1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/mwait.h>
66 #include <asm/pci_x86.h>
67 #include <asm/pat.h>
68 
69 #ifdef CONFIG_ACPI
70 #include <linux/acpi.h>
71 #include <asm/acpi.h>
72 #include <acpi/pdc_intel.h>
73 #include <acpi/processor.h>
74 #include <xen/interface/platform.h>
75 #endif
76 
77 #include "xen-ops.h"
78 #include "mmu.h"
79 #include "multicalls.h"
80 
81 EXPORT_SYMBOL_GPL(hypercall_page);
82 
83 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
84 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
85 
86 enum xen_domain_type xen_domain_type = XEN_NATIVE;
87 EXPORT_SYMBOL_GPL(xen_domain_type);
88 
89 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
90 EXPORT_SYMBOL(machine_to_phys_mapping);
91 unsigned long  machine_to_phys_nr;
92 EXPORT_SYMBOL(machine_to_phys_nr);
93 
94 struct start_info *xen_start_info;
95 EXPORT_SYMBOL_GPL(xen_start_info);
96 
97 struct shared_info xen_dummy_shared_info;
98 
99 void *xen_initial_gdt;
100 
101 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
102 __read_mostly int xen_have_vector_callback;
103 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
104 
105 /*
106  * Point at some empty memory to start with. We map the real shared_info
107  * page as soon as fixmap is up and running.
108  */
109 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
110 
111 /*
112  * Flag to determine whether vcpu info placement is available on all
113  * VCPUs.  We assume it is to start with, and then set it to zero on
114  * the first failure.  This is because it can succeed on some VCPUs
115  * and not others, since it can involve hypervisor memory allocation,
116  * or because the guest failed to guarantee all the appropriate
117  * constraints on all VCPUs (ie buffer can't cross a page boundary).
118  *
119  * Note that any particular CPU may be using a placed vcpu structure,
120  * but we can only optimise if the all are.
121  *
122  * 0: not available, 1: available
123  */
124 static int have_vcpu_info_placement = 1;
125 
clamp_max_cpus(void)126 static void clamp_max_cpus(void)
127 {
128 #ifdef CONFIG_SMP
129 	if (setup_max_cpus > MAX_VIRT_CPUS)
130 		setup_max_cpus = MAX_VIRT_CPUS;
131 #endif
132 }
133 
xen_vcpu_setup(int cpu)134 static void xen_vcpu_setup(int cpu)
135 {
136 	struct vcpu_register_vcpu_info info;
137 	int err;
138 	struct vcpu_info *vcpup;
139 
140 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
141 
142 	/*
143 	 * This path is called twice on PVHVM - first during bootup via
144 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
145 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
146 	 * As we can only do the VCPUOP_register_vcpu_info once lets
147 	 * not over-write its result.
148 	 *
149 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
150 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
151 	 * use this function.
152 	 */
153 	if (xen_hvm_domain()) {
154 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
155 			return;
156 	}
157 	if (cpu < MAX_VIRT_CPUS)
158 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
159 
160 	if (!have_vcpu_info_placement) {
161 		if (cpu >= MAX_VIRT_CPUS)
162 			clamp_max_cpus();
163 		return;
164 	}
165 
166 	vcpup = &per_cpu(xen_vcpu_info, cpu);
167 	info.mfn = arbitrary_virt_to_mfn(vcpup);
168 	info.offset = offset_in_page(vcpup);
169 
170 	/* Check to see if the hypervisor will put the vcpu_info
171 	   structure where we want it, which allows direct access via
172 	   a percpu-variable. */
173 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
174 
175 	if (err) {
176 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
177 		have_vcpu_info_placement = 0;
178 		clamp_max_cpus();
179 	} else {
180 		/* This cpu is using the registered vcpu info, even if
181 		   later ones fail to. */
182 		per_cpu(xen_vcpu, cpu) = vcpup;
183 	}
184 }
185 
186 /*
187  * On restore, set the vcpu placement up again.
188  * If it fails, then we're in a bad state, since
189  * we can't back out from using it...
190  */
xen_vcpu_restore(void)191 void xen_vcpu_restore(void)
192 {
193 	int cpu;
194 
195 	for_each_online_cpu(cpu) {
196 		bool other_cpu = (cpu != smp_processor_id());
197 
198 		if (other_cpu &&
199 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
200 			BUG();
201 
202 		xen_setup_runstate_info(cpu);
203 
204 		if (have_vcpu_info_placement)
205 			xen_vcpu_setup(cpu);
206 
207 		if (other_cpu &&
208 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
209 			BUG();
210 	}
211 }
212 
xen_banner(void)213 static void __init xen_banner(void)
214 {
215 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
216 	struct xen_extraversion extra;
217 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
218 
219 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
220 	       pv_info.name);
221 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
222 	       version >> 16, version & 0xffff, extra.extraversion,
223 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
224 }
225 
226 #define CPUID_THERM_POWER_LEAF 6
227 #define APERFMPERF_PRESENT 0
228 
229 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
230 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
231 
232 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
233 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
234 static __read_mostly unsigned int cpuid_leaf5_edx_val;
235 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)236 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
237 		      unsigned int *cx, unsigned int *dx)
238 {
239 	unsigned maskebx = ~0;
240 	unsigned maskecx = ~0;
241 	unsigned maskedx = ~0;
242 	unsigned setecx = 0;
243 	/*
244 	 * Mask out inconvenient features, to try and disable as many
245 	 * unsupported kernel subsystems as possible.
