1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Testsuite for eBPF verifier
4 *
5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6 * Copyright (c) 2017 Facebook
7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8 */
9
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35
36 #ifdef HAVE_GENHDR
37 # include "autoconf.h"
38 #else
39 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
40 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
41 # endif
42 #endif
43 #include "cap_helpers.h"
44 #include "bpf_rand.h"
45 #include "bpf_util.h"
46 #include "test_btf.h"
47 #include "../../../include/linux/filter.h"
48
49 #ifndef ENOTSUPP
50 #define ENOTSUPP 524
51 #endif
52
53 #define MAX_INSNS BPF_MAXINSNS
54 #define MAX_EXPECTED_INSNS 32
55 #define MAX_UNEXPECTED_INSNS 32
56 #define MAX_TEST_INSNS 1000000
57 #define MAX_FIXUPS 8
58 #define MAX_NR_MAPS 23
59 #define MAX_TEST_RUNS 8
60 #define POINTER_VALUE 0xcafe4all
61 #define TEST_DATA_LEN 64
62 #define MAX_FUNC_INFOS 8
63 #define MAX_BTF_STRINGS 256
64 #define MAX_BTF_TYPES 256
65
66 #define INSN_OFF_MASK ((__s16)0xFFFF)
67 #define INSN_IMM_MASK ((__s32)0xFFFFFFFF)
68 #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
69
70 #define DEFAULT_LIBBPF_LOG_LEVEL 4
71 #define VERBOSE_LIBBPF_LOG_LEVEL 1
72
73 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
74 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
75
76 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
77 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \
78 1ULL << CAP_PERFMON | \
79 1ULL << CAP_BPF)
80 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
81 static bool unpriv_disabled = false;
82 static int skips;
83 static bool verbose = false;
84
85 struct kfunc_btf_id_pair {
86 const char *kfunc;
87 int insn_idx;
88 };
89
90 struct bpf_test {
91 const char *descr;
92 struct bpf_insn insns[MAX_INSNS];
93 struct bpf_insn *fill_insns;
94 /* If specified, test engine looks for this sequence of
95 * instructions in the BPF program after loading. Allows to
96 * test rewrites applied by verifier. Use values
97 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
98 * fields if content does not matter. The test case fails if
99 * specified instructions are not found.
100 *
101 * The sequence could be split into sub-sequences by adding
102 * SKIP_INSNS instruction at the end of each sub-sequence. In
103 * such case sub-sequences are searched for one after another.
104 */
105 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
106 /* If specified, test engine applies same pattern matching
107 * logic as for `expected_insns`. If the specified pattern is
108 * matched test case is marked as failed.
109 */
110 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
111 int fixup_map_hash_8b[MAX_FIXUPS];
112 int fixup_map_hash_48b[MAX_FIXUPS];
113 int fixup_map_hash_16b[MAX_FIXUPS];
114 int fixup_map_array_48b[MAX_FIXUPS];
115 int fixup_map_sockmap[MAX_FIXUPS];
116 int fixup_map_sockhash[MAX_FIXUPS];
117 int fixup_map_xskmap[MAX_FIXUPS];
118 int fixup_map_stacktrace[MAX_FIXUPS];
119 int fixup_prog1[MAX_FIXUPS];
120 int fixup_prog2[MAX_FIXUPS];
121 int fixup_map_in_map[MAX_FIXUPS];
122 int fixup_cgroup_storage[MAX_FIXUPS];
123 int fixup_percpu_cgroup_storage[MAX_FIXUPS];
124 int fixup_map_spin_lock[MAX_FIXUPS];
125 int fixup_map_array_ro[MAX_FIXUPS];
126 int fixup_map_array_wo[MAX_FIXUPS];
127 int fixup_map_array_small[MAX_FIXUPS];
128 int fixup_sk_storage_map[MAX_FIXUPS];
129 int fixup_map_event_output[MAX_FIXUPS];
130 int fixup_map_reuseport_array[MAX_FIXUPS];
131 int fixup_map_ringbuf[MAX_FIXUPS];
132 int fixup_map_timer[MAX_FIXUPS];
133 int fixup_map_kptr[MAX_FIXUPS];
134 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
135 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
136 * Can be a tab-separated sequence of expected strings. An empty string
137 * means no log verification.
138 */
139 const char *errstr;
140 const char *errstr_unpriv;
141 uint32_t insn_processed;
142 int prog_len;
143 enum {
144 UNDEF,
145 ACCEPT,
146 REJECT,
147 VERBOSE_ACCEPT,
148 } result, result_unpriv;
149 enum bpf_prog_type prog_type;
150 uint8_t flags;
151 void (*fill_helper)(struct bpf_test *self);
152 int runs;
153 #define bpf_testdata_struct_t \
154 struct { \
155 uint32_t retval, retval_unpriv; \
156 union { \
157 __u8 data[TEST_DATA_LEN]; \
158 __u64 data64[TEST_DATA_LEN / 8]; \
159 }; \
160 }
161 union {
162 bpf_testdata_struct_t;
163 bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
164 };
165 enum bpf_attach_type expected_attach_type;
166 const char *kfunc;
167 struct bpf_func_info func_info[MAX_FUNC_INFOS];
168 int func_info_cnt;
169 char btf_strings[MAX_BTF_STRINGS];
170 /* A set of BTF types to load when specified,
171 * use macro definitions from test_btf.h,
172 * must end with BTF_END_RAW
173 */
174 __u32 btf_types[MAX_BTF_TYPES];
175 };
176
177 /* Note we want this to be 64 bit aligned so that the end of our array is
178 * actually the end of the structure.
179 */
180 #define MAX_ENTRIES 11
181
182 struct test_val {
183 unsigned int index;
184 int foo[MAX_ENTRIES];
185 };
186
187 struct other_val {
188 long long foo;
189 long long bar;
190 };
191
bpf_fill_ld_abs_vlan_push_pop(struct bpf_test * self)192 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
193 {
194 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
195 #define PUSH_CNT 51
196 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
197 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
198 struct bpf_insn *insn = self->fill_insns;
199 int i = 0, j, k = 0;
200
201 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
202 loop:
203 for (j = 0; j < PUSH_CNT; j++) {
204 insn[i++] = BPF_LD_ABS(BPF_B, 0);
205 /* jump to error label */
206 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
207 i++;
208 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
209 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
210 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
211 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
212 BPF_FUNC_skb_vlan_push),
213 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
214 i++;
215 }
216
217 for (j = 0; j < PUSH_CNT; j++) {
218 insn[i++] = BPF_LD_ABS(BPF_B, 0);
219 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
220 i++;
221 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
222 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
223 BPF_FUNC_skb_vlan_pop),
224 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
225 i++;
226 }
227 if (++k < 5)
228 goto loop;
229
230 for (; i < len - 3; i++)
231 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
232 insn[len - 3] = BPF_JMP_A(1);
233 /* error label */
234 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
235 insn[len - 1] = BPF_EXIT_INSN();
236 self->prog_len = len;
237 }
238
bpf_fill_jump_around_ld_abs(struct bpf_test * self)239 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
240 {
241 struct bpf_insn *insn = self->fill_insns;
242 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
243 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
244 * to extend the error value of the inlined ld_abs sequence which then
245 * contains 7 insns. so, set the dividend to 7 so the testcase could
246 * work on all arches.
