1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _LINUX_MEMBLOCK_H
3 #define _LINUX_MEMBLOCK_H
4
5 /*
6 * Logical memory blocks.
7 *
8 * Copyright (C) 2001 Peter Bergner, IBM Corp.
9 */
10
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <asm/dma.h>
14
15 extern unsigned long max_low_pfn;
16 extern unsigned long min_low_pfn;
17
18 /*
19 * highest page
20 */
21 extern unsigned long max_pfn;
22 /*
23 * highest possible page
24 */
25 extern unsigned long long max_possible_pfn;
26
27 /**
28 * enum memblock_flags - definition of memory region attributes
29 * @MEMBLOCK_NONE: no special request
30 * @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory
31 * map during early boot as hot(un)pluggable system RAM (e.g., memory range
32 * that might get hotunplugged later). With "movable_node" set on the kernel
33 * commandline, try keeping this memory region hotunpluggable. Does not apply
34 * to memblocks added ("hotplugged") after early boot.
35 * @MEMBLOCK_MIRROR: mirrored region
36 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as
37 * reserved in the memory map; refer to memblock_mark_nomap() description
38 * for further details
39 * @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added
40 * via a driver, and never indicated in the firmware-provided memory map as
41 * system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the
42 * kernel resource tree.
43 */
44 enum memblock_flags {
45 MEMBLOCK_NONE = 0x0, /* No special request */
46 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
47 MEMBLOCK_MIRROR = 0x2, /* mirrored region */
48 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
49 MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */
50 };
51
52 /**
53 * struct memblock_region - represents a memory region
54 * @base: base address of the region
55 * @size: size of the region
56 * @flags: memory region attributes
57 * @nid: NUMA node id
58 */
59 struct memblock_region {
60 phys_addr_t base;
61 phys_addr_t size;
62 enum memblock_flags flags;
63 #ifdef CONFIG_NUMA
64 int nid;
65 #endif
66 };
67
68 /**
69 * struct memblock_type - collection of memory regions of certain type
70 * @cnt: number of regions
71 * @max: size of the allocated array
72 * @total_size: size of all regions
73 * @regions: array of regions
74 * @name: the memory type symbolic name
75 */
76 struct memblock_type {
77 unsigned long cnt;
78 unsigned long max;
79 phys_addr_t total_size;
80 struct memblock_region *regions;
81 char *name;
82 };
83
84 /**
85 * struct memblock - memblock allocator metadata
86 * @bottom_up: is bottom up direction?
87 * @current_limit: physical address of the current allocation limit
88 * @memory: usable memory regions
89 * @reserved: reserved memory regions
90 */
91 struct memblock {
92 bool bottom_up; /* is bottom up direction? */
93 phys_addr_t current_limit;
94 struct memblock_type memory;
95 struct memblock_type reserved;
96 };
97
98 extern struct memblock memblock;
99
100 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
101 #define __init_memblock __meminit
102 #define __initdata_memblock __meminitdata
103 void memblock_discard(void);
104 #else
105 #define __init_memblock
106 #define __initdata_memblock
memblock_discard(void)107 static inline void memblock_discard(void) {}
108 #endif
109
110 void memblock_allow_resize(void);
111 int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid,
112 enum memblock_flags flags);
113 int memblock_add(phys_addr_t base, phys_addr_t size);
114 int memblock_remove(phys_addr_t base, phys_addr_t size);
115 int memblock_phys_free(phys_addr_t base, phys_addr_t size);
116 int memblock_reserve(phys_addr_t base, phys_addr_t size);
117 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
118 int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
119 #endif
120 void memblock_trim_memory(phys_addr_t align);
121 bool memblock_overlaps_region(struct memblock_type *type,
122 phys_addr_t base, phys_addr_t size);
123 int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
124 int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
125 int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
126 int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
127 int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
128
129 void memblock_free_all(void);
130 void memblock_free(void *ptr, size_t size);
131 void reset_node_managed_pages(pg_data_t *pgdat);
132 void reset_all_zones_managed_pages(void);
133
134 /* Low level functions */
135 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
136 struct memblock_type *type_a,
137 struct memblock_type *type_b, phys_addr_t *out_start,
138 phys_addr_t *out_end, int *out_nid);
139
140 void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
141 struct memblock_type *type_a,
142 struct memblock_type *type_b, phys_addr_t *out_start,
143 phys_addr_t *out_end, int *out_nid);
144
145 void memblock_free_late(phys_addr_t base, phys_addr_t size);
146
147 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
__next_physmem_range(u64 * idx,struct memblock_type * type,phys_addr_t * out_start,phys_addr_t * out_end)148 static inline void __next_physmem_range(u64 *idx, struct memblock_type *type,
149 phys_addr_t *out_start,
150 phys_addr_t *out_end)
151 {
152 extern struct memblock_type physmem;
153
154 __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type,
155 out_start, out_end, NULL);
156 }
157
158 /**
159 * for_each_physmem_range - iterate through physmem areas not included in type.
