1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37 enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42 DMA_OUT_OF_ORDER,
43 };
44
45 /**
46 * enum dma_transaction_type - DMA transaction types/indexes
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
50 */
51 enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_MEMCPY_SG,
54 DMA_XOR,
55 DMA_PQ,
56 DMA_XOR_VAL,
57 DMA_PQ_VAL,
58 DMA_MEMSET,
59 DMA_MEMSET_SG,
60 DMA_INTERRUPT,
61 DMA_PRIVATE,
62 DMA_ASYNC_TX,
63 DMA_SLAVE,
64 DMA_CYCLIC,
65 DMA_INTERLEAVE,
66 DMA_COMPLETION_NO_ORDER,
67 DMA_REPEAT,
68 DMA_LOAD_EOT,
69 /* last transaction type for creation of the capabilities mask */
70 DMA_TX_TYPE_END,
71 };
72
73 /**
74 * enum dma_transfer_direction - dma transfer mode and direction indicator
75 * @DMA_MEM_TO_MEM: Async/Memcpy mode
76 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
77 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
78 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
79 */
80 enum dma_transfer_direction {
81 DMA_MEM_TO_MEM,
82 DMA_MEM_TO_DEV,
83 DMA_DEV_TO_MEM,
84 DMA_DEV_TO_DEV,
85 DMA_TRANS_NONE,
86 };
87
88 /**
89 * Interleaved Transfer Request
90 * ----------------------------
91 * A chunk is collection of contiguous bytes to be transferred.
92 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
93 * ICGs may or may not change between chunks.
94 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
95 * that when repeated an integral number of times, specifies the transfer.
96 * A transfer template is specification of a Frame, the number of times
97 * it is to be repeated and other per-transfer attributes.
98 *
99 * Practically, a client driver would have ready a template for each
100 * type of transfer it is going to need during its lifetime and
101 * set only 'src_start' and 'dst_start' before submitting the requests.
102 *
103 *
104 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
105 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
106 *
107 * == Chunk size
108 * ... ICG
109 */
110
111 /**
112 * struct data_chunk - Element of scatter-gather list that makes a frame.
113 * @size: Number of bytes to read from source.
114 * size_dst := fn(op, size_src), so doesn't mean much for destination.
115 * @icg: Number of bytes to jump after last src/dst address of this
116 * chunk and before first src/dst address for next chunk.
117 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
118 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
119 * @dst_icg: Number of bytes to jump after last dst address of this
120 * chunk and before the first dst address for next chunk.
121 * Ignored if dst_inc is true and dst_sgl is false.
122 * @src_icg: Number of bytes to jump after last src address of this
123 * chunk and before the first src address for next chunk.
124 * Ignored if src_inc is true and src_sgl is false.
125 */
126 struct data_chunk {
127 size_t size;
128 size_t icg;
129 size_t dst_icg;
130 size_t src_icg;
131 };
132
133 /**
134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
135 * and attributes.
136 * @src_start: Bus address of source for the first chunk.
137 * @dst_start: Bus address of destination for the first chunk.
138 * @dir: Specifies the type of Source and Destination.
139 * @src_inc: If the source address increments after reading from it.
140 * @dst_inc: If the destination address increments after writing to it.
141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
142 * Otherwise, source is read contiguously (icg ignored).
143 * Ignored if src_inc is false.
144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
145 * Otherwise, destination is filled contiguously (icg ignored).
146 * Ignored if dst_inc is false.
147 * @numf: Number of frames in this template.
148 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
149 * @sgl: Array of {chunk,icg} pairs that make up a frame.
150 */
151 struct dma_interleaved_template {
152 dma_addr_t src_start;
153 dma_addr_t dst_start;
154 enum dma_transfer_direction dir;
155 bool src_inc;
156 bool dst_inc;
157 bool src_sgl;
158 bool dst_sgl;
159 size_t numf;
160 size_t frame_size;
161 struct data_chunk sgl[];
162 };
163
164 /**
165 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
166 * control completion, and communicate status.
167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
168 * this transaction
169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
170 * acknowledges receipt, i.e. has a chance to establish any dependency
171 * chains
172 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
173 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
174 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
175 * sources that were the result of a previous operation, in the case of a PQ
176 * operation it continues the calculation with new sources
177 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
178 * on the result of this operation
179 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
180 * cleared or freed
181 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
182 * data and the descriptor should be in different format from normal
183 * data descriptors.
184 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
185 * repeated when it ends until a transaction is issued on the same channel
186 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
187 * interleaved transactions and is ignored for all other transaction types.
188 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
189 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
190 * repeated transaction ends. Not setting this flag when the previously queued
191 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
192 * to never be processed and stay in the issued queue forever. The flag is
193 * ignored if the previous transaction is not a repeated transaction.
