1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2  *
3  * Copyright 2016-2022 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABS_H_
9 #define HABANALABS_H_
10 
11 #include <linux/types.h>
12 #include <linux/ioctl.h>
13 
14 /*
15  * Defines that are asic-specific but constitutes as ABI between kernel driver
16  * and userspace
17  */
18 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
19 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
20 
21 /*
22  * 128 SOBs reserved for collective wait
23  * 16 SOBs reserved for sync stream
24  */
25 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
26 
27 /*
28  * 64 monitors reserved for collective wait
29  * 8 monitors reserved for sync stream
30  */
31 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
32 
33 /* Max number of elements in timestamps registration buffers */
34 #define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
35 
36 /*
37  * Goya queue Numbering
38  *
39  * The external queues (PCI DMA channels) MUST be before the internal queues
40  * and each group (PCI DMA channels and internal) must be contiguous inside
41  * itself but there can be a gap between the two groups (although not
42  * recommended)
43  */
44 
45 enum goya_queue_id {
46 	GOYA_QUEUE_ID_DMA_0 = 0,
47 	GOYA_QUEUE_ID_DMA_1 = 1,
48 	GOYA_QUEUE_ID_DMA_2 = 2,
49 	GOYA_QUEUE_ID_DMA_3 = 3,
50 	GOYA_QUEUE_ID_DMA_4 = 4,
51 	GOYA_QUEUE_ID_CPU_PQ = 5,
52 	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
53 	GOYA_QUEUE_ID_TPC0 = 7,
54 	GOYA_QUEUE_ID_TPC1 = 8,
55 	GOYA_QUEUE_ID_TPC2 = 9,
56 	GOYA_QUEUE_ID_TPC3 = 10,
57 	GOYA_QUEUE_ID_TPC4 = 11,
58 	GOYA_QUEUE_ID_TPC5 = 12,
59 	GOYA_QUEUE_ID_TPC6 = 13,
60 	GOYA_QUEUE_ID_TPC7 = 14,
61 	GOYA_QUEUE_ID_SIZE
62 };
63 
64 /*
65  * Gaudi queue Numbering
66  * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
67  * Except one CPU queue, all the rest are internal queues.
68  */
69 
70 enum gaudi_queue_id {
71 	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
72 	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
73 	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
74 	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
75 	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
76 	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
77 	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
78 	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
79 	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
80 	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
81 	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
82 	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
83 	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
84 	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
85 	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
86 	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
87 	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
88 	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
89 	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
90 	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
91 	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
92 	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
93 	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
94 	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
95 	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
96 	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
97 	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
98 	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
99 	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
100 	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
101 	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
102 	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
103 	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
104 	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
105 	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
106 	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
107 	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
108 	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
109 	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
110 	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
111 	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
112 	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
113 	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
114 	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
115 	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
116 	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
117 	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
118 	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
119 	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
120 	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
121 	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
122 	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
123 	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
124 	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
125 	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
126 	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
127 	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
128 	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
129 	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
130 	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
131 	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
132 	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
133 	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
134 	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
135 	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
136 	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
137 	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
138 	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
139 	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
140 	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
141 	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
142 	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
143 	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
144 	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
145 	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
146 	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
147 	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
148 	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
149 	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
150 	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
151 	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
152 	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
153 	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
154 	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
155 	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
156 	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
157 	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
158 	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
159 	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
160 	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
161 	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
162 	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
163 	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
164 	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
165 	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
166 	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
167 	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
168 	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
169 	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
170 	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
171 	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
172 	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
173 	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
174 	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
175 	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
176 	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
177 	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
178 	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
179 	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
180 	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
181 	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
182 	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
183 	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
184 	GAUDI_QUEUE_ID_SIZE
185 };
186 
187 /*
188  * In GAUDI2 we have two modes of operation in regard to queues:
189  * 1. Legacy mode, where each QMAN exposes 4 streams to the user
190  * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
191  *
192  * When in legacy mode, the user sends the queue id per JOB according to
193  * enum gaudi2_queue_id below.
194  *
195  * When in F/W mode, the user sends a stream id per Command Submission. The
196  * stream id is a running number from 0 up to (N-1), where N is the number
197  * of streams the F/W exposes and is passed to the user in
198  * struct hl_info_hw_ip_info
199  */
200 
201 enum gaudi2_queue_id {
202 	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
203 	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
204 	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
205 	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
206 	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
207 	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
208 	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
209 	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
210 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
211 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
212 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
213 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
214 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
215 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
216 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
217 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
218 	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
219 	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
220 	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
221 	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
222 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
223 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
224 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
225 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
226 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
227 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
228 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
229 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
230 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
231 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
232 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
233 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
234 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
235 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
236 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
237 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
238 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
239 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
240 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
241 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
242 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
243 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
244 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
245 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
246 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
247 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
248 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
249 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
250 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
251 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
252 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
253 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
254 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
255 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
256 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
257 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
258 	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
259 	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
260 	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
261 	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
262 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
263 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
264 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
265 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
266 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
267 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
268 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
269 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
270 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
271 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
272 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
273 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
274 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
275 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
276 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
277 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
278 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
279 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
280 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
281 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
282 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
283 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
284 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
285 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
286 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
287 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
288 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
289 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
290 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
291 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
292 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
293 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
294 	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
295 	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
296 	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
297 	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
298 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
299 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
300 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
301 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
302 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
303 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
304 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
305 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
306 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
307 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
308 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
309 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
310 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
311 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
312 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
313 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
314 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
315 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
316 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
317 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
318 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
319 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
320 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
321 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
