1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 *   The contents of this file are subject to the Mozilla Public
11 *   License Version 1.1 (the "License"); you may not use this file
12 *   except in compliance with the License. You may obtain a copy of
13 *   the License at http://www.mozilla.org/MPL/
14 *
15 *   Software distributed under the License is distributed on an "AS
16 *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 *   implied. See the License for the specific language governing
18 *   rights and limitations under the License.
19 *
20 *   Alternatively, the contents of this file may be used under the
21 *   terms of the GNU Public License version 2 (the "GPL"), in which
22 *   case the provisions of the GPL are applicable instead of the
23 *   above.  If you wish to allow the use of your version of this file
24 *   only under the terms of the GPL and not to allow others to use
25 *   your version of this file under the MPL, indicate your decision
26 *   by deleting the provisions above and replace them with the notice
27 *   and other provisions required by the GPL.  If you do not delete
28 *   the provisions above, a recipient may use your version of this
29 *   file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction.  The lowest level functions are simply C-callable wrappers
52 * around the register accesses.  The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable.  The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx	Highest level abstractions provided by the
59 *			hfa384x code.  They are driver defined wrappers
60 *			for common sequences.  These functions generally
61 *			use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
64 *			functions are wrappers for the RID get/set
65 *			sequence. They call copy_[to|from]_bap() and
66 *			cmd_access(). These functions operate on the
67 *			RIDs and buffers without validation. The caller
68 *			is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx	functions that provide access to the f/w commands.
72 *			The function arguments correspond to each command
73 *			argument, even command arguments that get packed
74 *			into single registers.  These functions _just_
75 *			issue the command by setting the cmd/parm regs
76 *			& reading the status/resp regs.  Additional
77 *			activities required to fully use a command
78 *			(read/write from/to bap, get/set int status etc.)
79 *			are implemented separately.  Think of these as
80 *			C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx	These functions implement the sequence required
84 *			to issue any prism2 command.  Primarily used by the
85 *			hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx	BAP read/write access functions.
88 *			Note: we usually use BAP0 for non-interrupt context
89 *			 and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx	download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo.  The four
96 * functions are create(), destroy(), start(), and stop().  create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up.  The start() function gets
99 * the actual hardware running and enables the interrupts.  The stop()
100 * function shuts the hardware down.  The sequence should be:
101 * create()
102 * start()
103 *  .
104 *  .  Do interesting things w/ the hardware
105 *  .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112 
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128 
129 #define SUBMIT_URB(u, f)  usb_submit_urb(u, f)
130 
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142 
143 enum cmd_mode {
144 	DOWAIT = 0,
145 	DOASYNC
146 };
147 
148 #define THROTTLE_JIFFIES	(HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151 
152 #define ROUNDUP64(a) (((a)+63)&~63)
153 
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157 
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160 
161 static void hfa384x_usb_defer(struct work_struct *data);
162 
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164 
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166 
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172 
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
175 
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177 
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
179 
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182 
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184 			       int urb_status);
185 
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188 
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190 
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192 
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194 
195 static void hfa384x_usb_throttlefn(unsigned long data);
196 
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198 
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200 
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202 
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204 
205 struct usbctlx_completor {
206 	int (*complete) (struct usbctlx_completor *);
207 };
208 
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211 			      hfa384x_usbctlx_t *ctlx,
212 			      struct usbctlx_completor *completor);
213 
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216 
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218 
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220 
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223 		   hfa384x_cmdresult_t *result);
224 
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227 		       hfa384x_rridresult_t *result);
228 
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233 	      enum cmd_mode mode,
234 	      hfa384x_metacmd_t *cmd,
235 	      ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236 
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239 	       enum cmd_mode mode,
240 	       u16 rid,
241 	       void *riddata,
242 	       unsigned int riddatalen,
243 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244 
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247 	       enum cmd_mode mode,
248 	       u16 rid,
249 	       void *riddata,
250 	       unsigned int riddatalen,
251 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252 
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255 	       enum cmd_mode mode,
256 	       u16 page,
257 	       u16 offset,
258 	       void *data,
259 	       unsigned int len,
260 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261 
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264 	       enum cmd_mode mode,
265 	       u16 page,
266 	       u16 offset,
267 	       void *data,
268 	       unsigned int len,
269 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270 
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272 
ctlxstr(CTLX_STATE s)273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275 	static const char *ctlx_str[] = {
276 		"Initial state",
277 		"Complete",
278 		"Request failed",
279 		"Request pending",
280 		"Request packet submitted",
281 		"Request packet completed",
282 		"Response packet completed"
283 	};
284 
285 	return ctlx_str[s];
286 };
287 
get_active_ctlx(hfa384x_t * hw)288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw)
289 {
290 	return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292 
293 #ifdef DEBUG_USB
dbprint_urb(struct urb * urb)294 void dbprint_urb(struct urb *urb)
295 {
296 	pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297 	pr_debug("urb->status=0x%08x\n", urb->status);
298 	pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299 	pr_debug("urb->transfer_buffer=0x%08x\n",
300 		 (unsigned int)urb->transfer_buffer);
301 	pr_debug("urb->transfer_buffer_length=0x%08x\n",
302 		 urb->transfer_buffer_length);
303 	pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304 	pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305 	pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306 		 (unsigned int)urb->setup_packet);
307 	pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308 	pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309 	pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310 	pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311 	pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312 	pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315 
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 *	hw		device struct
324 *	memflags	memory allocation flags
325 *
326 * Returns:
327 *	error code from submission
328 *
329 * Call context:
330 *	Any
331 ----------------------------------------------------------------*/
submit_rx_urb(hfa384x_t * hw,gfp_t memflags)332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334 	struct sk_buff *skb;
335 	int result;
336 
337 	skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338 	if (skb == NULL) {
339 		result = -ENOMEM;
340 		goto done;
341 	}
342 
343 	/* Post the IN urb */
344 	usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345 			  hw->endp_in,
346 			  skb->data, sizeof(hfa384x_usbin_t),
347 			  hfa384x_usbin_callback, hw->wlandev);
348 
349 	hw->rx_urb_skb = skb;
350 
351 	result = -ENOLINK;
352 	if (!hw->wlandev->hwremoved &&
353 			!test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354 		result = SUBMIT_URB(&hw->rx_urb, memflags);
355 
356 		/* Check whether we need to reset the RX pipe */
357 		if (result == -EPIPE) {
358 			printk(KERN_WARNING
359 			       "%s rx pipe stalled: requesting reset\n",
360 			       hw->wlandev->netdev->name);
361 			if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362 				schedule_work(&hw->usb_work);
363 		}
364 	}
365 
366 	/* Don't leak memory if anything should go wrong */
367 	if (result != 0) {
368 		dev_kfree_skb(skb);
369 		hw->rx_urb_skb = NULL;
370 	}
371 
372 done:
373 	return result;
374 }
375 
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 *	hw		device struct
385 *	tx_urb		URB of data for tranmission
386 *	memflags	memory allocation flags
387 *
388 * Returns:
389 *	error code from submission
390 *
391 * Call context:
392 *	Any
393 ----------------------------------------------------------------*/
submit_tx_urb(hfa384x_t * hw,struct urb * tx_urb,gfp_t memflags)394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396 	struct net_device *netdev = hw->wlandev->netdev;
397 	int result;
398 
399 	result = -ENOLINK;
400 	if (netif_running(netdev)) {
401 
402 		if (!hw->wlandev->hwremoved
403 		    && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
404 			result = SUBMIT_URB(tx_urb, memflags);
405 
406 			/* Test whether we need to reset the TX pipe */
407 			if (result == -EPIPE) {
408 				printk(KERN_WARNING
409 				       "%s tx pipe stalled: requesting reset\n",
410 				       netdev->name);
411 				set_bit(WORK_TX_HALT, &hw->usb_flags);
412 				schedule_work(&hw->usb_work);
413 			} else if (result == 0) {
414 				netif_stop_queue(netdev);
415 			}
416 		}
417 	}
418 
419 	return result;
420 }
421 
422 /*----------------------------------------------------------------
423 * hfa394x_usb_defer
424 *
425 * There are some things that the USB stack cannot do while
426 * in interrupt context, so we arrange this function to run
427 * in process context.
428 *
429 * Arguments:
430 *	hw	device structure
431 *
432 * Returns:
433 *	nothing
434 *
435 * Call context:
436 *	process (by design)
437 ----------------------------------------------------------------*/
hfa384x_usb_defer(struct work_struct * data)438 static void hfa384x_usb_defer(struct work_struct *data)
439 {
440 	hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
441 	struct net_device *netdev = hw->wlandev->netdev;
442 
443 	/* Don't bother trying to reset anything if the plug
444 	 * has been pulled ...
445 	 */
446 	if (hw->wlandev->hwremoved)
447 		return;
448 
449 	/* Reception has stopped: try to reset the input pipe */
450 	if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
451 		int ret;
452 
453 		usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
454 
455 		ret = usb_clear_halt(hw->usb, hw->endp_in);
456 		if (ret != 0) {
457 			printk(KERN_ERR
458 			       "Failed to clear rx pipe for %s: err=%d\n",
459 			       netdev->name, ret);
460 		} else {
461 			printk(KERN_INFO "%s rx pipe reset complete.\n",
462 			       netdev->name);
463 			clear_bit(WORK_RX_HALT, &hw->usb_flags);
464 			set_bit(WORK_RX_RESUME, &hw->usb_flags);
465 		}
466 	}
467 
468 	/* Resume receiving data back from the device. */
469 	if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
470 		int ret;
471 
472 		ret = submit_rx_urb(hw, GFP_KERNEL);
473 		if (ret != 0) {
474 			printk(KERN_ERR
475 			       "Failed to resume %s rx pipe.\n", netdev->name);
476 		} else {
477 			clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478 		}
479 	}
480 
481 	/* Transmission has stopped: try to reset the output pipe */
482 	if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483 		int ret;
484 
485 		usb_kill_urb(&hw->tx_urb);
486 		ret = usb_clear_halt(hw->usb, hw->endp_out);
487 		if (ret != 0) {
488 			printk(KERN_ERR
489 			       "Failed to clear tx pipe for %s: err=%d\n",
490 			       netdev->name, ret);
491 		} else {
492 			printk(KERN_INFO "%s tx pipe reset complete.\n",
493 			       netdev->name);
494 			clear_bit(WORK_TX_HALT, &hw->usb_flags);
495 			set_bit(WORK_TX_RESUME, &hw->usb_flags);
496 
497 			/* Stopping the BULK-OUT pipe also blocked
498 			 * us from sending any more CTLX URBs, so
499 			 * we need to re-run our queue ...
500 			 */
501 			hfa384x_usbctlxq_run(hw);
502 		}
503 	}
504 
505 	/* Resume transmitting. */
506 	if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507 		netif_wake_queue(hw->wlandev->netdev);
508 }
509 
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use.  Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 *	hw		device structure
519 *	irq		device irq number
520 *	iobase		i/o base address for register access
521 *	membase		memory base address for register access
522 *
523 * Returns:
524 *	nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 *	process
530 ----------------------------------------------------------------*/
hfa384x_create(hfa384x_t * hw,struct usb_device * usb)531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533 	memset(hw, 0, sizeof(hfa384x_t));
534 	hw->usb = usb;
535 
536 	/* set up the endpoints */
537 	hw->endp_in = usb_rcvbulkpipe(usb, 1);
538 	hw->endp_out = usb_sndbulkpipe(usb, 2);
539 
540 	/* Set up the waitq */
541 	init_waitqueue_head(&hw->cmdq);
542 
543 	/* Initialize the command queue */
544 	spin_lock_init(&hw->ctlxq.lock);
545 	INIT_LIST_HEAD(&hw->ctlxq.pending);
546 	INIT_LIST_HEAD(&hw->ctlxq.active);
547 	INIT_LIST_HEAD(&hw->ctlxq.completing);
548 	INIT_LIST_HEAD(&hw->ctlxq.reapable);
549 
550 	/* Initialize the authentication queue */
551 	skb_queue_head_init(&hw->authq);
552 
553 	tasklet_init(&hw->reaper_bh,
554 		     hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555 	tasklet_init(&hw->completion_bh,
556 		     hfa384x_usbctlx_completion_task, (unsigned long)hw);
557 	INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558 	INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559 
560 	init_timer(&hw->throttle);
561 	hw->throttle.function = hfa384x_usb_throttlefn;
562 	hw->throttle.data = (unsigned long)hw;
563 
564 	init_timer(&hw->resptimer);
565 	hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
566 	hw->resptimer.data = (unsigned long)hw;
567 
568 	init_timer(&hw->reqtimer);
569 	hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
570 	hw->reqtimer.data = (unsigned long)hw;
571 
572 	usb_init_urb(&hw->rx_urb);
573 	usb_init_urb(&hw->tx_urb);
574 	usb_init_urb(&hw->ctlx_urb);
575 
576 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
577 	hw->state = HFA384x_STATE_INIT;
578 
579 	INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
580 	init_timer(&hw->commsqual_timer);
581 	hw->commsqual_timer.data = (unsigned long)hw;
582 	hw->commsqual_timer.function = prism2sta_commsqual_timer;
583 }
584 
585 /*----------------------------------------------------------------
586 * hfa384x_destroy
587 *
588 * Partner to hfa384x_create().  This function cleans up the hw
589 * structure so that it can be freed by the caller using a simple
590 * kfree.  Currently, this function is just a placeholder.  If, at some
591 * point in the future, an hw in the 'shutdown' state requires a 'deep'
592 * kfree, this is where it should be done.  Note that if this function
593 * is called on a _running_ hw structure, the drvr_stop() function is
594 * called.
595 *
596 * Arguments:
597 *	hw		device structure
598 *
599 * Returns:
600 *	nothing, this function is not allowed to fail.
601 *
602 * Side effects:
603 *
604 * Call context:
605 *	process
606 ----------------------------------------------------------------*/
hfa384x_destroy(hfa384x_t * hw)607 void hfa384x_destroy(hfa384x_t *hw)
608 {
609 	struct sk_buff *skb;
610 
611 	if (hw->state == HFA384x_STATE_RUNNING)
612 		hfa384x_drvr_stop(hw);
613 	hw->state = HFA384x_STATE_PREINIT;
614 
615 	kfree(hw->scanresults);
616 	hw->scanresults = NULL;
617 
618 	/* Now to clean out the auth queue */
619 	while ((skb = skb_dequeue(&hw->authq)))
620 		dev_kfree_skb(skb);
621 }
622 
usbctlx_alloc(void)623 static hfa384x_usbctlx_t *usbctlx_alloc(void)
624 {
625 	hfa384x_usbctlx_t *ctlx;
626 
627 	ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
628 	if (ctlx != NULL) {
629 		memset(ctlx, 0, sizeof(*ctlx));
630 		init_completion(&ctlx->done);
631 	}
632 
633 	return ctlx;
634 }
635 
636 static int
usbctlx_get_status(const hfa384x_usb_cmdresp_t * cmdresp,hfa384x_cmdresult_t * result)637 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
638 		   hfa384x_cmdresult_t *result)
639 {
640 	result->status = le16_to_cpu(cmdresp->status);
641 	result->resp0 = le16_to_cpu(cmdresp->resp0);
642 	result->resp1 = le16_to_cpu(cmdresp->resp1);
643 	result->resp2 = le16_to_cpu(cmdresp->resp2);
644 
645 	pr_debug("cmdresult:status=0x%04x "
646 		 "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
647 		 result->status, result->resp0, result->resp1, result->resp2);
648 
649 	return result->status & HFA384x_STATUS_RESULT;
650 }
651 
652 static void
usbctlx_get_rridresult(const hfa384x_usb_rridresp_t * rridresp,hfa384x_rridresult_t * result)653 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
654 		       hfa384x_rridresult_t *result)
655 {
656 	result->rid = le16_to_cpu(rridresp->rid);
657 	result->riddata = rridresp->data;
658 	result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
659 
660 }
661 
662 /*----------------------------------------------------------------
663 * Completor object:
664 * This completor must be passed to hfa384x_usbctlx_complete_sync()
665 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
666 ----------------------------------------------------------------*/
667 struct usbctlx_cmd_completor {
668 	struct usbctlx_completor head;
669 
670 	const hfa384x_usb_cmdresp_t *cmdresp;
671 	hfa384x_cmdresult_t *result;
672 };
673 
usbctlx_cmd_completor_fn(struct usbctlx_completor * head)674 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
675 {
676 	struct usbctlx_cmd_completor *complete;
677 
678 	complete = (struct usbctlx_cmd_completor *) head;
679 	return usbctlx_get_status(complete->cmdresp, complete->result);
680 }
681 
init_cmd_completor(struct usbctlx_cmd_completor * completor,const hfa384x_usb_cmdresp_t * cmdresp,hfa384x_cmdresult_t * result)682 static inline struct usbctlx_completor *init_cmd_completor(
683 						struct usbctlx_cmd_completor
684 							*completor,
685 						const hfa384x_usb_cmdresp_t
686 							*cmdresp,
687 						hfa384x_cmdresult_t *result)
688 {
689 	completor->head.complete = usbctlx_cmd_completor_fn;
690 	completor->cmdresp = cmdresp;
691 	completor->result = result;
692 	return &(completor->head);
693 }
694 
695 /*----------------------------------------------------------------
696 * Completor object:
697 * This completor must be passed to hfa384x_usbctlx_complete_sync()
698 * when processing a CTLX that reads a RID.