194 */
195 enum dma_ctrl_flags {
196 DMA_PREP_INTERRUPT = (1 << 0),
197 DMA_CTRL_ACK = (1 << 1),
198 DMA_PREP_PQ_DISABLE_P = (1 << 2),
199 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
200 DMA_PREP_CONTINUE = (1 << 4),
201 DMA_PREP_FENCE = (1 << 5),
202 DMA_CTRL_REUSE = (1 << 6),
203 DMA_PREP_CMD = (1 << 7),
204 DMA_PREP_REPEAT = (1 << 8),
205 DMA_PREP_LOAD_EOT = (1 << 9),
206 };
207
208 /**
209 * enum sum_check_bits - bit position of pq_check_flags
210 */
211 enum sum_check_bits {
212 SUM_CHECK_P = 0,
213 SUM_CHECK_Q = 1,
214 };
215
216 /**
217 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
218 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
219 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
220 */
221 enum sum_check_flags {
222 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
223 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
224 };
225
226
227 /**
228 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
229 * See linux/cpumask.h
230 */
231 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
232
233 /**
234 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
235 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
236 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
237 * helper) to the descriptor.
238 *
239 * Client drivers interested to use this mode can follow:
240 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
241 * 1. prepare the descriptor (dmaengine_prep_*)
242 * construct the metadata in the client's buffer
243 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
244 * descriptor
245 * 3. submit the transfer
246 * - DMA_DEV_TO_MEM:
247 * 1. prepare the descriptor (dmaengine_prep_*)
248 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
249 * descriptor
250 * 3. submit the transfer
251 * 4. when the transfer is completed, the metadata should be available in the
252 * attached buffer
253 *
254 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
255 * driver. The client driver can ask for the pointer, maximum size and the
256 * currently used size of the metadata and can directly update or read it.
257 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
258 * provided as helper functions.
259 *
260 * Note: the metadata area for the descriptor is no longer valid after the
261 * transfer has been completed (valid up to the point when the completion
262 * callback returns if used).
263 *
264 * Client drivers interested to use this mode can follow:
265 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
266 * 1. prepare the descriptor (dmaengine_prep_*)
267 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
268 * metadata area
269 * 3. update the metadata at the pointer
270 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
271 * of data the client has placed into the metadata buffer
272 * 5. submit the transfer
273 * - DMA_DEV_TO_MEM:
274 * 1. prepare the descriptor (dmaengine_prep_*)
275 * 2. submit the transfer
276 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
277 * pointer to the engine's metadata area
278 * 4. Read out the metadata from the pointer
279 *
280 * Note: the two mode is not compatible and clients must use one mode for a
281 * descriptor.
282 */
283 enum dma_desc_metadata_mode {
284 DESC_METADATA_NONE = 0,
285 DESC_METADATA_CLIENT = BIT(0),
286 DESC_METADATA_ENGINE = BIT(1),
287 };
288
289 /**
290 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
291 * @memcpy_count: transaction counter
292 * @bytes_transferred: byte counter
293 */
294 struct dma_chan_percpu {
295 /* stats */
296 unsigned long memcpy_count;
297 unsigned long bytes_transferred;
298 };
299
300 /**
301 * struct dma_router - DMA router structure
302 * @dev: pointer to the DMA router device
303 * @route_free: function to be called when the route can be disconnected
304 */
305 struct dma_router {
306 struct device *dev;
307 void (*route_free)(struct device *dev, void *route_data);
308 };
309
310 /**
311 * struct dma_chan - devices supply DMA channels, clients use them
312 * @device: ptr to the dma device who supplies this channel, always !%NULL
313 * @slave: ptr to the device using this channel
314 * @cookie: last cookie value returned to client
315 * @completed_cookie: last completed cookie for this channel
316 * @chan_id: channel ID for sysfs
317 * @dev: class device for sysfs
318 * @name: backlink name for sysfs
319 * @dbg_client_name: slave name for debugfs in format:
320 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
321 * @device_node: used to add this to the device chan list
322 * @local: per-cpu pointer to a struct dma_chan_percpu
323 * @client_count: how many clients are using this channel
324 * @table_count: number of appearances in the mem-to-mem allocation table
325 * @router: pointer to the DMA router structure
326 * @route_data: channel specific data for the router
327 * @private: private data for certain client-channel associations
328 */
329 struct dma_chan {
330 struct dma_device *device;
331 struct device *slave;
332 dma_cookie_t cookie;
333 dma_cookie_t completed_cookie;
334
335 /* sysfs */
336 int chan_id;
337 struct dma_chan_dev *dev;
338 const char *name;
339 #ifdef CONFIG_DEBUG_FS
340 char *dbg_client_name;
341 #endif
342
343 struct list_head device_node;
344 struct dma_chan_percpu __percpu *local;
345 int client_count;
346 int table_count;
347
348 /* DMA router */
349 struct dma_router *router;
350 void *route_data;
351
352 void *private;
353 };
354
355 /**
356 * struct dma_chan_dev - relate sysfs device node to backing channel device
357 * @chan: driver channel device
358 * @device: sysfs device
359 * @dev_id: parent dma_device dev_id
360 * @chan_dma_dev: The channel is using custom/different dma-mapping
361 * compared to the parent dma_device
362 */
363 struct dma_chan_dev {
364 struct dma_chan *chan;
365 struct device device;
366 int dev_id;
367 bool chan_dma_dev;
368 };
369
370 /**
371 * enum dma_slave_buswidth - defines bus width of the DMA slave
372 * device, source or target buses
373 */
374 enum dma_slave_buswidth {
375 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
376 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
377 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
378 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
379 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
380 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
381 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
382 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
383 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
384 DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
385 };
386
387 /**
388 * struct dma_slave_config - dma slave channel runtime config
389 * @direction: whether the data shall go in or out on this slave
390 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
391 * legal values. DEPRECATED, drivers should use the direction argument
392 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
393 * the dir field in the dma_interleaved_template structure.
