1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 /* start node id of a node block dedicated to the given node id */
9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES 8
16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE 8
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* control total # of node writes used for roll-fowrad recovery */
35 #define DEF_RF_NODE_BLOCKS 0
36
37 /* vector size for gang look-up from nat cache that consists of radix tree */
38 #define NATVEC_SIZE 64
39 #define SETVEC_SIZE 32
40
41 /* return value for read_node_page */
42 #define LOCKED_PAGE 1
43
44 /* check pinned file's alignment status of physical blocks */
45 #define FILE_NOT_ALIGNED 1
46
47 /* For flag in struct node_info */
48 enum {
49 IS_CHECKPOINTED, /* is it checkpointed before? */
50 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
51 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
52 IS_DIRTY, /* this nat entry is dirty? */
53 IS_PREALLOC, /* nat entry is preallocated */
54 };
55
56 /*
57 * For node information
58 */
59 struct node_info {
60 nid_t nid; /* node id */
61 nid_t ino; /* inode number of the node's owner */
62 block_t blk_addr; /* block address of the node */
63 unsigned char version; /* version of the node */
64 unsigned char flag; /* for node information bits */
65 };
66
67 struct nat_entry {
68 struct list_head list; /* for clean or dirty nat list */
69 struct node_info ni; /* in-memory node information */
70 };
71
72 #define nat_get_nid(nat) ((nat)->ni.nid)
73 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
74 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
75 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
76 #define nat_get_ino(nat) ((nat)->ni.ino)
77 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
78 #define nat_get_version(nat) ((nat)->ni.version)
79 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
80
81 #define inc_node_version(version) (++(version))
82
copy_node_info(struct node_info * dst,struct node_info * src)83 static inline void copy_node_info(struct node_info *dst,
84 struct node_info *src)
85 {
86 dst->nid = src->nid;
87 dst->ino = src->ino;
88 dst->blk_addr = src->blk_addr;
89 dst->version = src->version;
90 /* should not copy flag here */
91 }
92
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)93 static inline void set_nat_flag(struct nat_entry *ne,
94 unsigned int type, bool set)
95 {
96 unsigned char mask = 0x01 << type;
97 if (set)
98 ne->ni.flag |= mask;
99 else
100 ne->ni.flag &= ~mask;
101 }
102
get_nat_flag(struct nat_entry * ne,unsigned int type)103 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
104 {
105 unsigned char mask = 0x01 << type;
106 return ne->ni.flag & mask;
107 }
108
nat_reset_flag(struct nat_entry * ne)109 static inline void nat_reset_flag(struct nat_entry *ne)
110 {
111 /* these states can be set only after checkpoint was done */
112 set_nat_flag(ne, IS_CHECKPOINTED, true);
113 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
114 set_nat_flag(ne, HAS_LAST_FSYNC, true);
115 }
116
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)117 static inline void node_info_from_raw_nat(struct node_info *ni,
118 struct f2fs_nat_entry *raw_ne)
119 {
120 ni->ino = le32_to_cpu(raw_ne->ino);
121 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
122 ni->version = raw_ne->version;
123 }
124
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)125 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
126 struct node_info *ni)
127 {
128 raw_ne->ino = cpu_to_le32(ni->ino);
129 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
130 raw_ne->version = ni->version;
131 }
132
excess_dirty_nats(struct f2fs_sb_info * sbi)133 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
134 {
135 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
136 NM_I(sbi)->dirty_nats_ratio / 100;
137 }
138
excess_cached_nats(struct f2fs_sb_info * sbi)139 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
140 {
141 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
142 }
143
144 enum mem_type {
145 FREE_NIDS, /* indicates the free nid list */
146 NAT_ENTRIES, /* indicates the cached nat entry */
147 DIRTY_DENTS, /* indicates dirty dentry pages */
148 INO_ENTRIES, /* indicates inode entries */
149 EXTENT_CACHE, /* indicates extent cache */
150 DISCARD_CACHE, /* indicates memory of cached discard cmds */
151 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
152 BASE_CHECK, /* check kernel status */
153 };
154
155 struct nat_entry_set {
156 struct list_head set_list; /* link with other nat sets */
157 struct list_head entry_list; /* link with dirty nat entries */
158 nid_t set; /* set number*/
159 unsigned int entry_cnt; /* the # of nat entries in set */
160 };
161
162 struct free_nid {
163 struct list_head list; /* for free node id list */
164 nid_t nid; /* node id */
165 int state; /* in use or not: FREE_NID or PREALLOC_NID */
166 };
167
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)168 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