699 ----------------------------------------------------------------*/
700 struct usbctlx_rrid_completor {
701 	struct usbctlx_completor head;
702 
703 	const hfa384x_usb_rridresp_t *rridresp;
704 	void *riddata;
705 	unsigned int riddatalen;
706 };
707 
usbctlx_rrid_completor_fn(struct usbctlx_completor * head)708 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
709 {
710 	struct usbctlx_rrid_completor *complete;
711 	hfa384x_rridresult_t rridresult;
712 
713 	complete = (struct usbctlx_rrid_completor *) head;
714 	usbctlx_get_rridresult(complete->rridresp, &rridresult);
715 
716 	/* Validate the length, note body len calculation in bytes */
717 	if (rridresult.riddata_len != complete->riddatalen) {
718 		printk(KERN_WARNING
719 		       "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
720 		       rridresult.rid,
721 		       complete->riddatalen, rridresult.riddata_len);
722 		return -ENODATA;
723 	}
724 
725 	memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
726 	return 0;
727 }
728 
init_rrid_completor(struct usbctlx_rrid_completor * completor,const hfa384x_usb_rridresp_t * rridresp,void * riddata,unsigned int riddatalen)729 static inline struct usbctlx_completor *init_rrid_completor(
730 						struct usbctlx_rrid_completor
731 							*completor,
732 						const hfa384x_usb_rridresp_t
733 							*rridresp,
734 						void *riddata,
735 						unsigned int riddatalen)
736 {
737 	completor->head.complete = usbctlx_rrid_completor_fn;
738 	completor->rridresp = rridresp;
739 	completor->riddata = riddata;
740 	completor->riddatalen = riddatalen;
741 	return &(completor->head);
742 }
743 
744 /*----------------------------------------------------------------
745 * Completor object:
746 * Interprets the results of a synchronous RID-write
747 ----------------------------------------------------------------*/
748 typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t;
749 #define init_wrid_completor  init_cmd_completor
750 
751 /*----------------------------------------------------------------
752 * Completor object:
753 * Interprets the results of a synchronous memory-write
754 ----------------------------------------------------------------*/
755 typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t;
756 #define init_wmem_completor  init_cmd_completor
757 
758 /*----------------------------------------------------------------
759 * Completor object:
760 * Interprets the results of a synchronous memory-read
761 ----------------------------------------------------------------*/
762 struct usbctlx_rmem_completor {
763 	struct usbctlx_completor head;
764 
765 	const hfa384x_usb_rmemresp_t *rmemresp;
766 	void *data;
767 	unsigned int len;
768 };
769 typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
770 
usbctlx_rmem_completor_fn(struct usbctlx_completor * head)771 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
772 {
773 	usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
774 
775 	pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
776 	memcpy(complete->data, complete->rmemresp->data, complete->len);
777 	return 0;
778 }
779 
init_rmem_completor(usbctlx_rmem_completor_t * completor,hfa384x_usb_rmemresp_t * rmemresp,void * data,unsigned int len)780 static inline struct usbctlx_completor *init_rmem_completor(
781 						usbctlx_rmem_completor_t
782 							*completor,
783 						hfa384x_usb_rmemresp_t
784 							*rmemresp,
785 						void *data,
786 						unsigned int len)
787 {
788 	completor->head.complete = usbctlx_rmem_completor_fn;
789 	completor->rmemresp = rmemresp;
790 	completor->data = data;
791 	completor->len = len;
792 	return &(completor->head);
793 }
794 
795 /*----------------------------------------------------------------
796 * hfa384x_cb_status
797 *
798 * Ctlx_complete handler for async CMD type control exchanges.
799 * mark the hw struct as such.
800 *
801 * Note: If the handling is changed here, it should probably be
802 *       changed in docmd as well.
803 *
804 * Arguments:
805 *	hw		hw struct
806 *	ctlx		completed CTLX
807 *
808 * Returns:
809 *	nothing
810 *
811 * Side effects:
812 *
813 * Call context:
814 *	interrupt
815 ----------------------------------------------------------------*/
hfa384x_cb_status(hfa384x_t * hw,const hfa384x_usbctlx_t * ctlx)816 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
817 {
818 	if (ctlx->usercb != NULL) {
819 		hfa384x_cmdresult_t cmdresult;
820 
821 		if (ctlx->state != CTLX_COMPLETE) {
822 			memset(&cmdresult, 0, sizeof(cmdresult));
823 			cmdresult.status =
824 			    HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
825 		} else {
826 			usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
827 		}
828 
829 		ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
830 	}
831 }
832 
833 /*----------------------------------------------------------------
834 * hfa384x_cb_rrid
835 *
836 * CTLX completion handler for async RRID type control exchanges.
837 *
838 * Note: If the handling is changed here, it should probably be
839 *       changed in dorrid as well.
840 *
841 * Arguments:
842 *	hw		hw struct
843 *	ctlx		completed CTLX
844 *
845 * Returns:
846 *	nothing
847 *
848 * Side effects:
849 *
850 * Call context:
851 *	interrupt
852 ----------------------------------------------------------------*/
hfa384x_cb_rrid(hfa384x_t * hw,const hfa384x_usbctlx_t * ctlx)853 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
854 {
855 	if (ctlx->usercb != NULL) {
856 		hfa384x_rridresult_t rridresult;
857 
858 		if (ctlx->state != CTLX_COMPLETE) {
859 			memset(&rridresult, 0, sizeof(rridresult));
860 			rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
861 		} else {
862 			usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
863 					       &rridresult);
864 		}
865 
866 		ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
867 	}
868 }
869 
hfa384x_docmd_wait(hfa384x_t * hw,hfa384x_metacmd_t * cmd)870 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
871 {
872 	return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
873 }
874 
875 static inline int
hfa384x_docmd_async(hfa384x_t * hw,hfa384x_metacmd_t * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)876 hfa384x_docmd_async(hfa384x_t *hw,
877 		    hfa384x_metacmd_t *cmd,
878 		    ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
879 {
880 	return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
881 }
882 
883 static inline int
hfa384x_dorrid_wait(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen)884 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
885 		    unsigned int riddatalen)
886 {
887 	return hfa384x_dorrid(hw, DOWAIT,
888 			      rid, riddata, riddatalen, NULL, NULL, NULL);
889 }
890 
891 static inline int
hfa384x_dorrid_async(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)892 hfa384x_dorrid_async(hfa384x_t *hw,
893 		     u16 rid, void *riddata, unsigned int riddatalen,
894 		     ctlx_cmdcb_t cmdcb,
895 		     ctlx_usercb_t usercb, void *usercb_data)
896 {
897 	return hfa384x_dorrid(hw, DOASYNC,
898 			      rid, riddata, riddatalen,
899 			      cmdcb, usercb, usercb_data);
900 }
901 
902 static inline int
hfa384x_dowrid_wait(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen)903 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
904 		    unsigned int riddatalen)
905 {
906 	return hfa384x_dowrid(hw, DOWAIT,
907 			      rid, riddata, riddatalen, NULL, NULL, NULL);
908 }
909 
910 static inline int
hfa384x_dowrid_async(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)911 hfa384x_dowrid_async(hfa384x_t *hw,
912 		     u16 rid, void *riddata, unsigned int riddatalen,
913 		     ctlx_cmdcb_t cmdcb,
914 		     ctlx_usercb_t usercb, void *usercb_data)
915 {
916 	return hfa384x_dowrid(hw, DOASYNC,
917 			      rid, riddata, riddatalen,
918 			      cmdcb, usercb, usercb_data);
919 }
920 
921 static inline int
hfa384x_dormem_wait(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len)922 hfa384x_dormem_wait(hfa384x_t *hw,
923 		    u16 page, u16 offset, void *data, unsigned int len)
924 {
925 	return hfa384x_dormem(hw, DOWAIT,
926 			      page, offset, data, len, NULL, NULL, NULL);
927 }
928 
929 static inline int
hfa384x_dormem_async(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)930 hfa384x_dormem_async(hfa384x_t *hw,
931 		     u16 page, u16 offset, void *data, unsigned int len,
932 		     ctlx_cmdcb_t cmdcb,
933 		     ctlx_usercb_t usercb, void *usercb_data)
934 {
935 	return hfa384x_dormem(hw, DOASYNC,
936 			      page, offset, data, len,
937 			      cmdcb, usercb, usercb_data);
938 }
939 
940 static inline int
hfa384x_dowmem_wait(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len)941 hfa384x_dowmem_wait(hfa384x_t *hw,
942 		    u16 page, u16 offset, void *data, unsigned int len)
943 {
944 	return hfa384x_dowmem(hw, DOWAIT,
945 			      page, offset, data, len, NULL, NULL, NULL);
946 }
947 
948 static inline int
hfa384x_dowmem_async(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)949 hfa384x_dowmem_async(hfa384x_t *hw,
950 		     u16 page,
951 		     u16 offset,
952 		     void *data,
953 		     unsigned int len,
954 		     ctlx_cmdcb_t cmdcb,
955 		     ctlx_usercb_t usercb, void *usercb_data)
956 {
957 	return hfa384x_dowmem(hw, DOASYNC,
958 			      page, offset, data, len,
959 			      cmdcb, usercb, usercb_data);
960 }
961 
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_initialize
964 *
965 * Issues the initialize command and sets the hw->state based
966 * on the result.
967 *
968 * Arguments:
969 *	hw		device structure
970 *
971 * Returns:
972 *	0		success
973 *	>0		f/w reported error - f/w status code
974 *	<0		driver reported error
975 *
976 * Side effects:
977 *
978 * Call context:
979 *	process
980 ----------------------------------------------------------------*/
hfa384x_cmd_initialize(hfa384x_t * hw)981 int hfa384x_cmd_initialize(hfa384x_t *hw)
982 {
983 	int result = 0;
984 	int i;
985 	hfa384x_metacmd_t cmd;
986 
987 	cmd.cmd = HFA384x_CMDCODE_INIT;
988 	cmd.parm0 = 0;
989 	cmd.parm1 = 0;
990 	cmd.parm2 = 0;
991 
992 	result = hfa384x_docmd_wait(hw, &cmd);
993 
994 	pr_debug("cmdresp.init: "
995 		 "status=0x%04x, resp0=0x%04x, "
996 		 "resp1=0x%04x, resp2=0x%04x\n",
997 		 cmd.result.status,
998 		 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
999 	if (result == 0) {
1000 		for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001 			hw->port_enabled[i] = 0;
1002 	}
1003 
1004 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005 
1006 	return result;
1007 }
1008 
1009 /*----------------------------------------------------------------
1010 * hfa384x_cmd_disable
1011 *
1012 * Issues the disable command to stop communications on one of
1013 * the MACs 'ports'.
1014 *
1015 * Arguments:
1016 *	hw		device structure
1017 *	macport		MAC port number (host order)
1018 *
1019 * Returns:
1020 *	0		success
1021 *	>0		f/w reported failure - f/w status code
1022 *	<0		driver reported error (timeout|bad arg)
1023 *
1024 * Side effects:
1025 *
1026 * Call context:
1027 *	process
1028 ----------------------------------------------------------------*/
hfa384x_cmd_disable(hfa384x_t * hw,u16 macport)1029 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030 {
1031 	int result = 0;
1032 	hfa384x_metacmd_t cmd;
1033 
1034 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1035 	    HFA384x_CMD_MACPORT_SET(macport);
1036 	cmd.parm0 = 0;
1037 	cmd.parm1 = 0;
1038 	cmd.parm2 = 0;
1039 
1040 	result = hfa384x_docmd_wait(hw, &cmd);
1041 
1042 	return result;
1043 }
1044 
1045 /*----------------------------------------------------------------
1046 * hfa384x_cmd_enable
1047 *
1048 * Issues the enable command to enable communications on one of
1049 * the MACs 'ports'.
1050 *
1051 * Arguments:
1052 *	hw		device structure
1053 *	macport		MAC port number
1054 *
1055 * Returns:
1056 *	0		success
1057 *	>0		f/w reported failure - f/w status code
1058 *	<0		driver reported error (timeout|bad arg)
1059 *
1060 * Side effects:
1061 *
1062 * Call context:
1063 *	process
1064 ----------------------------------------------------------------*/
hfa384x_cmd_enable(hfa384x_t * hw,u16 macport)1065 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066 {
1067 	int result = 0;
1068 	hfa384x_metacmd_t cmd;
1069 
1070 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1071 	    HFA384x_CMD_MACPORT_SET(macport);
1072 	cmd.parm0 = 0;
1073 	cmd.parm1 = 0;
1074 	cmd.parm2 = 0;
1075 
1076 	result = hfa384x_docmd_wait(hw, &cmd);
1077 
1078 	return result;
1079 }
1080 
1081 /*----------------------------------------------------------------
1082 * hfa384x_cmd_monitor
1083 *
1084 * Enables the 'monitor mode' of the MAC.  Here's the description of
1085 * monitor mode that I've received thus far:
1086 *
1087 *  "The "monitor mode" of operation is that the MAC passes all
1088 *  frames for which the PLCP checks are correct. All received
1089 *  MPDUs are passed to the host with MAC Port = 7, with a
1090 *  receive status of good, FCS error, or undecryptable. Passing
1091 *  certain MPDUs is a violation of the 802.11 standard, but useful
1092 *  for a debugging tool."  Normal communication is not possible
1093 *  while monitor mode is enabled.
1094 *
1095 * Arguments:
1096 *	hw		device structure
1097 *	enable		a code (0x0b|0x0f) that enables/disables
1098 *			monitor mode. (host order)
1099 *
1100 * Returns:
1101 *	0		success
1102 *	>0		f/w reported failure - f/w status code
1103 *	<0		driver reported error (timeout|bad arg)
1104 *
1105 * Side effects:
1106 *
1107 * Call context:
1108 *	process
1109 ----------------------------------------------------------------*/
hfa384x_cmd_monitor(hfa384x_t * hw,u16 enable)1110 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111 {
1112 	int result = 0;
1113 	hfa384x_metacmd_t cmd;
1114 
1115 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1116 	    HFA384x_CMD_AINFO_SET(enable);
1117 	cmd.parm0 = 0;
1118 	cmd.parm1 = 0;
1119 	cmd.parm2 = 0;
1120 
1121 	result = hfa384x_docmd_wait(hw, &cmd);
1122 
1123 	return result;
1124 }
1125 
1126 /*----------------------------------------------------------------
1127 * hfa384x_cmd_download
1128 *
1129 * Sets the controls for the MAC controller code/data download
1130 * process.  The arguments set the mode and address associated
1131 * with a download.  Note that the aux registers should be enabled
1132 * prior to setting one of the download enable modes.
1133 *
1134 * Arguments:
1135 *	hw		device structure
1136 *	mode		0 - Disable programming and begin code exec
1137 *			1 - Enable volatile mem programming
1138 *			2 - Enable non-volatile mem programming
1139 *			3 - Program non-volatile section from NV download
1140 *			    buffer.
1141 *			(host order)
1142 *	lowaddr
1143 *	highaddr	For mode 1, sets the high & low order bits of
1144 *			the "destination address".  This address will be
1145 *			the execution start address when download is
1146 *			subsequently disabled.
1147 *			For mode 2, sets the high & low order bits of
1148 *			the destination in NV ram.
1149 *			For modes 0 & 3, should be zero. (host order)
1150 *			NOTE: these are CMD format.