246 	 */
247 	switch (*ax) {
248 	case 1:
249 		maskecx = cpuid_leaf1_ecx_mask;
250 		setecx = cpuid_leaf1_ecx_set_mask;
251 		maskedx = cpuid_leaf1_edx_mask;
252 		break;
253 
254 	case CPUID_MWAIT_LEAF:
255 		/* Synthesize the values.. */
256 		*ax = 0;
257 		*bx = 0;
258 		*cx = cpuid_leaf5_ecx_val;
259 		*dx = cpuid_leaf5_edx_val;
260 		return;
261 
262 	case CPUID_THERM_POWER_LEAF:
263 		/* Disabling APERFMPERF for kernel usage */
264 		maskecx = ~(1 << APERFMPERF_PRESENT);
265 		break;
266 
267 	case 0xb:
268 		/* Suppress extended topology stuff */
269 		maskebx = 0;
270 		break;
271 	}
272 
273 	asm(XEN_EMULATE_PREFIX "cpuid"
274 		: "=a" (*ax),
275 		  "=b" (*bx),
276 		  "=c" (*cx),
277 		  "=d" (*dx)
278 		: "0" (*ax), "2" (*cx));
279 
280 	*bx &= maskebx;
281 	*cx &= maskecx;
282 	*cx |= setecx;
283 	*dx &= maskedx;
284 
285 }
286 
xen_check_mwait(void)287 static bool __init xen_check_mwait(void)
288 {
289 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
290 	!defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
291 	struct xen_platform_op op = {
292 		.cmd			= XENPF_set_processor_pminfo,
293 		.u.set_pminfo.id	= -1,
294 		.u.set_pminfo.type	= XEN_PM_PDC,
295 	};
296 	uint32_t buf[3];
297 	unsigned int ax, bx, cx, dx;
298 	unsigned int mwait_mask;
299 
300 	/* We need to determine whether it is OK to expose the MWAIT
301 	 * capability to the kernel to harvest deeper than C3 states from ACPI
302 	 * _CST using the processor_harvest_xen.c module. For this to work, we
303 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
304 	 * checks against). The hypervisor won't expose the MWAIT flag because
305 	 * it would break backwards compatibility; so we will find out directly
306 	 * from the hardware and hypercall.
307 	 */
308 	if (!xen_initial_domain())
309 		return false;
310 
311 	ax = 1;
312 	cx = 0;
313 
314 	native_cpuid(&ax, &bx, &cx, &dx);
315 
316 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
317 		     (1 << (X86_FEATURE_MWAIT % 32));
318 
319 	if ((cx & mwait_mask) != mwait_mask)
320 		return false;
321 
322 	/* We need to emulate the MWAIT_LEAF and for that we need both
323 	 * ecx and edx. The hypercall provides only partial information.
324 	 */
325 
326 	ax = CPUID_MWAIT_LEAF;
327 	bx = 0;
328 	cx = 0;
329 	dx = 0;
330 
331 	native_cpuid(&ax, &bx, &cx, &dx);
332 
333 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
334 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
335 	 */
336 	buf[0] = ACPI_PDC_REVISION_ID;
337 	buf[1] = 1;
338 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
339 
340 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
341 
342 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
343 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
344 		cpuid_leaf5_ecx_val = cx;
345 		cpuid_leaf5_edx_val = dx;
346 	}
347 	return true;
348 #else
349 	return false;
350 #endif
351 }
xen_init_cpuid_mask(void)352 static void __init xen_init_cpuid_mask(void)
353 {
354 	unsigned int ax, bx, cx, dx;
355 	unsigned int xsave_mask;
356 
357 	cpuid_leaf1_edx_mask =
358 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
359 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
360 		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
361 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
362 
363 	if (!xen_initial_domain())
364 		cpuid_leaf1_edx_mask &=
365 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
366 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
367 	ax = 1;
368 	cx = 0;
369 	xen_cpuid(&ax, &bx, &cx, &dx);
370 
371 	xsave_mask =
372 		(1 << (X86_FEATURE_XSAVE % 32)) |
373 		(1 << (X86_FEATURE_OSXSAVE % 32));
374 
375 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
376 	if ((cx & xsave_mask) != xsave_mask)
377 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
378 	if (xen_check_mwait())
379 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
380 }
381 
xen_set_debugreg(int reg,unsigned long val)382 static void xen_set_debugreg(int reg, unsigned long val)
383 {
384 	HYPERVISOR_set_debugreg(reg, val);
385 }
386 
xen_get_debugreg(int reg)387 static unsigned long xen_get_debugreg(int reg)
388 {
389 	return HYPERVISOR_get_debugreg(reg);
390 }
391 
xen_end_context_switch(struct task_struct * next)392 static void xen_end_context_switch(struct task_struct *next)
393 {
394 	xen_mc_flush();
395 	paravirt_end_context_switch(next);
396 }
397 
xen_store_tr(void)398 static unsigned long xen_store_tr(void)
399 {
400 	return 0;
401 }
402 
403 /*
404  * Set the page permissions for a particular virtual address.  If the
405  * address is a vmalloc mapping (or other non-linear mapping), then
406  * find the linear mapping of the page and also set its protections to
407  * match.
408  */
set_aliased_prot(void * v,pgprot_t prot)409 static void set_aliased_prot(void *v, pgprot_t prot)
410 {
411 	int level;
412 	pte_t *ptep;
413 	pte_t pte;
414 	unsigned long pfn;
415 	struct page *page;
416 
417 	ptep = lookup_address((unsigned long)v, &level);
418 	BUG_ON(ptep == NULL);
419 
420 	pfn = pte_pfn(*ptep);
421 	page = pfn_to_page(pfn);
422 
423 	pte = pfn_pte(pfn, prot);
424 
425 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
426 		BUG();
427 
428 	if (!PageHighMem(page)) {
429 		void *av = __va(PFN_PHYS(pfn));
430 
431 		if (av != v)
432 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
433 				BUG();
434 	} else
435 		kmap_flush_unused();
436 }
437 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)438 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
439 {
440 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
441 	int i;
442 
443 	for(i = 0; i < entries; i += entries_per_page)
444 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
445 }
446 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)447 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
448 {
449 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
450 	int i;
451 
452 	for(i = 0; i < entries; i += entries_per_page)
453 		set_aliased_prot(ldt + i, PAGE_KERNEL);
454 }
455 
xen_set_ldt(const void * addr,unsigned entries)456 static void xen_set_ldt(const void *addr, unsigned entries)
457 {
458 	struct mmuext_op *op;
459 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
460 
461 	trace_xen_cpu_set_ldt(addr, entries);
462 
463 	op = mcs.args;
464 	op->cmd = MMUEXT_SET_LDT;
465 	op->arg1.linear_addr = (unsigned long)addr;
466 	op->arg2.nr_ents = entries;
467 
468 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
469 
470 	xen_mc_issue(PARAVIRT_LAZY_CPU);
471 }
472 
xen_load_gdt(const struct desc_ptr * dtr)473 static void xen_load_gdt(const struct desc_ptr *dtr)
474 {
475 	unsigned long va = dtr->address;
476 	unsigned int size = dtr->size + 1;
477 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
478 	unsigned long frames[pages];
479 	int f;
480 
481 	/*
482 	 * A GDT can be up to 64k in size, which corresponds to 8192
483 	 * 8-byte entries, or 16 4k pages..