160 * @i: u64 used as loop variable
161 * @type: ptr to memblock_type which excludes from the iteration, can be %NULL
162 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
163 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
164 */
165 #define for_each_physmem_range(i, type, p_start, p_end) \
166 for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \
167 i != (u64)ULLONG_MAX; \
168 __next_physmem_range(&i, type, p_start, p_end))
169 #endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */
170
171 /**
172 * __for_each_mem_range - iterate through memblock areas from type_a and not
173 * included in type_b. Or just type_a if type_b is NULL.
174 * @i: u64 used as loop variable
175 * @type_a: ptr to memblock_type to iterate
176 * @type_b: ptr to memblock_type which excludes from the iteration
177 * @nid: node selector, %NUMA_NO_NODE for all nodes
178 * @flags: pick from blocks based on memory attributes
179 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
180 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
181 * @p_nid: ptr to int for nid of the range, can be %NULL
182 */
183 #define __for_each_mem_range(i, type_a, type_b, nid, flags, \
184 p_start, p_end, p_nid) \
185 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
186 p_start, p_end, p_nid); \
187 i != (u64)ULLONG_MAX; \
188 __next_mem_range(&i, nid, flags, type_a, type_b, \
189 p_start, p_end, p_nid))
190
191 /**
192 * __for_each_mem_range_rev - reverse iterate through memblock areas from
193 * type_a and not included in type_b. Or just type_a if type_b is NULL.
194 * @i: u64 used as loop variable
195 * @type_a: ptr to memblock_type to iterate
196 * @type_b: ptr to memblock_type which excludes from the iteration
197 * @nid: node selector, %NUMA_NO_NODE for all nodes
198 * @flags: pick from blocks based on memory attributes
199 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
200 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
201 * @p_nid: ptr to int for nid of the range, can be %NULL
202 */
203 #define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
204 p_start, p_end, p_nid) \
205 for (i = (u64)ULLONG_MAX, \
206 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
207 p_start, p_end, p_nid); \
208 i != (u64)ULLONG_MAX; \
209 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
210 p_start, p_end, p_nid))
211
212 /**
213 * for_each_mem_range - iterate through memory areas.
214 * @i: u64 used as loop variable
215 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
216 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
217 */
218 #define for_each_mem_range(i, p_start, p_end) \
219 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \
220 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \
221 p_start, p_end, NULL)
222
223 /**
224 * for_each_mem_range_rev - reverse iterate through memblock areas from
225 * type_a and not included in type_b. Or just type_a if type_b is NULL.
226 * @i: u64 used as loop variable
227 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
228 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
229 */
230 #define for_each_mem_range_rev(i, p_start, p_end) \
231 __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \
232 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\
233 p_start, p_end, NULL)
234
235 /**
236 * for_each_reserved_mem_range - iterate over all reserved memblock areas
237 * @i: u64 used as loop variable
238 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
239 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
240 *
241 * Walks over reserved areas of memblock. Available as soon as memblock
242 * is initialized.