1151 *	codelen		Length of the data to write in mode 2,
1152 *			zero otherwise. (host order)
1153 *
1154 * Returns:
1155 *	0		success
1156 *	>0		f/w reported failure - f/w status code
1157 *	<0		driver reported error (timeout|bad arg)
1158 *
1159 * Side effects:
1160 *
1161 * Call context:
1162 *	process
1163 ----------------------------------------------------------------*/
hfa384x_cmd_download(hfa384x_t * hw,u16 mode,u16 lowaddr,u16 highaddr,u16 codelen)1164 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165 			 u16 highaddr, u16 codelen)
1166 {
1167 	int result = 0;
1168 	hfa384x_metacmd_t cmd;
1169 
1170 	pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171 		 mode, lowaddr, highaddr, codelen);
1172 
1173 	cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1174 		   HFA384x_CMD_PROGMODE_SET(mode));
1175 
1176 	cmd.parm0 = lowaddr;
1177 	cmd.parm1 = highaddr;
1178 	cmd.parm2 = codelen;
1179 
1180 	result = hfa384x_docmd_wait(hw, &cmd);
1181 
1182 	return result;
1183 }
1184 
1185 /*----------------------------------------------------------------
1186 * hfa384x_corereset
1187 *
1188 * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1189 * structure is in its "created" state.  That is, it is initialized
1190 * with proper values.  Note that if a reset is done after the
1191 * device has been active for awhile, the caller might have to clean
1192 * up some leftover cruft in the hw structure.
1193 *
1194 * Arguments:
1195 *	hw		device structure
1196 *	holdtime	how long (in ms) to hold the reset
1197 *	settletime	how long (in ms) to wait after releasing
1198 *			the reset
1199 *
1200 * Returns:
1201 *	nothing
1202 *
1203 * Side effects:
1204 *
1205 * Call context:
1206 *	process
1207 ----------------------------------------------------------------*/
hfa384x_corereset(hfa384x_t * hw,int holdtime,int settletime,int genesis)1208 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209 {
1210 	int result = 0;
1211 
1212 	result = usb_reset_device(hw->usb);
1213 	if (result < 0) {
1214 		printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1215 		       result);
1216 	}
1217 
1218 	return result;
1219 }
1220 
1221 /*----------------------------------------------------------------
1222 * hfa384x_usbctlx_complete_sync
1223 *
1224 * Waits for a synchronous CTLX object to complete,
1225 * and then handles the response.
1226 *
1227 * Arguments:
1228 *	hw		device structure
1229 *	ctlx		CTLX ptr
1230 *	completor	functor object to decide what to
1231 *			do with the CTLX's result.
1232 *
1233 * Returns:
1234 *	0		Success
1235 *	-ERESTARTSYS	Interrupted by a signal
1236 *	-EIO		CTLX failed
1237 *	-ENODEV		Adapter was unplugged
1238 *	???		Result from completor
1239 *
1240 * Side effects:
1241 *
1242 * Call context:
1243 *	process
1244 ----------------------------------------------------------------*/
hfa384x_usbctlx_complete_sync(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx,struct usbctlx_completor * completor)1245 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246 					 hfa384x_usbctlx_t *ctlx,
1247 					 struct usbctlx_completor *completor)
1248 {
1249 	unsigned long flags;
1250 	int result;
1251 
1252 	result = wait_for_completion_interruptible(&ctlx->done);
1253 
1254 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255 
1256 	/*
1257 	 * We can only handle the CTLX if the USB disconnect
1258 	 * function has not run yet ...
1259 	 */
1260 cleanup:
1261 	if (hw->wlandev->hwremoved) {
1262 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263 		result = -ENODEV;
1264 	} else if (result != 0) {
1265 		int runqueue = 0;
1266 
1267 		/*
1268 		 * We were probably interrupted, so delete
1269 		 * this CTLX asynchronously, kill the timers
1270 		 * and the URB, and then start the next
1271 		 * pending CTLX.
1272 		 *
1273 		 * NOTE: We can only delete the timers and
1274 		 *       the URB if this CTLX is active.
1275 		 */
1276 		if (ctlx == get_active_ctlx(hw)) {
1277 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278 
1279 			del_singleshot_timer_sync(&hw->reqtimer);
1280 			del_singleshot_timer_sync(&hw->resptimer);
1281 			hw->req_timer_done = 1;
1282 			hw->resp_timer_done = 1;
1283 			usb_kill_urb(&hw->ctlx_urb);
1284 
1285 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286 
1287 			runqueue = 1;
1288 
1289 			/*
1290 			 * This scenario is so unlikely that I'm
1291 			 * happy with a grubby "goto" solution ...
1292 			 */
1293 			if (hw->wlandev->hwremoved)
1294 				goto cleanup;
1295 		}
1296 
1297 		/*
1298 		 * The completion task will send this CTLX
1299 		 * to the reaper the next time it runs. We
1300 		 * are no longer in a hurry.
1301 		 */
1302 		ctlx->reapable = 1;
1303 		ctlx->state = CTLX_REQ_FAILED;
1304 		list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305 
1306 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307 
1308 		if (runqueue)
1309 			hfa384x_usbctlxq_run(hw);
1310 	} else {
1311 		if (ctlx->state == CTLX_COMPLETE) {
1312 			result = completor->complete(completor);
1313 		} else {
1314 			printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1315 			       le16_to_cpu(ctlx->outbuf.type),
1316 			       ctlxstr(ctlx->state));
1317 			result = -EIO;
1318 		}
1319 
1320 		list_del(&ctlx->list);
1321 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322 		kfree(ctlx);
1323 	}
1324 
1325 	return result;
1326 }
1327 
1328 /*----------------------------------------------------------------
1329 * hfa384x_docmd
1330 *
1331 * Constructs a command CTLX and submits it.
1332 *
1333 * NOTE: Any changes to the 'post-submit' code in this function
1334 *       need to be carried over to hfa384x_cbcmd() since the handling
1335 *       is virtually identical.
1336 *
1337 * Arguments:
1338 *	hw		device structure
1339 *	mode		DOWAIT or DOASYNC
1340 *       cmd             cmd structure.  Includes all arguments and result
1341 *                       data points.  All in host order. in host order
1342 *	cmdcb		command-specific callback
1343 *	usercb		user callback for async calls, NULL for DOWAIT calls
1344 *	usercb_data	user supplied data pointer for async calls, NULL
1345 *			for DOASYNC calls
1346 *
1347 * Returns:
1348 *	0		success
1349 *	-EIO		CTLX failure
1350 *	-ERESTARTSYS	Awakened on signal
1351 *	>0		command indicated error, Status and Resp0-2 are
1352 *			in hw structure.
1353 *
1354 * Side effects:
1355 *
1356 *
1357 * Call context:
1358 *	process
1359 ----------------------------------------------------------------*/
1360 static int
hfa384x_docmd(hfa384x_t * hw,enum cmd_mode mode,hfa384x_metacmd_t * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1361 hfa384x_docmd(hfa384x_t *hw,
1362 	      enum cmd_mode mode,
1363 	      hfa384x_metacmd_t *cmd,
1364 	      ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365 {
1366 	int result;
1367 	hfa384x_usbctlx_t *ctlx;
1368 
1369 	ctlx = usbctlx_alloc();
1370 	if (ctlx == NULL) {
1371 		result = -ENOMEM;
1372 		goto done;
1373 	}
1374 
1375 	/* Initialize the command */
1376 	ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377 	ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378 	ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379 	ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380 	ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381 
1382 	ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383 
1384 	pr_debug("cmdreq: cmd=0x%04x "
1385 		 "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386 		 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387 
1388 	ctlx->reapable = mode;
1389 	ctlx->cmdcb = cmdcb;
1390 	ctlx->usercb = usercb;
1391 	ctlx->usercb_data = usercb_data;
1392 
1393 	result = hfa384x_usbctlx_submit(hw, ctlx);
1394 	if (result != 0) {
1395 		kfree(ctlx);
1396 	} else if (mode == DOWAIT) {
1397 		struct usbctlx_cmd_completor completor;
1398 
1399 		result =
1400 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1401 						  init_cmd_completor(&completor,
1402 								     &ctlx->
1403 								     inbuf.
1404 								     cmdresp,
1405 								     &cmd->
1406 								     result));
1407 	}
1408 
1409 done:
1410 	return result;
1411 }
1412 
1413 /*----------------------------------------------------------------
1414 * hfa384x_dorrid
1415 *
1416 * Constructs a read rid CTLX and issues it.
1417 *
1418 * NOTE: Any changes to the 'post-submit' code in this function
1419 *       need to be carried over to hfa384x_cbrrid() since the handling
1420 *       is virtually identical.
1421 *
1422 * Arguments:
1423 *	hw		device structure
1424 *	mode		DOWAIT or DOASYNC
1425 *	rid		Read RID number (host order)
1426 *	riddata		Caller supplied buffer that MAC formatted RID.data
1427 *			record will be written to for DOWAIT calls. Should
1428 *			be NULL for DOASYNC calls.
1429 *	riddatalen	Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430 *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1431 *	usercb		user callback for async calls, NULL for DOWAIT calls
1432 *	usercb_data	user supplied data pointer for async calls, NULL
1433 *			for DOWAIT calls
1434 *
1435 * Returns:
1436 *	0		success
1437 *	-EIO		CTLX failure
1438 *	-ERESTARTSYS	Awakened on signal
1439 *	-ENODATA	riddatalen != macdatalen
1440 *	>0		command indicated error, Status and Resp0-2 are
1441 *			in hw structure.
1442 *
1443 * Side effects:
1444 *
1445 * Call context:
1446 *	interrupt (DOASYNC)
1447 *	process (DOWAIT or DOASYNC)
1448 ----------------------------------------------------------------*/
1449 static int
hfa384x_dorrid(hfa384x_t * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1450 hfa384x_dorrid(hfa384x_t *hw,
1451 	       enum cmd_mode mode,
1452 	       u16 rid,
1453 	       void *riddata,
1454 	       unsigned int riddatalen,
1455 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456 {
1457 	int result;
1458 	hfa384x_usbctlx_t *ctlx;
1459 
1460 	ctlx = usbctlx_alloc();
1461 	if (ctlx == NULL) {
1462 		result = -ENOMEM;
1463 		goto done;
1464 	}
1465 
1466 	/* Initialize the command */
1467 	ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468 	ctlx->outbuf.rridreq.frmlen =
1469 	    cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470 	ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471 
1472 	ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473 
1474 	ctlx->reapable = mode;
1475 	ctlx->cmdcb = cmdcb;
1476 	ctlx->usercb = usercb;
1477 	ctlx->usercb_data = usercb_data;
1478 
1479 	/* Submit the CTLX */
1480 	result = hfa384x_usbctlx_submit(hw, ctlx);
1481 	if (result != 0) {
1482 		kfree(ctlx);
1483 	} else if (mode == DOWAIT) {
1484 		struct usbctlx_rrid_completor completor;
1485 
1486 		result =
1487 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1488 						  init_rrid_completor
1489 						  (&completor,
1490 						   &ctlx->inbuf.rridresp,
1491 						   riddata, riddatalen));
1492 	}
1493 
1494 done:
1495 	return result;
1496 }
1497 
1498 /*----------------------------------------------------------------
1499 * hfa384x_dowrid
1500 *
1501 * Constructs a write rid CTLX and issues it.
1502 *
1503 * NOTE: Any changes to the 'post-submit' code in this function
1504 *       need to be carried over to hfa384x_cbwrid() since the handling
1505 *       is virtually identical.
1506 *
1507 * Arguments:
1508 *	hw		device structure
1509 *	enum cmd_mode	DOWAIT or DOASYNC
1510 *	rid		RID code
1511 *	riddata		Data portion of RID formatted for MAC
1512 *	riddatalen	Length of the data portion in bytes
1513 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1514 *	usercb		user callback for async calls, NULL for DOWAIT calls
1515 *	usercb_data	user supplied data pointer for async calls
1516 *
1517 * Returns:
1518 *	0		success
1519 *	-ETIMEDOUT	timed out waiting for register ready or
1520 *			command completion
1521 *	>0		command indicated error, Status and Resp0-2 are
1522 *			in hw structure.
1523 *
1524 * Side effects:
1525 *
1526 * Call context:
1527 *	interrupt (DOASYNC)
1528 *	process (DOWAIT or DOASYNC)
1529 ----------------------------------------------------------------*/
1530 static int
hfa384x_dowrid(hfa384x_t * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1531 hfa384x_dowrid(hfa384x_t *hw,
1532 	       enum cmd_mode mode,
1533 	       u16 rid,
1534 	       void *riddata,
1535 	       unsigned int riddatalen,
1536 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537 {
1538 	int result;
1539 	hfa384x_usbctlx_t *ctlx;
1540 
1541 	ctlx = usbctlx_alloc();
1542 	if (ctlx == NULL) {
1543 		result = -ENOMEM;
1544 		goto done;
1545 	}
1546 
1547 	/* Initialize the command */
1548 	ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549 	ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550 						   (ctlx->outbuf.wridreq.rid) +
1551 						   riddatalen + 1) / 2);
1552 	ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553 	memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554 
1555 	ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556 	    sizeof(ctlx->outbuf.wridreq.frmlen) +
1557 	    sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558 
1559 	ctlx->reapable = mode;
1560 	ctlx->cmdcb = cmdcb;
1561 	ctlx->usercb = usercb;
1562 	ctlx->usercb_data = usercb_data;
1563 
1564 	/* Submit the CTLX */
1565 	result = hfa384x_usbctlx_submit(hw, ctlx);
1566 	if (result != 0) {
1567 		kfree(ctlx);
1568 	} else if (mode == DOWAIT) {
1569 		usbctlx_wrid_completor_t completor;
1570 		hfa384x_cmdresult_t wridresult;
1571 
1572 		result = hfa384x_usbctlx_complete_sync(hw,
1573 						       ctlx,
1574 						       init_wrid_completor
1575 						       (&completor,
1576 							&ctlx->inbuf.wridresp,
1577 							&wridresult));
1578 	}
1579 
1580 done:
1581 	return result;
1582 }
1583 
1584 /*----------------------------------------------------------------
1585 * hfa384x_dormem
1586 *
1587 * Constructs a readmem CTLX and issues it.
1588 *
1589 * NOTE: Any changes to the 'post-submit' code in this function
1590 *       need to be carried over to hfa384x_cbrmem() since the handling
1591 *       is virtually identical.
1592 *
1593 * Arguments:
1594 *	hw		device structure
1595 *	mode		DOWAIT or DOASYNC
1596 *	page		MAC address space page (CMD format)
1597 *	offset		MAC address space offset
1598 *	data		Ptr to data buffer to receive read
1599 *	len		Length of the data to read (max == 2048)
1600 *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1601 *	usercb		user callback for async calls, NULL for DOWAIT calls
1602 *	usercb_data	user supplied data pointer for async calls
1603 *
1604 * Returns:
1605 *	0		success
1606 *	-ETIMEDOUT	timed out waiting for register ready or
1607 *			command completion
1608 *	>0		command indicated error, Status and Resp0-2 are
1609 *			in hw structure.
1610 *
1611 * Side effects:
1612 *
1613 * Call context:
1614 *	interrupt (DOASYNC)
1615 *	process (DOWAIT or DOASYNC)
1616 ----------------------------------------------------------------*/
1617 static int
hfa384x_dormem(hfa384x_t * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1618 hfa384x_dormem(hfa384x_t *hw,
1619 	       enum cmd_mode mode,
1620 	       u16 page,
1621 	       u16 offset,
1622 	       void *data,
1623 	       unsigned int len,
1624 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625 {
1626 	int result;
1627 	hfa384x_usbctlx_t *ctlx;
1628 
1629 	ctlx = usbctlx_alloc();
1630 	if (ctlx == NULL) {
1631 		result = -ENOMEM;
1632 		goto done;
1633 	}
1634 
1635 	/* Initialize the command */
1636 	ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637 	ctlx->outbuf.rmemreq.frmlen =
1638 	    cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639 			sizeof(ctlx->outbuf.rmemreq.page) + len);
1640 	ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641 	ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642 
1643 	ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644 
1645 	pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646 		 ctlx->outbuf.rmemreq.type,
1647 		 ctlx->outbuf.rmemreq.frmlen,
1648 		 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649 
1650 	pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651 
1652 	ctlx->reapable = mode;
1653 	ctlx->cmdcb = cmdcb;
1654 	ctlx->usercb = usercb;
1655 	ctlx->usercb_data = usercb_data;
1656 
1657 	result = hfa384x_usbctlx_submit(hw, ctlx);
1658 	if (result != 0) {
1659 		kfree(ctlx);
1660 	} else if (mode == DOWAIT) {
1661 		usbctlx_rmem_completor_t completor;
1662 
1663 		result =
1664 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1665 						  init_rmem_completor
1666 						  (&completor,
1667 						   &ctlx->inbuf.rmemresp, data,
1668 						   len));
1669 	}
1670 
1671 done:
1672 	return result;
1673 }
1674 
1675 /*----------------------------------------------------------------
1676 * hfa384x_dowmem
1677 *
1678 * Constructs a writemem CTLX and issues it.
