt_par {
316 struct imstt_regvals init;
317 __u32 __iomem *dc_regs;
318 unsigned long cmap_regs_phys;
319 __u8 *cmap_regs;
320 __u32 ramdac;
321 __u32 palette[16];
322 };
323
324 enum {
325 IBM = 0,
326 TVP = 1
327 };
328
329 #define INIT_BPP 8
330 #define INIT_XRES 640
331 #define INIT_YRES 480
332
333 static int inverse = 0;
334 static char fontname[40] __initdata = { 0 };
335 #if defined(CONFIG_PPC_PMAC)
336 static signed char init_vmode = -1, init_cmode = -1;
337 #endif
338
339 static struct imstt_regvals tvp_reg_init_2 = {
340 512,
341 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
342 0xec, 0x2a, 0xf3,
343 { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
344 };
345
346 static struct imstt_regvals tvp_reg_init_6 = {
347 640,
348 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
349 0xef, 0x2e, 0xb2,
350 { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
351 };
352
353 static struct imstt_regvals tvp_reg_init_12 = {
354 800,
355 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
356 0xf6, 0x2e, 0xf2,
357 { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
358 };
359
360 static struct imstt_regvals tvp_reg_init_13 = {
361 832,
362 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
363 0xfe, 0x3e, 0xf1,
364 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
365 };
366
367 static struct imstt_regvals tvp_reg_init_17 = {
368 1024,
369 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
370 0xfc, 0x3a, 0xf1,
371 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
372 };
373
374 static struct imstt_regvals tvp_reg_init_18 = {
375 1152,
376 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
377 0xfd, 0x3a, 0xf1,
378 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
379 };
380
381 static struct imstt_regvals tvp_reg_init_19 = {
382 1280,
383 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
384 0xf7, 0x36, 0xf0,
385 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
386 };
387
388 static struct imstt_regvals tvp_reg_init_20 = {
389 1280,
390 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
391 0xf0, 0x2d, 0xf0,
392 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
393 };
394
395 /*
396 * PCI driver prototypes
397 */
398 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
399 static void imsttfb_remove(struct pci_dev *pdev);
400
401 /*
402 * Register access
403 */
read_reg_le32(volatile u32 __iomem * base,int regindex)404 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
405 {
406 #ifdef __powerpc__
407 return in_le32(base + regindex);
408 #else
409 return readl(base + regindex);
410 #endif
411 }
412
write_reg_le32(volatile u32 __iomem * base,int regindex,u32 val)413 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
414 {
415 #ifdef __powerpc__
416 out_le32(base + regindex, val);
417 #else
418 writel(val, base + regindex);
419 #endif
420 }
421
422 static __u32
getclkMHz(struct imstt_par * par)423 getclkMHz(struct imstt_par *par)
424 {
425 __u32 clk_m, clk_n, clk_p;
426
427 clk_m = par->init.pclk_m;
428 clk_n = par->init.pclk_n;
429 clk_p = par->init.pclk_p;
430
431 return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
432 }
433
434 static void
setclkMHz(struct imstt_par * par,__u32 MHz)435 setclkMHz(struct imstt_par *par, __u32 MHz)
436 {
437 __u32 clk_m, clk_n, x, stage, spilled;
438
439 clk_m = clk_n = 0;
440 stage = spilled = 0;
441 for (;;) {
442 switch (stage) {
443 case 0:
444 clk_m++;
445 break;
446 case 1:
447 clk_n++;
448 break;
449 }
450 x = 20 * (clk_m + 1) / (clk_n + 1);
451 if (x == MHz)
452 break;
453 if (x > MHz) {
454 spilled = 1;
455 stage = 1;
456 } else if (spilled && x < MHz) {
457 stage = 0;
458 }
459 }
460
461 par->init.pclk_m = clk_m;
462 par->init.pclk_n = clk_n;
463 par->init.pclk_p = 0;
464 }
465
466 static struct imstt_regvals *
compute_imstt_regvals_ibm(struct imstt_par * par,int xres,int yres)467 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
468 {
469 struct imstt_regvals *init = &par->init;
470 __u32 MHz, hes, heb, veb, htp, vtp;
471
472 switch (xres) {
473 case 640:
474 hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
475 MHz = 30 /* .25 */ ;
476 break;
477 case 832:
478 hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
479 MHz = 57 /* .27_ */ ;
480 break;
481 case 1024:
482 hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
483 MHz = 80;
484 break;
485 case 1152:
486 hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
487 MHz = 101 /* .6_ */ ;
488 break;
489 case 1280:
490 hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
491 MHz = yres == 960 ? 126 : 135;
492 break;
493 case 1600:
494 hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
495 MHz = 200;
496 break;
497 default:
498 return NULL;
499 }
500
501 setclkMHz(par, MHz);
502
503 init->hes = hes;
504 init->heb = heb;
505 init->hsb = init->heb + (xres >> 3);
506 init->ht = init->hsb + htp;
507 init->ves = 0x0003;
508 init->veb = veb;