394 * @src_addr: this is the physical address where DMA slave data
395 * should be read (RX), if the source is memory this argument is
396 * ignored.
397 * @dst_addr: this is the physical address where DMA slave data
398 * should be written (TX), if the source is memory this argument
399 * is ignored.
400 * @src_addr_width: this is the width in bytes of the source (RX)
401 * register where DMA data shall be read. If the source
402 * is memory this may be ignored depending on architecture.
403 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
404 * @dst_addr_width: same as src_addr_width but for destination
405 * target (TX) mutatis mutandis.
406 * @src_maxburst: the maximum number of words (note: words, as in
407 * units of the src_addr_width member, not bytes) that can be sent
408 * in one burst to the device. Typically something like half the
409 * FIFO depth on I/O peripherals so you don't overflow it. This
410 * may or may not be applicable on memory sources.
411 * @dst_maxburst: same as src_maxburst but for destination target
412 * mutatis mutandis.
413 * @src_port_window_size: The length of the register area in words the data need
414 * to be accessed on the device side. It is only used for devices which is using
415 * an area instead of a single register to receive the data. Typically the DMA
416 * loops in this area in order to transfer the data.
417 * @dst_port_window_size: same as src_port_window_size but for the destination
418 * port.
419 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
420 * with 'true' if peripheral should be flow controller. Direction will be
421 * selected at Runtime.
422 * @peripheral_config: peripheral configuration for programming peripheral
423 * for dmaengine transfer
424 * @peripheral_size: peripheral configuration buffer size
425 *
426 * This struct is passed in as configuration data to a DMA engine
427 * in order to set up a certain channel for DMA transport at runtime.
428 * The DMA device/engine has to provide support for an additional
429 * callback in the dma_device structure, device_config and this struct
430 * will then be passed in as an argument to the function.
431 *
432 * The rationale for adding configuration information to this struct is as
433 * follows: if it is likely that more than one DMA slave controllers in
434 * the world will support the configuration option, then make it generic.
435 * If not: if it is fixed so that it be sent in static from the platform
436 * data, then prefer to do that.
437 */
438 struct dma_slave_config {
439 enum dma_transfer_direction direction;
440 phys_addr_t src_addr;
441 phys_addr_t dst_addr;
442 enum dma_slave_buswidth src_addr_width;
443 enum dma_slave_buswidth dst_addr_width;
444 u32 src_maxburst;
445 u32 dst_maxburst;
446 u32 src_port_window_size;
447 u32 dst_port_window_size;
448 bool device_fc;
449 void *peripheral_config;
450 size_t peripheral_size;
451 };
452
453 /**
454 * enum dma_residue_granularity - Granularity of the reported transfer residue
455 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
456 * DMA channel is only able to tell whether a descriptor has been completed or
457 * not, which means residue reporting is not supported by this channel. The
458 * residue field of the dma_tx_state field will always be 0.
459 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
460 * completed segment of the transfer (For cyclic transfers this is after each
461 * period). This is typically implemented by having the hardware generate an
462 * interrupt after each transferred segment and then the drivers updates the
463 * outstanding residue by the size of the segment. Another possibility is if
464 * the hardware supports scatter-gather and the segment descriptor has a field
465 * which gets set after the segment has been completed. The driver then counts
466 * the number of segments without the flag set to compute the residue.
467 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
468 * burst. This is typically only supported if the hardware has a progress
469 * register of some sort (E.g. a register with the current read/write address
470 * or a register with the amount of bursts/beats/bytes that have been
471 * transferred or still need to be transferred).
472 */
473 enum dma_residue_granularity {
474 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
475 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
476 DMA_RESIDUE_GRANULARITY_BURST = 2,
477 };
478
479 /**
480 * struct dma_slave_caps - expose capabilities of a slave channel only
481 * @src_addr_widths: bit mask of src addr widths the channel supports.
482 * Width is specified in bytes, e.g. for a channel supporting
483 * a width of 4 the mask should have BIT(4) set.
484 * @dst_addr_widths: bit mask of dst addr widths the channel supports
485 * @directions: bit mask of slave directions the channel supports.
486 * Since the enum dma_transfer_direction is not defined as bit flag for
487 * each type, the dma controller should set BIT(<TYPE>) and same
488 * should be checked by controller as well
489 * @min_burst: min burst capability per-transfer
490 * @max_burst: max burst capability per-transfer
491 * @max_sg_burst: max number of SG list entries executed in a single burst
492 * DMA tansaction with no software intervention for reinitialization.
493 * Zero value means unlimited number of entries.