169 {
170 struct f2fs_nm_info *nm_i = NM_I(sbi);
171 struct free_nid *fnid;
172
173 spin_lock(&nm_i->nid_list_lock);
174 if (nm_i->nid_cnt[FREE_NID] <= 0) {
175 spin_unlock(&nm_i->nid_list_lock);
176 return;
177 }
178 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181 }
182
183 /*
184 * inline functions
185 */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187 {
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189
190 #ifdef CONFIG_F2FS_CHECK_FS
191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
192 nm_i->bitmap_size))
193 f2fs_bug_on(sbi, 1);
194 #endif
195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
196 }
197
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
199 {
200 struct f2fs_nm_info *nm_i = NM_I(sbi);
201 pgoff_t block_off;
202 pgoff_t block_addr;
203
204 /*
205 * block_off = segment_off * 512 + off_in_segment
206 * OLD = (segment_off * 512) * 2 + off_in_segment
207 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
208 */
209 block_off = NAT_BLOCK_OFFSET(start);
210
211 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
212 (block_off << 1) -
213 (block_off & (sbi->blocks_per_seg - 1)));
214
215 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
216 block_addr += sbi->blocks_per_seg;
217
218 return block_addr;
219 }
220
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
222 pgoff_t block_addr)
223 {
224 struct f2fs_nm_info *nm_i = NM_I(sbi);
225
226 block_addr -= nm_i->nat_blkaddr;
227 block_addr ^= 1 << sbi->log_blocks_per_seg;
228 return block_addr + nm_i->nat_blkaddr;
229 }
230
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)231 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
232 {
233 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
234
235 f2fs_change_bit(block_off, nm_i->nat_bitmap);
236 #ifdef CONFIG_F2FS_CHECK_FS
237 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
238 #endif
239 }
240
ino_of_node(struct page * node_page)241 static inline nid_t ino_of_node(struct page *node_page)
242 {
243 struct f2fs_node *rn = F2FS_NODE(node_page);
244 return le32_to_cpu(rn->footer.ino);
245 }
246
nid_of_node(struct page * node_page)247 static inline nid_t nid_of_node(struct page *node_page)
248 {
249 struct f2fs_node *rn = F2FS_NODE(node_page);
250 return le32_to_cpu(rn->footer.nid);
251 }
252
ofs_of_node(struct page * node_page)253 static inline unsigned int ofs_of_node(struct page *node_page)
254 {
255 struct f2fs_node *rn = F2FS_NODE(node_page);
256 unsigned flag = le32_to_cpu(rn->footer.flag);
257 return flag >> OFFSET_BIT_SHIFT;
258 }
259
cpver_of_node(struct page * node_page)260 static inline __u64 cpver_of_node(struct page *node_page)
261 {
262 struct f2fs_node *rn = F2FS_NODE(node_page);
263 return le64_to_cpu(rn->footer.cp_ver);
264 }
265
next_blkaddr_of_node(struct page * node_page)266 static inline block_t next_blkaddr_of_node(struct page *node_page)
267 {
268 struct f2fs_node *rn = F2FS_NODE(node_page);
269 return le32_to_cpu(rn->footer.next_blkaddr);
270 }
271
fill_node_footer(struct page * page,nid_t nid,nid_t ino,unsigned int ofs,bool reset)272 static inline void fill_node_footer(struct page *page, nid_t nid,
273 nid_t ino, unsigned int ofs, bool reset)
274 {
275 struct f2fs_node *rn = F2FS_NODE(page);
276 unsigned int old_flag = 0;
277
278 if (reset)
279 memset(rn, 0, sizeof(*rn));
280 else
281 old_flag = le32_to_cpu(rn->footer.flag);
282
283 rn->footer.nid = cpu_to_le32(nid);
284 rn->footer.ino = cpu_to_le32(ino);
285
286 /* should remain old flag bits such as COLD_BIT_SHIFT */
287 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
288 (old_flag & OFFSET_BIT_MASK));
289 }
290
copy_node_footer(struct page * dst,struct page * src)291 static inline void copy_node_footer(struct page *dst, struct page *src)
292 {
293 struct f2fs_node *src_rn = F2FS_NODE(src);
294 struct f2fs_node *dst_rn = F2FS_NODE(dst);
295 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
296 }
297
fill_node_footer_blkaddr(struct page * page,block_t blkaddr)298 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
299 {
300 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
301 struct f2fs_node *rn = F2FS_NODE(page);
302 __u64 cp_ver = cur_cp_version(ckpt);
303
304 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
305 cp_ver |= (cur_cp_crc(ckpt) << 32);
306
307 rn->footer.cp_ver = cpu_to_le64(cp_ver);
308 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
309 }
310
is_recoverable_dnode(struct page * page)311 static inline bool is_recoverable_dnode(struct page *page)
312 {
313 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
314 __u64 cp_ver = cur_cp_version(ckpt);
315
316 /* Don't care crc part, if fsck.f2fs sets it. */
317 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
318 return (cp_ver << 32) == (cpver_of_node(page) << 32);
319
320 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
321 cp_ver |= (cur_cp_crc(ckpt) << 32);
322
323 return cp_ver == cpver_of_node(page);
324 }
325
326 /*
327 * f2fs assigns the following node offsets described as (num).