243 */
244 #define for_each_reserved_mem_range(i, p_start, p_end) \
245 __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \
246 MEMBLOCK_NONE, p_start, p_end, NULL)
247
memblock_is_hotpluggable(struct memblock_region * m)248 static inline bool memblock_is_hotpluggable(struct memblock_region *m)
249 {
250 return m->flags & MEMBLOCK_HOTPLUG;
251 }
252
memblock_is_mirror(struct memblock_region * m)253 static inline bool memblock_is_mirror(struct memblock_region *m)
254 {
255 return m->flags & MEMBLOCK_MIRROR;
256 }
257
memblock_is_nomap(struct memblock_region * m)258 static inline bool memblock_is_nomap(struct memblock_region *m)
259 {
260 return m->flags & MEMBLOCK_NOMAP;
261 }
262
memblock_is_driver_managed(struct memblock_region * m)263 static inline bool memblock_is_driver_managed(struct memblock_region *m)
264 {
265 return m->flags & MEMBLOCK_DRIVER_MANAGED;
266 }
267
268 int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
269 unsigned long *end_pfn);
270 void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
271 unsigned long *out_end_pfn, int *out_nid);
272
273 /**
274 * for_each_mem_pfn_range - early memory pfn range iterator
275 * @i: an integer used as loop variable
276 * @nid: node selector, %MAX_NUMNODES for all nodes
277 * @p_start: ptr to ulong for start pfn of the range, can be %NULL
278 * @p_end: ptr to ulong for end pfn of the range, can be %NULL
279 * @p_nid: ptr to int for nid of the range, can be %NULL
280 *
281 * Walks over configured memory ranges.
282 */
283 #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
284 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
285 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
286
287 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288 void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
289 unsigned long *out_spfn,
290 unsigned long *out_epfn);
291 /**
292 * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free
293 * memblock areas
294 * @i: u64 used as loop variable
295 * @zone: zone in which all of the memory blocks reside
296 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
297 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
298 *
299 * Walks over free (memory && !reserved) areas of memblock in a specific
300 * zone. Available once memblock and an empty zone is initialized. The main
301 * assumption is that the zone start, end, and pgdat have been associated.
302 * This way we can use the zone to determine NUMA node, and if a given part
303 * of the memblock is valid for the zone.
304 */
305 #define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \
306 for (i = 0, \
307 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \
308 i != U64_MAX; \
309 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
310
311 /**
312 * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific
313 * free memblock areas from a given point
314 * @i: u64 used as loop variable
315 * @zone: zone in which all of the memory blocks reside
316 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
317 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
318 *
319 * Walks over free (memory && !reserved) areas of memblock in a specific
320 * zone, continuing from current position. Available as soon as memblock is
321 * initialized.
322 */
323 #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
324 for (; i != U64_MAX; \
325 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
326
327 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask);
328
329 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
330
331 /**
332 * for_each_free_mem_range - iterate through free memblock areas
333 * @i: u64 used as loop variable
334 * @nid: node selector, %NUMA_NO_NODE for all nodes
335 * @flags: pick from blocks based on memory attributes
336 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
337 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
338 * @p_nid: ptr to int for nid of the range, can be %NULL
339 *
340 * Walks over free (memory && !reserved) areas of memblock. Available as
341 * soon as memblock is initialized.
342 */
343 #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
344 __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
345 nid, flags, p_start, p_end, p_nid)
346
347 /**
348 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
349 * @i: u64 used as loop variable
350 * @nid: node selector, %NUMA_NO_NODE for all nodes
351 * @flags: pick from blocks based on memory attributes
352 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
353 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
354 * @p_nid: ptr to int for nid of the range, can be %NULL
355 *
356 * Walks over free (memory && !reserved) areas of memblock in reverse
357 * order. Available as soon as memblock is initialized.