247 */
248 unsigned int len = (1 << 15) / 7;
249 int i = 0;
250
251 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
252 insn[i++] = BPF_LD_ABS(BPF_B, 0);
253 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
254 i++;
255 while (i < len - 1)
256 insn[i++] = BPF_LD_ABS(BPF_B, 1);
257 insn[i] = BPF_EXIT_INSN();
258 self->prog_len = i + 1;
259 }
260
bpf_fill_rand_ld_dw(struct bpf_test * self)261 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
262 {
263 struct bpf_insn *insn = self->fill_insns;
264 uint64_t res = 0;
265 int i = 0;
266
267 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
268 while (i < self->retval) {
269 uint64_t val = bpf_semi_rand_get();
270 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
271
272 res ^= val;
273 insn[i++] = tmp[0];
274 insn[i++] = tmp[1];
275 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
276 }
277 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
278 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
279 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
280 insn[i] = BPF_EXIT_INSN();
281 self->prog_len = i + 1;
282 res ^= (res >> 32);
283 self->retval = (uint32_t)res;
284 }
285
286 #define MAX_JMP_SEQ 8192
287
288 /* test the sequence of 8k jumps */
bpf_fill_scale1(struct bpf_test * self)289 static void bpf_fill_scale1(struct bpf_test *self)
290 {
291 struct bpf_insn *insn = self->fill_insns;
292 int i = 0, k = 0;
293
294 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
295 /* test to check that the long sequence of jumps is acceptable */
296 while (k++ < MAX_JMP_SEQ) {
297 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
298 BPF_FUNC_get_prandom_u32);
299 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
300 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
301 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
302 -8 * (k % 64 + 1));
303 }
304 /* is_state_visited() doesn't allocate state for pruning for every jump.
305 * Hence multiply jmps by 4 to accommodate that heuristic
306 */
307 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
308 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
309 insn[i] = BPF_EXIT_INSN();
310 self->prog_len = i + 1;
311 self->retval = 42;
312 }
313
314 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
bpf_fill_scale2(struct bpf_test * self)315 static void bpf_fill_scale2(struct bpf_test *self)
316 {
317 struct bpf_insn *insn = self->fill_insns;
318 int i = 0, k = 0;
319
320 #define FUNC_NEST 7
321 for (k = 0; k < FUNC_NEST; k++) {
322 insn[i++] = BPF_CALL_REL(1);
323 insn[i++] = BPF_EXIT_INSN();
324 }
325 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
326 /* test to check that the long sequence of jumps is acceptable */
327 k = 0;
328 while (k++ < MAX_JMP_SEQ) {
329 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
330 BPF_FUNC_get_prandom_u32);
331 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
332 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
333 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
334 -8 * (k % (64 - 4 * FUNC_NEST) + 1));
335 }
336 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
337 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
338 insn[i] = BPF_EXIT_INSN();
339 self->prog_len = i + 1;
340 self->retval = 42;
341 }
342
bpf_fill_scale(struct bpf_test * self)343 static void bpf_fill_scale(struct bpf_test *self)
344 {
345 switch (self->retval) {
346 case 1:
347 return bpf_fill_scale1(self);
348 case 2:
349 return bpf_fill_scale2(self);
350 default:
351 self->prog_len = 0;
352 break;
353 }
354 }
355
bpf_fill_torturous_jumps_insn_1(struct bpf_insn * insn)356 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
357 {
358 unsigned int len = 259, hlen = 128;
359 int i;
360
361 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
362 for (i = 1; i <= hlen; i++) {
363 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
364 insn[i + hlen] = BPF_JMP_A(hlen - i);
365 }
366 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
367 insn[len - 1] = BPF_EXIT_INSN();
368
369 return len;
370 }
371
bpf_fill_torturous_jumps_insn_2(struct bpf_insn * insn)372 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
373 {
374 unsigned int len = 4100, jmp_off = 2048;
375 int i, j;
376
377 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
378 for (i = 1; i <= jmp_off; i++) {
379 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
380 }
381 insn[i++] = BPF_JMP_A(jmp_off);
382 for (; i <= jmp_off * 2 + 1; i+=16) {
383 for (j = 0; j < 16; j++) {
384 insn[i + j] = BPF_JMP_A(16 - j - 1);
385 }
386 }
387
388 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
389 insn[len - 1] = BPF_EXIT_INSN();
390
391 return len;
392 }
393
bpf_fill_torturous_jumps(struct bpf_test * self)394 static void bpf_fill_torturous_jumps(struct bpf_test *self)
395 {
396 struct bpf_insn *insn = self->fill_insns;
397 int i = 0;
398
399 switch (self->retval) {
400 case 1:
401 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
402 return;
403 case 2:
404 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
405 return;
406 case 3:
407 /* main */
408 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
409 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
410 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
411 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
412 insn[i++] = BPF_EXIT_INSN();
413
414 /* subprog 1 */
415 i += bpf_fill_torturous_jumps_insn_1(insn + i);
416
417 /* subprog 2 */
418 i += bpf_fill_torturous_jumps_insn_2(insn + i);
419
420 self->prog_len = i;
421 return;
422 default:
423 self->prog_len = 0;
424 break;
425 }
426 }
427
bpf_fill_big_prog_with_loop_1(struct bpf_test * self)428 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
429 {
430 struct bpf_insn *insn = self->fill_insns;
431 /* This test was added to catch a specific use after free
432 * error, which happened upon BPF program reallocation.
433 * Reallocation is handled by core.c:bpf_prog_realloc, which
434 * reuses old memory if page boundary is not crossed. The
435 * value of `len` is chosen to cross this boundary on bpf_loop
436 * patching.
437 */
438 const int len = getpagesize() - 25;
439 int callback_load_idx;
440 int callback_idx;
441 int i = 0;
442
443 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
444 callback_load_idx = i;
445 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
446 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
447 777 /* filled below */);
448 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
449 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
450 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
451 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
452
453 while (i < len - 3)
454 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
455 insn[i++] = BPF_EXIT_INSN();
456
457 callback_idx = i;
458 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
459 insn[i++] = BPF_EXIT_INSN();
460
461 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
462 self->func_info[1].insn_off = callback_idx;
463 self->prog_len = i;
464 assert(i == len);
465 }
466
467 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
468 #define BPF_SK_LOOKUP(func) \
469 /* struct bpf_sock_tuple tuple = {} */ \
470 BPF_MOV64_IMM(BPF_REG_2, 0), \
471 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
472 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
473 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
474 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
475 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
476 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
477 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
478 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
479 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
480 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
481 BPF_MOV64_IMM(BPF_REG_4, 0), \
482 BPF_MOV64_IMM(BPF_REG_5, 0), \
483 BPF_EMIT_CALL(BPF_FUNC_ ## func)
484
485 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
486 * value into 0 and does necessary preparation for direct packet access
487 * through r2. The allowed access range is 8 bytes.