484 	 */
485 
486 	BUG_ON(size > 65536);
487 	BUG_ON(va & ~PAGE_MASK);
488 
489 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
490 		int level;
491 		pte_t *ptep;
492 		unsigned long pfn, mfn;
493 		void *virt;
494 
495 		/*
496 		 * The GDT is per-cpu and is in the percpu data area.
497 		 * That can be virtually mapped, so we need to do a
498 		 * page-walk to get the underlying MFN for the
499 		 * hypercall.  The page can also be in the kernel's
500 		 * linear range, so we need to RO that mapping too.
501 		 */
502 		ptep = lookup_address(va, &level);
503 		BUG_ON(ptep == NULL);
504 
505 		pfn = pte_pfn(*ptep);
506 		mfn = pfn_to_mfn(pfn);
507 		virt = __va(PFN_PHYS(pfn));
508 
509 		frames[f] = mfn;
510 
511 		make_lowmem_page_readonly((void *)va);
512 		make_lowmem_page_readonly(virt);
513 	}
514 
515 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
516 		BUG();
517 }
518 
519 /*
520  * load_gdt for early boot, when the gdt is only mapped once
521  */
xen_load_gdt_boot(const struct desc_ptr * dtr)522 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
523 {
524 	unsigned long va = dtr->address;
525 	unsigned int size = dtr->size + 1;
526 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
527 	unsigned long frames[pages];
528 	int f;
529 
530 	/*
531 	 * A GDT can be up to 64k in size, which corresponds to 8192
532 	 * 8-byte entries, or 16 4k pages..
533 	 */
534 
535 	BUG_ON(size > 65536);
536 	BUG_ON(va & ~PAGE_MASK);
537 
538 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
539 		pte_t pte;
540 		unsigned long pfn, mfn;
541 
542 		pfn = virt_to_pfn(va);
543 		mfn = pfn_to_mfn(pfn);
544 
545 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
546 
547 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
548 			BUG();
549 
550 		frames[f] = mfn;
551 	}
552 
553 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
554 		BUG();
555 }
556 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)557 static void load_TLS_descriptor(struct thread_struct *t,
558 				unsigned int cpu, unsigned int i)
559 {
560 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
561 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
562 	struct multicall_space mc = __xen_mc_entry(0);
563 
564 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
565 }
566 
xen_load_tls(struct thread_struct * t,unsigned int cpu)567 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
568 {
569 	/*
570 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
571 	 * and lazy gs handling is enabled, it means we're in a
572 	 * context switch, and %gs has just been saved.  This means we
573 	 * can zero it out to prevent faults on exit from the
574 	 * hypervisor if the next process has no %gs.  Either way, it
575 	 * has been saved, and the new value will get loaded properly.
576 	 * This will go away as soon as Xen has been modified to not
577 	 * save/restore %gs for normal hypercalls.
578 	 *
579 	 * On x86_64, this hack is not used for %gs, because gs points
580 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
581 	 * must not zero %gs on x86_64
582 	 *
583 	 * For x86_64, we need to zero %fs, otherwise we may get an
584 	 * exception between the new %fs descriptor being loaded and
585 	 * %fs being effectively cleared at __switch_to().
586 	 */
587 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
588 #ifdef CONFIG_X86_32
589 		lazy_load_gs(0);
590 #else
591 		loadsegment(fs, 0);
592 #endif
593 	}
594 
595 	xen_mc_batch();
596 
597 	load_TLS_descriptor(t, cpu, 0);
598 	load_TLS_descriptor(t, cpu, 1);
599 	load_TLS_descriptor(t, cpu, 2);
600 
601 	xen_mc_issue(PARAVIRT_LAZY_CPU);
602 }
603 
604 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)605 static void xen_load_gs_index(unsigned int idx)
606 {
607 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
608 		BUG();
609 }
610 #endif
611 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)612 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
613 				const void *ptr)
614 {
615 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
616 	u64 entry = *(u64 *)ptr;
617 
618 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
619 
620 	preempt_disable();
621 
622 	xen_mc_flush();
623 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
624 		BUG();
625 
626 	preempt_enable();
627 }
628 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)629 static int cvt_gate_to_trap(int vector, const gate_desc *val,
630 			    struct trap_info *info)
631 {
632 	unsigned long addr;
633 
634 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
635 		return 0;
636 
637 	info->vector = vector;
638 
639 	addr = gate_offset(*val);
640 #ifdef CONFIG_X86_64
641 	/*
642 	 * Look for known traps using IST, and substitute them
643 	 * appropriately.  The debugger ones are the only ones we care
644 	 * about.  Xen will handle faults like double_fault and
645 	 * machine_check, so we should never see them.  Warn if
646 	 * there's an unexpected IST-using fault handler.