494 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
495 * for resume later)
496 * @cmd_resume: true, if resume is supported
497 * @cmd_terminate: true, if terminate cmd is supported
498 * @residue_granularity: granularity of the reported transfer residue
499 * @descriptor_reuse: if a descriptor can be reused by client and
500 * resubmitted multiple times
501 */
502 struct dma_slave_caps {
503 u32 src_addr_widths;
504 u32 dst_addr_widths;
505 u32 directions;
506 u32 min_burst;
507 u32 max_burst;
508 u32 max_sg_burst;
509 bool cmd_pause;
510 bool cmd_resume;
511 bool cmd_terminate;
512 enum dma_residue_granularity residue_granularity;
513 bool descriptor_reuse;
514 };
515
dma_chan_name(struct dma_chan * chan)516 static inline const char *dma_chan_name(struct dma_chan *chan)
517 {
518 return dev_name(&chan->dev->device);
519 }
520
521 void dma_chan_cleanup(struct kref *kref);
522
523 /**
524 * typedef dma_filter_fn - callback filter for dma_request_channel
525 * @chan: channel to be reviewed
526 * @filter_param: opaque parameter passed through dma_request_channel
527 *
528 * When this optional parameter is specified in a call to dma_request_channel a
529 * suitable channel is passed to this routine for further dispositioning before
530 * being returned. Where 'suitable' indicates a non-busy channel that
531 * satisfies the given capability mask. It returns 'true' to indicate that the
532 * channel is suitable.
533 */
534 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
535
536 typedef void (*dma_async_tx_callback)(void *dma_async_param);
537
538 enum dmaengine_tx_result {
539 DMA_TRANS_NOERROR = 0, /* SUCCESS */
540 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
541 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
542 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
543 };
544
545 struct dmaengine_result {
546 enum dmaengine_tx_result result;
547 u32 residue;
548 };
549
550 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
551 const struct dmaengine_result *result);
552
553 struct dmaengine_unmap_data {
554 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
555 u16 map_cnt;
556 #else
557 u8 map_cnt;
558 #endif
559 u8 to_cnt;
560 u8 from_cnt;
561 u8 bidi_cnt;
562 struct device *dev;
563 struct kref kref;
564 size_t len;
565 dma_addr_t addr[];
566 };
567
568 struct dma_async_tx_descriptor;
569
570 struct dma_descriptor_metadata_ops {
571 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
572 size_t len);
573
574 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
575 size_t *payload_len, size_t *max_len);
576 int (*set_len)(struct dma_async_tx_descriptor *desc,
577 size_t payload_len);
578 };
579
580 /**
581 * struct dma_async_tx_descriptor - async transaction descriptor
582 * ---dma generic offload fields---
583 * @cookie: tracking cookie for this transaction, set to -EBUSY if
584 * this tx is sitting on a dependency list
585 * @flags: flags to augment operation preparation, control completion, and
586 * communicate status
587 * @phys: physical address of the descriptor
588 * @chan: target channel for this operation
589 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
590 * descriptor pending. To be pushed on .issue_pending() call
591 * @callback: routine to call after this operation is complete
592 * @callback_param: general parameter to pass to the callback routine
593 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
594 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
595 * DESC_METADATA_NONE
596 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
597 * DMA driver if metadata mode is supported with the descriptor
598 * ---async_tx api specific fields---
599 * @next: at completion submit this descriptor
600 * @parent: pointer to the next level up in the dependency chain
601 * @lock: protect the parent and next pointers
602 */
603 struct dma_async_tx_descriptor {
604 dma_cookie_t cookie;
605 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
606 dma_addr_t phys;
607 struct dma_chan *chan;
608 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
609 int (*desc_free)(struct dma_async_tx_descriptor *tx);
610 dma_async_tx_callback callback;
611 dma_async_tx_callback_result callback_result;
612 void *callback_param;
613 struct dmaengine_unmap_data *unmap;
614 enum dma_desc_metadata_mode desc_metadata_mode;
615 struct dma_descriptor_metadata_ops *metadata_ops;
616 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
617 struct dma_async_tx_descriptor *next;
618 struct dma_async_tx_descriptor *parent;
619 spinlock_t lock;
620 #endif
621 };
622
623 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)624 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
625 struct dmaengine_unmap_data *unmap)
626 {
627 kref_get(&unmap->kref);
628 tx->unmap = unmap;
629 }
630
631 struct dmaengine_unmap_data *
632 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
633 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
634 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)635 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
636 struct dmaengine_unmap_data *unmap)
637 {
638 }
639 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)640 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
641 {
642 return NULL;
643 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)644 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
645 {
646 }
647 #endif
648
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)649 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
650 {
651 if (!tx->unmap)
652 return;
653
654 dmaengine_unmap_put(tx->unmap);
655 tx->unmap = NULL;
656 }
657
658 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)659 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
660 {
661 }
txd_unlock(struct dma_async_tx_descriptor * txd)662 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
663 {
664 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)665 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
666 {
667 BUG();
668 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)669 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
670 {
671 }
txd_clear_next(struct dma_async_tx_descriptor * txd)672 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
673 {
674 }
txd_next(struct dma_async_tx_descriptor * txd)675 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
676 {
677 return NULL;
678 }
txd_parent(struct dma_async_tx_descriptor * txd)679 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
680 {
681 return NULL;
682 }
683
684 #else
txd_lock(struct dma_async_tx_descriptor * txd)685 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
686 {
687 spin_lock_bh(&txd->lock);
688 }
txd_unlock(struct dma_async_tx_descriptor * txd)689 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
690 {
691 spin_unlock_bh(&txd->lock);
692 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)693 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
694 {
695 txd->next = next;
696 next->parent = txd;
697 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)698 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
699 {
700 txd->parent = NULL;
701 }
txd_clear_next(struct dma_async_tx_descriptor * txd)702 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
703 {
704 txd->next = NULL;
705 }
txd_parent(struct dma_async_tx_descriptor * txd)706 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
707 {
708 return txd->parent;
709 }
txd_next(struct dma_async_tx_descriptor * txd)710 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
711 {
712 return txd->next;
713 }
714 #endif
715
716 /**
717 * struct dma_tx_state - filled in to report the status of
718 * a transfer.