488 */
489 #define BPF_DIRECT_PKT_R2 \
490 BPF_MOV64_IMM(BPF_REG_0, 0), \
491 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
492 offsetof(struct __sk_buff, data)), \
493 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
494 offsetof(struct __sk_buff, data_end)), \
495 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
496 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
497 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
498 BPF_EXIT_INSN()
499
500 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
501 * positive u32, and zero-extend it into 64-bit.
502 */
503 #define BPF_RAND_UEXT_R7 \
504 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
505 BPF_FUNC_get_prandom_u32), \
506 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
507 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
508 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
509
510 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
511 * negative u32, and sign-extend it into 64-bit.
512 */
513 #define BPF_RAND_SEXT_R7 \
514 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
515 BPF_FUNC_get_prandom_u32), \
516 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
517 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
518 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
519 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
520
521 static struct bpf_test tests[] = {
522 #define FILL_ARRAY
523 #include <verifier/tests.h>
524 #undef FILL_ARRAY
525 };
526
probe_filter_length(const struct bpf_insn * fp)527 static int probe_filter_length(const struct bpf_insn *fp)
528 {
529 int len;
530
531 for (len = MAX_INSNS - 1; len > 0; --len)
532 if (fp[len].code != 0 || fp[len].imm != 0)
533 break;
534 return len + 1;
535 }
536
skip_unsupported_map(enum bpf_map_type map_type)537 static bool skip_unsupported_map(enum bpf_map_type map_type)
538 {
539 if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
540 printf("SKIP (unsupported map type %d)\n", map_type);
541 skips++;
542 return true;
543 }
544 return false;
545 }
546
__create_map(uint32_t type,uint32_t size_key,uint32_t size_value,uint32_t max_elem,uint32_t extra_flags)547 static int __create_map(uint32_t type, uint32_t size_key,
548 uint32_t size_value, uint32_t max_elem,
549 uint32_t extra_flags)
550 {
551 LIBBPF_OPTS(bpf_map_create_opts, opts);
552 int fd;
553
554 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
555 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
556 if (fd < 0) {
557 if (skip_unsupported_map(type))
558 return -1;
559 printf("Failed to create hash map '%s'!\n", strerror(errno));
560 }
561
562 return fd;
563 }
564
create_map(uint32_t type,uint32_t size_key,uint32_t size_value,uint32_t max_elem)565 static int create_map(uint32_t type, uint32_t size_key,
566 uint32_t size_value, uint32_t max_elem)
567 {
568 return __create_map(type, size_key, size_value, max_elem, 0);
569 }
570
update_map(int fd,int index)571 static void update_map(int fd, int index)
572 {
573 struct test_val value = {
574 .index = (6 + 1) * sizeof(int),
575 .foo[6] = 0xabcdef12,
576 };
577
578 assert(!bpf_map_update_elem(fd, &index, &value, 0));
579 }
580
create_prog_dummy_simple(enum bpf_prog_type prog_type,int ret)581 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
582 {
583 struct bpf_insn prog[] = {
584 BPF_MOV64_IMM(BPF_REG_0, ret),
585 BPF_EXIT_INSN(),
586 };
587
588 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
589 }
590
create_prog_dummy_loop(enum bpf_prog_type prog_type,int mfd,int idx,int ret)591 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
592 int idx, int ret)
593 {
594 struct bpf_insn prog[] = {
595 BPF_MOV64_IMM(BPF_REG_3, idx),
596 BPF_LD_MAP_FD(BPF_REG_2, mfd),
597 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
598 BPF_FUNC_tail_call),
599 BPF_MOV64_IMM(BPF_REG_0, ret),
600 BPF_EXIT_INSN(),
601 };
602
603 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
604 }
605
create_prog_array(enum bpf_prog_type prog_type,uint32_t max_elem,int p1key,int p2key,int p3key)606 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
607 int p1key, int p2key, int p3key)
608 {
609 int mfd, p1fd, p2fd, p3fd;
610
611 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
612 sizeof(int), max_elem, NULL);
613 if (mfd < 0) {
614 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
615 return -1;
616 printf("Failed to create prog array '%s'!\n", strerror(errno));
617 return -1;
618 }
619
620 p1fd = create_prog_dummy_simple(prog_type, 42);
621 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
622 p3fd = create_prog_dummy_simple(prog_type, 24);
623 if (p1fd < 0 || p2fd < 0 || p3fd < 0)
624 goto err;
625 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
626 goto err;
627 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
628 goto err;
629 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
630 err:
631 close(mfd);
632 mfd = -1;
633 }
634 close(p3fd);
635 close(p2fd);
636 close(p1fd);
637 return mfd;
638 }
639
create_map_in_map(void)640 static int create_map_in_map(void)
641 {
642 LIBBPF_OPTS(bpf_map_create_opts, opts);
643 int inner_map_fd, outer_map_fd;
644
645 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
646 sizeof(int), 1, NULL);
647 if (inner_map_fd < 0) {
648 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
649 return -1;
650 printf("Failed to create array '%s'!\n", strerror(errno));
651 return inner_map_fd;
652 }
653
654 opts.inner_map_fd = inner_map_fd;
655 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
656 sizeof(int), sizeof(int), 1, &opts);
657 if (outer_map_fd < 0) {
658 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
659 return -1;
660 printf("Failed to create array of maps '%s'!\n",
661 strerror(errno));
662 }
663
664 close(inner_map_fd);
665
666 return outer_map_fd;
667 }
668
create_cgroup_storage(bool percpu)669 static int create_cgroup_storage(bool percpu)
670 {
671 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
672 BPF_MAP_TYPE_CGROUP_STORAGE;
673 int fd;
674
675 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
676 TEST_DATA_LEN, 0, NULL);
677 if (fd < 0) {
678 if (skip_unsupported_map(type))
679 return -1;
680 printf("Failed to create cgroup storage '%s'!\n",
681 strerror(errno));
682 }
683
684 return fd;
685 }
686
687 /* struct bpf_spin_lock {
688 * int val;
689 * };
690 * struct val {
691 * int cnt;
692 * struct bpf_spin_lock l;
693 * };
694 * struct bpf_timer {
695 * __u64 :64;
696 * __u64 :64;
697 * } __attribute__((aligned(8)));
698 * struct timer {
699 * struct bpf_timer t;
700 * };
701 * struct btf_ptr {
702 * struct prog_test_ref_kfunc __kptr *ptr;
703 * struct prog_test_ref_kfunc __kptr_ref *ptr;
704 * struct prog_test_member __kptr_ref *ptr;
705 * }
706 */
707 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