358 */
359 #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
360 p_nid) \
361 __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
362 nid, flags, p_start, p_end, p_nid)
363
364 int memblock_set_node(phys_addr_t base, phys_addr_t size,
365 struct memblock_type *type, int nid);
366
367 #ifdef CONFIG_NUMA
memblock_set_region_node(struct memblock_region * r,int nid)368 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
369 {
370 r->nid = nid;
371 }
372
memblock_get_region_node(const struct memblock_region * r)373 static inline int memblock_get_region_node(const struct memblock_region *r)
374 {
375 return r->nid;
376 }
377 #else
memblock_set_region_node(struct memblock_region * r,int nid)378 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
379 {
380 }
381
memblock_get_region_node(const struct memblock_region * r)382 static inline int memblock_get_region_node(const struct memblock_region *r)
383 {
384 return 0;
385 }
386 #endif /* CONFIG_NUMA */
387
388 /* Flags for memblock allocation APIs */
389 #define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
390 #define MEMBLOCK_ALLOC_ACCESSIBLE 0
391 #define MEMBLOCK_ALLOC_NOLEAKTRACE 1
392
393 /* We are using top down, so it is safe to use 0 here */
394 #define MEMBLOCK_LOW_LIMIT 0
395
396 #ifndef ARCH_LOW_ADDRESS_LIMIT
397 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
398 #endif
399
400 phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
401 phys_addr_t start, phys_addr_t end);
402 phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
403 phys_addr_t align, phys_addr_t start,
404 phys_addr_t end, int nid, bool exact_nid);
405 phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
406
memblock_phys_alloc(phys_addr_t size,phys_addr_t align)407 static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
408 phys_addr_t align)
409 {
410 return memblock_phys_alloc_range(size, align, 0,
411 MEMBLOCK_ALLOC_ACCESSIBLE);
412 }
413
414 void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
415 phys_addr_t min_addr, phys_addr_t max_addr,
416 int nid);
417 void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
418 phys_addr_t min_addr, phys_addr_t max_addr,
419 int nid);
420 void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
421 phys_addr_t min_addr, phys_addr_t max_addr,
422 int nid);
423
memblock_alloc(phys_addr_t size,phys_addr_t align)424 static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align)
425 {
426 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
427 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
428 }
429
memblock_alloc_raw(phys_addr_t size,phys_addr_t align)430 static inline void *memblock_alloc_raw(phys_addr_t size,
431 phys_addr_t align)
432 {
433 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
434 MEMBLOCK_ALLOC_ACCESSIBLE,
435 NUMA_NO_NODE);
436 }
437
memblock_alloc_from(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr)438 static inline void *memblock_alloc_from(phys_addr_t size,
439 phys_addr_t align,
440 phys_addr_t min_addr)
441 {
442 return memblock_alloc_try_nid(size, align, min_addr,
443 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
444 }
445
memblock_alloc_low(phys_addr_t size,phys_addr_t align)446 static inline void *memblock_alloc_low(phys_addr_t size,
447 phys_addr_t align)
448 {
449 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
450 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
451 }
452
memblock_alloc_node(phys_addr_t size,phys_addr_t align,int nid)453 static inline void *memblock_alloc_node(phys_addr_t size,
454 phys_addr_t align, int nid)
455 {
456 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
457 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
458 }
459
460 /*
461 * Set the allocation direction to bottom-up or top-down.
462 */
memblock_set_bottom_up(bool enable)463 static inline __init_memblock void memblock_set_bottom_up(bool enable)
464 {
465 memblock.bottom_up = enable;
466 }
467
468 /*
469 * Check if the allocation direction is bottom-up or not.
470 * if this is true, that said, memblock will allocate memory
471 * in bottom-up direction.