322 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
323 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
324 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
325 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
326 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
327 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
328 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
329 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
330 	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
331 	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
332 	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
333 	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
334 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
335 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
336 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
337 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
338 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
339 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
340 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
341 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
342 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
343 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
344 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
345 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
346 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
347 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
348 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
349 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
350 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
351 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
352 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
353 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
354 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
355 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
356 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
357 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
358 	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
359 	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
360 	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
361 	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
362 	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
363 	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
364 	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
365 	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
366 	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
367 	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
368 	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
369 	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
370 	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
371 	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
372 	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
373 	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
374 	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
375 	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
376 	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
377 	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
378 	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
379 	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
380 	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
381 	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
382 	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
383 	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
384 	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
385 	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
386 	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
387 	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
388 	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
389 	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
390 	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
391 	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
392 	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
393 	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
394 	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
395 	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
396 	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
397 	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
398 	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
399 	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
400 	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
401 	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
402 	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
403 	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
404 	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
405 	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
406 	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
407 	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
408 	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
409 	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
410 	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
411 	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
412 	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
413 	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
414 	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
415 	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
416 	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
417 	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
418 	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
419 	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
420 	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
421 	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
422 	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
423 	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
424 	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
425 	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
426 	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
427 	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
428 	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
429 	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
430 	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
431 	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
432 	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
433 	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
434 	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
435 	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
436 	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
437 	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
438 	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
439 	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
440 	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
441 	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
442 	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
443 	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
444 	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
445 	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
446 	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
447 	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
448 	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
449 	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
450 	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
451 	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
452 	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
453 	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
454 	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
455 	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
456 	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
457 	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
458 	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
459 	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
460 	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
461 	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
462 	GAUDI2_QUEUE_ID_CPU_PQ = 260,
463 	GAUDI2_QUEUE_ID_SIZE
464 };
465 
466 /*
467  * Engine Numbering
468  *
469  * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
470  */
471 
472 enum goya_engine_id {
473 	GOYA_ENGINE_ID_DMA_0 = 0,
474 	GOYA_ENGINE_ID_DMA_1,
475 	GOYA_ENGINE_ID_DMA_2,
476 	GOYA_ENGINE_ID_DMA_3,
477 	GOYA_ENGINE_ID_DMA_4,
478 	GOYA_ENGINE_ID_MME_0,
479 	GOYA_ENGINE_ID_TPC_0,
480 	GOYA_ENGINE_ID_TPC_1,
481 	GOYA_ENGINE_ID_TPC_2,
482 	GOYA_ENGINE_ID_TPC_3,
483 	GOYA_ENGINE_ID_TPC_4,
484 	GOYA_ENGINE_ID_TPC_5,
485 	GOYA_ENGINE_ID_TPC_6,
486 	GOYA_ENGINE_ID_TPC_7,
487 	GOYA_ENGINE_ID_SIZE
488 };
489 
490 enum gaudi_engine_id {
491 	GAUDI_ENGINE_ID_DMA_0 = 0,
492 	GAUDI_ENGINE_ID_DMA_1,
493 	GAUDI_ENGINE_ID_DMA_2,
494 	GAUDI_ENGINE_ID_DMA_3,
495 	GAUDI_ENGINE_ID_DMA_4,
496 	GAUDI_ENGINE_ID_DMA_5,
497 	GAUDI_ENGINE_ID_DMA_6,
498 	GAUDI_ENGINE_ID_DMA_7,
499 	GAUDI_ENGINE_ID_MME_0,
500 	GAUDI_ENGINE_ID_MME_1,
501 	GAUDI_ENGINE_ID_MME_2,
502 	GAUDI_ENGINE_ID_MME_3,
503 	GAUDI_ENGINE_ID_TPC_0,
504 	GAUDI_ENGINE_ID_TPC_1,
505 	GAUDI_ENGINE_ID_TPC_2,
506 	GAUDI_ENGINE_ID_TPC_3,
507 	GAUDI_ENGINE_ID_TPC_4,
508 	GAUDI_ENGINE_ID_TPC_5,
509 	GAUDI_ENGINE_ID_TPC_6,
510 	GAUDI_ENGINE_ID_TPC_7,
511 	GAUDI_ENGINE_ID_NIC_0,
512 	GAUDI_ENGINE_ID_NIC_1,
513 	GAUDI_ENGINE_ID_NIC_2,
514 	GAUDI_ENGINE_ID_NIC_3,
515 	GAUDI_ENGINE_ID_NIC_4,
516 	GAUDI_ENGINE_ID_NIC_5,
517 	GAUDI_ENGINE_ID_NIC_6,
518 	GAUDI_ENGINE_ID_NIC_7,
519 	GAUDI_ENGINE_ID_NIC_8,
520 	GAUDI_ENGINE_ID_NIC_9,
521 	GAUDI_ENGINE_ID_SIZE
522 };
523 
524 enum gaudi2_engine_id {
525 	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
526 	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
527 	GAUDI2_DCORE0_ENGINE_ID_MME,
528 	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
529 	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
530 	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
531 	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
532 	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
533 	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
534 	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
535 	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
536 	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
537 	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
538 	GAUDI2_DCORE1_ENGINE_ID_MME,
539 	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
540 	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
541 	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
542 	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
543 	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
544 	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
545 	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
546 	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
547 	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
548 	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
549 	GAUDI2_DCORE2_ENGINE_ID_MME,
550 	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
551 	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
552 	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
553 	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
554 	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
555 	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
556 	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
557 	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
558 	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
559 	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
560 	GAUDI2_DCORE3_ENGINE_ID_MME,
561 	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
562 	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
563 	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
564 	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
565 	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
566 	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
567 	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
568 	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
569 	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
570 	GAUDI2_ENGINE_ID_PDMA_0,
571 	GAUDI2_ENGINE_ID_PDMA_1,
572 	GAUDI2_ENGINE_ID_ROT_0,
573 	GAUDI2_ENGINE_ID_ROT_1,
574 	GAUDI2_PCIE_ENGINE_ID_DEC_0,
575 	GAUDI2_PCIE_ENGINE_ID_DEC_1,
576 	GAUDI2_ENGINE_ID_NIC0_0,
577 	GAUDI2_ENGINE_ID_NIC0_1,
578 	GAUDI2_ENGINE_ID_NIC1_0,
579 	GAUDI2_ENGINE_ID_NIC1_1,
580 	GAUDI2_ENGINE_ID_NIC2_0,
581 	GAUDI2_ENGINE_ID_NIC2_1,
582 	GAUDI2_ENGINE_ID_NIC3_0,
583 	GAUDI2_ENGINE_ID_NIC3_1,
584 	GAUDI2_ENGINE_ID_NIC4_0,
585 	GAUDI2_ENGINE_ID_NIC4_1,
586 	GAUDI2_ENGINE_ID_NIC5_0,
587 	GAUDI2_ENGINE_ID_NIC5_1,
588 	GAUDI2_ENGINE_ID_NIC6_0,
589 	GAUDI2_ENGINE_ID_NIC6_1,
590 	GAUDI2_ENGINE_ID_NIC7_0,
591 	GAUDI2_ENGINE_ID_NIC7_1,
592 	GAUDI2_ENGINE_ID_NIC8_0,
593 	GAUDI2_ENGINE_ID_NIC8_1,
594 	GAUDI2_ENGINE_ID_NIC9_0,
595 	GAUDI2_ENGINE_ID_NIC9_1,
596 	GAUDI2_ENGINE_ID_NIC10_0,
597 	GAUDI2_ENGINE_ID_NIC10_1,
598 	GAUDI2_ENGINE_ID_NIC11_0,
599 	GAUDI2_ENGINE_ID_NIC11_1,
600 	GAUDI2_ENGINE_ID_SIZE
601 };
602 
603 /*
604  * ASIC specific PLL index
605  *
606  * Used to retrieve in frequency info of different IPs via
607  * HL_INFO_PLL_FREQUENCY under HL_IOCTL_INFO IOCTL. The enums need to be
608  * used as an index in struct hl_pll_frequency_info
609  */
610 
611 enum hl_goya_pll_index {
612 	HL_GOYA_CPU_PLL = 0,
613 	HL_GOYA_IC_PLL,
614 	HL_GOYA_MC_PLL,
615 	HL_GOYA_MME_PLL,
616 	HL_GOYA_PCI_PLL,
617 	HL_GOYA_EMMC_PLL,
618 	HL_GOYA_TPC_PLL,
619 	HL_GOYA_PLL_MAX
620 };
621 
622 enum hl_gaudi_pll_index {
623 	HL_GAUDI_CPU_PLL = 0,
624 	HL_GAUDI_PCI_PLL,
625 	HL_GAUDI_SRAM_PLL,
626 	HL_GAUDI_HBM_PLL,
627 	HL_GAUDI_NIC_PLL,
628 	HL_GAUDI_DMA_PLL,
629 	HL_GAUDI_MESH_PLL,
630 	HL_GAUDI_MME_PLL,
631 	HL_GAUDI_TPC_PLL,
632 	HL_GAUDI_IF_PLL,
633 	HL_GAUDI_PLL_MAX
634 };
635 
636 enum hl_gaudi2_pll_index {
637 	HL_GAUDI2_CPU_PLL = 0,
638 	HL_GAUDI2_PCI_PLL,
639 	HL_GAUDI2_SRAM_PLL,
640 	HL_GAUDI2_HBM_PLL,
641 	HL_GAUDI2_NIC_PLL,
642 	HL_GAUDI2_DMA_PLL,
643 	HL_GAUDI2_MESH_PLL,
644 	HL_GAUDI2_MME_PLL,
645 	HL_GAUDI2_TPC_PLL,
646 	HL_GAUDI2_IF_PLL,
647 	HL_GAUDI2_VID_PLL,
648 	HL_GAUDI2_MSS_PLL,
649 	HL_GAUDI2_PLL_MAX
650 };
651 
652 /**
653  * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
654  *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
655  *                              to the H/W but the kernel driver use it to parse the packet's
656  *                              addresses and patch/validate them.
657  * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
658  * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
659  * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
660  * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
661  * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
662  * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
663  * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
664  * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
665  * @HL_DMA_ENUM_MAX: number of values in enum
666  */
667 enum hl_goya_dma_direction {
668 	HL_DMA_HOST_TO_DRAM,
669 	HL_DMA_HOST_TO_SRAM,
670 	HL_DMA_DRAM_TO_SRAM,
671 	HL_DMA_SRAM_TO_DRAM,
672 	HL_DMA_SRAM_TO_HOST,
673 	HL_DMA_DRAM_TO_HOST,
674 	HL_DMA_DRAM_TO_DRAM,
675 	HL_DMA_SRAM_TO_SRAM,
676 	HL_DMA_ENUM_MAX
677 };
678 
679 /**
680  * enum hl_device_status - Device status information.
681  * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
682  * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
683  * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
684  * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
685  * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
686  *                                       progress.
687  * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
688  *                                                  triggered because the user released the device
689  * @HL_DEVICE_STATUS_LAST: Last status.