509 init->vsb = init->veb + yres;
510 init->vt = init->vsb + vtp;
511 init->vil = init->vsb;
512
513 init->pitch = xres;
514 return init;
515 }
516
517 static struct imstt_regvals *
compute_imstt_regvals_tvp(struct imstt_par * par,int xres,int yres)518 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
519 {
520 struct imstt_regvals *init;
521
522 switch (xres) {
523 case 512:
524 init = &tvp_reg_init_2;
525 break;
526 case 640:
527 init = &tvp_reg_init_6;
528 break;
529 case 800:
530 init = &tvp_reg_init_12;
531 break;
532 case 832:
533 init = &tvp_reg_init_13;
534 break;
535 case 1024:
536 init = &tvp_reg_init_17;
537 break;
538 case 1152:
539 init = &tvp_reg_init_18;
540 break;
541 case 1280:
542 init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
543 break;
544 default:
545 return NULL;
546 }
547 par->init = *init;
548 return init;
549 }
550
551 static struct imstt_regvals *
compute_imstt_regvals(struct imstt_par * par,u_int xres,u_int yres)552 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
553 {
554 if (par->ramdac == IBM)
555 return compute_imstt_regvals_ibm(par, xres, yres);
556 else
557 return compute_imstt_regvals_tvp(par, xres, yres);
558 }
559
560 static void
set_imstt_regvals_ibm(struct imstt_par * par,u_int bpp)561 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
562 {
563 struct imstt_regvals *init = &par->init;
564 __u8 pformat = (bpp >> 3) + 2;
565
566 par->cmap_regs[PIDXHI] = 0; eieio();
567 par->cmap_regs[PIDXLO] = PIXM0; eieio();
568 par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
569 par->cmap_regs[PIDXLO] = PIXN0; eieio();
570 par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
571 par->cmap_regs[PIDXLO] = PIXP0; eieio();
572 par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
573 par->cmap_regs[PIDXLO] = PIXC0; eieio();
574 par->cmap_regs[PIDXDATA] = 0x02; eieio();
575
576 par->cmap_regs[PIDXLO] = PIXFMT; eieio();
577 par->cmap_regs[PIDXDATA] = pformat; eieio();
578 }
579
580 static void
set_imstt_regvals_tvp(struct imstt_par * par,u_int bpp)581 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
582 {
583 struct imstt_regvals *init = &par->init;
584 __u8 tcc, mxc, lckl_n, mic;
585 __u8 mlc, lckl_p;
586
587 switch (bpp) {
588 default:
589 case 8:
590 tcc = 0x80;
591 mxc = 0x4d;
592 lckl_n = 0xc1;
593 mlc = init->mlc[0];
594 lckl_p = init->lckl_p[0];
595 break;
596 case 16:
597 tcc = 0x44;
598 mxc = 0x55;
599 lckl_n = 0xe1;
600 mlc = init->mlc[1];
601 lckl_p = init->lckl_p[1];
602 break;
603 case 24:
604 tcc = 0x5e;
605 mxc = 0x5d;
606 lckl_n = 0xf1;
607 mlc = init->mlc[2];
608 lckl_p = init->lckl_p[2];
609 break;
610 case 32:
611 tcc = 0x46;
612 mxc = 0x5d;
613 lckl_n = 0xf1;
614 mlc = init->mlc[2];
615 lckl_p = init->lckl_p[2];
616 break;
617 }
618 mic = 0x08;
619
620 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
621 par->cmap_regs[TVPIDATA] = 0x00; eieio();
622 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
623 par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
624 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
625 par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
626 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
627 par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
628
629 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
630 par->cmap_regs[TVPIDATA] = tcc; eieio();
631 par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
632 par->cmap_regs[TVPIDATA] = mxc; eieio();
633 par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
634 par->cmap_regs[TVPIDATA] = mic; eieio();
635
636 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
637 par->cmap_regs[TVPIDATA] = 0x00; eieio();
638 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
639 par->cmap_regs[TVPIDATA] = lckl_n; eieio();
640
641 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
642 par->cmap_regs[TVPIDATA] = 0x15; eieio();
643 par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
644 par->cmap_regs[TVPIDATA] = mlc; eieio();
645
646 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
647 par->cmap_regs[TVPIDATA] = 0x2a; eieio();
648 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
649 par->cmap_regs[TVPIDATA] = lckl_p; eieio();
650 }
651
652 static void
set_imstt_regvals(struct fb_info * info,u_int bpp)653 set_imstt_regvals (struct fb_info *info, u_int bpp)
654 {
655 struct imstt_par *par = info->par;
656 struct imstt_regvals *init = &par->init;
657 __u32 ctl, pitch, byteswap, scr;
658
659 if (par->ramdac == IBM)
660 set_imstt_regvals_ibm(par, bpp);
661 else
662 set_imstt_regvals_tvp(par, bpp);
663
664 /*
665 * From what I (jsk) can gather poking around with MacsBug,
666 * bits 8 and 9 in the SCR register control endianness
667 * correction (byte swapping). These bits must be set according
668 * to the color depth as follows:
669 * Color depth Bit 9 Bit 8
670 * ========== ===== =====
671 * 8bpp 0 0
672 * 16bpp 0 1