647 	 */
648 	if (addr == (unsigned long)debug)
649 		addr = (unsigned long)xen_debug;
650 	else if (addr == (unsigned long)int3)
651 		addr = (unsigned long)xen_int3;
652 	else if (addr == (unsigned long)stack_segment)
653 		addr = (unsigned long)xen_stack_segment;
654 	else if (addr == (unsigned long)double_fault ||
655 		 addr == (unsigned long)nmi) {
656 		/* Don't need to handle these */
657 		return 0;
658 #ifdef CONFIG_X86_MCE
659 	} else if (addr == (unsigned long)machine_check) {
660 		return 0;
661 #endif
662 	} else {
663 		/* Some other trap using IST? */
664 		if (WARN_ON(val->ist != 0))
665 			return 0;
666 	}
667 #endif	/* CONFIG_X86_64 */
668 	info->address = addr;
669 
670 	info->cs = gate_segment(*val);
671 	info->flags = val->dpl;
672 	/* interrupt gates clear IF */
673 	if (val->type == GATE_INTERRUPT)
674 		info->flags |= 1 << 2;
675 
676 	return 1;
677 }
678 
679 /* Locations of each CPU's IDT */
680 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
681 
682 /* Set an IDT entry.  If the entry is part of the current IDT, then
683    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)684 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
685 {
686 	unsigned long p = (unsigned long)&dt[entrynum];
687 	unsigned long start, end;
688 
689 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
690 
691 	preempt_disable();
692 
693 	start = __this_cpu_read(idt_desc.address);
694 	end = start + __this_cpu_read(idt_desc.size) + 1;
695 
696 	xen_mc_flush();
697 
698 	native_write_idt_entry(dt, entrynum, g);
699 
700 	if (p >= start && (p + 8) <= end) {
701 		struct trap_info info[2];
702 
703 		info[1].address = 0;
704 
705 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
706 			if (HYPERVISOR_set_trap_table(info))
707 				BUG();
708 	}
709 
710 	preempt_enable();
711 }
712 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps)713 static void xen_convert_trap_info(const struct desc_ptr *desc,
714 				  struct trap_info *traps)
715 {
716 	unsigned in, out, count;
717 
718 	count = (desc->size+1) / sizeof(gate_desc);
719 	BUG_ON(count > 256);
720 
721 	for (in = out = 0; in < count; in++) {
722 		gate_desc *entry = (gate_desc*)(desc->address) + in;
723 
724 		if (cvt_gate_to_trap(in, entry, &traps[out]))
725 			out++;
726 	}
727 	traps[out].address = 0;
728 }
729 
xen_copy_trap_info(struct trap_info * traps)730 void xen_copy_trap_info(struct trap_info *traps)
731 {
732 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
733 
734 	xen_convert_trap_info(desc, traps);
735 }
736 
737 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
738    hold a spinlock to protect the static traps[] array (static because
739    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)740 static void xen_load_idt(const struct desc_ptr *desc)
741 {
742 	static DEFINE_SPINLOCK(lock);
743 	static struct trap_info traps[257];
744 
745 	trace_xen_cpu_load_idt(desc);
746 
747 	spin_lock(&lock);
748 
749 	__get_cpu_var(idt_desc) = *desc;
750 
751 	xen_convert_trap_info(desc, traps);
752 
753 	xen_mc_flush();
754 	if (HYPERVISOR_set_trap_table(traps))
755 		BUG();
756 
757 	spin_unlock(&lock);
758 }
759 
760 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
761    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)762 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
763 				const void *desc, int type)
764 {
765 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
766 
767 	preempt_disable();
768 
769 	switch (type) {
770 	case DESC_LDT:
771 	case DESC_TSS:
772 		/* ignore */
773 		break;
774 
775 	default: {
776 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
777 
778 		xen_mc_flush();
779 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
780 			BUG();
781 	}
782 
783 	}
784 
785 	preempt_enable();
786 }
787 
788 /*
789  * Version of write_gdt_entry for use at early boot-time needed to
790  * update an entry as simply as possible.
791  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)792 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
793 					    const void *desc, int type)
794 {
795 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
796 
797 	switch (type) {
798 	case DESC_LDT:
799 	case DESC_TSS:
800 		/* ignore */
801 		break;
802 
803 	default: {
804 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
805 
806 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
807 			dt[entry] = *(struct desc_struct *)desc;
808 	}
809 
810 	}
811 }
812 
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)813 static void xen_load_sp0(struct tss_struct *tss,
814 			 struct thread_struct *thread)
815 {
816 	struct multicall_space mcs;
817 
818 	mcs = xen_mc_entry(0);
819 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
820 	xen_mc_issue(PARAVIRT_LAZY_CPU);
821 }
822 
xen_set_iopl_mask(unsigned mask)823 static void xen_set_iopl_mask(unsigned mask)
824 {
825 	struct physdev_set_iopl set_iopl;
826 
827 	/* Force the change at ring 0. */
828 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
829 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
830 }
831 
xen_io_delay(void)832 static void xen_io_delay(void)
833 {
834 }
835 
836 #ifdef CONFIG_X86_LOCAL_APIC
xen_set_apic_id(unsigned int x)837 static unsigned long xen_set_apic_id(unsigned int x)
838 {
839 	WARN_ON(1);
840 	return x;
841 }
xen_get_apic_id(unsigned long x)842 static unsigned int xen_get_apic_id(unsigned long x)
843 {
844 	return ((x)>>24) & 0xFFu;
845 }
xen_apic_read(u32 reg)846 static u32 xen_apic_read(u32 reg)
847 {
848 	struct xen_platform_op op = {
849 		.cmd = XENPF_get_cpuinfo,
850 		.interface_version = XENPF_INTERFACE_VERSION,
851 		.u.pcpu_info.xen_cpuid = 0,