708 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref"
709 "\0prog_test_member";
710 static __u32 btf_raw_types[] = {
711 /* int */
712 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
713 /* struct bpf_spin_lock */ /* [2] */
714 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
715 BTF_MEMBER_ENC(15, 1, 0), /* int val; */
716 /* struct val */ /* [3] */
717 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
718 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
719 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
720 /* struct bpf_timer */ /* [4] */
721 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
722 /* struct timer */ /* [5] */
723 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
724 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
725 /* struct prog_test_ref_kfunc */ /* [6] */
726 BTF_STRUCT_ENC(51, 0, 0),
727 BTF_STRUCT_ENC(89, 0, 0), /* [7] */
728 /* type tag "kptr" */
729 BTF_TYPE_TAG_ENC(75, 6), /* [8] */
730 /* type tag "kptr_ref" */
731 BTF_TYPE_TAG_ENC(80, 6), /* [9] */
732 BTF_TYPE_TAG_ENC(80, 7), /* [10] */
733 BTF_PTR_ENC(8), /* [11] */
734 BTF_PTR_ENC(9), /* [12] */
735 BTF_PTR_ENC(10), /* [13] */
736 /* struct btf_ptr */ /* [14] */
737 BTF_STRUCT_ENC(43, 3, 24),
738 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */
739 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */
740 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */
741 };
742
743 static char bpf_vlog[UINT_MAX >> 8];
744
load_btf_spec(__u32 * types,int types_len,const char * strings,int strings_len)745 static int load_btf_spec(__u32 *types, int types_len,
746 const char *strings, int strings_len)
747 {
748 struct btf_header hdr = {
749 .magic = BTF_MAGIC,
750 .version = BTF_VERSION,
751 .hdr_len = sizeof(struct btf_header),
752 .type_len = types_len,
753 .str_off = types_len,
754 .str_len = strings_len,
755 };
756 void *ptr, *raw_btf;
757 int btf_fd;
758 LIBBPF_OPTS(bpf_btf_load_opts, opts,
759 .log_buf = bpf_vlog,
760 .log_size = sizeof(bpf_vlog),
761 .log_level = (verbose
762 ? VERBOSE_LIBBPF_LOG_LEVEL
763 : DEFAULT_LIBBPF_LOG_LEVEL),
764 );
765
766 raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
767
768 ptr = raw_btf;
769 memcpy(ptr, &hdr, sizeof(hdr));
770 ptr += sizeof(hdr);
771 memcpy(ptr, types, hdr.type_len);
772 ptr += hdr.type_len;
773 memcpy(ptr, strings, hdr.str_len);
774 ptr += hdr.str_len;
775
776 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
777 if (btf_fd < 0)
778 printf("Failed to load BTF spec: '%s'\n", strerror(errno));
779
780 free(raw_btf);
781
782 return btf_fd < 0 ? -1 : btf_fd;
783 }
784
load_btf(void)785 static int load_btf(void)
786 {
787 return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
788 btf_str_sec, sizeof(btf_str_sec));
789 }
790
load_btf_for_test(struct bpf_test * test)791 static int load_btf_for_test(struct bpf_test *test)
792 {
793 int types_num = 0;
794
795 while (types_num < MAX_BTF_TYPES &&
796 test->btf_types[types_num] != BTF_END_RAW)
797 ++types_num;
798
799 int types_len = types_num * sizeof(test->btf_types[0]);
800
801 return load_btf_spec(test->btf_types, types_len,
802 test->btf_strings, sizeof(test->btf_strings));
803 }
804
create_map_spin_lock(void)805 static int create_map_spin_lock(void)
806 {
807 LIBBPF_OPTS(bpf_map_create_opts, opts,
808 .btf_key_type_id = 1,
809 .btf_value_type_id = 3,
810 );
811 int fd, btf_fd;
812
813 btf_fd = load_btf();
814 if (btf_fd < 0)
815 return -1;
816 opts.btf_fd = btf_fd;
817 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
818 if (fd < 0)
819 printf("Failed to create map with spin_lock\n");
820 return fd;
821 }
822
create_sk_storage_map(void)823 static int create_sk_storage_map(void)
824 {
825 LIBBPF_OPTS(bpf_map_create_opts, opts,
826 .map_flags = BPF_F_NO_PREALLOC,
827 .btf_key_type_id = 1,
828 .btf_value_type_id = 3,
829 );
830 int fd, btf_fd;
831
832 btf_fd = load_btf();
833 if (btf_fd < 0)
834 return -1;
835 opts.btf_fd = btf_fd;
836 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
837 close(opts.btf_fd);
838 if (fd < 0)
839 printf("Failed to create sk_storage_map\n");
840 return fd;
841 }
842
create_map_timer(void)843 static int create_map_timer(void)
844 {
845 LIBBPF_OPTS(bpf_map_create_opts, opts,
846 .btf_key_type_id = 1,
847 .btf_value_type_id = 5,
848 );
849 int fd, btf_fd;
850
851 btf_fd = load_btf();
852 if (btf_fd < 0)
853 return -1;
854
855 opts.btf_fd = btf_fd;
856 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
857 if (fd < 0)
858 printf("Failed to create map with timer\n");
859 return fd;
860 }
861
create_map_kptr(void)862 static int create_map_kptr(void)
863 {
864 LIBBPF_OPTS(bpf_map_create_opts, opts,
865 .btf_key_type_id = 1,
866 .btf_value_type_id = 14,
867 );
868 int fd, btf_fd;
869
870 btf_fd = load_btf();
871 if (btf_fd < 0)
872 return -1;
873
874 opts.btf_fd = btf_fd;
875 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
876 if (fd < 0)
877 printf("Failed to create map with btf_id pointer\n");
878 return fd;
879 }
880
do_test_fixup(struct bpf_test * test,enum bpf_prog_type prog_type,struct bpf_insn * prog,int * map_fds)881 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
882 struct bpf_insn *prog, int *map_fds)
883 {
884 int *fixup_map_hash_8b = test->fixup_map_hash_8b;
885 int *fixup_map_hash_48b = test->fixup_map_hash_48b;
886 int *fixup_map_hash_16b = test->fixup_map_hash_16b;
887 int *fixup_map_array_48b = test->fixup_map_array_48b;
888 int *fixup_map_sockmap = test->fixup_map_sockmap;
889 int *fixup_map_sockhash = test->fixup_map_sockhash;
890 int *fixup_map_xskmap = test->fixup_map_xskmap;
891 int *fixup_map_stacktrace = test->fixup_map_stacktrace;
892 int *fixup_prog1 = test->fixup_prog1;
893 int *fixup_prog2 = test->fixup_prog2;
894 int *fixup_map_in_map = test->fixup_map_in_map;
895 int *fixup_cgroup_storage = test->fixup_cgroup_storage;
896 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
897 int *fixup_map_spin_lock = test->fixup_map_spin_lock;
898 int *fixup_map_array_ro = test->fixup_map_array_ro;
899 int *fixup_map_array_wo = test->fixup_map_array_wo;
900 int *fixup_map_array_small = test->fixup_map_array_small;
901 int *fixup_sk_storage_map = test->fixup_sk_storage_map;
902 int *fixup_map_event_output = test->fixup_map_event_output;
903 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
904 int *fixup_map_ringbuf = test->fixup_map_ringbuf;
905 int *fixup_map_timer = test->fixup_map_timer;
906 int *fixup_map_kptr = test->fixup_map_kptr;
907 struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id;
908
909 if (test->fill_helper) {
910 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
911 test->fill_helper(test);
912 }
913
914 /* Allocating HTs with 1 elem is fine here, since we only test
915 * for verifier and not do a runtime lookup, so the only thing
916 * that really matters is value size in this case.