673 * 32bpp 1 1
674 */
675 switch (bpp) {
676 default:
677 case 8:
678 ctl = 0x17b1;
679 pitch = init->pitch >> 2;
680 byteswap = 0x000;
681 break;
682 case 16:
683 ctl = 0x17b3;
684 pitch = init->pitch >> 1;
685 byteswap = 0x100;
686 break;
687 case 24:
688 ctl = 0x17b9;
689 pitch = init->pitch - (init->pitch >> 2);
690 byteswap = 0x200;
691 break;
692 case 32:
693 ctl = 0x17b5;
694 pitch = init->pitch;
695 byteswap = 0x300;
696 break;
697 }
698 if (par->ramdac == TVP)
699 ctl -= 0x30;
700
701 write_reg_le32(par->dc_regs, HES, init->hes);
702 write_reg_le32(par->dc_regs, HEB, init->heb);
703 write_reg_le32(par->dc_regs, HSB, init->hsb);
704 write_reg_le32(par->dc_regs, HT, init->ht);
705 write_reg_le32(par->dc_regs, VES, init->ves);
706 write_reg_le32(par->dc_regs, VEB, init->veb);
707 write_reg_le32(par->dc_regs, VSB, init->vsb);
708 write_reg_le32(par->dc_regs, VT, init->vt);
709 write_reg_le32(par->dc_regs, VIL, init->vil);
710 write_reg_le32(par->dc_regs, HCIV, 1);
711 write_reg_le32(par->dc_regs, VCIV, 1);
712 write_reg_le32(par->dc_regs, TCDR, 4);
713 write_reg_le32(par->dc_regs, RRCIV, 1);
714 write_reg_le32(par->dc_regs, RRSC, 0x980);
715 write_reg_le32(par->dc_regs, RRCR, 0x11);
716
717 if (par->ramdac == IBM) {
718 write_reg_le32(par->dc_regs, HRIR, 0x0100);
719 write_reg_le32(par->dc_regs, CMR, 0x00ff);
720 write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
721 } else {
722 write_reg_le32(par->dc_regs, HRIR, 0x0200);
723 write_reg_le32(par->dc_regs, CMR, 0x01ff);
724 write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
725 }
726
727 switch (info->fix.smem_len) {
728 case 0x200000:
729 scr = 0x059d | byteswap;
730 break;
731 /* case 0x400000:
732 case 0x800000: */
733 default:
734 pitch >>= 1;
735 scr = 0x150dd | byteswap;
736 break;
737 }
738
739 write_reg_le32(par->dc_regs, SCR, scr);
740 write_reg_le32(par->dc_regs, SPR, pitch);
741 write_reg_le32(par->dc_regs, STGCTL, ctl);
742 }
743
744 static inline void
set_offset(struct fb_var_screeninfo * var,struct fb_info * info)745 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
746 {
747 struct imstt_par *par = info->par;
748 __u32 off = var->yoffset * (info->fix.line_length >> 3)
749 + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
750 write_reg_le32(par->dc_regs, SSR, off);
751 }
752
753 static inline void
set_555(struct imstt_par * par)754 set_555 (struct imstt_par *par)
755 {
756 if (par->ramdac == IBM) {
757 par->cmap_regs[PIDXHI] = 0; eieio();
758 par->cmap_regs[PIDXLO] = BPP16; eieio();
759 par->cmap_regs[PIDXDATA] = 0x01; eieio();
760 } else {
761 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
762 par->cmap_regs[TVPIDATA] = 0x44; eieio();
763 }
764 }
765
766 static inline void
set_565(struct imstt_par * par)767 set_565 (struct imstt_par *par)
768 {
769 if (par->ramdac == IBM) {
770 par->cmap_regs[PIDXHI] = 0; eieio();
771 par->cmap_regs[PIDXLO] = BPP16; eieio();
772 par->cmap_regs[PIDXDATA] = 0x03; eieio();
773 } else {
774 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
775 par->cmap_regs[TVPIDATA] = 0x45; eieio();
776 }
777 }
778
779 static int
imsttfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)780 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
781 {
782 if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
783 && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
784 || var->xres_virtual < var->xres || var->yres_virtual < var->yres
785 || var->nonstd
786 || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
787 return -EINVAL;
788
789 if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
790 || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
791 return -EINVAL;
792
793 switch (var->bits_per_pixel) {
794 case 8:
795 var->red.offset = 0;
796 var->red.length = 8;
797 var->green.offset = 0;
798 var->green.length = 8;
799 var->blue.offset = 0;
800 var->blue.length = 8;
801 var->transp.offset = 0;
802 var->transp.length = 0;
803 break;
804 case 16: /* RGB 555 or 565 */
805 if (var->green.length != 6)
806 var->red.offset = 10;
807 var->red.length = 5;
808 var->green.offset = 5;
809 if (var->green.length != 6)
810 var->green.length = 5;
811 var->blue.offset = 0;
812 var->blue.length = 5;
813 var->transp.offset = 0;
814 var->transp.length = 0;
815 break;
816 case 24: /* RGB 888 */
817 var->red.offset = 16;
818 var->red.length = 8;
819 var->green.offset = 8;
820 var->green.length = 8;
821 var->blue.offset = 0;
822 var->blue.length = 8;
823 var->transp.offset = 0;
824 var->transp.length = 0;
825 break;
826 case 32: /* RGBA 8888 */
827 var->red.offset = 16;
828 var->red.length = 8;
829 var->green.offset = 8;
830 var->green.length = 8;
831 var->blue.offset = 0;
832 var->blue.length = 8;
833 var->transp.offset = 24;
834 var->transp.length = 8;
835 break;
836 }
837
838 if (var->yres == var->yres_virtual) {
839 __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
840 var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