1679 *
1680 * NOTE: Any changes to the 'post-submit' code in this function
1681 *       need to be carried over to hfa384x_cbwmem() since the handling
1682 *       is virtually identical.
1683 *
1684 * Arguments:
1685 *	hw		device structure
1686 *	mode		DOWAIT or DOASYNC
1687 *	page		MAC address space page (CMD format)
1688 *	offset		MAC address space offset
1689 *	data		Ptr to data buffer containing write data
1690 *	len		Length of the data to read (max == 2048)
1691 *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1692 *	usercb		user callback for async calls, NULL for DOWAIT calls
1693 *	usercb_data	user supplied data pointer for async calls.
1694 *
1695 * Returns:
1696 *	0		success
1697 *	-ETIMEDOUT	timed out waiting for register ready or
1698 *			command completion
1699 *	>0		command indicated error, Status and Resp0-2 are
1700 *			in hw structure.
1701 *
1702 * Side effects:
1703 *
1704 * Call context:
1705 *	interrupt (DOWAIT)
1706 *	process (DOWAIT or DOASYNC)
1707 ----------------------------------------------------------------*/
1708 static int
hfa384x_dowmem(hfa384x_t * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1709 hfa384x_dowmem(hfa384x_t *hw,
1710 	       enum cmd_mode mode,
1711 	       u16 page,
1712 	       u16 offset,
1713 	       void *data,
1714 	       unsigned int len,
1715 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716 {
1717 	int result;
1718 	hfa384x_usbctlx_t *ctlx;
1719 
1720 	pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721 
1722 	ctlx = usbctlx_alloc();
1723 	if (ctlx == NULL) {
1724 		result = -ENOMEM;
1725 		goto done;
1726 	}
1727 
1728 	/* Initialize the command */
1729 	ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730 	ctlx->outbuf.wmemreq.frmlen =
1731 	    cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732 			sizeof(ctlx->outbuf.wmemreq.page) + len);
1733 	ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734 	ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735 	memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736 
1737 	ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738 	    sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739 	    sizeof(ctlx->outbuf.wmemreq.offset) +
1740 	    sizeof(ctlx->outbuf.wmemreq.page) + len;
1741 
1742 	ctlx->reapable = mode;
1743 	ctlx->cmdcb = cmdcb;
1744 	ctlx->usercb = usercb;
1745 	ctlx->usercb_data = usercb_data;
1746 
1747 	result = hfa384x_usbctlx_submit(hw, ctlx);
1748 	if (result != 0) {
1749 		kfree(ctlx);
1750 	} else if (mode == DOWAIT) {
1751 		usbctlx_wmem_completor_t completor;
1752 		hfa384x_cmdresult_t wmemresult;
1753 
1754 		result = hfa384x_usbctlx_complete_sync(hw,
1755 						       ctlx,
1756 						       init_wmem_completor
1757 						       (&completor,
1758 							&ctlx->inbuf.wmemresp,
1759 							&wmemresult));
1760 	}
1761 
1762 done:
1763 	return result;
1764 }
1765 
1766 /*----------------------------------------------------------------
1767 * hfa384x_drvr_commtallies
1768 *
1769 * Send a commtallies inquiry to the MAC.  Note that this is an async
1770 * call that will result in an info frame arriving sometime later.
1771 *
1772 * Arguments:
1773 *	hw		device structure
1774 *
1775 * Returns:
1776 *	zero		success.
1777 *
1778 * Side effects:
1779 *
1780 * Call context:
1781 *	process
1782 ----------------------------------------------------------------*/
hfa384x_drvr_commtallies(hfa384x_t * hw)1783 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784 {
1785 	hfa384x_metacmd_t cmd;
1786 
1787 	cmd.cmd = HFA384x_CMDCODE_INQ;
1788 	cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789 	cmd.parm1 = 0;
1790 	cmd.parm2 = 0;
1791 
1792 	hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793 
1794 	return 0;
1795 }
1796 
1797 /*----------------------------------------------------------------
1798 * hfa384x_drvr_disable
1799 *
1800 * Issues the disable command to stop communications on one of
1801 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1802 * APs may also disable macports 1-6.  Only ports that have been
1803 * previously enabled may be disabled.
1804 *
1805 * Arguments:
1806 *	hw		device structure
1807 *	macport		MAC port number (host order)
1808 *
1809 * Returns:
1810 *	0		success
1811 *	>0		f/w reported failure - f/w status code
1812 *	<0		driver reported error (timeout|bad arg)
1813 *
1814 * Side effects:
1815 *
1816 * Call context:
1817 *	process
1818 ----------------------------------------------------------------*/
hfa384x_drvr_disable(hfa384x_t * hw,u16 macport)1819 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820 {
1821 	int result = 0;
1822 
1823 	if ((!hw->isap && macport != 0) ||
1824 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825 	    !(hw->port_enabled[macport])) {
1826 		result = -EINVAL;
1827 	} else {
1828 		result = hfa384x_cmd_disable(hw, macport);
1829 		if (result == 0)
1830 			hw->port_enabled[macport] = 0;
1831 	}
1832 	return result;
1833 }
1834 
1835 /*----------------------------------------------------------------
1836 * hfa384x_drvr_enable
1837 *
1838 * Issues the enable command to enable communications on one of
1839 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1840 * APs may also enable macports 1-6.  Only ports that are currently
1841 * disabled may be enabled.
1842 *
1843 * Arguments:
1844 *	hw		device structure
1845 *	macport		MAC port number
1846 *
1847 * Returns:
1848 *	0		success
1849 *	>0		f/w reported failure - f/w status code
1850 *	<0		driver reported error (timeout|bad arg)
1851 *
1852 * Side effects:
1853 *
1854 * Call context:
1855 *	process
1856 ----------------------------------------------------------------*/
hfa384x_drvr_enable(hfa384x_t * hw,u16 macport)1857 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858 {
1859 	int result = 0;
1860 
1861 	if ((!hw->isap && macport != 0) ||
1862 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863 	    (hw->port_enabled[macport])) {
1864 		result = -EINVAL;
1865 	} else {
1866 		result = hfa384x_cmd_enable(hw, macport);
1867 		if (result == 0)
1868 			hw->port_enabled[macport] = 1;
1869 	}
1870 	return result;
1871 }
1872 
1873 /*----------------------------------------------------------------
1874 * hfa384x_drvr_flashdl_enable
1875 *
1876 * Begins the flash download state.  Checks to see that we're not
1877 * already in a download state and that a port isn't enabled.
1878 * Sets the download state and retrieves the flash download
1879 * buffer location, buffer size, and timeout length.
1880 *
1881 * Arguments:
1882 *	hw		device structure
1883 *
1884 * Returns:
1885 *	0		success
1886 *	>0		f/w reported error - f/w status code
1887 *	<0		driver reported error
1888 *
1889 * Side effects:
1890 *
1891 * Call context:
1892 *	process
1893 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_enable(hfa384x_t * hw)1894 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1895 {
1896 	int result = 0;
1897 	int i;
1898 
1899 	/* Check that a port isn't active */
1900 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901 		if (hw->port_enabled[i]) {
1902 			pr_debug("called when port enabled.\n");
1903 			return -EINVAL;
1904 		}
1905 	}
1906 
1907 	/* Check that we're not already in a download state */
1908 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909 		return -EINVAL;
1910 
1911 	/* Retrieve the buffer loc&size and timeout */
1912 	result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1913 					&(hw->bufinfo), sizeof(hw->bufinfo));
1914 	if (result)
1915 		return result;
1916 
1917 	hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918 	hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919 	hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920 	result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921 					  &(hw->dltimeout));
1922 	if (result)
1923 		return result;
1924 
1925 	hw->dltimeout = le16_to_cpu(hw->dltimeout);
1926 
1927 	pr_debug("flashdl_enable\n");
1928 
1929 	hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1930 
1931 	return result;
1932 }
1933 
1934 /*----------------------------------------------------------------
1935 * hfa384x_drvr_flashdl_disable
1936 *
1937 * Ends the flash download state.  Note that this will cause the MAC
1938 * firmware to restart.
1939 *
1940 * Arguments:
1941 *	hw		device structure
1942 *
1943 * Returns:
1944 *	0		success
1945 *	>0		f/w reported error - f/w status code
1946 *	<0		driver reported error
1947 *
1948 * Side effects:
1949 *
1950 * Call context:
1951 *	process
1952 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_disable(hfa384x_t * hw)1953 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1954 {
1955 	/* Check that we're already in the download state */
1956 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1957 		return -EINVAL;
1958 
1959 	pr_debug("flashdl_enable\n");
1960 
1961 	/* There isn't much we can do at this point, so I don't */
1962 	/*  bother  w/ the return value */
1963 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1964 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
1965 
1966 	return 0;
1967 }
1968 
1969 /*----------------------------------------------------------------
1970 * hfa384x_drvr_flashdl_write
1971 *
1972 * Performs a FLASH download of a chunk of data. First checks to see
1973 * that we're in the FLASH download state, then sets the download
1974 * mode, uses the aux functions to 1) copy the data to the flash
1975 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1976 * compare.  Lather rinse, repeat as many times an necessary to get
1977 * all the given data into flash.
1978 * When all data has been written using this function (possibly
1979 * repeatedly), call drvr_flashdl_disable() to end the download state
1980 * and restart the MAC.
1981 *
1982 * Arguments:
1983 *	hw		device structure
1984 *	daddr		Card address to write to. (host order)
1985 *	buf		Ptr to data to write.
1986 *	len		Length of data (host order).
1987 *
1988 * Returns:
1989 *	0		success
1990 *	>0		f/w reported error - f/w status code
1991 *	<0		driver reported error
1992 *
1993 * Side effects:
1994 *
1995 * Call context:
1996 *	process
1997 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_write(hfa384x_t * hw,u32 daddr,void * buf,u32 len)1998 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1999 {
2000 	int result = 0;
2001 	u32 dlbufaddr;
2002 	int nburns;
2003 	u32 burnlen;
2004 	u32 burndaddr;
2005 	u16 burnlo;
2006 	u16 burnhi;
2007 	int nwrites;
2008 	u8 *writebuf;
2009 	u16 writepage;
2010 	u16 writeoffset;
2011 	u32 writelen;
2012 	int i;
2013 	int j;
2014 
2015 	pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2016 
2017 	/* Check that we're in the flash download state */
2018 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2019 		return -EINVAL;
2020 
2021 	printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2022 
2023 	/* Convert to flat address for arithmetic */
2024 	/* NOTE: dlbuffer RID stores the address in AUX format */
2025 	dlbufaddr =
2026 	    HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2027 	pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2028 		 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2029 
2030 #if 0
2031 	printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2032 	       hw->bufinfo.len, hw->dltimeout);
2033 #endif
2034 	/* Calculations to determine how many fills of the dlbuffer to do
2035 	 * and how many USB wmemreq's to do for each fill.  At this point
2036 	 * in time, the dlbuffer size and the wmemreq size are the same.
2037 	 * Therefore, nwrites should always be 1.  The extra complexity
2038 	 * here is a hedge against future changes.
2039 	 */
2040 
2041 	/* Figure out how many times to do the flash programming */
2042 	nburns = len / hw->bufinfo.len;
2043 	nburns += (len % hw->bufinfo.len) ? 1 : 0;
2044 
2045 	/* For each flash program cycle, how many USB wmemreq's are needed? */
2046 	nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2047 	nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2048 
2049 	/* For each burn */
2050 	for (i = 0; i < nburns; i++) {
2051 		/* Get the dest address and len */
2052 		burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2053 		    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2054 		burndaddr = daddr + (hw->bufinfo.len * i);
2055 		burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2056 		burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2057 
2058 		printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2059 		       burnlen, burndaddr);
2060 
2061 		/* Set the download mode */
2062 		result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2063 					      burnlo, burnhi, burnlen);
2064 		if (result) {
2065 			printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2066 			       "cmd failed, result=%d. Aborting d/l\n",
2067 			       burnlo, burnhi, burnlen, result);
2068 			goto exit_proc;
2069 		}
2070 
2071 		/* copy the data to the flash download buffer */
2072 		for (j = 0; j < nwrites; j++) {
2073 			writebuf = buf +
2074 			    (i * hw->bufinfo.len) +
2075 			    (j * HFA384x_USB_RWMEM_MAXLEN);
2076 
2077 			writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2078 						(j * HFA384x_USB_RWMEM_MAXLEN));
2079 			writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2080 						(j * HFA384x_USB_RWMEM_MAXLEN));
2081 
2082 			writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2083 			writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2084 			    HFA384x_USB_RWMEM_MAXLEN : writelen;
2085 
2086 			result = hfa384x_dowmem_wait(hw,
2087 						     writepage,
2088 						     writeoffset,
2089 						     writebuf, writelen);
2090 		}
2091 
2092 		/* set the download 'write flash' mode */
2093 		result = hfa384x_cmd_download(hw,
2094 					      HFA384x_PROGMODE_NVWRITE,
2095 					      0, 0, 0);
2096 		if (result) {
2097 			printk(KERN_ERR
2098 			       "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2099 			       "cmd failed, result=%d. Aborting d/l\n",
2100 			       burnlo, burnhi, burnlen, result);
2101 			goto exit_proc;
2102 		}
2103 
2104 		/* TODO: We really should do a readback and compare. */
2105 	}
2106 
2107 exit_proc:
2108 
2109 	/* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2110 	/*  actually disable programming mode.  Remember, that will cause the */
2111 	/*  the firmware to effectively reset itself. */
2112 
2113 	return result;
2114 }
2115 
2116 /*----------------------------------------------------------------
2117 * hfa384x_drvr_getconfig
2118 *
2119 * Performs the sequence necessary to read a config/info item.
2120 *
2121 * Arguments:
2122 *	hw		device structure
2123 *	rid		config/info record id (host order)
2124 *	buf		host side record buffer.  Upon return it will
2125 *			contain the body portion of the record (minus the
2126 *			RID and len).
2127 *	len		buffer length (in bytes, should match record length)
2128 *
2129 * Returns:
2130 *	0		success
2131 *	>0		f/w reported error - f/w status code
2132 *	<0		driver reported error
2133 *	-ENODATA	length mismatch between argument and retrieved
2134 *			record.
2135 *
2136 * Side effects:
2137 *
2138 * Call context:
2139 *	process
2140 ----------------------------------------------------------------*/
hfa384x_drvr_getconfig(hfa384x_t * hw,u16 rid,void * buf,u16 len)2141 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2142 {
2143 	int result;
2144 
2145 	result = hfa384x_dorrid_wait(hw, rid, buf, len);
2146 
2147 	return result;
2148 }
2149 
2150 /*----------------------------------------------------------------
2151  * hfa384x_drvr_getconfig_async
2152  *
2153  * Performs the sequence necessary to perform an async read of
2154  * of a config/info item.
2155  *
2156  * Arguments:
2157  *       hw              device structure
2158  *       rid             config/info record id (host order)
2159  *       buf             host side record buffer.  Upon return it will
2160  *                       contain the body portion of the record (minus the
2161  *                       RID and len).
2162  *       len             buffer length (in bytes, should match record length)
2163  *       cbfn            caller supplied callback, called when the command
2164  *                       is done (successful or not).
2165  *       cbfndata        pointer to some caller supplied data that will be
2166  *                       passed in as an argument to the cbfn.
2167  *
2168  * Returns:
2169  *       nothing         the cbfn gets a status argument identifying if
2170  *                       any errors occur.
2171  * Side effects:
2172  *       Queues an hfa384x_usbcmd_t for subsequent execution.