690  */
691 enum hl_device_status {
692 	HL_DEVICE_STATUS_OPERATIONAL,
693 	HL_DEVICE_STATUS_IN_RESET,
694 	HL_DEVICE_STATUS_MALFUNCTION,
695 	HL_DEVICE_STATUS_NEEDS_RESET,
696 	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
697 	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
698 	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
699 };
700 
701 enum hl_server_type {
702 	HL_SERVER_TYPE_UNKNOWN = 0,
703 	HL_SERVER_GAUDI_HLS1 = 1,
704 	HL_SERVER_GAUDI_HLS1H = 2,
705 	HL_SERVER_GAUDI_TYPE1 = 3,
706 	HL_SERVER_GAUDI_TYPE2 = 4,
707 	HL_SERVER_GAUDI2_HLS2 = 5
708 };
709 
710 /*
711  * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
712  *
713  * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
714  * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
715  * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
716  * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
717  * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
718  * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
719  * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
720  */
721 #define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
722 #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
723 #define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
724 #define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
725 #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
726 #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
727 #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
728 
729 /* Opcode for management ioctl
730  *
731  * HW_IP_INFO            - Receive information about different IP blocks in the
732  *                         device.
733  * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
734  *                         occurred since the last hard reset.
735  * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
736  *                         specific context. This is relevant only for devices
737  *                         where the dram is managed by the kernel driver
738  * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
739  *                         internal engine.
740  * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
741  *                         require an open context.
742  * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
743  *                               over the last period specified by the user.
744  *                               The period can be between 100ms to 1s, in
745  *                               resolution of 100ms. The return value is a
746  *                               percentage of the utilization rate.
747  * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
748  *                               event occurred since the driver was loaded.
749  * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
750  *                               of the device in MHz. The maximum clock rate is
751  *                               configurable via sysfs parameter
752  * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
753  *                         operations performed on the device since the last
754  *                         time the driver was loaded.
755  * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
756  *                         for synchronization.
757  * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
758  * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
759  * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
760  * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
761  * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
762  * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
763  * HL_INFO_POWER         - Retrieve power information
764  * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
765  * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
766  * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
767  * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
768  *                                  and CS timeout or razwi error occurred.
769  * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
770  * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
771  *                            Timestamp of razwi.
772  *                            The address which accessing it caused the razwi.
773  *                            Razwi initiator.
774  *                            Razwi cause, was it a page fault or MMU access error.
775  * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
776  * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
777  * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
778  * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
779  * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
780  * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
781  */
782 #define HL_INFO_HW_IP_INFO			0
783 #define HL_INFO_HW_EVENTS			1
784 #define HL_INFO_DRAM_USAGE			2
785 #define HL_INFO_HW_IDLE				3
786 #define HL_INFO_DEVICE_STATUS			4
787 #define HL_INFO_DEVICE_UTILIZATION		6
788 #define HL_INFO_HW_EVENTS_AGGREGATE		7
789 #define HL_INFO_CLK_RATE			8
790 #define HL_INFO_RESET_COUNT			9
791 #define HL_INFO_TIME_SYNC			10
792 #define HL_INFO_CS_COUNTERS			11
793 #define HL_INFO_PCI_COUNTERS			12
794 #define HL_INFO_CLK_THROTTLE_REASON		13
795 #define HL_INFO_SYNC_MANAGER			14
796 #define HL_INFO_TOTAL_ENERGY			15
797 #define HL_INFO_PLL_FREQUENCY			16
798 #define HL_INFO_POWER				17
799 #define HL_INFO_OPEN_STATS			18
800 #define HL_INFO_DRAM_REPLACED_ROWS		21
801 #define HL_INFO_DRAM_PENDING_ROWS		22
802 #define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
803 #define HL_INFO_CS_TIMEOUT_EVENT		24
804 #define HL_INFO_RAZWI_EVENT			25
805 #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
806 #define HL_INFO_SECURED_ATTESTATION		27
807 #define HL_INFO_REGISTER_EVENTFD		28
808 #define HL_INFO_UNREGISTER_EVENTFD		29
809 #define HL_INFO_GET_EVENTS			30
810 #define HL_INFO_UNDEFINED_OPCODE_EVENT		31
811 #define HL_INFO_ENGINE_STATUS			32
812 
813 #define HL_INFO_VERSION_MAX_LEN			128
814 #define HL_INFO_CARD_NAME_MAX_LEN		16
815 
816 /* Maximum buffer size for retrieving engines status */
817 #define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
818 
819 /**
820  * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
821  * @sram_base_address: The first SRAM physical base address that is free to be
822  *                     used by the user.
823  * @dram_base_address: The first DRAM virtual or physical base address that is
824  *                     free to be used by the user.
825  * @dram_size: The DRAM size that is available to the user.
826  * @sram_size: The SRAM size that is available to the user.
827  * @num_of_events: The number of events that can be received from the f/w. This
828  *                 is needed so the user can what is the size of the h/w events
829  *                 array he needs to pass to the kernel when he wants to fetch
830  *                 the event counters.
831  * @device_id: PCI device ID of the ASIC.
832  * @module_id: Module ID of the ASIC for mezzanine cards in servers
833  *             (From OCP spec).
834  * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
835  * @first_available_interrupt_id: The first available interrupt ID for the user
836  *                                to be used when it works with user interrupts.
837  *                                Relevant for Gaudi2 and later.
838  * @server_type: Server type that the Gaudi ASIC is currently installed in.
839  *               The value is according to enum hl_server_type
840  * @cpld_version: CPLD version on the board.
841  * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
842  * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
843  * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
844  * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
845  *                           in some ASICs.
846  * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
847  *                    for Goya/Gaudi only.
848  * @dram_enabled: Whether the DRAM is enabled.
849  * @security_enabled: Whether security is enabled on device.
850  * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
851  *                         configuration. Relevant for Greco and later.
852  * @cpucp_version: The CPUCP f/w version.
853  * @card_name: The card name as passed by the f/w.
854  * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
855  *                        Relevant for Greco and later.
856  * @dram_page_size: The DRAM physical page size.
857  * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
858  *                     Relevant for Gaudi2 and later.
859  * @number_of_user_interrupts: The number of interrupts that are available to the userspace
860  *                             application to use. Relevant for Gaudi2 and later.
861  * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
862  */
863 struct hl_info_hw_ip_info {
864 	__u64 sram_base_address;
865 	__u64 dram_base_address;
866 	__u64 dram_size;
867 	__u32 sram_size;
868 	__u32 num_of_events;
869 	__u32 device_id;
870 	__u32 module_id;
871 	__u32 decoder_enabled_mask;
872 	__u16 first_available_interrupt_id;
873 	__u16 server_type;
874 	__u32 cpld_version;
875 	__u32 psoc_pci_pll_nr;
876 	__u32 psoc_pci_pll_nf;
877 	__u32 psoc_pci_pll_od;
878 	__u32 psoc_pci_pll_div_factor;
879 	__u8 tpc_enabled_mask;
880 	__u8 dram_enabled;
881 	__u8 security_enabled;
882 	__u8 mme_master_slave_mode;
883 	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
884 	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
885 	__u64 tpc_enabled_mask_ext;
886 	__u64 dram_page_size;
887 	__u32 edma_enabled_mask;
888 	__u16 number_of_user_interrupts;
889 	__u16 pad2;
890 	__u64 reserved4;
891 	__u64 device_mem_alloc_default_page_size;
892 };
893 
894 struct hl_info_dram_usage {
895 	__u64 dram_free_mem;
896 	__u64 ctx_dram_mem;
897 };
898 
899 #define HL_BUSY_ENGINES_MASK_EXT_SIZE	2
900 
901 struct hl_info_hw_idle {
902 	__u32 is_idle;
903 	/*
904 	 * Bitmask of busy engines.
905 	 * Bits definition is according to `enum <chip>_engine_id'.
906 	 */
907 	__u32 busy_engines_mask;
908 
909 	/*
910 	 * Extended Bitmask of busy engines.
911 	 * Bits definition is according to `enum <chip>_engine_id'.