841 if (var->yres_virtual < var->yres)
842 var->yres_virtual = var->yres;
843 }
844
845 var->red.msb_right = 0;
846 var->green.msb_right = 0;
847 var->blue.msb_right = 0;
848 var->transp.msb_right = 0;
849 var->height = -1;
850 var->width = -1;
851 var->vmode = FB_VMODE_NONINTERLACED;
852 var->left_margin = var->right_margin = 16;
853 var->upper_margin = var->lower_margin = 16;
854 var->hsync_len = var->vsync_len = 8;
855 return 0;
856 }
857
858 static int
imsttfb_set_par(struct fb_info * info)859 imsttfb_set_par(struct fb_info *info)
860 {
861 struct imstt_par *par = info->par;
862
863 if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
864 return -EINVAL;
865
866 if (info->var.green.length == 6)
867 set_565(par);
868 else
869 set_555(par);
870 set_imstt_regvals(info, info->var.bits_per_pixel);
871 info->var.pixclock = 1000000 / getclkMHz(par);
872 return 0;
873 }
874
875 static int
imsttfb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)876 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
877 u_int transp, struct fb_info *info)
878 {
879 struct imstt_par *par = info->par;
880 u_int bpp = info->var.bits_per_pixel;
881
882 if (regno > 255)
883 return 1;
884
885 red >>= 8;
886 green >>= 8;
887 blue >>= 8;
888
889 /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
890 if (0 && bpp == 16) /* screws up X */
891 par->cmap_regs[PADDRW] = regno << 3;
892 else
893 par->cmap_regs[PADDRW] = regno;
894 eieio();
895
896 par->cmap_regs[PDATA] = red; eieio();
897 par->cmap_regs[PDATA] = green; eieio();
898 par->cmap_regs[PDATA] = blue; eieio();
899
900 if (regno < 16)
901 switch (bpp) {
902 case 16:
903 par->palette[regno] =
904 (regno << (info->var.green.length ==
905 5 ? 10 : 11)) | (regno << 5) | regno;
906 break;
907 case 24:
908 par->palette[regno] =
909 (regno << 16) | (regno << 8) | regno;
910 break;
911 case 32: {
912 int i = (regno << 8) | regno;
913 par->palette[regno] = (i << 16) |i;
914 break;
915 }
916 }
917 return 0;
918 }
919
920 static int
imsttfb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)921 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
922 {
923 if (var->xoffset + info->var.xres > info->var.xres_virtual
924 || var->yoffset + info->var.yres > info->var.yres_virtual)
925 return -EINVAL;
926
927 info->var.xoffset = var->xoffset;
928 info->var.yoffset = var->yoffset;
929 set_offset(var, info);
930 return 0;
931 }
932
933 static int
imsttfb_blank(int blank,struct fb_info * info)934 imsttfb_blank(int blank, struct fb_info *info)
935 {
936 struct imstt_par *par = info->par;
937 __u32 ctrl;
938
939 ctrl = read_reg_le32(par->dc_regs, STGCTL);
940 if (blank > 0) {
941 switch (blank) {
942 case FB_BLANK_NORMAL:
943 case FB_BLANK_POWERDOWN:
944 ctrl &= ~0x00000380;
945 if (par->ramdac == IBM) {
946 par->cmap_regs[PIDXHI] = 0; eieio();
947 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
948 par->cmap_regs[PIDXDATA] = 0x55; eieio();
949 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
950 par->cmap_regs[PIDXDATA] = 0x11; eieio();
951 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
952 par->cmap_regs[PIDXDATA] = 0x0f; eieio();
953 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
954 par->cmap_regs[PIDXDATA] = 0x1f; eieio();
955 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
956 par->cmap_regs[PIDXDATA] = 0xc0;
957 }
958 break;
959 case FB_BLANK_VSYNC_SUSPEND:
960 ctrl &= ~0x00000020;
961 break;
962 case FB_BLANK_HSYNC_SUSPEND:
963 ctrl &= ~0x00000010;
964 break;
965 }
966 } else {
967 if (par->ramdac == IBM) {
968 ctrl |= 0x000017b0;
969 par->cmap_regs[PIDXHI] = 0; eieio();
970 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
971 par->cmap_regs[PIDXDATA] = 0x01; eieio();
972 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
973 par->cmap_regs[PIDXDATA] = 0x00; eieio();
974 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
975 par->cmap_regs[PIDXDATA] = 0x00; eieio();
976 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
977 par->cmap_regs[PIDXDATA] = 0x01; eieio();
978 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
979 par->cmap_regs[PIDXDATA] = 0x45; eieio();
980 } else
981 ctrl |= 0x00001780;
982 }
983 write_reg_le32(par->dc_regs, STGCTL, ctrl);
984 return 0;
985 }
986
987 static void
imsttfb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)988 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
989 {
990 struct imstt_par *par = info->par;
991 __u32 Bpp, line_pitch, bgc, dx, dy, width, height;
992
993 bgc = rect->color;
994 bgc |= (bgc << 8);
995 bgc |= (bgc << 16);
996
997 Bpp = info->var.bits_per_pixel >> 3,
998 line_pitch = info->fix.line_length;
999
1000 dy = rect->dy * line_pitch;
1001 dx = rect->dx * Bpp;
1002 height = rect->height;
1003 height--;
1004 width = rect->width * Bpp;
1005 width--;
1006
1007 if (rect->rop == ROP_COPY) {
1008 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1009 write_reg_le32(par->dc_regs, DSA, dy + dx);