2173  *
2174  * Call context:
2175  *       Any
2176  ----------------------------------------------------------------*/
2177 int
hfa384x_drvr_getconfig_async(hfa384x_t * hw,u16 rid,ctlx_usercb_t usercb,void * usercb_data)2178 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2179 			     u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2180 {
2181 	return hfa384x_dorrid_async(hw, rid, NULL, 0,
2182 				    hfa384x_cb_rrid, usercb, usercb_data);
2183 }
2184 
2185 /*----------------------------------------------------------------
2186  * hfa384x_drvr_setconfig_async
2187  *
2188  * Performs the sequence necessary to write a config/info item.
2189  *
2190  * Arguments:
2191  *       hw              device structure
2192  *       rid             config/info record id (in host order)
2193  *       buf             host side record buffer
2194  *       len             buffer length (in bytes)
2195  *       usercb          completion callback
2196  *       usercb_data     completion callback argument
2197  *
2198  * Returns:
2199  *       0               success
2200  *       >0              f/w reported error - f/w status code
2201  *       <0              driver reported error
2202  *
2203  * Side effects:
2204  *
2205  * Call context:
2206  *       process
2207  ----------------------------------------------------------------*/
2208 int
hfa384x_drvr_setconfig_async(hfa384x_t * hw,u16 rid,void * buf,u16 len,ctlx_usercb_t usercb,void * usercb_data)2209 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2210 			     u16 rid,
2211 			     void *buf,
2212 			     u16 len, ctlx_usercb_t usercb, void *usercb_data)
2213 {
2214 	return hfa384x_dowrid_async(hw, rid, buf, len,
2215 				    hfa384x_cb_status, usercb, usercb_data);
2216 }
2217 
2218 /*----------------------------------------------------------------
2219 * hfa384x_drvr_ramdl_disable
2220 *
2221 * Ends the ram download state.
2222 *
2223 * Arguments:
2224 *	hw		device structure
2225 *
2226 * Returns:
2227 *	0		success
2228 *	>0		f/w reported error - f/w status code
2229 *	<0		driver reported error
2230 *
2231 * Side effects:
2232 *
2233 * Call context:
2234 *	process
2235 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_disable(hfa384x_t * hw)2236 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2237 {
2238 	/* Check that we're already in the download state */
2239 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2240 		return -EINVAL;
2241 
2242 	pr_debug("ramdl_disable()\n");
2243 
2244 	/* There isn't much we can do at this point, so I don't */
2245 	/*  bother  w/ the return value */
2246 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2247 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
2248 
2249 	return 0;
2250 }
2251 
2252 /*----------------------------------------------------------------
2253 * hfa384x_drvr_ramdl_enable
2254 *
2255 * Begins the ram download state.  Checks to see that we're not
2256 * already in a download state and that a port isn't enabled.
2257 * Sets the download state and calls cmd_download with the
2258 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2259 *
2260 * Arguments:
2261 *	hw		device structure
2262 *	exeaddr		the card execution address that will be
2263 *                       jumped to when ramdl_disable() is called
2264 *			(host order).
2265 *
2266 * Returns:
2267 *	0		success
2268 *	>0		f/w reported error - f/w status code
2269 *	<0		driver reported error
2270 *
2271 * Side effects:
2272 *
2273 * Call context:
2274 *	process
2275 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_enable(hfa384x_t * hw,u32 exeaddr)2276 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2277 {
2278 	int result = 0;
2279 	u16 lowaddr;
2280 	u16 hiaddr;
2281 	int i;
2282 
2283 	/* Check that a port isn't active */
2284 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2285 		if (hw->port_enabled[i]) {
2286 			printk(KERN_ERR
2287 			       "Can't download with a macport enabled.\n");
2288 			return -EINVAL;
2289 		}
2290 	}
2291 
2292 	/* Check that we're not already in a download state */
2293 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2294 		printk(KERN_ERR "Download state not disabled.\n");
2295 		return -EINVAL;
2296 	}
2297 
2298 	pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2299 
2300 	/* Call the download(1,addr) function */
2301 	lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2302 	hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2303 
2304 	result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2305 				      lowaddr, hiaddr, 0);
2306 
2307 	if (result == 0) {
2308 		/* Set the download state */
2309 		hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2310 	} else {
2311 		pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2312 			 lowaddr, hiaddr, result);
2313 	}
2314 
2315 	return result;
2316 }
2317 
2318 /*----------------------------------------------------------------
2319 * hfa384x_drvr_ramdl_write
2320 *
2321 * Performs a RAM download of a chunk of data. First checks to see
2322 * that we're in the RAM download state, then uses the [read|write]mem USB
2323 * commands to 1) copy the data, 2) readback and compare.  The download
2324 * state is unaffected.  When all data has been written using
2325 * this function, call drvr_ramdl_disable() to end the download state
2326 * and restart the MAC.
2327 *
2328 * Arguments:
2329 *	hw		device structure
2330 *	daddr		Card address to write to. (host order)
2331 *	buf		Ptr to data to write.
2332 *	len		Length of data (host order).
2333 *
2334 * Returns:
2335 *	0		success
2336 *	>0		f/w reported error - f/w status code
2337 *	<0		driver reported error
2338 *
2339 * Side effects:
2340 *
2341 * Call context:
2342 *	process
2343 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_write(hfa384x_t * hw,u32 daddr,void * buf,u32 len)2344 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2345 {
2346 	int result = 0;
2347 	int nwrites;
2348 	u8 *data = buf;
2349 	int i;
2350 	u32 curraddr;
2351 	u16 currpage;
2352 	u16 curroffset;
2353 	u16 currlen;
2354 
2355 	/* Check that we're in the ram download state */
2356 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2357 		return -EINVAL;
2358 
2359 	printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2360 
2361 	/* How many dowmem calls?  */
2362 	nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2363 	nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2364 
2365 	/* Do blocking wmem's */
2366 	for (i = 0; i < nwrites; i++) {
2367 		/* make address args */
2368 		curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2369 		currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2370 		curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2371 		currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2372 		if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2373 			currlen = HFA384x_USB_RWMEM_MAXLEN;
2374 
2375 		/* Do blocking ctlx */
2376 		result = hfa384x_dowmem_wait(hw,
2377 					     currpage,
2378 					     curroffset,
2379 					     data +
2380 					     (i * HFA384x_USB_RWMEM_MAXLEN),
2381 					     currlen);
2382 
2383 		if (result)
2384 			break;
2385 
2386 		/* TODO: We really should have a readback. */
2387 	}
2388 
2389 	return result;
2390 }
2391 
2392 /*----------------------------------------------------------------
2393 * hfa384x_drvr_readpda
2394 *
2395 * Performs the sequence to read the PDA space.  Note there is no
2396 * drvr_writepda() function.  Writing a PDA is
2397 * generally implemented by a calling component via calls to
2398 * cmd_download and writing to the flash download buffer via the
2399 * aux regs.
2400 *
2401 * Arguments:
2402 *	hw		device structure
2403 *	buf		buffer to store PDA in
2404 *	len		buffer length
2405 *
2406 * Returns:
2407 *	0		success
2408 *	>0		f/w reported error - f/w status code
2409 *	<0		driver reported error
2410 *	-ETIMEDOUT	timout waiting for the cmd regs to become
2411 *			available, or waiting for the control reg
2412 *			to indicate the Aux port is enabled.
2413 *	-ENODATA	the buffer does NOT contain a valid PDA.
2414 *			Either the card PDA is bad, or the auxdata
2415 *			reads are giving us garbage.
2416 
2417 *
2418 * Side effects:
2419 *
2420 * Call context:
2421 *	process or non-card interrupt.
2422 ----------------------------------------------------------------*/
hfa384x_drvr_readpda(hfa384x_t * hw,void * buf,unsigned int len)2423 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2424 {
2425 	int result = 0;
2426 	u16 *pda = buf;
2427 	int pdaok = 0;
2428 	int morepdrs = 1;
2429 	int currpdr = 0;	/* word offset of the current pdr */
2430 	size_t i;
2431 	u16 pdrlen;		/* pdr length in bytes, host order */
2432 	u16 pdrcode;		/* pdr code, host order */
2433 	u16 currpage;
2434 	u16 curroffset;
2435 	struct pdaloc {
2436 		u32 cardaddr;
2437 		u16 auxctl;
2438 	} pdaloc[] = {
2439 		{
2440 		HFA3842_PDA_BASE, 0}, {
2441 		HFA3841_PDA_BASE, 0}, {
2442 		HFA3841_PDA_BOGUS_BASE, 0}
2443 	};
2444 
2445 	/* Read the pda from each known address.  */
2446 	for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2447 		/* Make address */
2448 		currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2449 		curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2450 
2451 		/* units of bytes */
2452 		result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2453 						len);
2454 
2455 		if (result) {
2456 			printk(KERN_WARNING
2457 			       "Read from index %zd failed, continuing\n", i);
2458 			continue;
2459 		}
2460 
2461 		/* Test for garbage */
2462 		pdaok = 1;	/* initially assume good */
2463 		morepdrs = 1;
2464 		while (pdaok && morepdrs) {
2465 			pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2466 			pdrcode = le16_to_cpu(pda[currpdr + 1]);
2467 			/* Test the record length */
2468 			if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2469 				printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2470 				pdaok = 0;
2471 				break;
2472 			}
2473 			/* Test the code */
2474 			if (!hfa384x_isgood_pdrcode(pdrcode)) {
2475 				printk(KERN_ERR "pdrcode invalid=%d\n",
2476 				       pdrcode);
2477 				pdaok = 0;
2478 				break;
2479 			}
2480 			/* Test for completion */
2481 			if (pdrcode == HFA384x_PDR_END_OF_PDA)
2482 				morepdrs = 0;
2483 
2484 			/* Move to the next pdr (if necessary) */
2485 			if (morepdrs) {
2486 				/* note the access to pda[], need words here */
2487 				currpdr += le16_to_cpu(pda[currpdr]) + 1;
2488 			}
2489 		}
2490 		if (pdaok) {
2491 			printk(KERN_INFO
2492 			       "PDA Read from 0x%08x in %s space.\n",
2493 			       pdaloc[i].cardaddr,
2494 			       pdaloc[i].auxctl == 0 ? "EXTDS" :
2495 			       pdaloc[i].auxctl == 1 ? "NV" :
2496 			       pdaloc[i].auxctl == 2 ? "PHY" :
2497 			       pdaloc[i].auxctl == 3 ? "ICSRAM" :
2498 			       "<bogus auxctl>");
2499 			break;
2500 		}
2501 	}
2502 	result = pdaok ? 0 : -ENODATA;
2503 
2504 	if (result)
2505 		pr_debug("Failure: pda is not okay\n");
2506 
2507 	return result;
2508 }
2509 
2510 /*----------------------------------------------------------------
2511 * hfa384x_drvr_setconfig
2512 *
2513 * Performs the sequence necessary to write a config/info item.
2514 *
2515 * Arguments:
2516 *	hw		device structure
2517 *	rid		config/info record id (in host order)
2518 *	buf		host side record buffer
2519 *	len		buffer length (in bytes)
2520 *
2521 * Returns:
2522 *	0		success
2523 *	>0		f/w reported error - f/w status code
2524 *	<0		driver reported error
2525 *
2526 * Side effects:
2527 *
2528 * Call context:
2529 *	process
2530 ----------------------------------------------------------------*/
hfa384x_drvr_setconfig(hfa384x_t * hw,u16 rid,void * buf,u16 len)2531 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2532 {
2533 	return hfa384x_dowrid_wait(hw, rid, buf, len);
2534 }
2535 
2536 /*----------------------------------------------------------------
2537 * hfa384x_drvr_start
2538 *
2539 * Issues the MAC initialize command, sets up some data structures,
2540 * and enables the interrupts.  After this function completes, the
2541 * low-level stuff should be ready for any/all commands.
2542 *
2543 * Arguments:
2544 *	hw		device structure
2545 * Returns:
2546 *	0		success
2547 *	>0		f/w reported error - f/w status code
2548 *	<0		driver reported error
2549 *
2550 * Side effects:
2551 *
2552 * Call context:
2553 *	process
2554 ----------------------------------------------------------------*/
2555 
hfa384x_drvr_start(hfa384x_t * hw)2556 int hfa384x_drvr_start(hfa384x_t *hw)
2557 {
2558 	int result, result1, result2;
2559 	u16 status;
2560 
2561 	might_sleep();
2562 
2563 	/* Clear endpoint stalls - but only do this if the endpoint
2564 	 * is showing a stall status. Some prism2 cards seem to behave
2565 	 * badly if a clear_halt is called when the endpoint is already
2566 	 * ok
2567 	 */
2568 	result =
2569 	    usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2570 	if (result < 0) {
2571 		printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2572 		goto done;
2573 	}
2574 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2575 		printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2576 
2577 	result =
2578 	    usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2579 	if (result < 0) {
2580 		printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2581 		goto done;
2582 	}
2583 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2584 		printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2585 
2586 	/* Synchronous unlink, in case we're trying to restart the driver */
2587 	usb_kill_urb(&hw->rx_urb);
2588 
2589 	/* Post the IN urb */
2590 	result = submit_rx_urb(hw, GFP_KERNEL);
2591 	if (result != 0) {
2592 		printk(KERN_ERR
2593 		       "Fatal, failed to submit RX URB, result=%d\n", result);
2594 		goto done;
2595 	}
2596 
2597 	/* Call initialize twice, with a 1 second sleep in between.
2598 	 * This is a nasty work-around since many prism2 cards seem to
2599 	 * need time to settle after an init from cold. The second
2600 	 * call to initialize in theory is not necessary - but we call
2601 	 * it anyway as a double insurance policy:
2602 	 * 1) If the first init should fail, the second may well succeed
2603 	 *    and the card can still be used
2604 	 * 2) It helps ensures all is well with the card after the first
2605 	 *    init and settle time.
2606 	 */
2607 	result1 = hfa384x_cmd_initialize(hw);
2608 	msleep(1000);
2609 	result = result2 = hfa384x_cmd_initialize(hw);
2610 	if (result1 != 0) {
2611 		if (result2 != 0) {
2612 			printk(KERN_ERR
2613 				"cmd_initialize() failed on two attempts, results %d and %d\n",
2614 				result1, result2);
2615 			usb_kill_urb(&hw->rx_urb);
2616 			goto done;
2617 		} else {
2618 			pr_debug("First cmd_initialize() failed (result %d),\n",
2619 				 result1);
2620 			pr_debug("but second attempt succeeded. All should be ok\n");
2621 		}
2622 	} else if (result2 != 0) {
2623 		printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2624 			result2);
2625 		printk(KERN_WARNING
2626 		       "Most likely the card will be functional\n");
2627 		goto done;
2628 	}
2629 
2630 	hw->state = HFA384x_STATE_RUNNING;
2631 
2632 done:
2633 	return result;
2634 }
2635 
2636 /*----------------------------------------------------------------
2637 * hfa384x_drvr_stop
2638 *
2639 * Shuts down the MAC to the point where it is safe to unload the
2640 * driver.  Any subsystem that may be holding a data or function
2641 * ptr into the driver must be cleared/deinitialized.
2642 *
2643 * Arguments:
2644 *	hw		device structure
2645 * Returns:
2646 *	0		success
2647 *	>0		f/w reported error - f/w status code
2648 *	<0		driver reported error
2649 *
2650 * Side effects:
2651 *
2652 * Call context:
2653 *	process
2654 ----------------------------------------------------------------*/
hfa384x_drvr_stop(hfa384x_t * hw)2655 int hfa384x_drvr_stop(hfa384x_t *hw)
2656 {
2657 	int result = 0;
2658 	int i;
2659 
2660 	might_sleep();
2661 
2662 	/* There's no need for spinlocks here. The USB "disconnect"
2663 	 * function sets this "removed" flag and then calls us.
2664 	 */
2665 	if (!hw->wlandev->hwremoved) {
2666 		/* Call initialize to leave the MAC in its 'reset' state */
2667 		hfa384x_cmd_initialize(hw);
2668 
2669 		/* Cancel the rxurb */
2670 		usb_kill_urb(&hw->rx_urb);
2671 	}
2672 
2673 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
2674 	hw->state = HFA384x_STATE_INIT;
2675 
2676 	del_timer_sync(&hw->commsqual_timer);
2677 
2678 	/* Clear all the port status */
2679 	for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2680 		hw->port_enabled[i] = 0;
2681 
2682 	return result;
2683 }
2684 
2685 /*----------------------------------------------------------------
2686 * hfa384x_drvr_txframe
2687 *
2688 * Takes a frame from prism2sta and queues it for transmission.