719 * @last: last completed DMA cookie
720 * @used: last issued DMA cookie (i.e. the one in progress)
721 * @residue: the remaining number of bytes left to transmit
722 * on the selected transfer for states DMA_IN_PROGRESS and
723 * DMA_PAUSED if this is implemented in the driver, else 0
724 * @in_flight_bytes: amount of data in bytes cached by the DMA.
725 */
726 struct dma_tx_state {
727 dma_cookie_t last;
728 dma_cookie_t used;
729 u32 residue;
730 u32 in_flight_bytes;
731 };
732
733 /**
734 * enum dmaengine_alignment - defines alignment of the DMA async tx
735 * buffers
736 */
737 enum dmaengine_alignment {
738 DMAENGINE_ALIGN_1_BYTE = 0,
739 DMAENGINE_ALIGN_2_BYTES = 1,
740 DMAENGINE_ALIGN_4_BYTES = 2,
741 DMAENGINE_ALIGN_8_BYTES = 3,
742 DMAENGINE_ALIGN_16_BYTES = 4,
743 DMAENGINE_ALIGN_32_BYTES = 5,
744 DMAENGINE_ALIGN_64_BYTES = 6,
745 DMAENGINE_ALIGN_128_BYTES = 7,
746 DMAENGINE_ALIGN_256_BYTES = 8,
747 };
748
749 /**
750 * struct dma_slave_map - associates slave device and it's slave channel with
751 * parameter to be used by a filter function
752 * @devname: name of the device
753 * @slave: slave channel name
754 * @param: opaque parameter to pass to struct dma_filter.fn
755 */
756 struct dma_slave_map {
757 const char *devname;
758 const char *slave;
759 void *param;
760 };
761
762 /**
763 * struct dma_filter - information for slave device/channel to filter_fn/param
764 * mapping
765 * @fn: filter function callback
766 * @mapcnt: number of slave device/channel in the map
767 * @map: array of channel to filter mapping data
768 */
769 struct dma_filter {
770 dma_filter_fn fn;
771 int mapcnt;
772 const struct dma_slave_map *map;
773 };
774
775 /**
776 * struct dma_device - info on the entity supplying DMA services
777 * @chancnt: how many DMA channels are supported
778 * @privatecnt: how many DMA channels are requested by dma_request_channel
779 * @channels: the list of struct dma_chan
780 * @global_node: list_head for global dma_device_list
781 * @filter: information for device/slave to filter function/param mapping
782 * @cap_mask: one or more dma_capability flags
783 * @desc_metadata_modes: supported metadata modes by the DMA device
784 * @max_xor: maximum number of xor sources, 0 if no capability
785 * @max_pq: maximum number of PQ sources and PQ-continue capability
786 * @copy_align: alignment shift for memcpy operations
787 * @xor_align: alignment shift for xor operations
788 * @pq_align: alignment shift for pq operations
789 * @fill_align: alignment shift for memset operations
790 * @dev_id: unique device ID
791 * @dev: struct device reference for dma mapping api
792 * @owner: owner module (automatically set based on the provided dev)
793 * @src_addr_widths: bit mask of src addr widths the device supports
794 * Width is specified in bytes, e.g. for a device supporting
795 * a width of 4 the mask should have BIT(4) set.
796 * @dst_addr_widths: bit mask of dst addr widths the device supports
797 * @directions: bit mask of slave directions the device supports.
798 * Since the enum dma_transfer_direction is not defined as bit flag for
799 * each type, the dma controller should set BIT(<TYPE>) and same
800 * should be checked by controller as well
801 * @min_burst: min burst capability per-transfer
802 * @max_burst: max burst capability per-transfer
803 * @max_sg_burst: max number of SG list entries executed in a single burst
804 * DMA tansaction with no software intervention for reinitialization.
805 * Zero value means unlimited number of entries.
806 * @residue_granularity: granularity of the transfer residue reported
807 * by tx_status
808 * @device_alloc_chan_resources: allocate resources and return the
809 * number of allocated descriptors
810 * @device_router_config: optional callback for DMA router configuration
811 * @device_free_chan_resources: release DMA channel's resources
812 * @device_prep_dma_memcpy: prepares a memcpy operation
813 * @device_prep_dma_xor: prepares a xor operation
814 * @device_prep_dma_xor_val: prepares a xor validation operation
815 * @device_prep_dma_pq: prepares a pq operation
816 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
817 * @device_prep_dma_memset: prepares a memset operation
818 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
819 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
820 * @device_prep_slave_sg: prepares a slave dma operation
821 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
822 * The function takes a buffer of size buf_len. The callback function will
823 * be called after period_len bytes have been transferred.
824 * @device_prep_interleaved_dma: Transfer expression in a generic way.