912 	 */
913 	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
914 };
915 
916 struct hl_info_device_status {
917 	__u32 status;
918 	__u32 pad;
919 };
920 
921 struct hl_info_device_utilization {
922 	__u32 utilization;
923 	__u32 pad;
924 };
925 
926 struct hl_info_clk_rate {
927 	__u32 cur_clk_rate_mhz;
928 	__u32 max_clk_rate_mhz;
929 };
930 
931 struct hl_info_reset_count {
932 	__u32 hard_reset_cnt;
933 	__u32 soft_reset_cnt;
934 };
935 
936 struct hl_info_time_sync {
937 	__u64 device_time;
938 	__u64 host_time;
939 };
940 
941 /**
942  * struct hl_info_pci_counters - pci counters
943  * @rx_throughput: PCI rx throughput KBps
944  * @tx_throughput: PCI tx throughput KBps
945  * @replay_cnt: PCI replay counter
946  */
947 struct hl_info_pci_counters {
948 	__u64 rx_throughput;
949 	__u64 tx_throughput;
950 	__u64 replay_cnt;
951 };
952 
953 enum hl_clk_throttling_type {
954 	HL_CLK_THROTTLE_TYPE_POWER,
955 	HL_CLK_THROTTLE_TYPE_THERMAL,
956 	HL_CLK_THROTTLE_TYPE_MAX
957 };
958 
959 /* clk_throttling_reason masks */
960 #define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
961 #define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
962 
963 /**
964  * struct hl_info_clk_throttle - clock throttling reason
965  * @clk_throttling_reason: each bit represents a clk throttling reason
966  * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
967  * @clk_throttling_duration_ns: the clock throttle time in nanosec
968  */
969 struct hl_info_clk_throttle {
970 	__u32 clk_throttling_reason;
971 	__u32 pad;
972 	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
973 	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
974 };
975 
976 /**
977  * struct hl_info_energy - device energy information
978  * @total_energy_consumption: total device energy consumption
979  */
980 struct hl_info_energy {
981 	__u64 total_energy_consumption;
982 };
983 
984 #define HL_PLL_NUM_OUTPUTS 4
985 
986 struct hl_pll_frequency_info {
987 	__u16 output[HL_PLL_NUM_OUTPUTS];
988 };
989 
990 /**
991  * struct hl_open_stats_info - device open statistics information
992  * @open_counter: ever growing counter, increased on each successful dev open
993  * @last_open_period_ms: duration (ms) device was open last time
994  * @is_compute_ctx_active: Whether there is an active compute context executing
995  * @compute_ctx_in_release: true if the current compute context is being released
996  */
997 struct hl_open_stats_info {
998 	__u64 open_counter;
999 	__u64 last_open_period_ms;
1000 	__u8 is_compute_ctx_active;
1001 	__u8 compute_ctx_in_release;
1002 	__u8 pad[6];
1003 };
1004 
1005 /**
1006  * struct hl_power_info - power information
1007  * @power: power consumption
1008  */
1009 struct hl_power_info {
1010 	__u64 power;
1011 };
1012 
1013 /**
1014  * struct hl_info_sync_manager - sync manager information
1015  * @first_available_sync_object: first available sob
1016  * @first_available_monitor: first available monitor
1017  * @first_available_cq: first available cq
1018  */
1019 struct hl_info_sync_manager {
1020 	__u32 first_available_sync_object;
1021 	__u32 first_available_monitor;
1022 	__u32 first_available_cq;
1023 	__u32 reserved;
1024 };
1025 
1026 /**
1027  * struct hl_info_cs_counters - command submission counters
1028  * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1029  * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1030  * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1031  * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1032  * @total_queue_full_drop_cnt: total dropped due to queue full
1033  * @ctx_queue_full_drop_cnt: context dropped due to queue full
1034  * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1035  * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1036  * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1037  * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1038  * @total_validation_drop_cnt: total dropped due to validation error
1039  * @ctx_validation_drop_cnt: context dropped due to validation error
1040  */
1041 struct hl_info_cs_counters {
1042 	__u64 total_out_of_mem_drop_cnt;
1043 	__u64 ctx_out_of_mem_drop_cnt;
1044 	__u64 total_parsing_drop_cnt;
1045 	__u64 ctx_parsing_drop_cnt;
1046 	__u64 total_queue_full_drop_cnt;
1047 	__u64 ctx_queue_full_drop_cnt;
1048 	__u64 total_device_in_reset_drop_cnt;
1049 	__u64 ctx_device_in_reset_drop_cnt;
1050 	__u64 total_max_cs_in_flight_drop_cnt;
1051 	__u64 ctx_max_cs_in_flight_drop_cnt;
1052 	__u64 total_validation_drop_cnt;
1053 	__u64 ctx_validation_drop_cnt;
1054 };
1055 
1056 /**
1057  * struct hl_info_last_err_open_dev_time - last error boot information.
1058  * @timestamp: timestamp of last time the device was opened and error occurred.
1059  */
1060 struct hl_info_last_err_open_dev_time {
1061 	__s64 timestamp;
1062 };
1063 
1064 /**
1065  * struct hl_info_cs_timeout_event - last CS timeout information.
1066  * @timestamp: timestamp when last CS timeout event occurred.
1067  * @seq: sequence number of last CS timeout event.
1068  */
1069 struct hl_info_cs_timeout_event {
1070 	__s64 timestamp;
1071 	__u64 seq;
1072 };
1073 
1074 #define HL_RAZWI_PAGE_FAULT 0
1075 #define HL_RAZWI_MMU_ACCESS_ERROR 1
1076 
1077 /**
1078  * struct hl_info_razwi_event - razwi information.
1079  * @timestamp: timestamp of razwi.
1080  * @addr: address which accessing it caused razwi.
1081  * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does not
1082  *               have engine id it will be set to U16_MAX.
1083  * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible
1084  *               engines which one them caused the razwi. In that case, it will contain the
1085  *               second possible engine id, otherwise it will be set to U16_MAX.
1086  * @no_engine_id: if razwi initiator does not have engine id, this field will be set to 1,
1087  *                otherwise 0.
1088  * @error_type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX.
1089  * @pad: padding to 64 bit.
1090  */
1091 struct hl_info_razwi_event {
1092 	__s64 timestamp;
1093 	__u64 addr;
1094 	__u16 engine_id_1;
1095 	__u16 engine_id_2;
1096 	__u8 no_engine_id;
1097 	__u8 error_type;
1098 	__u8 pad[2];
1099 };
1100 
1101 #define MAX_QMAN_STREAMS_INFO		4
1102 #define OPCODE_INFO_MAX_ADDR_SIZE	8
1103 /**
1104  * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1105  * @timestamp: timestamp of the undefined opcode error
1106  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1107  *                   entries. In case all streams array entries are
1108  *                   filled with values, it means the execution was in Lower-CP.
1109  * @cq_addr: the address of the current handled command buffer
1110  * @cq_size: the size of the current handled command buffer
1111  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1112  *                       should be equal to 1 in case of undefined opcode
1113  *                       in Upper-CP (specific stream) and equal to 4 incase
1114  *                       of undefined opcode in Lower-CP.
1115  * @engine_id: engine-id that the error occurred on
1116  * @stream_id: the stream id the error occurred on. In case the stream equals to
1117  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1118  */
1119 struct hl_info_undefined_opcode_event {
1120 	__s64 timestamp;
1121 	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1122 	__u64 cq_addr;
1123 	__u32 cq_size;
1124 	__u32 cb_addr_streams_len;
1125 	__u32 engine_id;
1126 	__u32 stream_id;
1127 };
1128 
1129 /**
1130  * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1131  * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1132  *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1133  */
1134 struct hl_info_dev_memalloc_page_sizes {
1135 	__u64 page_order_bitmask;
1136 };
1137 
1138 #define SEC_PCR_DATA_BUF_SZ	256
1139 #define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1140 #define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1141 #define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1142 #define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1143 
1144 /*
1145  * struct hl_info_sec_attest - attestation report of the boot
1146  * @nonce: number only used once. random number provided by host. this also passed to the quote
1147  *         command as a qualifying data.