2689 *
2690 * Arguments:
2691 *	hw		device structure
2692 *	skb		packet buffer struct.  Contains an 802.11
2693 *			data frame.
2694 *       p80211_hdr      points to the 802.11 header for the packet.
2695 * Returns:
2696 *	0		Success and more buffs available
2697 *	1		Success but no more buffs
2698 *	2		Allocation failure
2699 *	4		Buffer full or queue busy
2700 *
2701 * Side effects:
2702 *
2703 * Call context:
2704 *	interrupt
2705 ----------------------------------------------------------------*/
hfa384x_drvr_txframe(hfa384x_t * hw,struct sk_buff * skb,union p80211_hdr * p80211_hdr,struct p80211_metawep * p80211_wep)2706 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2707 			 union p80211_hdr *p80211_hdr,
2708 			 struct p80211_metawep *p80211_wep)
2709 {
2710 	int usbpktlen = sizeof(hfa384x_tx_frame_t);
2711 	int result;
2712 	int ret;
2713 	char *ptr;
2714 
2715 	if (hw->tx_urb.status == -EINPROGRESS) {
2716 		printk(KERN_WARNING "TX URB already in use\n");
2717 		result = 3;
2718 		goto exit;
2719 	}
2720 
2721 	/* Build Tx frame structure */
2722 	/* Set up the control field */
2723 	memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2724 
2725 	/* Setup the usb type field */
2726 	hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2727 
2728 	/* Set up the sw_support field to identify this frame */
2729 	hw->txbuff.txfrm.desc.sw_support = 0x0123;
2730 
2731 /* Tx complete and Tx exception disable per dleach.  Might be causing
2732  * buf depletion
2733  */
2734 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2735 #if defined(DOBOTH)
2736 	hw->txbuff.txfrm.desc.tx_control =
2737 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2738 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2739 #elif defined(DOEXC)
2740 	hw->txbuff.txfrm.desc.tx_control =
2741 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2742 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2743 #else
2744 	hw->txbuff.txfrm.desc.tx_control =
2745 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2746 	    HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2747 #endif
2748 	hw->txbuff.txfrm.desc.tx_control =
2749 	    cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2750 
2751 	/* copy the header over to the txdesc */
2752 	memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2753 	       sizeof(union p80211_hdr));
2754 
2755 	/* if we're using host WEP, increase size by IV+ICV */
2756 	if (p80211_wep->data) {
2757 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2758 		usbpktlen += 8;
2759 	} else {
2760 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2761 	}
2762 
2763 	usbpktlen += skb->len;
2764 
2765 	/* copy over the WEP IV if we are using host WEP */
2766 	ptr = hw->txbuff.txfrm.data;
2767 	if (p80211_wep->data) {
2768 		memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2769 		ptr += sizeof(p80211_wep->iv);
2770 		memcpy(ptr, p80211_wep->data, skb->len);
2771 	} else {
2772 		memcpy(ptr, skb->data, skb->len);
2773 	}
2774 	/* copy over the packet data */
2775 	ptr += skb->len;
2776 
2777 	/* copy over the WEP ICV if we are using host WEP */
2778 	if (p80211_wep->data)
2779 		memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2780 
2781 	/* Send the USB packet */
2782 	usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2783 			  hw->endp_out,
2784 			  &(hw->txbuff), ROUNDUP64(usbpktlen),
2785 			  hfa384x_usbout_callback, hw->wlandev);
2786 	hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2787 
2788 	result = 1;
2789 	ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2790 	if (ret != 0) {
2791 		printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2792 		result = 3;
2793 	}
2794 
2795 exit:
2796 	return result;
2797 }
2798 
hfa384x_tx_timeout(wlandevice_t * wlandev)2799 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2800 {
2801 	hfa384x_t *hw = wlandev->priv;
2802 	unsigned long flags;
2803 
2804 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2805 
2806 	if (!hw->wlandev->hwremoved) {
2807 		int sched;
2808 
2809 		sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2810 		sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2811 		if (sched)
2812 			schedule_work(&hw->usb_work);
2813 	}
2814 
2815 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2816 }
2817 
2818 /*----------------------------------------------------------------
2819 * hfa384x_usbctlx_reaper_task
2820 *
2821 * Tasklet to delete dead CTLX objects
2822 *
2823 * Arguments:
2824 *	data	ptr to a hfa384x_t
2825 *
2826 * Returns:
2827 *
2828 * Call context:
2829 *	Interrupt
2830 ----------------------------------------------------------------*/
hfa384x_usbctlx_reaper_task(unsigned long data)2831 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2832 {
2833 	hfa384x_t *hw = (hfa384x_t *) data;
2834 	struct list_head *entry;
2835 	struct list_head *temp;
2836 	unsigned long flags;
2837 
2838 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2839 
2840 	/* This list is guaranteed to be empty if someone
2841 	 * has unplugged the adapter.
2842 	 */
2843 	list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2844 		hfa384x_usbctlx_t *ctlx;
2845 
2846 		ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2847 		list_del(&ctlx->list);
2848 		kfree(ctlx);
2849 	}
2850 
2851 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2852 
2853 }
2854 
2855 /*----------------------------------------------------------------
2856 * hfa384x_usbctlx_completion_task
2857 *
2858 * Tasklet to call completion handlers for returned CTLXs
2859 *
2860 * Arguments:
2861 *	data	ptr to hfa384x_t
2862 *
2863 * Returns:
2864 *	Nothing
2865 *
2866 * Call context:
2867 *	Interrupt
2868 ----------------------------------------------------------------*/
hfa384x_usbctlx_completion_task(unsigned long data)2869 static void hfa384x_usbctlx_completion_task(unsigned long data)
2870 {
2871 	hfa384x_t *hw = (hfa384x_t *) data;
2872 	struct list_head *entry;
2873 	struct list_head *temp;
2874 	unsigned long flags;
2875 
2876 	int reap = 0;
2877 
2878 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2879 
2880 	/* This list is guaranteed to be empty if someone
2881 	 * has unplugged the adapter ...
2882 	 */
2883 	list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2884 		hfa384x_usbctlx_t *ctlx;
2885 
2886 		ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2887 
2888 		/* Call the completion function that this
2889 		 * command was assigned, assuming it has one.
2890 		 */
2891 		if (ctlx->cmdcb != NULL) {
2892 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2893 			ctlx->cmdcb(hw, ctlx);
2894 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
2895 
2896 			/* Make sure we don't try and complete
2897 			 * this CTLX more than once!
2898 			 */
2899 			ctlx->cmdcb = NULL;
2900 
2901 			/* Did someone yank the adapter out
2902 			 * while our list was (briefly) unlocked?
2903 			 */
2904 			if (hw->wlandev->hwremoved) {
2905 				reap = 0;
2906 				break;
2907 			}
2908 		}
2909 
2910 		/*
2911 		 * "Reapable" CTLXs are ones which don't have any
2912 		 * threads waiting for them to die. Hence they must
2913 		 * be delivered to The Reaper!
2914 		 */
2915 		if (ctlx->reapable) {
2916 			/* Move the CTLX off the "completing" list (hopefully)
2917 			 * on to the "reapable" list where the reaper task
2918 			 * can find it. And "reapable" means that this CTLX
2919 			 * isn't sitting on a wait-queue somewhere.
2920 			 */
2921 			list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2922 			reap = 1;
2923 		}
2924 
2925 		complete(&ctlx->done);
2926 	}
2927 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2928 
2929 	if (reap)
2930 		tasklet_schedule(&hw->reaper_bh);
2931 }
2932 
2933 /*----------------------------------------------------------------
2934 * unlocked_usbctlx_cancel_async
2935 *
2936 * Mark the CTLX dead asynchronously, and ensure that the
2937 * next command on the queue is run afterwards.
2938 *
2939 * Arguments:
2940 *	hw	ptr to the hfa384x_t structure
2941 *	ctlx	ptr to a CTLX structure
2942 *
2943 * Returns:
2944 *	0	the CTLX's URB is inactive
2945 * -EINPROGRESS	the URB is currently being unlinked
2946 *
2947 * Call context:
2948 *	Either process or interrupt, but presumably interrupt
2949 ----------------------------------------------------------------*/
unlocked_usbctlx_cancel_async(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)2950 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2951 					 hfa384x_usbctlx_t *ctlx)
2952 {
2953 	int ret;
2954 
2955 	/*
2956 	 * Try to delete the URB containing our request packet.
2957 	 * If we succeed, then its completion handler will be
2958 	 * called with a status of -ECONNRESET.
2959 	 */
2960 	hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2961 	ret = usb_unlink_urb(&hw->ctlx_urb);
2962 
2963 	if (ret != -EINPROGRESS) {
2964 		/*
2965 		 * The OUT URB had either already completed
2966 		 * or was still in the pending queue, so the
2967 		 * URB's completion function will not be called.
2968 		 * We will have to complete the CTLX ourselves.
2969 		 */
2970 		ctlx->state = CTLX_REQ_FAILED;
2971 		unlocked_usbctlx_complete(hw, ctlx);
2972 		ret = 0;
2973 	}
2974 
2975 	return ret;
2976 }
2977 
2978 /*----------------------------------------------------------------
2979 * unlocked_usbctlx_complete
2980 *
2981 * A CTLX has completed.  It may have been successful, it may not
2982 * have been. At this point, the CTLX should be quiescent.  The URBs
2983 * aren't active and the timers should have been stopped.
2984 *
2985 * The CTLX is migrated to the "completing" queue, and the completing
2986 * tasklet is scheduled.
2987 *
2988 * Arguments:
2989 *	hw		ptr to a hfa384x_t structure
2990 *	ctlx		ptr to a ctlx structure
2991 *
2992 * Returns:
2993 *	nothing
2994 *
2995 * Side effects:
2996 *
2997 * Call context:
2998 *	Either, assume interrupt
2999 ----------------------------------------------------------------*/
unlocked_usbctlx_complete(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)3000 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
3001 {
3002 	/* Timers have been stopped, and ctlx should be in
3003 	 * a terminal state. Retire it from the "active"
3004 	 * queue.
3005 	 */
3006 	list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3007 	tasklet_schedule(&hw->completion_bh);
3008 
3009 	switch (ctlx->state) {
3010 	case CTLX_COMPLETE:
3011 	case CTLX_REQ_FAILED:
3012 		/* This are the correct terminating states. */
3013 		break;
3014 
3015 	default:
3016 		printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3017 		       le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3018 		break;
3019 	}			/* switch */
3020 }
3021 
3022 /*----------------------------------------------------------------
3023 * hfa384x_usbctlxq_run
3024 *
3025 * Checks to see if the head item is running.  If not, starts it.
3026 *
3027 * Arguments:
3028 *	hw	ptr to hfa384x_t
3029 *
3030 * Returns:
3031 *	nothing
3032 *
3033 * Side effects:
3034 *
3035 * Call context:
3036 *	any
3037 ----------------------------------------------------------------*/
hfa384x_usbctlxq_run(hfa384x_t * hw)3038 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3039 {
3040 	unsigned long flags;
3041 
3042 	/* acquire lock */
3043 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3044 
3045 	/* Only one active CTLX at any one time, because there's no
3046 	 * other (reliable) way to match the response URB to the
3047 	 * correct CTLX.
3048 	 *
3049 	 * Don't touch any of these CTLXs if the hardware
3050 	 * has been removed or the USB subsystem is stalled.
3051 	 */
3052 	if (!list_empty(&hw->ctlxq.active) ||
3053 	    test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3054 		goto unlock;
3055 
3056 	while (!list_empty(&hw->ctlxq.pending)) {
3057 		hfa384x_usbctlx_t *head;
3058 		int result;
3059 
3060 		/* This is the first pending command */
3061 		head = list_entry(hw->ctlxq.pending.next,
3062 				  hfa384x_usbctlx_t, list);
3063 
3064 		/* We need to split this off to avoid a race condition */
3065 		list_move_tail(&head->list, &hw->ctlxq.active);
3066 
3067 		/* Fill the out packet */
3068 		usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3069 				  hw->endp_out,
3070 				  &(head->outbuf), ROUNDUP64(head->outbufsize),
3071 				  hfa384x_ctlxout_callback, hw);
3072 		hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3073 
3074 		/* Now submit the URB and update the CTLX's state */
3075 		result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3076 		if (result == 0) {
3077 			/* This CTLX is now running on the active queue */
3078 			head->state = CTLX_REQ_SUBMITTED;
3079 
3080 			/* Start the OUT wait timer */
3081 			hw->req_timer_done = 0;
3082 			hw->reqtimer.expires = jiffies + HZ;
3083 			add_timer(&hw->reqtimer);
3084 
3085 			/* Start the IN wait timer */
3086 			hw->resp_timer_done = 0;
3087 			hw->resptimer.expires = jiffies + 2 * HZ;
3088 			add_timer(&hw->resptimer);
3089 
3090 			break;
3091 		}
3092 
3093 		if (result == -EPIPE) {
3094 			/* The OUT pipe needs resetting, so put
3095 			 * this CTLX back in the "pending" queue
3096 			 * and schedule a reset ...
3097 			 */
3098 			printk(KERN_WARNING
3099 			       "%s tx pipe stalled: requesting reset\n",
3100 			       hw->wlandev->netdev->name);
3101 			list_move(&head->list, &hw->ctlxq.pending);
3102 			set_bit(WORK_TX_HALT, &hw->usb_flags);
3103 			schedule_work(&hw->usb_work);
3104 			break;
3105 		}
3106 
3107 		if (result == -ESHUTDOWN) {
3108 			printk(KERN_WARNING "%s urb shutdown!\n",
3109 			       hw->wlandev->netdev->name);
3110 			break;
3111 		}
3112 
3113 		printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3114 		       le16_to_cpu(head->outbuf.type), result);
3115 		unlocked_usbctlx_complete(hw, head);
3116 	}			/* while */
3117 
3118 unlock:
3119 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3120 }
3121 
3122 /*----------------------------------------------------------------
3123 * hfa384x_usbin_callback
3124 *
3125 * Callback for URBs on the BULKIN endpoint.
3126 *
3127 * Arguments:
3128 *	urb		ptr to the completed urb
3129 *
3130 * Returns:
3131 *	nothing
3132 *
3133 * Side effects:
3134 *
3135 * Call context:
3136 *	interrupt
3137 ----------------------------------------------------------------*/
hfa384x_usbin_callback(struct urb * urb)3138 static void hfa384x_usbin_callback(struct urb *urb)
3139 {
3140 	wlandevice_t *wlandev = urb->context;
3141 	hfa384x_t *hw;
3142 	hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3143 	struct sk_buff *skb = NULL;
3144 	int result;
3145 	int urb_status;
3146 	u16 type;
3147 
3148 	enum USBIN_ACTION {
3149 		HANDLE,
3150 		RESUBMIT,
3151 		ABORT
3152 	} action;
3153 
3154 	if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3155 		goto exit;
3156 
3157 	hw = wlandev->priv;
3158 	if (!hw)
3159 		goto exit;
3160 
3161 	skb = hw->rx_urb_skb;
3162 	BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3163 
3164 	hw->rx_urb_skb = NULL;
3165 
3166 	/* Check for error conditions within the URB */
3167 	switch (urb->status) {
3168 	case 0:
3169 		action = HANDLE;
3170 
3171 		/* Check for short packet */
3172 		if (urb->actual_length == 0) {
3173 			++(wlandev->linux_stats.rx_errors);
3174 			++(wlandev->linux_stats.rx_length_errors);
3175 			action = RESUBMIT;
3176 		}
3177 		break;
3178 
3179 	case -EPIPE:
3180 		printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3181 		       wlandev->netdev->name);
3182 		if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3183 			schedule_work(&hw->usb_work);
3184 		++(wlandev->linux_stats.rx_errors);
3185 		action = ABORT;
3186 		break;
3187 
3188 	case -EILSEQ:
3189 	case -ETIMEDOUT:
3190 	case -EPROTO:
3191 		if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3192 		    !timer_pending(&hw->throttle)) {
3193 			mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3194 		}
3195 		++(wlandev->linux_stats.rx_errors);
3196 		action = ABORT;
3197 		break;
3198 
3199 	case -EOVERFLOW:
3200 		++(wlandev->linux_stats.rx_over_errors);
3201 		action = RESUBMIT;
3202 		break;
3203 
3204 	case -ENODEV:
3205 	case -ESHUTDOWN:
3206 		pr_debug("status=%d, device removed.\n", urb->status);
3207 		action = ABORT;
3208 		break;
3209 
3210 	case -ENOENT:
3211 	case -ECONNRESET:
3212 		pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3213 		action = ABORT;
3214 		break;
3215 
3216 	default:
3217 		pr_debug("urb status=%d, transfer flags=0x%x\n",
3218 			 urb->status, urb->transfer_flags);
3219 		++(wlandev->linux_stats.rx_errors);
3220 		action = RESUBMIT;
3221 		break;
3222 	}
3223 
3224 	urb_status = urb->status;
3225 
3226 	if (action != ABORT) {
3227 		/* Repost the RX URB */
3228 		result = submit_rx_urb(hw, GFP_ATOMIC);
3229 
3230 		if (result != 0) {
3231 			printk(KERN_ERR
3232 			       "Fatal, failed to resubmit rx_urb. error=%d\n",
3233 			       result);
3234 		}
3235 	}
3236 
3237 	/* Handle any USB-IN packet */
3238 	/* Note: the check of the sw_support field, the type field doesn't
3239 	 *       have bit 12 set like the docs suggest.