917 */
918 if (*fixup_map_hash_8b) {
919 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
920 sizeof(long long), 1);
921 do {
922 prog[*fixup_map_hash_8b].imm = map_fds[0];
923 fixup_map_hash_8b++;
924 } while (*fixup_map_hash_8b);
925 }
926
927 if (*fixup_map_hash_48b) {
928 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
929 sizeof(struct test_val), 1);
930 do {
931 prog[*fixup_map_hash_48b].imm = map_fds[1];
932 fixup_map_hash_48b++;
933 } while (*fixup_map_hash_48b);
934 }
935
936 if (*fixup_map_hash_16b) {
937 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
938 sizeof(struct other_val), 1);
939 do {
940 prog[*fixup_map_hash_16b].imm = map_fds[2];
941 fixup_map_hash_16b++;
942 } while (*fixup_map_hash_16b);
943 }
944
945 if (*fixup_map_array_48b) {
946 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
947 sizeof(struct test_val), 1);
948 update_map(map_fds[3], 0);
949 do {
950 prog[*fixup_map_array_48b].imm = map_fds[3];
951 fixup_map_array_48b++;
952 } while (*fixup_map_array_48b);
953 }
954
955 if (*fixup_prog1) {
956 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
957 do {
958 prog[*fixup_prog1].imm = map_fds[4];
959 fixup_prog1++;
960 } while (*fixup_prog1);
961 }
962
963 if (*fixup_prog2) {
964 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
965 do {
966 prog[*fixup_prog2].imm = map_fds[5];
967 fixup_prog2++;
968 } while (*fixup_prog2);
969 }
970
971 if (*fixup_map_in_map) {
972 map_fds[6] = create_map_in_map();
973 do {
974 prog[*fixup_map_in_map].imm = map_fds[6];
975 fixup_map_in_map++;
976 } while (*fixup_map_in_map);
977 }
978
979 if (*fixup_cgroup_storage) {
980 map_fds[7] = create_cgroup_storage(false);
981 do {
982 prog[*fixup_cgroup_storage].imm = map_fds[7];
983 fixup_cgroup_storage++;
984 } while (*fixup_cgroup_storage);
985 }
986
987 if (*fixup_percpu_cgroup_storage) {
988 map_fds[8] = create_cgroup_storage(true);
989 do {
990 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
991 fixup_percpu_cgroup_storage++;
992 } while (*fixup_percpu_cgroup_storage);
993 }
994 if (*fixup_map_sockmap) {
995 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
996 sizeof(int), 1);
997 do {
998 prog[*fixup_map_sockmap].imm = map_fds[9];
999 fixup_map_sockmap++;
1000 } while (*fixup_map_sockmap);
1001 }
1002 if (*fixup_map_sockhash) {
1003 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1004 sizeof(int), 1);
1005 do {
1006 prog[*fixup_map_sockhash].imm = map_fds[10];
1007 fixup_map_sockhash++;
1008 } while (*fixup_map_sockhash);
1009 }
1010 if (*fixup_map_xskmap) {
1011 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1012 sizeof(int), 1);
1013 do {
1014 prog[*fixup_map_xskmap].imm = map_fds[11];
1015 fixup_map_xskmap++;
1016 } while (*fixup_map_xskmap);
1017 }
1018 if (*fixup_map_stacktrace) {
1019 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1020 sizeof(u64), 1);
1021 do {
1022 prog[*fixup_map_stacktrace].imm = map_fds[12];
1023 fixup_map_stacktrace++;
1024 } while (*fixup_map_stacktrace);
1025 }
1026 if (*fixup_map_spin_lock) {
1027 map_fds[13] = create_map_spin_lock();
1028 do {
1029 prog[*fixup_map_spin_lock].imm = map_fds[13];
1030 fixup_map_spin_lock++;
1031 } while (*fixup_map_spin_lock);
1032 }
1033 if (*fixup_map_array_ro) {
1034 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1035 sizeof(struct test_val), 1,
1036 BPF_F_RDONLY_PROG);
1037 update_map(map_fds[14], 0);
1038 do {
1039 prog[*fixup_map_array_ro].imm = map_fds[14];
1040 fixup_map_array_ro++;
1041 } while (*fixup_map_array_ro);
1042 }
1043 if (*fixup_map_array_wo) {
1044 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1045 sizeof(struct test_val), 1,
1046 BPF_F_WRONLY_PROG);
1047 update_map(map_fds[15], 0);
1048 do {
1049 prog[*fixup_map_array_wo].imm = map_fds[15];
1050 fixup_map_array_wo++;
1051 } while (*fixup_map_array_wo);
1052 }
1053 if (*fixup_map_array_small) {
1054 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1055 1, 1, 0);
1056 update_map(map_fds[16], 0);
1057 do {
1058 prog[*fixup_map_array_small].imm = map_fds[16];
1059 fixup_map_array_small++;
1060 } while (*fixup_map_array_small);
1061 }
1062 if (*fixup_sk_storage_map) {
1063 map_fds[17] = create_sk_storage_map();
1064 do {
1065 prog[*fixup_sk_storage_map].imm = map_fds[17];
1066 fixup_sk_storage_map++;
1067 } while (*fixup_sk_storage_map);
1068 }
1069 if (*fixup_map_event_output) {
1070 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1071 sizeof(int), sizeof(int), 1, 0);
1072 do {
1073 prog[*fixup_map_event_output].imm = map_fds[18];
1074 fixup_map_event_output++;
1075 } while (*fixup_map_event_output);
1076 }
1077 if (*fixup_map_reuseport_array) {
1078 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1079 sizeof(u32), sizeof(u64), 1, 0);
1080 do {
1081 prog[*fixup_map_reuseport_array].imm = map_fds[19];
1082 fixup_map_reuseport_array++;
1083 } while (*fixup_map_reuseport_array);
1084 }
1085 if (*fixup_map_ringbuf) {
1086 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1087 0, 4096);
1088 do {
1089 prog[*fixup_map_ringbuf].imm = map_fds[20];
1090 fixup_map_ringbuf++;
1091 } while (*fixup_map_ringbuf);
1092 }
1093 if (*fixup_map_timer) {
1094 map_fds[21] = create_map_timer();
1095 do {
1096 prog[*fixup_map_timer].imm = map_fds[21];
1097 fixup_map_timer++;
1098 } while (*fixup_map_timer);
1099 }
1100 if (*fixup_map_kptr) {
1101 map_fds[22] = create_map_kptr();
1102 do {
1103 prog[*fixup_map_kptr].imm = map_fds[22];
1104 fixup_map_kptr++;
1105 } while (*fixup_map_kptr);
1106 }
1107
1108 /* Patch in kfunc BTF IDs */
1109 if (fixup_kfunc_btf_id->kfunc) {
1110 struct btf *btf;
1111 int btf_id;
1112
1113 do {
1114 btf_id = 0;
1115 btf = btf__load_vmlinux_btf();
1116 if (btf) {
1117 btf_id = btf__find_by_name_kind(btf,
1118 fixup_kfunc_btf_id->kfunc,
1119 BTF_KIND_FUNC);
1120 btf_id = btf_id < 0 ? 0 : btf_id;
1121 }
1122 btf__free(btf);
1123 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1124 fixup_kfunc_btf_id++;
1125 } while (fixup_kfunc_btf_id->kfunc);