1148  * @pcr_quote_len: length of the attestation quote data (bytes)
1149  * @pub_data_len: length of the public data (bytes)
1150  * @certificate_len: length of the certificate (bytes)
1151  * @pcr_num_reg: number of PCR registers in the pcr_data array
1152  * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1153  * @quote_sig_len: length of the attestation report signature (bytes)
1154  * @pcr_data: raw values of the PCR registers
1155  * @pcr_quote: attestation report data structure
1156  * @quote_sig: signature structure of the attestation report
1157  * @public_data: public key for the signed attestation
1158  *		 (outPublic + name + qualifiedName)
1159  * @certificate: certificate for the attestation signing key
1160  */
1161 struct hl_info_sec_attest {
1162 	__u32 nonce;
1163 	__u16 pcr_quote_len;
1164 	__u16 pub_data_len;
1165 	__u16 certificate_len;
1166 	__u8 pcr_num_reg;
1167 	__u8 pcr_reg_len;
1168 	__u8 quote_sig_len;
1169 	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1170 	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1171 	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1172 	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1173 	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1174 	__u8 pad0[2];
1175 };
1176 
1177 enum gaudi_dcores {
1178 	HL_GAUDI_WS_DCORE,
1179 	HL_GAUDI_WN_DCORE,
1180 	HL_GAUDI_EN_DCORE,
1181 	HL_GAUDI_ES_DCORE
1182 };
1183 
1184 /**
1185  * struct hl_info_args - Main structure to retrieve device related information.
1186  * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1187  *                  mentioned in @op.
1188  * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1189  *               limits how many bytes the kernel can write. For hw_events array, the size should be
1190  *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1191  * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1192  * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1193  * @ctx_id: Context ID of the user. Currently not in use.
1194  * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1195  *             resolution. Currently not in use.
1196  * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1197  * @eventfd: event file descriptor for event notifications.
1198  * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1199  *                           driver. It is possible for the user to allocate buffer larger than
1200  *                           needed, hence updating this variable so user will know the exact amount
1201  *                           of bytes copied by the kernel to the buffer.
1202  * @sec_attest_nonce: Nonce number used for attestation report.
1203  * @pad: Padding to 64 bit.
1204  */
1205 struct hl_info_args {
1206 	__u64 return_pointer;
1207 	__u32 return_size;
1208 	__u32 op;
1209 
1210 	union {
1211 		__u32 dcore_id;
1212 		__u32 ctx_id;
1213 		__u32 period_ms;
1214 		__u32 pll_index;
1215 		__u32 eventfd;
1216 		__u32 user_buffer_actual_size;
1217 		__u32 sec_attest_nonce;
1218 	};
1219 
1220 	__u32 pad;
1221 };
1222 
1223 /* Opcode to create a new command buffer */
1224 #define HL_CB_OP_CREATE		0
1225 /* Opcode to destroy previously created command buffer */
1226 #define HL_CB_OP_DESTROY	1
1227 /* Opcode to retrieve information about a command buffer */
1228 #define HL_CB_OP_INFO		2
1229 
1230 /* 2MB minus 32 bytes for 2xMSG_PROT */
1231 #define HL_MAX_CB_SIZE		(0x200000 - 32)
1232 
1233 /* Indicates whether the command buffer should be mapped to the device's MMU */
1234 #define HL_CB_FLAGS_MAP			0x1
1235 
1236 /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1237 #define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1238 
1239 struct hl_cb_in {
1240 	/* Handle of CB or 0 if we want to create one */
1241 	__u64 cb_handle;
1242 	/* HL_CB_OP_* */
1243 	__u32 op;
1244 
1245 	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1246 	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1247 	 */
1248 	__u32 cb_size;
1249 
1250 	/* Context ID - Currently not in use */
1251 	__u32 ctx_id;
1252 	/* HL_CB_FLAGS_* */
1253 	__u32 flags;
1254 };
1255 
1256 struct hl_cb_out {
1257 	union {
1258 		/* Handle of CB */
1259 		__u64 cb_handle;
1260 
1261 		union {
1262 			/* Information about CB */
1263 			struct {
1264 				/* Usage count of CB */
1265 				__u32 usage_cnt;
1266 				__u32 pad;
1267 			};
1268 
1269 			/* CB mapped address to device MMU */
1270 			__u64 device_va;
1271 		};
1272 	};
1273 };
1274 
1275 union hl_cb_args {
1276 	struct hl_cb_in in;
1277 	struct hl_cb_out out;
1278 };
1279 
1280 /* HL_CS_CHUNK_FLAGS_ values
1281  *
1282  * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1283  *      Indicates if the CB was allocated and mapped by userspace
1284  *      (relevant to greco and above). User allocated CB is a command buffer,
1285  *      allocated by the user, via malloc (or similar). After allocating the
1286  *      CB, the user invokes - “memory ioctl” to map the user memory into a
1287  *      device virtual address. The user provides this address via the
1288  *      cb_handle field. The interface provides the ability to create a
1289  *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1290  *      increases the PCI-DMA queues throughput. This CB allocation method
1291  *      also reduces the use of Linux DMA-able memory pool. Which are limited
1292  *      and used by other Linux sub-systems.
1293  */
1294 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1295 
1296 /*
1297  * This structure size must always be fixed to 64-bytes for backward
1298  * compatibility
1299  */
1300 struct hl_cs_chunk {
1301 	union {
1302 		/* Goya/Gaudi:
1303 		 * For external queue, this represents a Handle of CB on the
1304 		 * Host.
1305 		 * For internal queue in Goya, this represents an SRAM or
1306 		 * a DRAM address of the internal CB. In Gaudi, this might also
1307 		 * represent a mapped host address of the CB.
1308 		 *
1309 		 * Greco onwards:
1310 		 * For H/W queue, this represents either a Handle of CB on the
1311 		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1312 		 *
1313 		 * A mapped host address is in the device address space, after
1314 		 * a host address was mapped by the device MMU.
1315 		 */
1316 		__u64 cb_handle;
1317 
1318 		/* Relevant only when HL_CS_FLAGS_WAIT or
1319 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1320 		 * This holds address of array of u64 values that contain
1321 		 * signal CS sequence numbers. The wait described by
1322 		 * this job will listen on all those signals
1323 		 * (wait event per signal)
1324 		 */
1325 		__u64 signal_seq_arr;
1326 
1327 		/*
1328 		 * Relevant only when HL_CS_FLAGS_WAIT or
1329 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1330 		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1331 		 * This is the CS sequence which has the encapsulated signals.
1332 		 */
1333 		__u64 encaps_signal_seq;
1334 	};
1335 
1336 	/* Index of queue to put the CB on */
1337 	__u32 queue_index;
1338 
1339 	union {
1340 		/*
1341 		 * Size of command buffer with valid packets
1342 		 * Can be smaller then actual CB size
1343 		 */
1344 		__u32 cb_size;
1345 
1346 		/* Relevant only when HL_CS_FLAGS_WAIT or
1347 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1348 		 * Number of entries in signal_seq_arr
1349 		 */
1350 		__u32 num_signal_seq_arr;
1351 
1352 		/* Relevant only when HL_CS_FLAGS_WAIT or
1353 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1354 		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1355 		 * This set the signals range that the user want to wait for
1356 		 * out of the whole reserved signals range.
1357 		 * e.g if the signals range is 20, and user don't want
1358 		 * to wait for signal 8, so he set this offset to 7, then
1359 		 * he call the API again with 9 and so on till 20.
1360 		 */
1361 		__u32 encaps_signal_offset;
1362 	};
1363 
1364 	/* HL_CS_CHUNK_FLAGS_* */
1365 	__u32 cs_chunk_flags;
1366 
1367 	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1368 	 * This holds the collective engine ID. The wait described by this job
1369 	 * will sync with this engine and with all NICs before completion.
1370 	 */
1371 	__u32 collective_engine_id;
1372 
1373 	/* Align structure to 64 bytes */
1374 	__u32 pad[10];
1375 };
1376 
1377 /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1378 #define HL_CS_FLAGS_FORCE_RESTORE		0x1
1379 #define HL_CS_FLAGS_SIGNAL			0x2
1380 #define HL_CS_FLAGS_WAIT			0x4
1381 #define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1382 
1383 #define HL_CS_FLAGS_TIMESTAMP			0x20
1384 #define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1385 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1386 #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1387 #define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1388 #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1389 
1390 /*
1391  * The encapsulated signals CS is merged into the existing CS ioctls.
1392  * In order to use this feature need to follow the below procedure:
1393  * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1394  *    the output of this API will be the SOB offset from CFG_BASE.
1395  *    this address will be used to patch CB cmds to do the signaling for this
1396  *    SOB by incrementing it's value.
1397  *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1398  *    CS type, note that this might fail if out-of-sync happened to the SOB
1399  *    value, in case other signaling request to the same SOB occurred between
1400  *    reserve-unreserve calls.