1010 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1011 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1012 write_reg_le32(par->dc_regs, BI, 0xffffffff);
1013 write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1014 write_reg_le32(par->dc_regs, CLR, bgc);
1015 write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1016 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1017 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1018 } else {
1019 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020 write_reg_le32(par->dc_regs, DSA, dy + dx);
1021 write_reg_le32(par->dc_regs, S1SA, dy + dx);
1022 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1023 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1024 write_reg_le32(par->dc_regs, SP, line_pitch);
1025 write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1026 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1027 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1028 }
1029 }
1030
1031 static void
imsttfb_copyarea(struct fb_info * info,const struct fb_copyarea * area)1032 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1033 {
1034 struct imstt_par *par = info->par;
1035 __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1036 __u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1037
1038 Bpp = info->var.bits_per_pixel >> 3,
1039
1040 sx = area->sx * Bpp;
1041 sy = area->sy;
1042 dx = area->dx * Bpp;
1043 dy = area->dy;
1044 height = area->height;
1045 height--;
1046 width = area->width * Bpp;
1047 width--;
1048
1049 line_pitch = info->fix.line_length;
1050 bltctl = 0x05;
1051 sp = line_pitch << 16;
1052 cnt = height << 16;
1053
1054 if (sy < dy) {
1055 sy += height;
1056 dy += height;
1057 sp |= -(line_pitch) & 0xffff;
1058 dp_octl = -(line_pitch) & 0xffff;
1059 } else {
1060 sp |= line_pitch;
1061 dp_octl = line_pitch;
1062 }
1063 if (sx < dx) {
1064 sx += width;
1065 dx += width;
1066 bltctl |= 0x80;
1067 cnt |= -(width) & 0xffff;
1068 } else {
1069 cnt |= width;
1070 }
1071 fb_offset_old = sy * line_pitch + sx;
1072 fb_offset_new = dy * line_pitch + dx;
1073
1074 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1075 write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1076 write_reg_le32(par->dc_regs, SP, sp);
1077 write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1078 write_reg_le32(par->dc_regs, CNT, cnt);
1079 write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1080 write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1081 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1082 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1083 }
1084
1085 #if 0
1086 static int
1087 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1088 {
1089 u_int x, y;
1090
1091 if (width > 32 || height > 32)
1092 return -EINVAL;
1093
1094 if (par->ramdac == IBM) {
1095 par->cmap_regs[PIDXHI] = 1; eieio();
1096 for (x = 0; x < 0x100; x++) {
1097 par->cmap_regs[PIDXLO] = x; eieio();
1098 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1099 }
1100 par->cmap_regs[PIDXHI] = 1; eieio();
1101 for (y = 0; y < height; y++)
1102 for (x = 0; x < width >> 2; x++) {
1103 par->cmap_regs[PIDXLO] = x + y * 8; eieio();
1104 par->cmap_regs[PIDXDATA] = 0xff; eieio();
1105 }
1106 par->cmap_regs[PIDXHI] = 0; eieio();
1107 par->cmap_regs[PIDXLO] = CURS1R; eieio();
1108 par->cmap_regs[PIDXDATA] = fgc; eieio();
1109 par->cmap_regs[PIDXLO] = CURS1G; eieio();
1110 par->cmap_regs[PIDXDATA] = fgc; eieio();
1111 par->cmap_regs[PIDXLO] = CURS1B; eieio();
1112 par->cmap_regs[PIDXDATA] = fgc; eieio();
1113 par->cmap_regs[PIDXLO] = CURS2R; eieio();
1114 par->cmap_regs[PIDXDATA] = fgc; eieio();
1115 par->cmap_regs[PIDXLO] = CURS2G; eieio();
1116 par->cmap_regs[PIDXDATA] = fgc; eieio();
1117 par->cmap_regs[PIDXLO] = CURS2B; eieio();
1118 par->cmap_regs[PIDXDATA] = fgc; eieio();
1119 par->cmap_regs[PIDXLO] = CURS3R; eieio();
1120 par->cmap_regs[PIDXDATA] = fgc; eieio();
1121 par->cmap_regs[PIDXLO] = CURS3G; eieio();
1122 par->cmap_regs[PIDXDATA] = fgc; eieio();
1123 par->cmap_regs[PIDXLO] = CURS3B; eieio();
1124 par->cmap_regs[PIDXDATA] = fgc; eieio();
1125 } else {
1126 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1127 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1128 par->cmap_regs[TVPADDRW] = 0; eieio();
1129 for (x = 0; x < 0x200; x++) {
1130 par->cmap_regs[TVPCRDAT] = 0x00; eieio();
1131 }
1132 for (x = 0; x < 0x200; x++) {
1133 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1134 }
1135 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1136 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1137 for (y = 0; y < height; y++)
1138 for (x = 0; x < width >> 3; x++) {
1139 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1140 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1141 }
1142 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1143 par->cmap_regs[TVPIDATA] |= 0x08; eieio();