825 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
826 * @device_caps: May be used to override the generic DMA slave capabilities
827 * with per-channel specific ones
828 * @device_config: Pushes a new configuration to a channel, return 0 or an error
829 * code
830 * @device_pause: Pauses any transfer happening on a channel. Returns
831 * 0 or an error code
832 * @device_resume: Resumes any transfer on a channel previously
833 * paused. Returns 0 or an error code
834 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
835 * or an error code
836 * @device_synchronize: Synchronizes the termination of a transfers to the
837 * current context.
838 * @device_tx_status: poll for transaction completion, the optional
839 * txstate parameter can be supplied with a pointer to get a
840 * struct with auxiliary transfer status information, otherwise the call
841 * will just return a simple status code
842 * @device_issue_pending: push pending transactions to hardware
843 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
844 * @device_release: called sometime atfer dma_async_device_unregister() is
845 * called and there are no further references to this structure. This
846 * must be implemented to free resources however many existing drivers
847 * do not and are therefore not safe to unbind while in use.
848 * @dbg_summary_show: optional routine to show contents in debugfs; default code
849 * will be used when this is omitted, but custom code can show extra,
850 * controller specific information.
851 */
852 struct dma_device {
853 struct kref ref;
854 unsigned int chancnt;
855 unsigned int privatecnt;
856 struct list_head channels;
857 struct list_head global_node;
858 struct dma_filter filter;
859 dma_cap_mask_t cap_mask;
860 enum dma_desc_metadata_mode desc_metadata_modes;
861 unsigned short max_xor;
862 unsigned short max_pq;
863 enum dmaengine_alignment copy_align;
864 enum dmaengine_alignment xor_align;
865 enum dmaengine_alignment pq_align;
866 enum dmaengine_alignment fill_align;
867 #define DMA_HAS_PQ_CONTINUE (1 << 15)
868
869 int dev_id;
870 struct device *dev;
871 struct module *owner;
872 struct ida chan_ida;
873
874 u32 src_addr_widths;
875 u32 dst_addr_widths;
876 u32 directions;
877 u32 min_burst;
878 u32 max_burst;
879 u32 max_sg_burst;
880 bool descriptor_reuse;
881 enum dma_residue_granularity residue_granularity;
882
883 int (*device_alloc_chan_resources)(struct dma_chan *chan);
884 int (*device_router_config)(struct dma_chan *chan);
885 void (*device_free_chan_resources)(struct dma_chan *chan);
886
887 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
888 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
889 size_t len, unsigned long flags);
890 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy_sg)(
891 struct dma_chan *chan,
892 struct scatterlist *dst_sg, unsigned int dst_nents,
893 struct scatterlist *src_sg, unsigned int src_nents,
894 unsigned long flags);
895 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
896 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
897 unsigned int src_cnt, size_t len, unsigned long flags);
898 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
899 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
900 size_t len, enum sum_check_flags *result, unsigned long flags);
901 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
902 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
903 unsigned int src_cnt, const unsigned char *scf,
904 size_t len, unsigned long flags);
905 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
906 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
907 unsigned int src_cnt, const unsigned char *scf, size_t len,
908 enum sum_check_flags *pqres, unsigned long flags);
909 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
910 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
911 unsigned long flags);
912 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
913 struct dma_chan *chan, struct scatterlist *sg,
914 unsigned int nents, int value, unsigned long flags);
915 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
916 struct dma_chan *chan, unsigned long flags);
917
918 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
919 struct dma_chan *chan, struct scatterlist *sgl,
920 unsigned int sg_len, enum dma_transfer_direction direction,
921 unsigned long flags, void *context);
922 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
923 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
924 size_t period_len, enum dma_transfer_direction direction,
925 unsigned long flags);
926 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
927 struct dma_chan *chan, struct dma_interleaved_template *xt,
928 unsigned long flags);
929 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
930 struct dma_chan *chan, dma_addr_t dst, u64 data,
931 unsigned long flags);
932
933 void (*device_caps)(struct dma_chan *chan,
934 struct dma_slave_caps *caps);
935 int (*device_config)(struct dma_chan *chan,
936 struct dma_slave_config *config);
937 int (*device_pause)(struct dma_chan *chan);
938 int (*device_resume)(struct dma_chan *chan);
939 int (*device_terminate_all)(struct dma_chan *chan);
940 void (*device_synchronize)(struct dma_chan *chan);
941
942 enum dma_status (*device_tx_status)(struct dma_chan *chan,
943 dma_cookie_t cookie,
944 struct dma_tx_state *txstate);
945 void (*device_issue_pending)(struct dma_chan *chan);
946 void (*device_release)(struct dma_device *dev);
947 /* debugfs support */
948 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
949 struct dentry *dbg_dev_root;
950 };
951
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)952 static inline int dmaengine_slave_config(struct dma_chan *chan,
953 struct dma_slave_config *config)
954 {
955 if (chan->device->device_config)
956 return chan->device->device_config(chan, config);
957
958 return -ENOSYS;
959 }
960
is_slave_direction(enum dma_transfer_direction direction)961 static inline bool is_slave_direction(enum dma_transfer_direction direction)
962 {
963 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
964 }
965
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)966 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
967 struct dma_chan *chan, dma_addr_t buf, size_t len,
968 enum dma_transfer_direction dir, unsigned long flags)
969 {
970 struct scatterlist sg;
971 sg_init_table(&sg, 1);
972 sg_dma_address(&sg) = buf;
973 sg_dma_len(&sg) = len;
974
975 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
976 return NULL;
977
978 return chan->device->device_prep_slave_sg(chan, &sg, 1,
979 dir, flags, NULL);
980 }
981
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)982 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
983 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
984 enum dma_transfer_direction dir, unsigned long flags)
985 {
986 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