1401  * 2. Use the staged CS to do the encapsulated signaling jobs.
1402  *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1403  *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1404  *    field. This offset allows app to wait on part of the reserved signals.
1405  * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1406  *    to wait for the encapsulated signals.
1407  */
1408 #define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1409 #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1410 #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1411 
1412 /*
1413  * The engine cores CS is merged into the existing CS ioctls.
1414  * Use it to control the engine cores mode.
1415  */
1416 #define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1417 
1418 #define HL_CS_STATUS_SUCCESS		0
1419 
1420 #define HL_MAX_JOBS_PER_CS		512
1421 
1422 /* HL_ENGINE_CORE_ values
1423  *
1424  * HL_ENGINE_CORE_HALT: engine core halt
1425  * HL_ENGINE_CORE_RUN:  engine core run
1426  */
1427 #define HL_ENGINE_CORE_HALT	(1 << 0)
1428 #define HL_ENGINE_CORE_RUN	(1 << 1)
1429 
1430 struct hl_cs_in {
1431 
1432 	union {
1433 		struct {
1434 			/* this holds address of array of hl_cs_chunk for restore phase */
1435 			__u64 chunks_restore;
1436 
1437 			/* holds address of array of hl_cs_chunk for execution phase */
1438 			__u64 chunks_execute;
1439 		};
1440 
1441 		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1442 		struct {
1443 			/* this holds address of array of uint32 for engine_cores */
1444 			__u64 engine_cores;
1445 
1446 			/* number of engine cores in engine_cores array */
1447 			__u32 num_engine_cores;
1448 
1449 			/* the core command to be sent towards engine cores */
1450 			__u32 core_command;
1451 		};
1452 	};
1453 
1454 	union {
1455 		/*
1456 		 * Sequence number of a staged submission CS
1457 		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1458 		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1459 		 */
1460 		__u64 seq;
1461 
1462 		/*
1463 		 * Encapsulated signals handle id
1464 		 * Valid for two flows:
1465 		 * 1. CS with encapsulated signals:
1466 		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1467 		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1468 		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1469 		 * 2. unreserve signals:
1470 		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1471 		 */
1472 		__u32 encaps_sig_handle_id;
1473 
1474 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1475 		struct {
1476 			/* Encapsulated signals number */
1477 			__u32 encaps_signals_count;
1478 
1479 			/* Encapsulated signals queue index (stream) */
1480 			__u32 encaps_signals_q_idx;
1481 		};
1482 	};
1483 
1484 	/* Number of chunks in restore phase array. Maximum number is
1485 	 * HL_MAX_JOBS_PER_CS
1486 	 */
1487 	__u32 num_chunks_restore;
1488 
1489 	/* Number of chunks in execution array. Maximum number is
1490 	 * HL_MAX_JOBS_PER_CS
1491 	 */
1492 	__u32 num_chunks_execute;
1493 
1494 	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1495 	 * is set
1496 	 */
1497 	__u32 timeout;
1498 
1499 	/* HL_CS_FLAGS_* */
1500 	__u32 cs_flags;
1501 
1502 	/* Context ID - Currently not in use */
1503 	__u32 ctx_id;
1504 	__u8 pad[4];
1505 };
1506 
1507 struct hl_cs_out {
1508 	union {
1509 		/*
1510 		 * seq holds the sequence number of the CS to pass to wait
1511 		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1512 		 */
1513 		__u64 seq;
1514 
1515 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1516 		struct {
1517 			/* This is the reserved signal handle id */
1518 			__u32 handle_id;
1519 
1520 			/* This is the signals count */
1521 			__u32 count;
1522 		};
1523 	};
1524 
1525 	/* HL_CS_STATUS */
1526 	__u32 status;
1527 
1528 	/*
1529 	 * SOB base address offset
1530 	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1531 	 */
1532 	__u32 sob_base_addr_offset;
1533 
1534 	/*
1535 	 * Count of completed signals in SOB before current signal submission.
1536 	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1537 	 * or HL_CS_FLAGS_SIGNAL is set
1538 	 */
1539 	__u16 sob_count_before_submission;
1540 	__u16 pad[3];
1541 };
1542 
1543 union hl_cs_args {
1544 	struct hl_cs_in in;
1545 	struct hl_cs_out out;
1546 };
1547 
1548 #define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1549 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1550 #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1551 #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1552 #define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1553 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1554 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1555 
1556 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1557 
1558 struct hl_wait_cs_in {
1559 	union {
1560 		struct {
1561 			/*
1562 			 * In case of wait_cs holds the CS sequence number.
1563 			 * In case of wait for multi CS hold a user pointer to
1564 			 * an array of CS sequence numbers
1565 			 */
1566 			__u64 seq;
1567 			/* Absolute timeout to wait for command submission
1568 			 * in microseconds
1569 			 */
1570 			__u64 timeout_us;
1571 		};
1572 
1573 		struct {
1574 			union {
1575 				/* User address for completion comparison.
1576 				 * upon interrupt, driver will compare the value pointed
1577 				 * by this address with the supplied target value.
1578 				 * in order not to perform any comparison, set address
1579 				 * to all 1s.
1580 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1581 				 */
1582 				__u64 addr;
1583 
1584 				/* cq_counters_handle to a kernel mapped cb which contains
1585 				 * cq counters.
1586 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1587 				 */
1588 				__u64 cq_counters_handle;
1589 			};
1590 
1591 			/* Target value for completion comparison */
1592 			__u64 target;
1593 		};
1594 	};
1595 
1596 	/* Context ID - Currently not in use */
1597 	__u32 ctx_id;
1598 
1599 	/* HL_WAIT_CS_FLAGS_*
1600 	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1601 	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1602 	 *
1603 	 * in order to wait for any CQ interrupt, set interrupt value to
1604 	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1605 	 *
1606 	 * in order to wait for any decoder interrupt, set interrupt value to
1607 	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1608 	 */
1609 	__u32 flags;
1610 
1611 	union {
1612 		struct {
1613 			/* Multi CS API info- valid entries in multi-CS array */
1614 			__u8 seq_arr_len;
1615 			__u8 pad[7];
1616 		};
1617 
1618 		/* Absolute timeout to wait for an interrupt in microseconds.
1619 		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1620 		 */
1621 		__u64 interrupt_timeout_us;
1622 	};
1623 
1624 	/*
1625 	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1626 	 * upon interrupt, driver will compare the value pointed
1627 	 * by this address (cq_counters_handle + cq_counters_offset)
1628 	 * with the supplied target value.
1629 	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1630 	 */
1631 	__u64 cq_counters_offset;
1632 
1633 	/*
1634 	 * Timestamp_handle timestamps buffer handle.
1635 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1636 	 */
1637 	__u64 timestamp_handle;
1638 
1639 	/*
1640 	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1641 	 * upon interrupt, if the cq reached the target value then driver will write
1642 	 * timestamp to this offset.
1643 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1644 	 */
1645 	__u64 timestamp_offset;
1646 };
1647 
1648 #define HL_WAIT_CS_STATUS_COMPLETED	0
1649 #define HL_WAIT_CS_STATUS_BUSY		1
1650 #define HL_WAIT_CS_STATUS_TIMEDOUT	2
1651 #define HL_WAIT_CS_STATUS_ABORTED	3
1652 
1653 #define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1654 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1655 
1656 struct hl_wait_cs_out {
1657 	/* HL_WAIT_CS_STATUS_* */
1658 	__u32 status;
1659 	/* HL_WAIT_CS_STATUS_FLAG* */
1660 	__u32 flags;
1661 	/*
1662 	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1663 	 * for wait_cs: timestamp of CS completion
1664 	 * for wait_multi_cs: timestamp of FIRST CS completion
1665 	 */
1666 	__s64 timestamp_nsec;
1667 	/* multi CS completion bitmap */
1668 	__u32 cs_completion_map;
1669 	__u32 pad;
1670 };
1671 
1672 union hl_wait_cs_args {
1673 	struct hl_wait_cs_in in;
1674 	struct hl_wait_cs_out out;
1675 };
1676 
1677 /* Opcode to allocate device memory */
1678 #define HL_MEM_OP_ALLOC			0
1679 
1680 /* Opcode to free previously allocated device memory */
1681 #define HL_MEM_OP_FREE			1
1682 
1683 /* Opcode to map host and device memory */
1684 #define HL_MEM_OP_MAP			2
1685 
1686 /* Opcode to unmap previously mapped host and device memory */
1687 #define HL_MEM_OP_UNMAP			3
1688 
1689 /* Opcode to map a hw block */
1690 #define HL_MEM_OP_MAP_BLOCK		4
1691 
1692 /* Opcode to create DMA-BUF object for an existing device memory allocation
1693  * and to export an FD of that DMA-BUF back to the caller
1694  */
1695 #define HL_MEM_OP_EXPORT_DMABUF_FD	5
1696 
1697 /* Opcode to create timestamps pool for user interrupts registration support
1698  * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1699  * will get handle to it for mmap, and another internal buffer used by the
1700  * driver for registration management
1701  * The memory will be freed when the user closes the file descriptor(ctx close)
1702  */
1703 #define HL_MEM_OP_TS_ALLOC		6
1704 
1705 /* Memory flags */
1706 #define HL_MEM_CONTIGUOUS	0x1
1707 #define HL_MEM_SHARED		0x2
1708 #define HL_MEM_USERPTR		0x4
1709 #define HL_MEM_FORCE_HINT	0x8
1710 #define HL_MEM_PREFETCH		0x40
1711 
1712 /**
1713  * structure hl_mem_in - structure that handle input args for memory IOCTL
1714  * @union arg: union of structures to be used based on the input operation
1715  * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1716  * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1717  *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1718  * @ctx_id: context ID - currently not in use.