1144 for (y = 0; y < height; y++)
1145 for (x = 0; x < width >> 3; x++) {
1146 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1147 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1148 }
1149 par->cmap_regs[TVPCADRW] = 0x00; eieio();
1150 for (x = 0; x < 12; x++) {
1151 par->cmap_regs[TVPCDATA] = fgc;
1152 eieio();
1153 }
1154 }
1155 return 1;
1156 }
1157
1158 static void
1159 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1160 {
1161 if (par->ramdac == IBM) {
1162 par->cmap_regs[PIDXHI] = 0; eieio();
1163 if (!on) {
1164 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1165 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1166 } else {
1167 par->cmap_regs[PIDXLO] = CURSXHI; eieio();
1168 par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
1169 par->cmap_regs[PIDXLO] = CURSXLO; eieio();
1170 par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1171 par->cmap_regs[PIDXLO] = CURSYHI; eieio();
1172 par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
1173 par->cmap_regs[PIDXLO] = CURSYLO; eieio();
1174 par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1175 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1176 par->cmap_regs[PIDXDATA] = 0x02; eieio();
1177 }
1178 } else {
1179 if (!on) {
1180 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1181 par->cmap_regs[TVPIDATA] = 0x00; eieio();
1182 } else {
1183 __u16 x = d->dx + 0x40, y = d->dy + 0x40;
1184
1185 par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
1186 par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
1187 par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
1188 par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
1189 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1190 par->cmap_regs[TVPIDATA] = 0x02; eieio();
1191 }
1192 }
1193 }
1194
1195 static int
1196 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1197 {
1198 struct imstt_par *par = info->par;
1199 u32 flags = cursor->set, fg, bg, xx, yy;
1200
1201 if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1202 return 1;
1203
1204 imstt_set_cursor(info, cursor, 0);
1205
1206 if (flags & FB_CUR_SETPOS) {
1207 xx = cursor->image.dx - info->var.xoffset;
1208 yy = cursor->image.dy - info->var.yoffset;
1209 }
1210
1211 if (flags & FB_CUR_SETSIZE) {
1212 }
1213
1214 if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1215 int fg_idx = cursor->image.fg_color;
1216 int width = (cursor->image.width+7)/8;
1217 u8 *dat = (u8 *) cursor->image.data;
1218 u8 *dst = (u8 *) cursor->dest;
1219 u8 *msk = (u8 *) cursor->mask;
1220
1221 switch (cursor->rop) {
1222 case ROP_XOR:
1223 for (i = 0; i < cursor->image.height; i++) {
1224 for (j = 0; j < width; j++) {
1225 d_idx = i * MAX_CURS/8 + j;
1226 data[d_idx] = byte_rev[dat[s_idx] ^
1227 dst[s_idx]];
1228 mask[d_idx] = byte_rev[msk[s_idx]];
1229 s_idx++;
1230 }
1231 }
1232 break;
1233 case ROP_COPY:
1234 default:
1235 for (i = 0; i < cursor->image.height; i++) {
1236 for (j = 0; j < width; j++) {
1237 d_idx = i * MAX_CURS/8 + j;
1238 data[d_idx] = byte_rev[dat[s_idx]];
1239 mask[d_idx] = byte_rev[msk[s_idx]];
1240 s_idx++;
1241 }
1242 }
1243 break;
1244 }
1245
1246 fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1247 ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1248 ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1249
1250 imsttfb_load_cursor_image(par, xx, yy, fgc);
1251 }
1252 if (cursor->enable)
1253 imstt_set_cursor(info, cursor, 1);
1254 return 0;
1255 }
1256 #endif
1257
1258 #define FBIMSTT_SETREG 0x545401
1259 #define FBIMSTT_GETREG 0x545402
1260 #define FBIMSTT_SETCMAPREG 0x545403
1261 #define FBIMSTT_GETCMAPREG 0x545404
1262 #define FBIMSTT_SETIDXREG 0x545405
1263 #define FBIMSTT_GETIDXREG 0x545406
1264
1265 static int
imsttfb_ioctl(struct fb_info * info,u_int cmd,u_long arg)1266 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1267 {
1268 struct imstt_par *par = info->par;
1269 void __user *argp = (void __user *)arg;
1270 __u32 reg[2];
1271 __u8 idx[2];
1272
1273 switch (cmd) {
1274 case FBIMSTT_SETREG:
1275 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1276 return -EFAULT;
1277 write_reg_le32(par->dc_regs, reg[0], reg[1]);
1278 return 0;
1279 case FBIMSTT_GETREG:
1280 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1281 return -EFAULT;
1282 reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1283 if (copy_to_user((void __user *)(arg + 4), ®[1], 4))
1284 return -EFAULT;
1285 return 0;
1286 case FBIMSTT_SETCMAPREG:
1287 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1288 return -EFAULT;
1289 write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1290 return 0;
1291 case FBIMSTT_GETCMAPREG:
1292 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1293 return -EFAULT;
1294 reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1295 if (copy_to_user((void __user *)(arg + 4), ®[1], 4))
1296 return -EFAULT;
1297 return 0;