472 */
memblock_bottom_up(void)473 static inline __init_memblock bool memblock_bottom_up(void)
474 {
475 return memblock.bottom_up;
476 }
477
478 phys_addr_t memblock_phys_mem_size(void);
479 phys_addr_t memblock_reserved_size(void);
480 phys_addr_t memblock_start_of_DRAM(void);
481 phys_addr_t memblock_end_of_DRAM(void);
482 void memblock_enforce_memory_limit(phys_addr_t memory_limit);
483 void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
484 void memblock_mem_limit_remove_map(phys_addr_t limit);
485 bool memblock_is_memory(phys_addr_t addr);
486 bool memblock_is_map_memory(phys_addr_t addr);
487 bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
488 bool memblock_is_reserved(phys_addr_t addr);
489 bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
490
491 void memblock_dump_all(void);
492
493 /**
494 * memblock_set_current_limit - Set the current allocation limit to allow
495 * limiting allocations to what is currently
496 * accessible during boot
497 * @limit: New limit value (physical address)
498 */
499 void memblock_set_current_limit(phys_addr_t limit);
500
501
502 phys_addr_t memblock_get_current_limit(void);
503
504 /*
505 * pfn conversion functions
506 *
507 * While the memory MEMBLOCKs should always be page aligned, the reserved
508 * MEMBLOCKs may not be. This accessor attempt to provide a very clear
509 * idea of what they return for such non aligned MEMBLOCKs.
510 */
511
512 /**
513 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
514 * @reg: memblock_region structure
515 *
516 * Return: the lowest pfn intersecting with the memory region
517 */
memblock_region_memory_base_pfn(const struct memblock_region * reg)518 static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
519 {
520 return PFN_UP(reg->base);
521 }
522
523 /**
524 * memblock_region_memory_end_pfn - get the end pfn of the memory region
525 * @reg: memblock_region structure
526 *
527 * Return: the end_pfn of the reserved region
528 */
memblock_region_memory_end_pfn(const struct memblock_region * reg)529 static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
530 {
531 return PFN_DOWN(reg->base + reg->size);
532 }
533
534 /**
535 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
536 * @reg: memblock_region structure
537 *
538 * Return: the lowest pfn intersecting with the reserved region
539 */
memblock_region_reserved_base_pfn(const struct memblock_region * reg)540 static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
541 {
542 return PFN_DOWN(reg->base);
543 }
544
545 /**
546 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
547 * @reg: memblock_region structure
548 *
549 * Return: the end_pfn of the reserved region
550 */
memblock_region_reserved_end_pfn(const struct memblock_region * reg)551 static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
552 {
553 return PFN_UP(reg->base + reg->size);
554 }
555
556 /**
557 * for_each_mem_region - itereate over memory regions
558 * @region: loop variable
559 */
560 #define for_each_mem_region(region) \
561 for (region = memblock.memory.regions; \
562 region < (memblock.memory.regions + memblock.memory.cnt); \
563 region++)
564
565 /**
566 * for_each_reserved_mem_region - itereate over reserved memory regions
567 * @region: loop variable
568 */
569 #define for_each_reserved_mem_region(region) \
570 for (region = memblock.reserved.regions; \
571 region < (memblock.reserved.regions + memblock.reserved.cnt); \
572 region++)
573
574 extern void *alloc_large_system_hash(const char *tablename,
575 unsigned long bucketsize,
576 unsigned long numentries,
577 int scale,
578 int flags,
579 unsigned int *_hash_shift,
580 unsigned int *_hash_mask,
581 unsigned long low_limit,
582 unsigned long high_limit);
583
584 #define HASH_EARLY 0x00000001 /* Allocating during early boot? */
585 #define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min
586 * shift passed via *_hash_shift */
587 #define HASH_ZERO 0x00000004 /* Zero allocated hash table */
588
589 /* Only NUMA needs hash distribution. 64bit NUMA architectures have
590 * sufficient vmalloc space.
591 */
592 #ifdef CONFIG_NUMA
593 #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
594 extern int hashdist; /* Distribute hashes across NUMA nodes? */
595 #else
596 #define hashdist (0)
597 #endif
598
599 #ifdef CONFIG_MEMTEST
600 extern void early_memtest(phys_addr_t start, phys_addr_t end);
601 #else
early_memtest(phys_addr_t start,phys_addr_t end)602 static inline void early_memtest(phys_addr_t start, phys_addr_t end)
603 {
604 }
605 #endif
606
607
608 #endif /* _LINUX_MEMBLOCK_H */
609