1719  * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1720  */
1721 struct hl_mem_in {
1722 	union {
1723 		/**
1724 		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1725 		 * @mem_size: memory size to allocate
1726 		 * @page_size: page size to use on allocation. when the value is 0 the default page
1727 		 *             size will be taken.
1728 		 */
1729 		struct {
1730 			__u64 mem_size;
1731 			__u64 page_size;
1732 		} alloc;
1733 
1734 		/**
1735 		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1736 		 * @handle: handle returned from HL_MEM_OP_ALLOC
1737 		 */
1738 		struct {
1739 			__u64 handle;
1740 		} free;
1741 
1742 		/**
1743 		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1744 		 * @hint_addr: requested virtual address of mapped memory.
1745 		 *             the driver will try to map the requested region to this hint
1746 		 *             address, as long as the address is valid and not already mapped.
1747 		 *             the user should check the returned address of the IOCTL to make
1748 		 *             sure he got the hint address.
1749 		 *             passing 0 here means that the driver will choose the address itself.
1750 		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1751 		 */
1752 		struct {
1753 			__u64 hint_addr;
1754 			__u64 handle;
1755 		} map_device;
1756 
1757 		/**
1758 		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1759 		 * @host_virt_addr: address of allocated host memory.
1760 		 * @hint_addr: requested virtual address of mapped memory.
1761 		 *             the driver will try to map the requested region to this hint
1762 		 *             address, as long as the address is valid and not already mapped.
1763 		 *             the user should check the returned address of the IOCTL to make
1764 		 *             sure he got the hint address.
1765 		 *             passing 0 here means that the driver will choose the address itself.
1766 		 * @size: size of allocated host memory.
1767 		 */
1768 		struct {
1769 			__u64 host_virt_addr;
1770 			__u64 hint_addr;
1771 			__u64 mem_size;
1772 		} map_host;
1773 
1774 		/**
1775 		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1776 		 * @block_addr:HW block address to map, a handle and size will be returned
1777 		 *             to the user and will be used to mmap the relevant block.
1778 		 *             only addresses from configuration space are allowed.
1779 		 */
1780 		struct {
1781 			__u64 block_addr;
1782 		} map_block;
1783 
1784 		/**
1785 		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1786 		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1787 		 */
1788 		struct {
1789 			__u64 device_virt_addr;
1790 		} unmap;
1791 
1792 		/**
1793 		 * structure for exporting DMABUF object (used with
1794 		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
1795 		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1796 		 *          in Gaudi, where we don't have MMU for the device memory, the
1797 		 *          driver expects a physical address (instead of a handle) in the
1798 		 *          device memory space.
1799 		 * @mem_size: size of memory allocation. Relevant only for GAUDI
1800 		 */
1801 		struct {
1802 			__u64 handle;
1803 			__u64 mem_size;
1804 		} export_dmabuf_fd;
1805 	};
1806 
1807 	__u32 op;
1808 	__u32 flags;
1809 	__u32 ctx_id;
1810 	__u32 num_of_elements;
1811 };
1812 
1813 struct hl_mem_out {
1814 	union {
1815 		/*
1816 		 * Used for HL_MEM_OP_MAP as the virtual address that was
1817 		 * assigned in the device VA space.
1818 		 * A value of 0 means the requested operation failed.
1819 		 */
1820 		__u64 device_virt_addr;
1821 
1822 		/*
1823 		 * Used in HL_MEM_OP_ALLOC
1824 		 * This is the assigned handle for the allocated memory
1825 		 */
1826 		__u64 handle;
1827 
1828 		struct {
1829 			/*
1830 			 * Used in HL_MEM_OP_MAP_BLOCK.
1831 			 * This is the assigned handle for the mapped block
1832 			 */
1833 			__u64 block_handle;
1834 
1835 			/*
1836 			 * Used in HL_MEM_OP_MAP_BLOCK
1837 			 * This is the size of the mapped block
1838 			 */
1839 			__u32 block_size;
1840 
1841 			__u32 pad;
1842 		};
1843 
1844 		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
1845 		 * DMA-BUF object that was created to describe a memory
1846 		 * allocation on the device's memory space. The FD should be
1847 		 * passed to the importer driver
1848 		 */
1849 		__s32 fd;
1850 	};
1851 };
1852 
1853 union hl_mem_args {
1854 	struct hl_mem_in in;
1855 	struct hl_mem_out out;
1856 };
1857 
1858 #define HL_DEBUG_MAX_AUX_VALUES		10
1859 
1860 struct hl_debug_params_etr {
1861 	/* Address in memory to allocate buffer */
1862 	__u64 buffer_address;
1863 
1864 	/* Size of buffer to allocate */
1865 	__u64 buffer_size;
1866 
1867 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
1868 	__u32 sink_mode;
1869 	__u32 pad;
1870 };
1871 
1872 struct hl_debug_params_etf {
1873 	/* Address in memory to allocate buffer */
1874 	__u64 buffer_address;
1875 
1876 	/* Size of buffer to allocate */
1877 	__u64 buffer_size;
1878 
1879 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
1880 	__u32 sink_mode;
1881 	__u32 pad;
1882 };
1883 
1884 struct hl_debug_params_stm {
1885 	/* Two bit masks for HW event and Stimulus Port */
1886 	__u64 he_mask;
1887 	__u64 sp_mask;
1888 
1889 	/* Trace source ID */
1890 	__u32 id;
1891 
1892 	/* Frequency for the timestamp register */
1893 	__u32 frequency;
1894 };
1895 
1896 struct hl_debug_params_bmon {
1897 	/* Two address ranges that the user can request to filter */
1898 	__u64 start_addr0;
1899 	__u64 addr_mask0;
1900 
1901 	__u64 start_addr1;
1902 	__u64 addr_mask1;
1903 
1904 	/* Capture window configuration */
1905 	__u32 bw_win;
1906 	__u32 win_capture;
1907 
1908 	/* Trace source ID */
1909 	__u32 id;
1910 
1911 	/* Control register */
1912 	__u32 control;
1913 
1914 	/* Two more address ranges that the user can request to filter */
1915 	__u64 start_addr2;
1916 	__u64 end_addr2;
1917 
1918 	__u64 start_addr3;
1919 	__u64 end_addr3;
1920 };
1921 
1922 struct hl_debug_params_spmu {
1923 	/* Event types selection */
1924 	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
1925 
1926 	/* Number of event types selection */
1927 	__u32 event_types_num;
1928 
1929 	/* TRC configuration register values */
1930 	__u32 pmtrc_val;
1931 	__u32 trc_ctrl_host_val;
1932 	__u32 trc_en_host_val;
1933 };
1934 
1935 /* Opcode for ETR component */
1936 #define HL_DEBUG_OP_ETR		0
1937 /* Opcode for ETF component */
1938 #define HL_DEBUG_OP_ETF		1
1939 /* Opcode for STM component */
1940 #define HL_DEBUG_OP_STM		2
1941 /* Opcode for FUNNEL component */
1942 #define HL_DEBUG_OP_FUNNEL	3
1943 /* Opcode for BMON component */
1944 #define HL_DEBUG_OP_BMON	4
1945 /* Opcode for SPMU component */
1946 #define HL_DEBUG_OP_SPMU	5
1947 /* Opcode for timestamp (deprecated) */
1948 #define HL_DEBUG_OP_TIMESTAMP	6
1949 /* Opcode for setting the device into or out of debug mode. The enable
1950  * variable should be 1 for enabling debug mode and 0 for disabling it
1951  */
1952 #define HL_DEBUG_OP_SET_MODE	7
1953 
1954 struct hl_debug_args {
1955 	/*
1956 	 * Pointer to user input structure.