852 	};
853 	int ret = 0;
854 
855 	/* Shouldn't need this as APIC is turned off for PV, and we only
856 	 * get called on the bootup processor. But just in case. */
857 	if (!xen_initial_domain() || smp_processor_id())
858 		return 0;
859 
860 	if (reg == APIC_LVR)
861 		return 0x10;
862 
863 	if (reg != APIC_ID)
864 		return 0;
865 
866 	ret = HYPERVISOR_dom0_op(&op);
867 	if (ret)
868 		return 0;
869 
870 	return op.u.pcpu_info.apic_id << 24;
871 }
872 
xen_apic_write(u32 reg,u32 val)873 static void xen_apic_write(u32 reg, u32 val)
874 {
875 	/* Warn to see if there's any stray references */
876 	WARN_ON(1);
877 }
878 
xen_apic_icr_read(void)879 static u64 xen_apic_icr_read(void)
880 {
881 	return 0;
882 }
883 
xen_apic_icr_write(u32 low,u32 id)884 static void xen_apic_icr_write(u32 low, u32 id)
885 {
886 	/* Warn to see if there's any stray references */
887 	WARN_ON(1);
888 }
889 
xen_apic_wait_icr_idle(void)890 static void xen_apic_wait_icr_idle(void)
891 {
892         return;
893 }
894 
xen_safe_apic_wait_icr_idle(void)895 static u32 xen_safe_apic_wait_icr_idle(void)
896 {
897         return 0;
898 }
899 
set_xen_basic_apic_ops(void)900 static void set_xen_basic_apic_ops(void)
901 {
902 	apic->read = xen_apic_read;
903 	apic->write = xen_apic_write;
904 	apic->icr_read = xen_apic_icr_read;
905 	apic->icr_write = xen_apic_icr_write;
906 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
907 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
908 	apic->set_apic_id = xen_set_apic_id;
909 	apic->get_apic_id = xen_get_apic_id;
910 }
911 
912 #endif
913 
xen_clts(void)914 static void xen_clts(void)
915 {
916 	struct multicall_space mcs;
917 
918 	mcs = xen_mc_entry(0);
919 
920 	MULTI_fpu_taskswitch(mcs.mc, 0);
921 
922 	xen_mc_issue(PARAVIRT_LAZY_CPU);
923 }
924 
925 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
926 
xen_read_cr0(void)927 static unsigned long xen_read_cr0(void)
928 {
929 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
930 
931 	if (unlikely(cr0 == 0)) {
932 		cr0 = native_read_cr0();
933 		this_cpu_write(xen_cr0_value, cr0);
934 	}
935 
936 	return cr0;
937 }
938 
xen_write_cr0(unsigned long cr0)939 static void xen_write_cr0(unsigned long cr0)
940 {
941 	struct multicall_space mcs;
942 
943 	this_cpu_write(xen_cr0_value, cr0);
944 
945 	/* Only pay attention to cr0.TS; everything else is
946 	   ignored. */
947 	mcs = xen_mc_entry(0);
948 
949 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
950 
951 	xen_mc_issue(PARAVIRT_LAZY_CPU);
952 }
953 
xen_write_cr4(unsigned long cr4)954 static void xen_write_cr4(unsigned long cr4)
955 {
956 	cr4 &= ~X86_CR4_PGE;
957 	cr4 &= ~X86_CR4_PSE;
958 
959 	native_write_cr4(cr4);
960 }
961 #ifdef CONFIG_X86_64
xen_read_cr8(void)962 static inline unsigned long xen_read_cr8(void)
963 {
964 	return 0;
965 }
xen_write_cr8(unsigned long val)966 static inline void xen_write_cr8(unsigned long val)
967 {
968 	BUG_ON(val);
969 }
970 #endif
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)971 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
972 {
973 	int ret;
974 
975 	ret = 0;
976 
977 	switch (msr) {
978 #ifdef CONFIG_X86_64
979 		unsigned which;
980 		u64 base;
981 
982 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
983 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
984 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
985 
986 	set:
987 		base = ((u64)high << 32) | low;
988 		if (HYPERVISOR_set_segment_base(which, base) != 0)
989 			ret = -EIO;
990 		break;
991 #endif
992 
993 	case MSR_STAR:
994 	case MSR_CSTAR:
995 	case MSR_LSTAR:
996 	case MSR_SYSCALL_MASK:
997 	case MSR_IA32_SYSENTER_CS:
998 	case MSR_IA32_SYSENTER_ESP:
999 	case MSR_IA32_SYSENTER_EIP:
1000 		/* Fast syscall setup is all done in hypercalls, so
1001 		   these are all ignored.  Stub them out here to stop
1002 		   Xen console noise. */
1003 		break;
1004 
1005 	case MSR_IA32_CR_PAT:
1006 		if (smp_processor_id() == 0)
1007 			xen_set_pat(((u64)high << 32) | low);
1008 		break;
1009 
1010 	default:
1011 		ret = native_write_msr_safe(msr, low, high);
1012 	}
1013 
1014 	return ret;
1015 }
1016 
xen_setup_shared_info(void)1017 void xen_setup_shared_info(void)
1018 {
1019 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1020 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1021 			   xen_start_info->shared_info);
1022 
1023 		HYPERVISOR_shared_info =
1024 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1025 	} else
1026 		HYPERVISOR_shared_info =
1027 			(struct shared_info *)__va(xen_start_info->shared_info);
1028 
1029 #ifndef CONFIG_SMP
1030 	/* In UP this is as good a place as any to set up shared info */
1031 	xen_setup_vcpu_info_placement();
1032 #endif
1033 
1034 	xen_setup_mfn_list_list();
1035 }
1036 
1037 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1038 void xen_setup_vcpu_info_placement(void)
1039 {
1040 	int cpu;
1041 
1042 	for_each_possible_cpu(cpu)
1043 		xen_vcpu_setup(cpu);
1044 
1045 	/* xen_vcpu_setup managed to place the vcpu_info within the
1046 	   percpu area for all cpus, so make use of it */
1047 	if (have_vcpu_info_placement) {
1048 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1049 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1050 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1051 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1052 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1053 	}
1054 }
1055 
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)1056 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1057 			  unsigned long addr, unsigned len)
1058 {
1059 	char *start, *end, *reloc;
1060 	unsigned ret;