1298 case FBIMSTT_SETIDXREG:
1299 if (copy_from_user(idx, argp, 2))
1300 return -EFAULT;
1301 par->cmap_regs[PIDXHI] = 0; eieio();
1302 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1303 par->cmap_regs[PIDXDATA] = idx[1]; eieio();
1304 return 0;
1305 case FBIMSTT_GETIDXREG:
1306 if (copy_from_user(idx, argp, 1))
1307 return -EFAULT;
1308 par->cmap_regs[PIDXHI] = 0; eieio();
1309 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1310 idx[1] = par->cmap_regs[PIDXDATA];
1311 if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1312 return -EFAULT;
1313 return 0;
1314 default:
1315 return -ENOIOCTLCMD;
1316 }
1317 }
1318
1319 static const struct pci_device_id imsttfb_pci_tbl[] = {
1320 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1321 PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1322 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1323 PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1324 { 0, }
1325 };
1326
1327 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1328
1329 static struct pci_driver imsttfb_pci_driver = {
1330 .name = "imsttfb",
1331 .id_table = imsttfb_pci_tbl,
1332 .probe = imsttfb_probe,
1333 .remove = imsttfb_remove,
1334 };
1335
1336 static const struct fb_ops imsttfb_ops = {
1337 .owner = THIS_MODULE,
1338 .fb_check_var = imsttfb_check_var,
1339 .fb_set_par = imsttfb_set_par,
1340 .fb_setcolreg = imsttfb_setcolreg,
1341 .fb_pan_display = imsttfb_pan_display,
1342 .fb_blank = imsttfb_blank,
1343 .fb_fillrect = imsttfb_fillrect,
1344 .fb_copyarea = imsttfb_copyarea,
1345 .fb_imageblit = cfb_imageblit,
1346 .fb_ioctl = imsttfb_ioctl,
1347 };
1348
init_imstt(struct fb_info * info)1349 static void init_imstt(struct fb_info *info)
1350 {
1351 struct imstt_par *par = info->par;
1352 __u32 i, tmp, *ip, *end;
1353
1354 tmp = read_reg_le32(par->dc_regs, PRC);
1355 if (par->ramdac == IBM)
1356 info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1357 else
1358 info->fix.smem_len = 0x800000;
1359
1360 ip = (__u32 *)info->screen_base;
1361 end = (__u32 *)(info->screen_base + info->fix.smem_len);
1362 while (ip < end)
1363 *ip++ = 0;
1364
1365 /* initialize the card */
1366 tmp = read_reg_le32(par->dc_regs, STGCTL);
1367 write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1368 write_reg_le32(par->dc_regs, SSR, 0);
1369
1370 /* set default values for DAC registers */
1371 if (par->ramdac == IBM) {
1372 par->cmap_regs[PPMASK] = 0xff;
1373 eieio();
1374 par->cmap_regs[PIDXHI] = 0;
1375 eieio();
1376 for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1377 par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1378 eieio();
1379 par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1380 eieio();
1381 }
1382 } else {
1383 for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1384 par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1385 eieio();
1386 par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1387 eieio();
1388 }
1389 }
1390
1391 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1392 if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1393 int vmode = init_vmode, cmode = init_cmode;
1394
1395 if (vmode == -1) {
1396 vmode = nvram_read_byte(NV_VMODE);
1397 if (vmode <= 0 || vmode > VMODE_MAX)
1398 vmode = VMODE_640_480_67;
1399 }
1400 if (cmode == -1) {
1401 cmode = nvram_read_byte(NV_CMODE);
1402 if (cmode < CMODE_8 || cmode > CMODE_32)
1403 cmode = CMODE_8;
1404 }
1405 if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1406 info->var.xres = info->var.xres_virtual = INIT_XRES;
1407 info->var.yres = info->var.yres_virtual = INIT_YRES;
1408 info->var.bits_per_pixel = INIT_BPP;
1409 }
1410 } else
1411 #endif
1412 {
1413 info->var.xres = info->var.xres_virtual = INIT_XRES;
1414 info->var.yres = info->var.yres_virtual = INIT_YRES;
1415 info->var.bits_per_pixel = INIT_BPP;
1416 }
1417
1418 if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1419 || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1420 printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1421 framebuffer_release(info);
1422 return;
1423 }
1424
1425 sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1426 info->fix.mmio_len = 0x1000;
1427 info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1428 info->fix.type = FB_TYPE_PACKED_PIXELS;
1429 info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1430 : FB_VISUAL_DIRECTCOLOR;
1431 info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1432 info->fix.xpanstep = 8;
1433 info->fix.ypanstep = 1;
1434 info->fix.ywrapstep = 0;
1435
1436 info->var.accel_flags = FB_ACCELF_TEXT;
1437
1438 // if (par->ramdac == IBM)
1439 // imstt_cursor_init(info);
1440 if (info->var.green.length == 6)
1441 set_565(par);
1442 else
1443 set_555(par);
1444 set_imstt_regvals(info, info->var.bits_per_pixel);
1445
1446 info->var.pixclock = 1000000 / getclkMHz(par);
1447
1448 info->fbops = &imsttfb_ops;
1449 info->flags = FBINFO_DEFAULT |