1126 }
1127 }
1128
1129 struct libcap {
1130 struct __user_cap_header_struct hdr;
1131 struct __user_cap_data_struct data[2];
1132 };
1133
set_admin(bool admin)1134 static int set_admin(bool admin)
1135 {
1136 int err;
1137
1138 if (admin) {
1139 err = cap_enable_effective(ADMIN_CAPS, NULL);
1140 if (err)
1141 perror("cap_enable_effective(ADMIN_CAPS)");
1142 } else {
1143 err = cap_disable_effective(ADMIN_CAPS, NULL);
1144 if (err)
1145 perror("cap_disable_effective(ADMIN_CAPS)");
1146 }
1147
1148 return err;
1149 }
1150
do_prog_test_run(int fd_prog,bool unpriv,uint32_t expected_val,void * data,size_t size_data)1151 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1152 void *data, size_t size_data)
1153 {
1154 __u8 tmp[TEST_DATA_LEN << 2];
1155 __u32 size_tmp = sizeof(tmp);
1156 int err, saved_errno;
1157 LIBBPF_OPTS(bpf_test_run_opts, topts,
1158 .data_in = data,
1159 .data_size_in = size_data,
1160 .data_out = tmp,
1161 .data_size_out = size_tmp,
1162 .repeat = 1,
1163 );
1164
1165 if (unpriv)
1166 set_admin(true);
1167 err = bpf_prog_test_run_opts(fd_prog, &topts);
1168 saved_errno = errno;
1169
1170 if (unpriv)
1171 set_admin(false);
1172
1173 if (err) {
1174 switch (saved_errno) {
1175 case ENOTSUPP:
1176 printf("Did not run the program (not supported) ");
1177 return 0;
1178 case EPERM:
1179 if (unpriv) {
1180 printf("Did not run the program (no permission) ");
1181 return 0;
1182 }
1183 /* fallthrough; */
1184 default:
1185 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1186 strerror(saved_errno));
1187 return err;
1188 }
1189 }
1190
1191 if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1192 printf("FAIL retval %d != %d ", topts.retval, expected_val);
1193 return 1;
1194 }
1195
1196 return 0;
1197 }
1198
1199 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1200 *
1201 * If exp is an empty string, returns true.
1202 */
cmp_str_seq(const char * log,const char * exp)1203 static bool cmp_str_seq(const char *log, const char *exp)
1204 {
1205 char needle[200];
1206 const char *p, *q;
1207 int len;
1208
1209 do {
1210 if (!strlen(exp))
1211 break;
1212 p = strchr(exp, '\t');
1213 if (!p)
1214 p = exp + strlen(exp);
1215
1216 len = p - exp;
1217 if (len >= sizeof(needle) || !len) {
1218 printf("FAIL\nTestcase bug\n");
1219 return false;
1220 }
1221 strncpy(needle, exp, len);
1222 needle[len] = 0;
1223 q = strstr(log, needle);
1224 if (!q) {
1225 printf("FAIL\nUnexpected verifier log!\n"
1226 "EXP: %s\nRES:\n", needle);
1227 return false;
1228 }
1229 log = q + len;
1230 exp = p + 1;
1231 } while (*p);
1232 return true;
1233 }
1234
get_xlated_program(int fd_prog,struct bpf_insn ** buf,int * cnt)1235 static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt)
1236 {
1237 struct bpf_prog_info info = {};
1238 __u32 info_len = sizeof(info);
1239 __u32 xlated_prog_len;
1240 __u32 buf_element_size = sizeof(struct bpf_insn);
1241
1242 if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) {
1243 perror("bpf_obj_get_info_by_fd failed");
1244 return -1;
1245 }
1246
1247 xlated_prog_len = info.xlated_prog_len;
1248 if (xlated_prog_len % buf_element_size) {
1249 printf("Program length %d is not multiple of %d\n",
1250 xlated_prog_len, buf_element_size);
1251 return -1;
1252 }
1253
1254 *cnt = xlated_prog_len / buf_element_size;
1255 *buf = calloc(*cnt, buf_element_size);
1256 if (!buf) {
1257 perror("can't allocate xlated program buffer");
1258 return -ENOMEM;
1259 }
1260
1261 bzero(&info, sizeof(info));
1262 info.xlated_prog_len = xlated_prog_len;
1263 info.xlated_prog_insns = (__u64)(unsigned long)*buf;
1264 if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) {
1265 perror("second bpf_obj_get_info_by_fd failed");
1266 goto out_free_buf;
1267 }
1268
1269 return 0;
1270
1271 out_free_buf:
1272 free(*buf);
1273 return -1;
1274 }
1275
is_null_insn(struct bpf_insn * insn)1276 static bool is_null_insn(struct bpf_insn *insn)
1277 {
1278 struct bpf_insn null_insn = {};
1279
1280 return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1281 }
1282
is_skip_insn(struct bpf_insn * insn)1283 static bool is_skip_insn(struct bpf_insn *insn)
1284 {
1285 struct bpf_insn skip_insn = SKIP_INSNS();
1286
1287 return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1288 }
1289
null_terminated_insn_len(struct bpf_insn * seq,int max_len)1290 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1291 {
1292 int i;
1293
1294 for (i = 0; i < max_len; ++i) {
1295 if (is_null_insn(&seq[i]))
1296 return i;
1297 }
1298 return max_len;
1299 }
1300
compare_masked_insn(struct bpf_insn * orig,struct bpf_insn * masked)1301 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1302 {
1303 struct bpf_insn orig_masked;
1304
1305 memcpy(&orig_masked, orig, sizeof(orig_masked));
1306 if (masked->imm == INSN_IMM_MASK)
1307 orig_masked.imm = INSN_IMM_MASK;
1308 if (masked->off == INSN_OFF_MASK)
1309 orig_masked.off = INSN_OFF_MASK;
1310
1311 return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1312 }
1313
find_insn_subseq(struct bpf_insn * seq,struct bpf_insn * subseq,int seq_len,int subseq_len)1314 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1315 int seq_len, int subseq_len)
1316 {
1317 int i, j;
1318
1319 if (subseq_len > seq_len)
1320 return -1;
1321
1322 for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1323 bool found = true;
1324
1325 for (j = 0; j < subseq_len; ++j) {
1326 if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1327 found = false;
1328 break;
1329 }
1330 }
1331 if (found)
1332 return i;
1333 }
1334
1335 return -1;
1336 }
1337
find_skip_insn_marker(struct bpf_insn * seq,int len)1338 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1339 {
1340 int i;
1341
1342 for (i = 0; i < len; ++i)
1343 if (is_skip_insn(&seq[i]))
1344 return i;
1345
1346 return -1;
1347 }
1348
1349 /* Return true if all sub-sequences in `subseqs` could be found in
1350 * `seq` one after another. Sub-sequences are separated by a single
1351 * nil instruction.