1061 
1062 	start = end = reloc = NULL;
1063 
1064 #define SITE(op, x)							\
1065 	case PARAVIRT_PATCH(op.x):					\
1066 	if (have_vcpu_info_placement) {					\
1067 		start = (char *)xen_##x##_direct;			\
1068 		end = xen_##x##_direct_end;				\
1069 		reloc = xen_##x##_direct_reloc;				\
1070 	}								\
1071 	goto patch_site
1072 
1073 	switch (type) {
1074 		SITE(pv_irq_ops, irq_enable);
1075 		SITE(pv_irq_ops, irq_disable);
1076 		SITE(pv_irq_ops, save_fl);
1077 		SITE(pv_irq_ops, restore_fl);
1078 #undef SITE
1079 
1080 	patch_site:
1081 		if (start == NULL || (end-start) > len)
1082 			goto default_patch;
1083 
1084 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1085 
1086 		/* Note: because reloc is assigned from something that
1087 		   appears to be an array, gcc assumes it's non-null,
1088 		   but doesn't know its relationship with start and
1089 		   end. */
1090 		if (reloc > start && reloc < end) {
1091 			int reloc_off = reloc - start;
1092 			long *relocp = (long *)(insnbuf + reloc_off);
1093 			long delta = start - (char *)addr;
1094 
1095 			*relocp += delta;
1096 		}
1097 		break;
1098 
1099 	default_patch:
1100 	default:
1101 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1102 					     addr, len);
1103 		break;
1104 	}
1105 
1106 	return ret;
1107 }
1108 
1109 static const struct pv_info xen_info __initconst = {
1110 	.paravirt_enabled = 1,
1111 	.shared_kernel_pmd = 0,
1112 
1113 #ifdef CONFIG_X86_64
1114 	.extra_user_64bit_cs = FLAT_USER_CS64,
1115 #endif
1116 
1117 	.name = "Xen",
1118 };
1119 
1120 static const struct pv_init_ops xen_init_ops __initconst = {
1121 	.patch = xen_patch,
1122 };
1123 
1124 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1125 	.cpuid = xen_cpuid,
1126 
1127 	.set_debugreg = xen_set_debugreg,
1128 	.get_debugreg = xen_get_debugreg,
1129 
1130 	.clts = xen_clts,
1131 
1132 	.read_cr0 = xen_read_cr0,
1133 	.write_cr0 = xen_write_cr0,
1134 
1135 	.read_cr4 = native_read_cr4,
1136 	.read_cr4_safe = native_read_cr4_safe,
1137 	.write_cr4 = xen_write_cr4,
1138 
1139 #ifdef CONFIG_X86_64
1140 	.read_cr8 = xen_read_cr8,
1141 	.write_cr8 = xen_write_cr8,
1142 #endif
1143 
1144 	.wbinvd = native_wbinvd,
1145 
1146 	.read_msr = native_read_msr_safe,
1147 	.rdmsr_regs = native_rdmsr_safe_regs,
1148 	.write_msr = xen_write_msr_safe,
1149 	.wrmsr_regs = native_wrmsr_safe_regs,
1150 
1151 	.read_tsc = native_read_tsc,
1152 	.read_pmc = native_read_pmc,
1153 
1154 	.read_tscp = native_read_tscp,
1155 
1156 	.iret = xen_iret,
1157 	.irq_enable_sysexit = xen_sysexit,
1158 #ifdef CONFIG_X86_64
1159 	.usergs_sysret32 = xen_sysret32,
1160 	.usergs_sysret64 = xen_sysret64,
1161 #endif
1162 
1163 	.load_tr_desc = paravirt_nop,
1164 	.set_ldt = xen_set_ldt,
1165 	.load_gdt = xen_load_gdt,
1166 	.load_idt = xen_load_idt,
1167 	.load_tls = xen_load_tls,
1168 #ifdef CONFIG_X86_64
1169 	.load_gs_index = xen_load_gs_index,
1170 #endif
1171 
1172 	.alloc_ldt = xen_alloc_ldt,
1173 	.free_ldt = xen_free_ldt,
1174 
1175 	.store_gdt = native_store_gdt,
1176 	.store_idt = native_store_idt,
1177 	.store_tr = xen_store_tr,
1178 
1179 	.write_ldt_entry = xen_write_ldt_entry,
1180 	.write_gdt_entry = xen_write_gdt_entry,
1181 	.write_idt_entry = xen_write_idt_entry,
1182 	.load_sp0 = xen_load_sp0,
1183 
1184 	.set_iopl_mask = xen_set_iopl_mask,
1185 	.io_delay = xen_io_delay,
1186 
1187 	/* Xen takes care of %gs when switching to usermode for us */
1188 	.swapgs = paravirt_nop,
1189 
1190 	.start_context_switch = paravirt_start_context_switch,
1191 	.end_context_switch = xen_end_context_switch,
1192 };
1193 
1194 static const struct pv_apic_ops xen_apic_ops __initconst = {
1195 #ifdef CONFIG_X86_LOCAL_APIC
1196 	.startup_ipi_hook = paravirt_nop,
1197 #endif
1198 };
1199 
xen_reboot(int reason)1200 static void xen_reboot(int reason)
1201 {
1202 	struct sched_shutdown r = { .reason = reason };
1203 
1204 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1205 		BUG();
1206 }
1207 
xen_restart(char * msg)1208 static void xen_restart(char *msg)
1209 {
1210 	xen_reboot(SHUTDOWN_reboot);
1211 }
1212 
xen_emergency_restart(void)1213 static void xen_emergency_restart(void)
1214 {
1215 	xen_reboot(SHUTDOWN_reboot);
1216 }
1217 
xen_machine_halt(void)1218 static void xen_machine_halt(void)
1219 {
1220 	xen_reboot(SHUTDOWN_poweroff);
1221 }
1222 
xen_machine_power_off(void)1223 static void xen_machine_power_off(void)
1224 {
1225 	if (pm_power_off)
1226 		pm_power_off();
1227 	xen_reboot(SHUTDOWN_poweroff);
1228 }
1229 
xen_crash_shutdown(struct pt_regs * regs)1230 static void xen_crash_shutdown(struct pt_regs *regs)
1231 {
1232 	xen_reboot(SHUTDOWN_crash);
1233 }
1234 
1235 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1236 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1237 {
1238 	xen_reboot(SHUTDOWN_crash);
1239 	return NOTIFY_DONE;
1240 }
1241 
1242 static struct notifier_block xen_panic_block = {
1243 	.notifier_call= xen_panic_event,
1244 };
1245 
xen_panic_handler_init(void)1246 int xen_panic_handler_init(void)
1247 {
1248 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1249 	return 0;
1250 }
1251 
1252 static const struct machine_ops xen_machine_ops __initconst = {
1253 	.restart = xen_restart,
1254 	.halt = xen_machine_halt,
1255 	.power_off = xen_machine_power_off,
1256 	.shutdown = xen_machine_halt,
1257 	.crash_shutdown = xen_crash_shutdown,
1258 	.emergency_restart = xen_emergency_restart,
1259 };
1260 
1261 /*
1262  * Set up the GDT and segment registers for -fstack-protector.  Until
1263  * we do this, we have to be careful not to call any stack-protected
1264  * function, which is most of the kernel.