1957 	 * This field is relevant to specific opcodes.
1958 	 */
1959 	__u64 input_ptr;
1960 	/* Pointer to user output structure */
1961 	__u64 output_ptr;
1962 	/* Size of user input structure */
1963 	__u32 input_size;
1964 	/* Size of user output structure */
1965 	__u32 output_size;
1966 	/* HL_DEBUG_OP_* */
1967 	__u32 op;
1968 	/*
1969 	 * Register index in the component, taken from the debug_regs_index enum
1970 	 * in the various ASIC header files
1971 	 */
1972 	__u32 reg_idx;
1973 	/* Enable/disable */
1974 	__u32 enable;
1975 	/* Context ID - Currently not in use */
1976 	__u32 ctx_id;
1977 };
1978 
1979 /*
1980  * Various information operations such as:
1981  * - H/W IP information
1982  * - Current dram usage
1983  *
1984  * The user calls this IOCTL with an opcode that describes the required
1985  * information. The user should supply a pointer to a user-allocated memory
1986  * chunk, which will be filled by the driver with the requested information.
1987  *
1988  * The user supplies the maximum amount of size to copy into the user's memory,
1989  * in order to prevent data corruption in case of differences between the
1990  * definitions of structures in kernel and userspace, e.g. in case of old
1991  * userspace and new kernel driver
1992  */
1993 #define HL_IOCTL_INFO	\
1994 		_IOWR('H', 0x01, struct hl_info_args)
1995 
1996 /*
1997  * Command Buffer
1998  * - Request a Command Buffer
1999  * - Destroy a Command Buffer
2000  *
2001  * The command buffers are memory blocks that reside in DMA-able address
2002  * space and are physically contiguous so they can be accessed by the device
2003  * directly. They are allocated using the coherent DMA API.
2004  *
2005  * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2006  * process needs to use that handle to mmap the buffer so it can access them.
2007  *
2008  * In some instances, the device must access the command buffer through the
2009  * device's MMU, and thus its memory should be mapped. In these cases, user can
2010  * indicate the driver that such a mapping is required.
2011  * The resulting device virtual address will be used internally by the driver,
2012  * and won't be returned to user.
2013  *
2014  */
2015 #define HL_IOCTL_CB		\
2016 		_IOWR('H', 0x02, union hl_cb_args)
2017 
2018 /*
2019  * Command Submission
2020  *
2021  * To submit work to the device, the user need to call this IOCTL with a set
2022  * of JOBS. That set of JOBS constitutes a CS object.
2023  * Each JOB will be enqueued on a specific queue, according to the user's input.
2024  * There can be more then one JOB per queue.
2025  *
2026  * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2027  * and a second set is for "execution" phase.
2028  * The JOBS on the "restore" phase are enqueued only after context-switch
2029  * (or if its the first CS for this context). The user can also order the
2030  * driver to run the "restore" phase explicitly
2031  *
2032  * Goya/Gaudi:
2033  * There are two types of queues - external and internal. External queues
2034  * are DMA queues which transfer data from/to the Host. All other queues are
2035  * internal. The driver will get completion notifications from the device only
2036  * on JOBS which are enqueued in the external queues.
2037  *
2038  * Greco onwards:
2039  * There is a single type of queue for all types of engines, either DMA engines
2040  * for transfers from/to the host or inside the device, or compute engines.
2041  * The driver will get completion notifications from the device for all queues.
2042  *
2043  * For jobs on external queues, the user needs to create command buffers
2044  * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2045  * internal queues, the user needs to prepare a "command buffer" with packets
2046  * on either the device SRAM/DRAM or the host, and give the device address of
2047  * that buffer to the CS ioctl.
2048  * For jobs on H/W queues both options of command buffers are valid.
2049  *
2050  * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2051  * means it returns immediately after ALL the JOBS were enqueued on their
2052  * relevant queues. Therefore, the user mustn't assume the CS has been completed
2053  * or has even started to execute.
2054  *
2055  * Upon successful enqueue, the IOCTL returns a sequence number which the user
2056  * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2057  * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2058  * which can execute AFTER the external JOBS have finished, the driver might
2059  * report that the CS has finished executing BEFORE the internal JOBS have
2060  * actually finished executing.
2061  *
2062  * Even though the sequence number increments per CS, the user can NOT
2063  * automatically assume that if CS with sequence number N finished, then CS
2064  * with sequence number N-1 also finished. The user can make this assumption if
2065  * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2066  * queues).
2067  */
2068 #define HL_IOCTL_CS			\
2069 		_IOWR('H', 0x03, union hl_cs_args)
2070 
2071 /*
2072  * Wait for Command Submission
2073  *
2074  * The user can call this IOCTL with a handle it received from the CS IOCTL
2075  * to wait until the handle's CS has finished executing. The user will wait
2076  * inside the kernel until the CS has finished or until the user-requested
2077  * timeout has expired.
2078  *
2079  * If the timeout value is 0, the driver won't sleep at all. It will check
2080  * the status of the CS and return immediately
2081  *
2082  * The return value of the IOCTL is a standard Linux error code. The possible
2083  * values are:
2084  *
2085  * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2086  *             that the user process received
2087  * ETIMEDOUT - The CS has caused a timeout on the device
2088  * EIO       - The CS was aborted (usually because the device was reset)
2089  * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2090  *
2091  * The driver also returns a custom define in case the IOCTL call returned 0.
2092  * The define can be one of the following:
2093  *
2094  * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2095  * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2096  * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2097  *                                 (ETIMEDOUT)
2098  * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2099  *                                 device was reset (EIO)
2100  */
2101 
2102 #define HL_IOCTL_WAIT_CS			\
2103 		_IOWR('H', 0x04, union hl_wait_cs_args)
2104 
2105 /*
2106  * Memory
2107  * - Map host memory to device MMU
2108  * - Unmap host memory from device MMU
2109  *
2110  * This IOCTL allows the user to map host memory to the device MMU
2111  *
2112  * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2113  * to allocate the memory in user-space (malloc/new). The driver pins the
2114  * physical pages (up to the allowed limit by the OS), assigns a virtual
2115  * address in the device VA space and initializes the device MMU.
2116  *
2117  * There is an option for the user to specify the requested virtual address.
2118  *
2119  */
2120 #define HL_IOCTL_MEMORY		\
2121 		_IOWR('H', 0x05, union hl_mem_args)
2122 
2123 /*
2124  * Debug
2125  * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2126  *
2127  * This IOCTL allows the user to get debug traces from the chip.
2128  *
2129  * Before the user can send configuration requests of the various
2130  * debug/profile engines, it needs to set the device into debug mode.
2131  * This is because the debug/profile infrastructure is shared component in the
2132  * device and we can't allow multiple users to access it at the same time.
2133  *
2134  * Once a user set the device into debug mode, the driver won't allow other
2135  * users to "work" with the device, i.e. open a FD. If there are multiple users
2136  * opened on the device, the driver won't allow any user to debug the device.
2137  *
2138  * For each configuration request, the user needs to provide the register index
2139  * and essential data such as buffer address and size.
2140  *
2141  * Once the user has finished using the debug/profile engines, he should
2142  * set the device into non-debug mode, i.e. disable debug mode.
2143  *
2144  * The driver can decide to "kick out" the user if he abuses this interface.
2145  *
2146  */
2147 #define HL_IOCTL_DEBUG		\
2148 		_IOWR('H', 0x06, struct hl_debug_args)
2149 
2150 #define HL_COMMAND_START	0x01
2151 #define HL_COMMAND_END		0x07
2152 
2153 #endif /* HABANALABS_H_ */
2154