1352 */
find_all_insn_subseqs(struct bpf_insn * seq,struct bpf_insn * subseqs,int seq_len,int max_subseqs_len)1353 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1354 int seq_len, int max_subseqs_len)
1355 {
1356 int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1357
1358 while (subseqs_len > 0) {
1359 int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1360 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1361 int subseq_idx = find_insn_subseq(seq, subseqs,
1362 seq_len, cur_subseq_len);
1363
1364 if (subseq_idx < 0)
1365 return false;
1366 seq += subseq_idx + cur_subseq_len;
1367 seq_len -= subseq_idx + cur_subseq_len;
1368 subseqs += cur_subseq_len + 1;
1369 subseqs_len -= cur_subseq_len + 1;
1370 }
1371
1372 return true;
1373 }
1374
print_insn(struct bpf_insn * buf,int cnt)1375 static void print_insn(struct bpf_insn *buf, int cnt)
1376 {
1377 int i;
1378
1379 printf(" addr op d s off imm\n");
1380 for (i = 0; i < cnt; ++i) {
1381 struct bpf_insn *insn = &buf[i];
1382
1383 if (is_null_insn(insn))
1384 break;
1385
1386 if (is_skip_insn(insn))
1387 printf(" ...\n");
1388 else
1389 printf(" %04x: %02x %1x %x %04hx %08x\n",
1390 i, insn->code, insn->dst_reg,
1391 insn->src_reg, insn->off, insn->imm);
1392 }
1393 }
1394
check_xlated_program(struct bpf_test * test,int fd_prog)1395 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1396 {
1397 struct bpf_insn *buf;
1398 int cnt;
1399 bool result = true;
1400 bool check_expected = !is_null_insn(test->expected_insns);
1401 bool check_unexpected = !is_null_insn(test->unexpected_insns);
1402
1403 if (!check_expected && !check_unexpected)
1404 goto out;
1405
1406 if (get_xlated_program(fd_prog, &buf, &cnt)) {
1407 printf("FAIL: can't get xlated program\n");
1408 result = false;
1409 goto out;
1410 }
1411
1412 if (check_expected &&
1413 !find_all_insn_subseqs(buf, test->expected_insns,
1414 cnt, MAX_EXPECTED_INSNS)) {
1415 printf("FAIL: can't find expected subsequence of instructions\n");
1416 result = false;
1417 if (verbose) {
1418 printf("Program:\n");
1419 print_insn(buf, cnt);
1420 printf("Expected subsequence:\n");
1421 print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1422 }
1423 }
1424
1425 if (check_unexpected &&
1426 find_all_insn_subseqs(buf, test->unexpected_insns,
1427 cnt, MAX_UNEXPECTED_INSNS)) {
1428 printf("FAIL: found unexpected subsequence of instructions\n");
1429 result = false;
1430 if (verbose) {
1431 printf("Program:\n");
1432 print_insn(buf, cnt);
1433 printf("Un-expected subsequence:\n");
1434 print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1435 }
1436 }
1437
1438 free(buf);
1439 out:
1440 return result;
1441 }
1442
do_test_single(struct bpf_test * test,bool unpriv,int * passes,int * errors)1443 static void do_test_single(struct bpf_test *test, bool unpriv,
1444 int *passes, int *errors)
1445 {
1446 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1447 int prog_len, prog_type = test->prog_type;
1448 struct bpf_insn *prog = test->insns;
1449 LIBBPF_OPTS(bpf_prog_load_opts, opts);
1450 int run_errs, run_successes;
1451 int map_fds[MAX_NR_MAPS];
1452 const char *expected_err;
1453 int saved_errno;
1454 int fixup_skips;
1455 __u32 pflags;
1456 int i, err;
1457
1458 fd_prog = -1;
1459 for (i = 0; i < MAX_NR_MAPS; i++)
1460 map_fds[i] = -1;
1461 btf_fd = -1;
1462
1463 if (!prog_type)
1464 prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1465 fixup_skips = skips;
1466 do_test_fixup(test, prog_type, prog, map_fds);
1467 if (test->fill_insns) {
1468 prog = test->fill_insns;
1469 prog_len = test->prog_len;
1470 } else {
1471 prog_len = probe_filter_length(prog);
1472 }
1473 /* If there were some map skips during fixup due to missing bpf
1474 * features, skip this test.
1475 */
1476 if (fixup_skips != skips)
1477 return;
1478
1479 pflags = BPF_F_TEST_RND_HI32;
1480 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1481 pflags |= BPF_F_STRICT_ALIGNMENT;
1482 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1483 pflags |= BPF_F_ANY_ALIGNMENT;
1484 if (test->flags & ~3)
1485 pflags |= test->flags;
1486
1487 expected_ret = unpriv && test->result_unpriv != UNDEF ?
1488 test->result_unpriv : test->result;
1489 expected_err = unpriv && test->errstr_unpriv ?