328 * N = NIDS_PER_BLOCK
329 *
330 * Inode block (0)
331 * |- direct node (1)
332 * |- direct node (2)
333 * |- indirect node (3)
334 * | `- direct node (4 => 4 + N - 1)
335 * |- indirect node (4 + N)
336 * | `- direct node (5 + N => 5 + 2N - 1)
337 * `- double indirect node (5 + 2N)
338 * `- indirect node (6 + 2N)
339 * `- direct node
340 * ......
341 * `- indirect node ((6 + 2N) + x(N + 1))
342 * `- direct node
343 * ......
344 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
345 * `- direct node
346 */
IS_DNODE(struct page * node_page)347 static inline bool IS_DNODE(struct page *node_page)
348 {
349 unsigned int ofs = ofs_of_node(node_page);
350
351 if (f2fs_has_xattr_block(ofs))
352 return true;
353
354 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
355 ofs == 5 + 2 * NIDS_PER_BLOCK)
356 return false;
357 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
358 ofs -= 6 + 2 * NIDS_PER_BLOCK;
359 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
360 return false;
361 }
362 return true;
363 }
364
set_nid(struct page * p,int off,nid_t nid,bool i)365 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
366 {
367 struct f2fs_node *rn = F2FS_NODE(p);
368
369 f2fs_wait_on_page_writeback(p, NODE, true, true);
370
371 if (i)
372 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
373 else
374 rn->in.nid[off] = cpu_to_le32(nid);
375 return set_page_dirty(p);
376 }
377
get_nid(struct page * p,int off,bool i)378 static inline nid_t get_nid(struct page *p, int off, bool i)
379 {
380 struct f2fs_node *rn = F2FS_NODE(p);
381
382 if (i)
383 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
384 return le32_to_cpu(rn->in.nid[off]);
385 }
386
387 /*
388 * Coldness identification:
389 * - Mark cold files in f2fs_inode_info
390 * - Mark cold node blocks in their node footer
391 * - Mark cold data pages in page cache
392 */
393
is_node(struct page * page,int type)394 static inline int is_node(struct page *page, int type)
395 {
396 struct f2fs_node *rn = F2FS_NODE(page);
397 return le32_to_cpu(rn->footer.flag) & (1 << type);
398 }
399
400 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
401 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
402 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
403
set_cold_node(struct page * page,bool is_dir)404 static inline void set_cold_node(struct page *page, bool is_dir)
405 {
406 struct f2fs_node *rn = F2FS_NODE(page);
407 unsigned int flag = le32_to_cpu(rn->footer.flag);
408
409 if (is_dir)
410 flag &= ~(0x1 << COLD_BIT_SHIFT);
411 else
412 flag |= (0x1 << COLD_BIT_SHIFT);
413 rn->footer.flag = cpu_to_le32(flag);
414 }
415
set_mark(struct page * page,int mark,int type)416 static inline void set_mark(struct page *page, int mark, int type)
417 {
418 struct f2fs_node *rn = F2FS_NODE(page);
419 unsigned int flag = le32_to_cpu(rn->footer.flag);
420 if (mark)
421 flag |= (0x1 << type);
422 else
423 flag &= ~(0x1 << type);
424 rn->footer.flag = cpu_to_le32(flag);
425
426 #ifdef CONFIG_F2FS_CHECK_FS
427 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
428 #endif
429 }
430 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
431 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
432