1265  */
xen_setup_stackprotector(void)1266 static void __init xen_setup_stackprotector(void)
1267 {
1268 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1269 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1270 
1271 	setup_stack_canary_segment(0);
1272 	switch_to_new_gdt(0);
1273 
1274 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1275 	pv_cpu_ops.load_gdt = xen_load_gdt;
1276 }
1277 
1278 /* First C function to be called on Xen boot */
xen_start_kernel(void)1279 asmlinkage void __init xen_start_kernel(void)
1280 {
1281 	struct physdev_set_iopl set_iopl;
1282 	int rc;
1283 	pgd_t *pgd;
1284 
1285 	if (!xen_start_info)
1286 		return;
1287 
1288 	xen_domain_type = XEN_PV_DOMAIN;
1289 
1290 	xen_setup_machphys_mapping();
1291 
1292 	/* Install Xen paravirt ops */
1293 	pv_info = xen_info;
1294 	pv_init_ops = xen_init_ops;
1295 	pv_cpu_ops = xen_cpu_ops;
1296 	pv_apic_ops = xen_apic_ops;
1297 
1298 	x86_init.resources.memory_setup = xen_memory_setup;
1299 	x86_init.oem.arch_setup = xen_arch_setup;
1300 	x86_init.oem.banner = xen_banner;
1301 
1302 	xen_init_time_ops();
1303 
1304 	/*
1305 	 * Set up some pagetable state before starting to set any ptes.
1306 	 */
1307 
1308 	xen_init_mmu_ops();
1309 
1310 	/* Prevent unwanted bits from being set in PTEs. */
1311 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1312 #if 0
1313 	if (!xen_initial_domain())
1314 #endif
1315 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1316 
1317 	__supported_pte_mask |= _PAGE_IOMAP;
1318 
1319 	/*
1320 	 * Prevent page tables from being allocated in highmem, even
1321 	 * if CONFIG_HIGHPTE is enabled.
1322 	 */
1323 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1324 
1325 	/* Work out if we support NX */
1326 	x86_configure_nx();
1327 
1328 	xen_setup_features();
1329 
1330 	/* Get mfn list */
1331 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1332 		xen_build_dynamic_phys_to_machine();
1333 
1334 	/*
1335 	 * Set up kernel GDT and segment registers, mainly so that
1336 	 * -fstack-protector code can be executed.
1337 	 */
1338 	xen_setup_stackprotector();
1339 
1340 	xen_init_irq_ops();
1341 	xen_init_cpuid_mask();
1342 
1343 #ifdef CONFIG_X86_LOCAL_APIC
1344 	/*
1345 	 * set up the basic apic ops.
1346 	 */
1347 	set_xen_basic_apic_ops();
1348 #endif
1349 
1350 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1351 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1352 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1353 	}
1354 
1355 	machine_ops = xen_machine_ops;
1356 
1357 	/*
1358 	 * The only reliable way to retain the initial address of the
1359 	 * percpu gdt_page is to remember it here, so we can go and
1360 	 * mark it RW later, when the initial percpu area is freed.
1361 	 */
1362 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1363 
1364 	xen_smp_init();
1365 
1366 #ifdef CONFIG_ACPI_NUMA
1367 	/*
1368 	 * The pages we from Xen are not related to machine pages, so
1369 	 * any NUMA information the kernel tries to get from ACPI will
1370 	 * be meaningless.  Prevent it from trying.
1371 	 */
1372 	acpi_numa = -1;
1373 #endif
1374 #ifdef CONFIG_X86_PAT
1375 	/*
1376 	 * For right now disable the PAT. We should remove this once
1377 	 * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1378 	 * (xen/pat: Disable PAT support for now) is reverted.
1379 	 */
1380 	pat_enabled = 0;
1381 #endif
1382 	pgd = (pgd_t *)xen_start_info->pt_base;
1383 
1384 	/* Don't do the full vcpu_info placement stuff until we have a
1385 	   possible map and a non-dummy shared_info. */
1386 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1387 
1388 	local_irq_disable();
1389 	early_boot_irqs_disabled = true;
1390 
1391 	xen_raw_console_write("mapping kernel into physical memory\n");
1392 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1393 	xen_ident_map_ISA();
1394 
1395 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1396 	xen_build_mfn_list_list();
1397 
1398 	/* keep using Xen gdt for now; no urgent need to change it */
1399 
1400 #ifdef CONFIG_X86_32
1401 	pv_info.kernel_rpl = 1;
1402 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1403 		pv_info.kernel_rpl = 0;
1404 #else
1405 	pv_info.kernel_rpl = 0;
1406 #endif
1407 	/* set the limit of our address space */
1408 	xen_reserve_top();
1409 
1410 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1411 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1412 	 * which pokes 0xcf8 port.