987 return NULL;
988
989 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
990 dir, flags, NULL);
991 }
992
993 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
994 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)995 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
996 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
997 enum dma_transfer_direction dir, unsigned long flags,
998 struct rio_dma_ext *rio_ext)
999 {
1000 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1001 return NULL;
1002
1003 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1004 dir, flags, rio_ext);
1005 }
1006 #endif
1007
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1008 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1009 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1010 size_t period_len, enum dma_transfer_direction dir,
1011 unsigned long flags)
1012 {
1013 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1014 return NULL;
1015
1016 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1017 period_len, dir, flags);
1018 }
1019
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1020 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1021 struct dma_chan *chan, struct dma_interleaved_template *xt,
1022 unsigned long flags)
1023 {
1024 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1025 return NULL;
1026 if (flags & DMA_PREP_REPEAT &&
1027 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1028 return NULL;
1029
1030 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1031 }
1032
1033 /**
1034 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1035 * @chan: The channel to be used for this descriptor
1036 * @dest: Address of buffer to be set
1037 * @value: Treated as a single byte value that fills the destination buffer
1038 * @len: The total size of dest
1039 * @flags: DMA engine flags
1040 */
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1041 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1042 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1043 unsigned long flags)
1044 {
1045 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1046 return NULL;
1047
1048 return chan->device->device_prep_dma_memset(chan, dest, value,
1049 len, flags);
1050 }
1051
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1052 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1053 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1054 size_t len, unsigned long flags)
1055 {
1056 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1057 return NULL;
1058
1059 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1060 len, flags);
1061 }
1062
dmaengine_prep_dma_memcpy_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)1063 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy_sg(
1064 struct dma_chan *chan,
1065 struct scatterlist *dst_sg, unsigned int dst_nents,
1066 struct scatterlist *src_sg, unsigned int src_nents,
1067 unsigned long flags)
1068 {
1069 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy_sg)
1070 return NULL;
1071
1072 return chan->device->device_prep_dma_memcpy_sg(chan, dst_sg, dst_nents,
1073 src_sg, src_nents,
1074 flags);
1075 }
1076
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1077 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1078 enum dma_desc_metadata_mode mode)
1079 {
1080 if (!chan)
1081 return false;
1082
1083 return !!(chan->device->desc_metadata_modes & mode);
1084 }
1085
1086 #ifdef CONFIG_DMA_ENGINE
1087 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1088 void *data, size_t len);
1089 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1090 size_t *payload_len, size_t *max_len);
1091 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1092 size_t payload_len);
1093 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1094 static inline int dmaengine_desc_attach_metadata(
1095 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1096 {
1097 return -EINVAL;
1098 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1099 static inline void *dmaengine_desc_get_metadata_ptr(
1100 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1101 size_t *max_len)
1102 {
1103 return NULL;
1104 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1105 static inline int dmaengine_desc_set_metadata_len(
1106 struct dma_async_tx_descriptor *desc, size_t payload_len)
1107 {
1108 return -EINVAL;
1109 }
1110 #endif /* CONFIG_DMA_ENGINE */
1111
1112 /**
1113 * dmaengine_terminate_all() - Terminate all active DMA transfers
1114 * @chan: The channel for which to terminate the transfers
1115 *
1116 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1117 * dmaengine_terminate_async() instead.
1118 */
dmaengine_terminate_all(struct dma_chan * chan)1119 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1120 {
1121 if (chan->device->device_terminate_all)
1122 return chan->device->device_terminate_all(chan);
1123
1124 return -ENOSYS;
1125 }
1126
1127 /**
1128 * dmaengine_terminate_async() - Terminate all active DMA transfers
1129 * @chan: The channel for which to terminate the transfers
1130 *
1131 * Calling this function will terminate all active and pending descriptors
1132 * that have previously been submitted to the channel. It is not guaranteed
1133 * though that the transfer for the active descriptor has stopped when the
1134 * function returns. Furthermore it is possible the complete callback of a
1135 * submitted transfer is still running when this function returns.
1136 *
1137 * dmaengine_synchronize() needs to be called before it is safe to free
1138 * any memory that is accessed by previously submitted descriptors or before
1139 * freeing any resources accessed from within the completion callback of any
1140 * previously submitted descriptors.
1141 *
1142 * This function can be called from atomic context as well as from within a
1143 * complete callback of a descriptor submitted on the same channel.
1144 *
1145 * If none of the two conditions above apply consider using
1146 * dmaengine_terminate_sync() instead.
1147 */
dmaengine_terminate_async(struct dma_chan * chan)1148 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1149 {
1150 if (chan->device->device_terminate_all)
1151 return chan->device->device_terminate_all(chan);
1152
1153 return -EINVAL;
1154 }
1155
1156 /**
1157 * dmaengine_synchronize() - Synchronize DMA channel termination
1158 * @chan: The channel to synchronize
1159 *
1160 * Synchronizes to the DMA channel termination to the current context. When this
1161 * function returns it is guaranteed that all transfers for previously issued
1162 * descriptors have stopped and it is safe to free the memory associated
1163 * with them. Furthermore it is guaranteed that all complete callback functions
1164 * for a previously submitted descriptor have finished running and it is safe to
1165 * free resources accessed from within the complete callbacks.