1490 test->errstr_unpriv : test->errstr;
1491
1492 opts.expected_attach_type = test->expected_attach_type;
1493 if (verbose)
1494 opts.log_level = VERBOSE_LIBBPF_LOG_LEVEL;
1495 else if (expected_ret == VERBOSE_ACCEPT)
1496 opts.log_level = 2;
1497 else
1498 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1499 opts.prog_flags = pflags;
1500
1501 if ((prog_type == BPF_PROG_TYPE_TRACING ||
1502 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1503 int attach_btf_id;
1504
1505 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1506 opts.expected_attach_type);
1507 if (attach_btf_id < 0) {
1508 printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1509 test->kfunc);
1510 (*errors)++;
1511 return;
1512 }
1513
1514 opts.attach_btf_id = attach_btf_id;
1515 }
1516
1517 if (test->btf_types[0] != 0) {
1518 btf_fd = load_btf_for_test(test);
1519 if (btf_fd < 0)
1520 goto fail_log;
1521 opts.prog_btf_fd = btf_fd;
1522 }
1523
1524 if (test->func_info_cnt != 0) {
1525 opts.func_info = test->func_info;
1526 opts.func_info_cnt = test->func_info_cnt;
1527 opts.func_info_rec_size = sizeof(test->func_info[0]);
1528 }
1529
1530 opts.log_buf = bpf_vlog;
1531 opts.log_size = sizeof(bpf_vlog);
1532 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1533 saved_errno = errno;
1534
1535 /* BPF_PROG_TYPE_TRACING requires more setup and
1536 * bpf_probe_prog_type won't give correct answer
1537 */
1538 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1539 !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1540 printf("SKIP (unsupported program type %d)\n", prog_type);
1541 skips++;
1542 goto close_fds;
1543 }
1544
1545 if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1546 printf("SKIP (program uses an unsupported feature)\n");
1547 skips++;
1548 goto close_fds;
1549 }
1550
1551 alignment_prevented_execution = 0;
1552
1553 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1554 if (fd_prog < 0) {
1555 printf("FAIL\nFailed to load prog '%s'!\n",
1556 strerror(saved_errno));
1557 goto fail_log;
1558 }
1559 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1560 if (fd_prog >= 0 &&
1561 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1562 alignment_prevented_execution = 1;
1563 #endif
1564 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1565 goto fail_log;
1566 }
1567 } else {
1568 if (fd_prog >= 0) {
1569 printf("FAIL\nUnexpected success to load!\n");
1570 goto fail_log;
1571 }
1572 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1573 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1574 expected_err, bpf_vlog);
1575 goto fail_log;
1576 }
1577 }
1578
1579 if (!unpriv && test->insn_processed) {
1580 uint32_t insn_processed;
1581 char *proc;
1582
1583 proc = strstr(bpf_vlog, "processed ");
1584 insn_processed = atoi(proc + 10);
1585 if (test->insn_processed != insn_processed) {
1586 printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1587 insn_processed, test->insn_processed);
1588 goto fail_log;
1589 }
1590 }
1591
1592 if (verbose)
1593 printf(", verifier log:\n%s", bpf_vlog);
1594
1595 if (!check_xlated_program(test, fd_prog))
1596 goto fail_log;
1597
1598 run_errs = 0;
1599 run_successes = 0;
1600 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1601 uint32_t expected_val;
1602 int i;
1603
1604 if (!test->runs)
1605 test->runs = 1;
1606
1607 for (i = 0; i < test->runs; i++) {
1608 if (unpriv && test->retvals[i].retval_unpriv)
1609 expected_val = test->retvals[i].retval_unpriv;
1610 else
1611 expected_val = test->retvals[i].retval;
1612
1613 err = do_prog_test_run(fd_prog, unpriv, expected_val,
1614 test->retvals[i].data,
1615 sizeof(test->retvals[i].data));
1616 if (err) {
1617 printf("(run %d/%d) ", i + 1, test->runs);
1618 run_errs++;
1619 } else {
1620 run_successes++;
1621 }
1622 }
1623 }
1624
1625 if (!run_errs) {
1626 (*passes)++;
1627 if (run_successes > 1)
1628 printf("%d cases ", run_successes);
1629 printf("OK");
1630 if (alignment_prevented_execution)
1631 printf(" (NOTE: not executed due to unknown alignment)");
1632 printf("\n");
1633 } else {
1634 printf("\n");
1635 goto fail_log;
1636 }
1637 close_fds:
1638 if (test->fill_insns)
1639 free(test->fill_insns);
1640 close(fd_prog);
1641 close(btf_fd);
1642 for (i = 0; i < MAX_NR_MAPS; i++)
1643 close(map_fds[i]);
1644 sched_yield();
1645 return;
1646 fail_log:
1647 (*errors)++;
1648 printf("%s", bpf_vlog);
1649 goto close_fds;
1650 }
1651
is_admin(void)1652 static bool is_admin(void)
1653 {
1654 __u64 caps;
1655
1656 /* The test checks for finer cap as CAP_NET_ADMIN,
1657 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1658 * Thus, disable CAP_SYS_ADMIN at the beginning.
1659 */
1660 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1661 perror("cap_disable_effective(CAP_SYS_ADMIN)");
1662 return false;
1663 }
1664
1665 return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1666 }
1667
get_unpriv_disabled()1668 static void get_unpriv_disabled()
1669 {
1670 char buf[2];
1671 FILE *fd;
1672
1673 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1674 if (!fd) {
1675 perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1676 unpriv_disabled = true;
1677 return;
1678 }
1679 if (fgets(buf, 2, fd) == buf && atoi(buf))
1680 unpriv_disabled = true;
1681 fclose(fd);
1682 }
1683
test_as_unpriv(struct bpf_test * test)1684 static bool test_as_unpriv(struct bpf_test *test)
1685 {
1686 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1687 /* Some architectures have strict alignment requirements. In
1688 * that case, the BPF verifier detects if a program has
1689 * unaligned accesses and rejects them. A user can pass
1690 * BPF_F_ANY_ALIGNMENT to a program to override this
1691 * check. That, however, will only work when a privileged user
1692 * loads a program. An unprivileged user loading a program
1693 * with this flag will be rejected prior entering the
1694 * verifier.
1695 */
1696 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1697 return false;
1698 #endif
1699 return !test->prog_type ||
1700 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1701 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1702 }
1703
do_test(bool unpriv,unsigned int from,unsigned int to)1704 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1705 {
1706 int i, passes = 0, errors = 0;
1707
1708 for (i = from; i < to; i++) {
1709 struct bpf_test *test = &tests[i];
1710
1711 /* Program types that are not supported by non-root we
1712 * skip right away.
1713 */
1714 if (test_as_unpriv(test) && unpriv_disabled) {
1715 printf("#%d/u %s SKIP\n", i, test->descr);
1716 skips++;
1717 } else if (test_as_unpriv(test)) {
1718 if (!unpriv)
1719 set_admin(false);
1720 printf("#%d/u %s ", i, test->descr);
1721 do_test_single(test, true, &passes, &errors);
1722 if (!unpriv)
1723 set_admin(true);
1724 }
1725
1726 if (unpriv) {
1727 printf("#%d/p %s SKIP\n", i, test->descr);
1728 skips++;
1729 } else {
1730 printf("#%d/p %s ", i, test->descr);
1731 do_test_single(test, false, &passes, &errors);
1732 }
1733 }
1734
1735 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1736 skips, errors);
1737 return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1738 }
1739
main(int argc,char ** argv)1740 int main(int argc, char **argv)
1741 {
1742 unsigned int from = 0, to = ARRAY_SIZE(tests);
1743 bool unpriv = !is_admin();
1744 int arg = 1;
1745
1746 if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1747 arg++;
1748 verbose = true;
1749 argc--;
1750 }
1751
1752 if (argc == 3) {
1753 unsigned int l = atoi(argv[arg]);
1754 unsigned int u = atoi(argv[arg + 1]);
1755
1756 if (l < to && u < to) {
1757 from = l;
1758 to = u + 1;
1759 }
1760 } else if (argc == 2) {
1761 unsigned int t = atoi(argv[arg]);
1762
1763 if (t < to) {
1764 from = t;
1765 to = t + 1;
1766 }
1767 }
1768
1769 get_unpriv_disabled();
1770 if (unpriv && unpriv_disabled) {
1771 printf("Cannot run as unprivileged user with sysctl %s.\n",
1772 UNPRIV_SYSCTL);
1773 return EXIT_FAILURE;
1774 }
1775
1776 /* Use libbpf 1.0 API mode */
1777 libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1778
1779 bpf_semi_rand_init();
1780 return do_test(unpriv, from, to);
1781 }
1782