1413 	 */
1414 	set_iopl.iopl = 1;
1415 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1416 	if (rc != 0)
1417 		xen_raw_printk("physdev_op failed %d\n", rc);
1418 
1419 #ifdef CONFIG_X86_32
1420 	/* set up basic CPUID stuff */
1421 	cpu_detect(&new_cpu_data);
1422 	new_cpu_data.hard_math = 1;
1423 	new_cpu_data.wp_works_ok = 1;
1424 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1425 #endif
1426 
1427 	/* Poke various useful things into boot_params */
1428 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1429 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1430 		? __pa(xen_start_info->mod_start) : 0;
1431 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1432 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1433 
1434 	if (!xen_initial_domain()) {
1435 		add_preferred_console("xenboot", 0, NULL);
1436 		add_preferred_console("tty", 0, NULL);
1437 		add_preferred_console("hvc", 0, NULL);
1438 		if (pci_xen)
1439 			x86_init.pci.arch_init = pci_xen_init;
1440 	} else {
1441 		const struct dom0_vga_console_info *info =
1442 			(void *)((char *)xen_start_info +
1443 				 xen_start_info->console.dom0.info_off);
1444 
1445 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1446 		xen_start_info->console.domU.mfn = 0;
1447 		xen_start_info->console.domU.evtchn = 0;
1448 
1449 		/* Make sure ACS will be enabled */
1450 		pci_request_acs();
1451 
1452 		/* Avoid searching for BIOS MP tables */
1453 		x86_init.mpparse.find_smp_config = x86_init_noop;
1454 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1455 	}
1456 #ifdef CONFIG_PCI
1457 	/* PCI BIOS service won't work from a PV guest. */
1458 	pci_probe &= ~PCI_PROBE_BIOS;
1459 #endif
1460 	xen_raw_console_write("about to get started...\n");
1461 
1462 	xen_setup_runstate_info(0);
1463 
1464 	/* Start the world */
1465 #ifdef CONFIG_X86_32
1466 	i386_start_kernel();
1467 #else
1468 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1469 #endif
1470 }
1471 
init_hvm_pv_info(int * major,int * minor)1472 static int init_hvm_pv_info(int *major, int *minor)
1473 {
1474 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1475 	u64 pfn;
1476 
1477 	base = xen_cpuid_base();
1478 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1479 
1480 	*major = eax >> 16;
1481 	*minor = eax & 0xffff;
1482 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1483 
1484 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1485 
1486 	pfn = __pa(hypercall_page);
1487 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1488 
1489 	xen_setup_features();
1490 
1491 	pv_info.name = "Xen HVM";
1492 
1493 	xen_domain_type = XEN_HVM_DOMAIN;
1494 
1495 	return 0;
1496 }
1497 
xen_hvm_init_shared_info(void)1498 void __ref xen_hvm_init_shared_info(void)
1499 {
1500 	int cpu;
1501 	struct xen_add_to_physmap xatp;
1502 	static struct shared_info *shared_info_page = 0;
1503 
1504 	if (!shared_info_page)
1505 		shared_info_page = (struct shared_info *)
1506 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1507 	xatp.domid = DOMID_SELF;
1508 	xatp.idx = 0;
1509 	xatp.space = XENMAPSPACE_shared_info;
1510 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1511 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1512 		BUG();
1513 
1514 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1515 
1516 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1517 	 * page, we use it in the event channel upcall and in some pvclock
1518 	 * related functions. We don't need the vcpu_info placement
1519 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1520 	 * HVM.
1521 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1522 	 * online but xen_hvm_init_shared_info is run at resume time too and
1523 	 * in that case multiple vcpus might be online. */
1524 	for_each_online_cpu(cpu) {
1525 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1526 	}
1527 }
1528 
1529 #ifdef CONFIG_XEN_PVHVM
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1530 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1531 				    unsigned long action, void *hcpu)
1532 {
1533 	int cpu = (long)hcpu;
1534 	switch (action) {
1535 	case CPU_UP_PREPARE:
1536 		xen_vcpu_setup(cpu);
1537 		if (xen_have_vector_callback) {
1538 			xen_init_lock_cpu(cpu);
1539 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1540 				xen_setup_timer(cpu);
1541 		}
1542 		break;
1543 	default:
1544 		break;
1545 	}
1546 	return NOTIFY_OK;
1547 }
1548 
1549 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1550 	.notifier_call	= xen_hvm_cpu_notify,
1551 };
1552 
xen_hvm_guest_init(void)1553 static void __init xen_hvm_guest_init(void)
1554 {
1555 	int r;
1556 	int major, minor;
1557 
1558 	r = init_hvm_pv_info(&major, &minor);
1559 	if (r < 0)
1560 		return;
1561 
1562 	xen_hvm_init_shared_info();
1563 
1564 	if (xen_feature(XENFEAT_hvm_callback_vector))
1565 		xen_have_vector_callback = 1;
1566 	xen_hvm_smp_init();
1567 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1568 	xen_unplug_emulated_devices();
1569 	x86_init.irqs.intr_init = xen_init_IRQ;
1570 	xen_hvm_init_time_ops();
1571 	xen_hvm_init_mmu_ops();
1572 }
1573 
xen_hvm_platform(void)1574 static bool __init xen_hvm_platform(void)
1575 {
1576 	if (xen_pv_domain())
1577 		return false;
1578 
1579 	if (!xen_cpuid_base())
1580 		return false;
1581 
1582 	return true;
1583 }
1584 
xen_hvm_need_lapic(void)1585 bool xen_hvm_need_lapic(void)
1586 {
1587 	if (xen_pv_domain())
1588 		return false;
1589 	if (!xen_hvm_domain())
1590 		return false;
1591 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1592 		return false;
1593 	return true;
1594 }
1595 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1596 
1597 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1598 	.name			= "Xen HVM",
1599 	.detect			= xen_hvm_platform,
1600 	.init_platform		= xen_hvm_guest_init,
1601 };
1602 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1603 #endif
1604