3240 	 */
3241 	type = le16_to_cpu(usbin->type);
3242 	if (HFA384x_USB_ISRXFRM(type)) {
3243 		if (action == HANDLE) {
3244 			if (usbin->txfrm.desc.sw_support == 0x0123) {
3245 				hfa384x_usbin_txcompl(wlandev, usbin);
3246 			} else {
3247 				skb_put(skb, sizeof(*usbin));
3248 				hfa384x_usbin_rx(wlandev, skb);
3249 				skb = NULL;
3250 			}
3251 		}
3252 		goto exit;
3253 	}
3254 	if (HFA384x_USB_ISTXFRM(type)) {
3255 		if (action == HANDLE)
3256 			hfa384x_usbin_txcompl(wlandev, usbin);
3257 		goto exit;
3258 	}
3259 	switch (type) {
3260 	case HFA384x_USB_INFOFRM:
3261 		if (action == ABORT)
3262 			goto exit;
3263 		if (action == HANDLE)
3264 			hfa384x_usbin_info(wlandev, usbin);
3265 		break;
3266 
3267 	case HFA384x_USB_CMDRESP:
3268 	case HFA384x_USB_WRIDRESP:
3269 	case HFA384x_USB_RRIDRESP:
3270 	case HFA384x_USB_WMEMRESP:
3271 	case HFA384x_USB_RMEMRESP:
3272 		/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3273 		hfa384x_usbin_ctlx(hw, usbin, urb_status);
3274 		break;
3275 
3276 	case HFA384x_USB_BUFAVAIL:
3277 		pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3278 			 usbin->bufavail.frmlen);
3279 		break;
3280 
3281 	case HFA384x_USB_ERROR:
3282 		pr_debug("Received USB_ERROR packet, errortype=%d\n",
3283 			 usbin->usberror.errortype);
3284 		break;
3285 
3286 	default:
3287 		pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3288 			 usbin->type, urb_status);
3289 		break;
3290 	}			/* switch */
3291 
3292 exit:
3293 
3294 	if (skb)
3295 		dev_kfree_skb(skb);
3296 }
3297 
3298 /*----------------------------------------------------------------
3299 * hfa384x_usbin_ctlx
3300 *
3301 * We've received a URB containing a Prism2 "response" message.
3302 * This message needs to be matched up with a CTLX on the active
3303 * queue and our state updated accordingly.
3304 *
3305 * Arguments:
3306 *	hw		ptr to hfa384x_t
3307 *	usbin		ptr to USB IN packet
3308 *	urb_status	status of this Bulk-In URB
3309 *
3310 * Returns:
3311 *	nothing
3312 *
3313 * Side effects:
3314 *
3315 * Call context:
3316 *	interrupt
3317 ----------------------------------------------------------------*/
hfa384x_usbin_ctlx(hfa384x_t * hw,hfa384x_usbin_t * usbin,int urb_status)3318 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3319 			       int urb_status)
3320 {
3321 	hfa384x_usbctlx_t *ctlx;
3322 	int run_queue = 0;
3323 	unsigned long flags;
3324 
3325 retry:
3326 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3327 
3328 	/* There can be only one CTLX on the active queue
3329 	 * at any one time, and this is the CTLX that the
3330 	 * timers are waiting for.
3331 	 */
3332 	if (list_empty(&hw->ctlxq.active))
3333 		goto unlock;
3334 
3335 	/* Remove the "response timeout". It's possible that
3336 	 * we are already too late, and that the timeout is
3337 	 * already running. And that's just too bad for us,
3338 	 * because we could lose our CTLX from the active
3339 	 * queue here ...
3340 	 */
3341 	if (del_timer(&hw->resptimer) == 0) {
3342 		if (hw->resp_timer_done == 0) {
3343 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3344 			goto retry;
3345 		}
3346 	} else {
3347 		hw->resp_timer_done = 1;
3348 	}
3349 
3350 	ctlx = get_active_ctlx(hw);
3351 
3352 	if (urb_status != 0) {
3353 		/*
3354 		 * Bad CTLX, so get rid of it. But we only
3355 		 * remove it from the active queue if we're no
3356 		 * longer expecting the OUT URB to complete.
3357 		 */
3358 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3359 			run_queue = 1;
3360 	} else {
3361 		const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3362 
3363 		/*
3364 		 * Check that our message is what we're expecting ...
3365 		 */
3366 		if (ctlx->outbuf.type != intype) {
3367 			printk(KERN_WARNING
3368 			       "Expected IN[%d], received IN[%d] - ignored.\n",
3369 			       le16_to_cpu(ctlx->outbuf.type),
3370 			       le16_to_cpu(intype));
3371 			goto unlock;
3372 		}
3373 
3374 		/* This URB has succeeded, so grab the data ... */
3375 		memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3376 
3377 		switch (ctlx->state) {
3378 		case CTLX_REQ_SUBMITTED:
3379 			/*
3380 			 * We have received our response URB before
3381 			 * our request has been acknowledged. Odd,
3382 			 * but our OUT URB is still alive...
3383 			 */
3384 			pr_debug("Causality violation: please reboot Universe\n");
3385 			ctlx->state = CTLX_RESP_COMPLETE;
3386 			break;
3387 
3388 		case CTLX_REQ_COMPLETE:
3389 			/*
3390 			 * This is the usual path: our request
3391 			 * has already been acknowledged, and
3392 			 * now we have received the reply too.
3393 			 */
3394 			ctlx->state = CTLX_COMPLETE;
3395 			unlocked_usbctlx_complete(hw, ctlx);
3396 			run_queue = 1;
3397 			break;
3398 
3399 		default:
3400 			/*
3401 			 * Throw this CTLX away ...
3402 			 */
3403 			printk(KERN_ERR
3404 			       "Matched IN URB, CTLX[%d] in invalid state(%s)."
3405 			       " Discarded.\n",
3406 			       le16_to_cpu(ctlx->outbuf.type),
3407 			       ctlxstr(ctlx->state));
3408 			if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3409 				run_queue = 1;
3410 			break;
3411 		}		/* switch */
3412 	}
3413 
3414 unlock:
3415 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3416 
3417 	if (run_queue)
3418 		hfa384x_usbctlxq_run(hw);
3419 }
3420 
3421 /*----------------------------------------------------------------
3422 * hfa384x_usbin_txcompl
3423 *
3424 * At this point we have the results of a previous transmit.
3425 *
3426 * Arguments:
3427 *	wlandev		wlan device
3428 *	usbin		ptr to the usb transfer buffer
3429 *
3430 * Returns:
3431 *	nothing
3432 *
3433 * Side effects:
3434 *
3435 * Call context:
3436 *	interrupt
3437 ----------------------------------------------------------------*/
hfa384x_usbin_txcompl(wlandevice_t * wlandev,hfa384x_usbin_t * usbin)3438 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3439 				  hfa384x_usbin_t *usbin)
3440 {
3441 	u16 status;
3442 
3443 	status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3444 
3445 	/* Was there an error? */
3446 	if (HFA384x_TXSTATUS_ISERROR(status))
3447 		prism2sta_ev_txexc(wlandev, status);
3448 	else
3449 		prism2sta_ev_tx(wlandev, status);
3450 }
3451 
3452 /*----------------------------------------------------------------
3453 * hfa384x_usbin_rx
3454 *
3455 * At this point we have a successful received a rx frame packet.
3456 *
3457 * Arguments:
3458 *	wlandev		wlan device
3459 *	usbin		ptr to the usb transfer buffer
3460 *
3461 * Returns:
3462 *	nothing
3463 *
3464 * Side effects:
3465 *
3466 * Call context:
3467 *	interrupt
3468 ----------------------------------------------------------------*/
hfa384x_usbin_rx(wlandevice_t * wlandev,struct sk_buff * skb)3469 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3470 {
3471 	hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3472 	hfa384x_t *hw = wlandev->priv;
3473 	int hdrlen;
3474 	struct p80211_rxmeta *rxmeta;
3475 	u16 data_len;
3476 	u16 fc;
3477 
3478 	/* Byte order convert once up front. */
3479 	usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3480 	usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3481 
3482 	/* Now handle frame based on port# */
3483 	switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3484 	case 0:
3485 		fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3486 
3487 		/* If exclude and we receive an unencrypted, drop it */
3488 		if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3489 		    !WLAN_GET_FC_ISWEP(fc)) {
3490 			goto done;
3491 		}
3492 
3493 		data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3494 
3495 		/* How much header data do we have? */
3496 		hdrlen = p80211_headerlen(fc);
3497 
3498 		/* Pull off the descriptor */
3499 		skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3500 
3501 		/* Now shunt the header block up against the data block
3502 		 * with an "overlapping" copy
3503 		 */
3504 		memmove(skb_push(skb, hdrlen),
3505 			&usbin->rxfrm.desc.frame_control, hdrlen);
3506 
3507 		skb->dev = wlandev->netdev;
3508 		skb->dev->last_rx = jiffies;
3509 
3510 		/* And set the frame length properly */
3511 		skb_trim(skb, data_len + hdrlen);
3512 
3513 		/* The prism2 series does not return the CRC */
3514 		memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3515 
3516 		skb_reset_mac_header(skb);
3517 
3518 		/* Attach the rxmeta, set some stuff */
3519 		p80211skb_rxmeta_attach(wlandev, skb);
3520 		rxmeta = P80211SKB_RXMETA(skb);
3521 		rxmeta->mactime = usbin->rxfrm.desc.time;
3522 		rxmeta->rxrate = usbin->rxfrm.desc.rate;
3523 		rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3524 		rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3525 
3526 		prism2sta_ev_rx(wlandev, skb);
3527 
3528 		break;
3529 
3530 	case 7:
3531 		if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3532 			/* Copy to wlansnif skb */
3533 			hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3534 			dev_kfree_skb(skb);
3535 		} else {
3536 			pr_debug("Received monitor frame: FCSerr set\n");
3537 		}
3538 		break;
3539 
3540 	default:
3541 		printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3542 		       HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3543 		goto done;
3544 		break;
3545 	}
3546 
3547 done:
3548 	return;
3549 }
3550 
3551 /*----------------------------------------------------------------
3552 * hfa384x_int_rxmonitor
3553 *
3554 * Helper function for int_rx.  Handles monitor frames.
3555 * Note that this function allocates space for the FCS and sets it
3556 * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3557 * higher layers expect it.  0xffffffff is used as a flag to indicate
3558 * the FCS is bogus.
3559 *
3560 * Arguments:
3561 *	wlandev		wlan device structure
3562 *	rxfrm		rx descriptor read from card in int_rx
3563 *
3564 * Returns:
3565 *	nothing
3566 *
3567 * Side effects:
3568 *	Allocates an skb and passes it up via the PF_PACKET interface.
3569 * Call context:
3570 *	interrupt
3571 ----------------------------------------------------------------*/
hfa384x_int_rxmonitor(wlandevice_t * wlandev,hfa384x_usb_rxfrm_t * rxfrm)3572 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3573 				  hfa384x_usb_rxfrm_t *rxfrm)
3574 {
3575 	hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3576 	unsigned int hdrlen = 0;
3577 	unsigned int datalen = 0;
3578 	unsigned int skblen = 0;
3579 	u8 *datap;
3580 	u16 fc;
3581 	struct sk_buff *skb;
3582 	hfa384x_t *hw = wlandev->priv;
3583 
3584 	/* Remember the status, time, and data_len fields are in host order */
3585 	/* Figure out how big the frame is */
3586 	fc = le16_to_cpu(rxdesc->frame_control);
3587 	hdrlen = p80211_headerlen(fc);
3588 	datalen = le16_to_cpu(rxdesc->data_len);
3589 
3590 	/* Allocate an ind message+framesize skb */
3591 	skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3592 
3593 	/* sanity check the length */
3594 	if (skblen >
3595 	    (sizeof(struct p80211_caphdr) +
3596 	     WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3597 		pr_debug("overlen frm: len=%zd\n",
3598 			 skblen - sizeof(struct p80211_caphdr));
3599 	}
3600 
3601 	skb = dev_alloc_skb(skblen);
3602 	if (skb == NULL) {
3603 		printk(KERN_ERR
3604 		       "alloc_skb failed trying to allocate %d bytes\n",
3605 		       skblen);
3606 		return;
3607 	}
3608 
3609 	/* only prepend the prism header if in the right mode */
3610 	if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3611 	    (hw->sniffhdr != 0)) {
3612 		struct p80211_caphdr *caphdr;
3613 		/* The NEW header format! */
3614 		datap = skb_put(skb, sizeof(struct p80211_caphdr));
3615 		caphdr = (struct p80211_caphdr *) datap;
3616 
3617 		caphdr->version = htonl(P80211CAPTURE_VERSION);
3618 		caphdr->length = htonl(sizeof(struct p80211_caphdr));
3619 		caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3620 		caphdr->hosttime = __cpu_to_be64(jiffies);
3621 		caphdr->phytype = htonl(4);	/* dss_dot11_b */
3622 		caphdr->channel = htonl(hw->sniff_channel);
3623 		caphdr->datarate = htonl(rxdesc->rate);
3624 		caphdr->antenna = htonl(0);	/* unknown */
3625 		caphdr->priority = htonl(0);	/* unknown */
3626 		caphdr->ssi_type = htonl(3);	/* rssi_raw */
3627 		caphdr->ssi_signal = htonl(rxdesc->signal);
3628 		caphdr->ssi_noise = htonl(rxdesc->silence);
3629 		caphdr->preamble = htonl(0);	/* unknown */
3630 		caphdr->encoding = htonl(1);	/* cck */
3631 	}
3632 
3633 	/* Copy the 802.11 header to the skb
3634 	   (ctl frames may be less than a full header) */
3635 	datap = skb_put(skb, hdrlen);
3636 	memcpy(datap, &(rxdesc->frame_control), hdrlen);
3637 
3638 	/* If any, copy the data from the card to the skb */
3639 	if (datalen > 0) {
3640 		datap = skb_put(skb, datalen);
3641 		memcpy(datap, rxfrm->data, datalen);
3642 
3643 		/* check for unencrypted stuff if WEP bit set. */
3644 		if (*(datap - hdrlen + 1) & 0x40)	/* wep set */
3645 			if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3646 				/* clear wep; it's the 802.2 header! */
3647 				*(datap - hdrlen + 1) &= 0xbf;
3648 	}
3649 
3650 	if (hw->sniff_fcs) {
3651 		/* Set the FCS */
3652 		datap = skb_put(skb, WLAN_CRC_LEN);
3653 		memset(datap, 0xff, WLAN_CRC_LEN);
3654 	}
3655 
3656 	/* pass it back up */
3657 	prism2sta_ev_rx(wlandev, skb);
3658 
3659 	return;
3660 }
3661 
3662 /*----------------------------------------------------------------
3663 * hfa384x_usbin_info
3664 *
3665 * At this point we have a successful received a Prism2 info frame.
3666 *
3667 * Arguments:
3668 *	wlandev		wlan device
3669 *	usbin		ptr to the usb transfer buffer
3670 *
3671 * Returns:
3672 *	nothing
3673 *
3674 * Side effects:
3675 *
3676 * Call context:
3677 *	interrupt
3678 ----------------------------------------------------------------*/
hfa384x_usbin_info(wlandevice_t * wlandev,hfa384x_usbin_t * usbin)3679 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3680 {
3681 	usbin->infofrm.info.framelen =
3682 	    le16_to_cpu(usbin->infofrm.info.framelen);
3683 	prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3684 }
3685 
3686 /*----------------------------------------------------------------
3687 * hfa384x_usbout_callback
3688 *
3689 * Callback for URBs on the BULKOUT endpoint.