1450 FBINFO_HWACCEL_COPYAREA |
1451 FBINFO_HWACCEL_FILLRECT |
1452 FBINFO_HWACCEL_YPAN;
1453
1454 fb_alloc_cmap(&info->cmap, 0, 0);
1455
1456 if (register_framebuffer(info) < 0) {
1457 framebuffer_release(info);
1458 return;
1459 }
1460
1461 tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1462 fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1463 info->fix.id, info->fix.smem_len >> 20, tmp);
1464 }
1465
imsttfb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1466 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1467 {
1468 unsigned long addr, size;
1469 struct imstt_par *par;
1470 struct fb_info *info;
1471 struct device_node *dp;
1472 int ret = -ENOMEM;
1473
1474 dp = pci_device_to_OF_node(pdev);
1475 if(dp)
1476 printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1477 else if (IS_ENABLED(CONFIG_OF))
1478 printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1479
1480 info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1481 if (!info)
1482 return -ENOMEM;
1483
1484 par = info->par;
1485
1486 addr = pci_resource_start (pdev, 0);
1487 size = pci_resource_len (pdev, 0);
1488
1489 if (!request_mem_region(addr, size, "imsttfb")) {
1490 printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1491 framebuffer_release(info);
1492 return -ENODEV;
1493 }
1494
1495 switch (pdev->device) {
1496 case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1497 par->ramdac = IBM;
1498 if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1499 of_node_name_eq(dp, "IMS,tt128mb8A"))
1500 par->ramdac = TVP;
1501 break;
1502 case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
1503 par->ramdac = TVP;
1504 break;
1505 default:
1506 printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1507 "contact maintainer.\n", pdev->device);
1508 ret = -ENODEV;
1509 goto error;
1510 }
1511
1512 info->fix.smem_start = addr;
1513 info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1514 0x400000 : 0x800000);
1515 if (!info->screen_base)
1516 goto error;
1517 info->fix.mmio_start = addr + 0x800000;
1518 par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1519 if (!par->dc_regs)
1520 goto error;
1521 par->cmap_regs_phys = addr + 0x840000;
1522 par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1523 if (!par->cmap_regs)
1524 goto error;
1525 info->pseudo_palette = par->palette;
1526 init_imstt(info);
1527
1528 pci_set_drvdata(pdev, info);
1529 return 0;
1530
1531 error:
1532 if (par->dc_regs)
1533 iounmap(par->dc_regs);
1534 if (info->screen_base)
1535 iounmap(info->screen_base);
1536 release_mem_region(addr, size);
1537 framebuffer_release(info);
1538 return ret;
1539 }
1540
imsttfb_remove(struct pci_dev * pdev)1541 static void imsttfb_remove(struct pci_dev *pdev)
1542 {
1543 struct fb_info *info = pci_get_drvdata(pdev);
1544 struct imstt_par *par = info->par;
1545 int size = pci_resource_len(pdev, 0);
1546
1547 unregister_framebuffer(info);
1548 iounmap(par->cmap_regs);
1549 iounmap(par->dc_regs);
1550 iounmap(info->screen_base);
1551 release_mem_region(info->fix.smem_start, size);
1552 framebuffer_release(info);
1553 }
1554
1555 #ifndef MODULE
1556 static int __init
imsttfb_setup(char * options)1557 imsttfb_setup(char *options)
1558 {
1559 char *this_opt;
1560
1561 if (!options || !*options)
1562 return 0;
1563
1564 while ((this_opt = strsep(&options, ",")) != NULL) {
1565 if (!strncmp(this_opt, "font:", 5)) {
1566 char *p;
1567 int i;
1568
1569 p = this_opt + 5;
1570 for (i = 0; i < sizeof(fontname) - 1; i++)
1571 if (!*p || *p == ' ' || *p == ',')
1572 break;
1573 memcpy(fontname, this_opt + 5, i);
1574 fontname[i] = 0;
1575 } else if (!strncmp(this_opt, "inverse", 7)) {
1576 inverse = 1;
1577 fb_invert_cmaps();
1578 }
1579 #if defined(CONFIG_PPC_PMAC)
1580 else if (!strncmp(this_opt, "vmode:", 6)) {
1581 int vmode = simple_strtoul(this_opt+6, NULL, 0);
1582 if (vmode > 0 && vmode <= VMODE_MAX)
1583 init_vmode = vmode;
1584 } else if (!strncmp(this_opt, "cmode:", 6)) {
1585 int cmode = simple_strtoul(this_opt+6, NULL, 0);
1586 switch (cmode) {
1587 case CMODE_8:
1588 case 8:
1589 init_cmode = CMODE_8;
1590 break;
1591 case CMODE_16:
1592 case 15:
1593 case 16:
1594 init_cmode = CMODE_16;
1595 break;
1596 case CMODE_32:
1597 case 24:
1598 case 32:
1599 init_cmode = CMODE_32;
1600 break;
1601 }
1602 }
1603 #endif
1604 }
1605 return 0;
1606 }
1607
1608 #endif /* MODULE */
1609
imsttfb_init(void)1610 static int __init imsttfb_init(void)
1611 {
1612 #ifndef MODULE
1613 char *option = NULL;
1614
1615 if (fb_get_options("imsttfb", &option))
1616 return -ENODEV;
1617
1618 imsttfb_setup(option);
1619 #endif
1620 return pci_register_driver(&imsttfb_pci_driver);
1621 }
1622
imsttfb_exit(void)1623 static void __exit imsttfb_exit(void)
1624 {
1625 pci_unregister_driver(&imsttfb_pci_driver);
1626 }
1627
1628 MODULE_LICENSE("GPL");
1629
1630 module_init(imsttfb_init);
1631 module_exit(imsttfb_exit);
1632
1633