3690 *
3691 * Arguments:
3692 *	urb		ptr to the completed urb
3693 *
3694 * Returns:
3695 *	nothing
3696 *
3697 * Side effects:
3698 *
3699 * Call context:
3700 *	interrupt
3701 ----------------------------------------------------------------*/
hfa384x_usbout_callback(struct urb * urb)3702 static void hfa384x_usbout_callback(struct urb *urb)
3703 {
3704 	wlandevice_t *wlandev = urb->context;
3705 	hfa384x_usbout_t *usbout = urb->transfer_buffer;
3706 
3707 #ifdef DEBUG_USB
3708 	dbprint_urb(urb);
3709 #endif
3710 
3711 	if (wlandev && wlandev->netdev) {
3712 
3713 		switch (urb->status) {
3714 		case 0:
3715 			hfa384x_usbout_tx(wlandev, usbout);
3716 			break;
3717 
3718 		case -EPIPE:
3719 			{
3720 				hfa384x_t *hw = wlandev->priv;
3721 				printk(KERN_WARNING
3722 				       "%s tx pipe stalled: requesting reset\n",
3723 				       wlandev->netdev->name);
3724 				if (!test_and_set_bit
3725 				    (WORK_TX_HALT, &hw->usb_flags))
3726 					schedule_work(&hw->usb_work);
3727 				++(wlandev->linux_stats.tx_errors);
3728 				break;
3729 			}
3730 
3731 		case -EPROTO:
3732 		case -ETIMEDOUT:
3733 		case -EILSEQ:
3734 			{
3735 				hfa384x_t *hw = wlandev->priv;
3736 
3737 				if (!test_and_set_bit
3738 				    (THROTTLE_TX, &hw->usb_flags)
3739 				    && !timer_pending(&hw->throttle)) {
3740 					mod_timer(&hw->throttle,
3741 						  jiffies + THROTTLE_JIFFIES);
3742 				}
3743 				++(wlandev->linux_stats.tx_errors);
3744 				netif_stop_queue(wlandev->netdev);
3745 				break;
3746 			}
3747 
3748 		case -ENOENT:
3749 		case -ESHUTDOWN:
3750 			/* Ignorable errors */
3751 			break;
3752 
3753 		default:
3754 			printk(KERN_INFO "unknown urb->status=%d\n",
3755 			       urb->status);
3756 			++(wlandev->linux_stats.tx_errors);
3757 			break;
3758 		}		/* switch */
3759 	}
3760 }
3761 
3762 /*----------------------------------------------------------------
3763 * hfa384x_ctlxout_callback
3764 *
3765 * Callback for control data on the BULKOUT endpoint.
3766 *
3767 * Arguments:
3768 *	urb		ptr to the completed urb
3769 *
3770 * Returns:
3771 * nothing
3772 *
3773 * Side effects:
3774 *
3775 * Call context:
3776 * interrupt
3777 ----------------------------------------------------------------*/
hfa384x_ctlxout_callback(struct urb * urb)3778 static void hfa384x_ctlxout_callback(struct urb *urb)
3779 {
3780 	hfa384x_t *hw = urb->context;
3781 	int delete_resptimer = 0;
3782 	int timer_ok = 1;
3783 	int run_queue = 0;
3784 	hfa384x_usbctlx_t *ctlx;
3785 	unsigned long flags;
3786 
3787 	pr_debug("urb->status=%d\n", urb->status);
3788 #ifdef DEBUG_USB
3789 	dbprint_urb(urb);
3790 #endif
3791 	if ((urb->status == -ESHUTDOWN) ||
3792 	    (urb->status == -ENODEV) || (hw == NULL))
3793 		goto done;
3794 
3795 retry:
3796 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3797 
3798 	/*
3799 	 * Only one CTLX at a time on the "active" list, and
3800 	 * none at all if we are unplugged. However, we can
3801 	 * rely on the disconnect function to clean everything
3802 	 * up if someone unplugged the adapter.
3803 	 */
3804 	if (list_empty(&hw->ctlxq.active)) {
3805 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3806 		goto done;
3807 	}
3808 
3809 	/*
3810 	 * Having something on the "active" queue means
3811 	 * that we have timers to worry about ...
3812 	 */
3813 	if (del_timer(&hw->reqtimer) == 0) {
3814 		if (hw->req_timer_done == 0) {
3815 			/*
3816 			 * This timer was actually running while we
3817 			 * were trying to delete it. Let it terminate
3818 			 * gracefully instead.
3819 			 */
3820 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3821 			goto retry;
3822 		}
3823 	} else {
3824 		hw->req_timer_done = 1;
3825 	}
3826 
3827 	ctlx = get_active_ctlx(hw);
3828 
3829 	if (urb->status == 0) {
3830 		/* Request portion of a CTLX is successful */
3831 		switch (ctlx->state) {
3832 		case CTLX_REQ_SUBMITTED:
3833 			/* This OUT-ACK received before IN */
3834 			ctlx->state = CTLX_REQ_COMPLETE;
3835 			break;
3836 
3837 		case CTLX_RESP_COMPLETE:
3838 			/* IN already received before this OUT-ACK,
3839 			 * so this command must now be complete.
3840 			 */
3841 			ctlx->state = CTLX_COMPLETE;
3842 			unlocked_usbctlx_complete(hw, ctlx);
3843 			run_queue = 1;
3844 			break;
3845 
3846 		default:
3847 			/* This is NOT a valid CTLX "success" state! */
3848 			printk(KERN_ERR
3849 				"Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3850 				le16_to_cpu(ctlx->outbuf.type),
3851 				ctlxstr(ctlx->state), urb->status);
3852 			break;
3853 		}		/* switch */
3854 	} else {
3855 		/* If the pipe has stalled then we need to reset it */
3856 		if ((urb->status == -EPIPE) &&
3857 		    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3858 			printk(KERN_WARNING
3859 			       "%s tx pipe stalled: requesting reset\n",
3860 			       hw->wlandev->netdev->name);
3861 			schedule_work(&hw->usb_work);
3862 		}
3863 
3864 		/* If someone cancels the OUT URB then its status
3865 		 * should be either -ECONNRESET or -ENOENT.
3866 		 */
3867 		ctlx->state = CTLX_REQ_FAILED;
3868 		unlocked_usbctlx_complete(hw, ctlx);
3869 		delete_resptimer = 1;
3870 		run_queue = 1;
3871 	}
3872 
3873 delresp:
3874 	if (delete_resptimer) {
3875 		timer_ok = del_timer(&hw->resptimer);
3876 		if (timer_ok != 0)
3877 			hw->resp_timer_done = 1;
3878 	}
3879 
3880 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3881 
3882 	if (!timer_ok && (hw->resp_timer_done == 0)) {
3883 		spin_lock_irqsave(&hw->ctlxq.lock, flags);
3884 		goto delresp;
3885 	}
3886 
3887 	if (run_queue)
3888 		hfa384x_usbctlxq_run(hw);
3889 
3890 done:
3891 	;
3892 }
3893 
3894 /*----------------------------------------------------------------
3895 * hfa384x_usbctlx_reqtimerfn
3896 *
3897 * Timer response function for CTLX request timeouts.  If this
3898 * function is called, it means that the callback for the OUT
3899 * URB containing a Prism2.x XXX_Request was never called.
3900 *
3901 * Arguments:
3902 *	data		a ptr to the hfa384x_t
3903 *
3904 * Returns:
3905 *	nothing
3906 *
3907 * Side effects:
3908 *
3909 * Call context:
3910 *	interrupt
3911 ----------------------------------------------------------------*/
hfa384x_usbctlx_reqtimerfn(unsigned long data)3912 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3913 {
3914 	hfa384x_t *hw = (hfa384x_t *) data;
3915 	unsigned long flags;
3916 
3917 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3918 
3919 	hw->req_timer_done = 1;
3920 
3921 	/* Removing the hardware automatically empties
3922 	 * the active list ...
3923 	 */
3924 	if (!list_empty(&hw->ctlxq.active)) {
3925 		/*
3926 		 * We must ensure that our URB is removed from
3927 		 * the system, if it hasn't already expired.
3928 		 */
3929 		hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3930 		if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3931 			hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3932 
3933 			ctlx->state = CTLX_REQ_FAILED;
3934 
3935 			/* This URB was active, but has now been
3936 			 * cancelled. It will now have a status of
3937 			 * -ECONNRESET in the callback function.
3938 			 *
3939 			 * We are cancelling this CTLX, so we're
3940 			 * not going to need to wait for a response.
3941 			 * The URB's callback function will check
3942 			 * that this timer is truly dead.
3943 			 */
3944 			if (del_timer(&hw->resptimer) != 0)
3945 				hw->resp_timer_done = 1;
3946 		}
3947 	}
3948 
3949 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3950 }
3951 
3952 /*----------------------------------------------------------------
3953 * hfa384x_usbctlx_resptimerfn
3954 *
3955 * Timer response function for CTLX response timeouts.  If this
3956 * function is called, it means that the callback for the IN
3957 * URB containing a Prism2.x XXX_Response was never called.
3958 *
3959 * Arguments:
3960 *	data		a ptr to the hfa384x_t
3961 *
3962 * Returns:
3963 *	nothing
3964 *
3965 * Side effects:
3966 *
3967 * Call context:
3968 *	interrupt
3969 ----------------------------------------------------------------*/
hfa384x_usbctlx_resptimerfn(unsigned long data)3970 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3971 {
3972 	hfa384x_t *hw = (hfa384x_t *) data;
3973 	unsigned long flags;
3974 
3975 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3976 
3977 	hw->resp_timer_done = 1;
3978 
3979 	/* The active list will be empty if the
3980 	 * adapter has been unplugged ...
3981 	 */
3982 	if (!list_empty(&hw->ctlxq.active)) {
3983 		hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3984 
3985 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3986 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3987 			hfa384x_usbctlxq_run(hw);
3988 			goto done;
3989 		}
3990 	}
3991 
3992 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3993 
3994 done:
3995 	;
3996 
3997 }
3998 
3999 /*----------------------------------------------------------------
4000 * hfa384x_usb_throttlefn
4001 *
4002 *
4003 * Arguments:
4004 *	data	ptr to hw
4005 *
4006 * Returns:
4007 *	Nothing
4008 *
4009 * Side effects:
4010 *
4011 * Call context:
4012 *	Interrupt
4013 ----------------------------------------------------------------*/
hfa384x_usb_throttlefn(unsigned long data)4014 static void hfa384x_usb_throttlefn(unsigned long data)
4015 {
4016 	hfa384x_t *hw = (hfa384x_t *) data;
4017 	unsigned long flags;
4018 
4019 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
4020 
4021 	/*
4022 	 * We need to check BOTH the RX and the TX throttle controls,
4023 	 * so we use the bitwise OR instead of the logical OR.
4024 	 */
4025 	pr_debug("flags=0x%lx\n", hw->usb_flags);
4026 	if (!hw->wlandev->hwremoved &&
4027 	    ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4028 	      !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4029 	     |
4030 	     (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4031 	      !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4032 	    )) {
4033 		schedule_work(&hw->usb_work);
4034 	}
4035 
4036 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4037 }
4038 
4039 /*----------------------------------------------------------------
4040 * hfa384x_usbctlx_submit
4041 *
4042 * Called from the doxxx functions to submit a CTLX to the queue
4043 *
4044 * Arguments:
4045 *	hw		ptr to the hw struct
4046 *	ctlx		ctlx structure to enqueue
4047 *
4048 * Returns:
4049 *	-ENODEV if the adapter is unplugged
4050 *	0
4051 *
4052 * Side effects:
4053 *
4054 * Call context:
4055 *	process or interrupt
4056 ----------------------------------------------------------------*/
hfa384x_usbctlx_submit(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)4057 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4058 {
4059 	unsigned long flags;
4060 	int ret;
4061 
4062 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
4063 
4064 	if (hw->wlandev->hwremoved) {
4065 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4066 		ret = -ENODEV;
4067 	} else {
4068 		ctlx->state = CTLX_PENDING;
4069 		list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4070 
4071 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4072 		hfa384x_usbctlxq_run(hw);
4073 		ret = 0;
4074 	}
4075 
4076 	return ret;
4077 }
4078 
4079 /*----------------------------------------------------------------
4080 * hfa384x_usbout_tx
4081 *
4082 * At this point we have finished a send of a frame.  Mark the URB
4083 * as available and call ev_alloc to notify higher layers we're
4084 * ready for more.
4085 *
4086 * Arguments:
4087 *	wlandev		wlan device
4088 *	usbout		ptr to the usb transfer buffer
4089 *
4090 * Returns:
4091 *	nothing
4092 *
4093 * Side effects:
4094 *
4095 * Call context:
4096 *	interrupt
4097 ----------------------------------------------------------------*/
hfa384x_usbout_tx(wlandevice_t * wlandev,hfa384x_usbout_t * usbout)4098 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4099 {
4100 	prism2sta_ev_alloc(wlandev);
4101 }
4102 
4103 /*----------------------------------------------------------------
4104 * hfa384x_isgood_pdrcore
4105 *
4106 * Quick check of PDR codes.
4107 *
4108 * Arguments:
4109 *	pdrcode		PDR code number (host order)
4110 *
4111 * Returns:
4112 *	zero		not good.
4113 *	one		is good.
4114 *
4115 * Side effects:
4116 *
4117 * Call context:
4118 ----------------------------------------------------------------*/
hfa384x_isgood_pdrcode(u16 pdrcode)4119 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4120 {
4121 	switch (pdrcode) {
4122 	case HFA384x_PDR_END_OF_PDA:
4123 	case HFA384x_PDR_PCB_PARTNUM:
4124 	case HFA384x_PDR_PDAVER:
4125 	case HFA384x_PDR_NIC_SERIAL:
4126 	case HFA384x_PDR_MKK_MEASUREMENTS:
4127 	case HFA384x_PDR_NIC_RAMSIZE:
4128 	case HFA384x_PDR_MFISUPRANGE:
4129 	case HFA384x_PDR_CFISUPRANGE:
4130 	case HFA384x_PDR_NICID:
4131 	case HFA384x_PDR_MAC_ADDRESS:
4132 	case HFA384x_PDR_REGDOMAIN:
4133 	case HFA384x_PDR_ALLOWED_CHANNEL:
4134 	case HFA384x_PDR_DEFAULT_CHANNEL:
4135 	case HFA384x_PDR_TEMPTYPE:
4136 	case HFA384x_PDR_IFR_SETTING:
4137 	case HFA384x_PDR_RFR_SETTING:
4138 	case HFA384x_PDR_HFA3861_BASELINE:
4139 	case HFA384x_PDR_HFA3861_SHADOW:
4140 	case HFA384x_PDR_HFA3861_IFRF:
4141 	case HFA384x_PDR_HFA3861_CHCALSP:
4142 	case HFA384x_PDR_HFA3861_CHCALI:
4143 	case HFA384x_PDR_3842_NIC_CONFIG:
4144 	case HFA384x_PDR_USB_ID:
4145 	case HFA384x_PDR_PCI_ID:
4146 	case HFA384x_PDR_PCI_IFCONF:
4147 	case HFA384x_PDR_PCI_PMCONF:
4148 	case HFA384x_PDR_RFENRGY:
4149 	case HFA384x_PDR_HFA3861_MANF_TESTSP:
4150 	case HFA384x_PDR_HFA3861_MANF_TESTI:
4151 		/* code is OK */
4152 		return 1;
4153 		break;
4154 	default:
4155 		if (pdrcode < 0x1000) {
4156 			/* code is OK, but we don't know exactly what it is */
4157 			pr_debug("Encountered unknown PDR#=0x%04x, "
4158 				 "assuming it's ok.\n", pdrcode);
4159 			return 1;
4160 		} else {
4161 			/* bad code */
4162 			pr_debug("Encountered unknown PDR#=0x%04x, "
4163 				 "(>=0x1000), assuming it's bad.\n", pdrcode);
4164 			return 0;
4165 		}
4166 		break;
4167 	}
4168 	return 0;		/* avoid compiler warnings */
4169 }
4170