1166 *
1167 * The behavior of this function is undefined if dma_async_issue_pending() has
1168 * been called between dmaengine_terminate_async() and this function.
1169 *
1170 * This function must only be called from non-atomic context and must not be
1171 * called from within a complete callback of a descriptor submitted on the same
1172 * channel.
1173 */
dmaengine_synchronize(struct dma_chan * chan)1174 static inline void dmaengine_synchronize(struct dma_chan *chan)
1175 {
1176 might_sleep();
1177
1178 if (chan->device->device_synchronize)
1179 chan->device->device_synchronize(chan);
1180 }
1181
1182 /**
1183 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1184 * @chan: The channel for which to terminate the transfers
1185 *
1186 * Calling this function will terminate all active and pending transfers
1187 * that have previously been submitted to the channel. It is similar to
1188 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1189 * stopped and that all complete callbacks have finished running when the
1190 * function returns.
1191 *
1192 * This function must only be called from non-atomic context and must not be
1193 * called from within a complete callback of a descriptor submitted on the same
1194 * channel.
1195 */
dmaengine_terminate_sync(struct dma_chan * chan)1196 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1197 {
1198 int ret;
1199
1200 ret = dmaengine_terminate_async(chan);
1201 if (ret)
1202 return ret;
1203
1204 dmaengine_synchronize(chan);
1205
1206 return 0;
1207 }
1208
dmaengine_pause(struct dma_chan * chan)1209 static inline int dmaengine_pause(struct dma_chan *chan)
1210 {
1211 if (chan->device->device_pause)
1212 return chan->device->device_pause(chan);
1213
1214 return -ENOSYS;
1215 }
1216
dmaengine_resume(struct dma_chan * chan)1217 static inline int dmaengine_resume(struct dma_chan *chan)
1218 {
1219 if (chan->device->device_resume)
1220 return chan->device->device_resume(chan);
1221
1222 return -ENOSYS;
1223 }
1224
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1225 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1226 dma_cookie_t cookie, struct dma_tx_state *state)
1227 {
1228 return chan->device->device_tx_status(chan, cookie, state);
1229 }
1230
dmaengine_submit(struct dma_async_tx_descriptor * desc)1231 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1232 {
1233 return desc->tx_submit(desc);
1234 }
1235
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1236 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1237 size_t off1, size_t off2, size_t len)
1238 {
1239 return !(((1 << align) - 1) & (off1 | off2 | len));
1240 }
1241
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1242 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1243 size_t off2, size_t len)
1244 {
1245 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1246 }
1247
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1248 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1249 size_t off2, size_t len)
1250 {
1251 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1252 }
1253
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1254 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1255 size_t off2, size_t len)
1256 {
1257 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1258 }
1259
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1260 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1261 size_t off2, size_t len)
1262 {
1263 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1264 }
1265
1266 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1267 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1268 {
1269 dma->max_pq = maxpq;
1270 if (has_pq_continue)
1271 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1272 }
1273
dmaf_continue(enum dma_ctrl_flags flags)1274 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1275 {
1276 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1277 }
1278
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1279 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1280 {
1281 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1282
1283 return (flags & mask) == mask;
1284 }
1285
dma_dev_has_pq_continue(struct dma_device * dma)1286 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1287 {
1288 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1289 }
1290
dma_dev_to_maxpq(struct dma_device * dma)1291 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1292 {
1293 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1294 }
1295
1296 /* dma_maxpq - reduce maxpq in the face of continued operations
1297 * @dma - dma device with PQ capability
1298 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1299 *
1300 * When an engine does not support native continuation we need 3 extra
1301 * source slots to reuse P and Q with the following coefficients:
1302 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1303 * 2/ {01} * Q : use Q to continue Q' calculation
1304 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1305 *
1306 * In the case where P is disabled we only need 1 extra source:
1307 * 1/ {01} * Q : use Q to continue Q' calculation
1308 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1309 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1310 {
1311 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1312 return dma_dev_to_maxpq(dma);
1313 if (dmaf_p_disabled_continue(flags))
1314 return dma_dev_to_maxpq(dma) - 1;
1315 if (dmaf_continue(flags))
1316 return dma_dev_to_maxpq(dma) - 3;
1317 BUG();
1318 }
1319
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1320 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1321 size_t dir_icg)
1322 {
1323 if (inc) {
1324 if (dir_icg)
1325 return dir_icg;
1326 if (sgl)
1327 return icg;
1328 }
1329
1330 return 0;
1331 }
1332
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1333 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1334 struct data_chunk *chunk)
1335 {
1336 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1337 chunk->icg, chunk->dst_icg);
1338 }
1339
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1340 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1341 struct data_chunk *chunk)
1342 {
1343 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1344 chunk->icg, chunk->src_icg);
1345 }
1346
1347 /* --- public DMA engine API --- */
1348
1349 #ifdef CONFIG_DMA_ENGINE
1350 void dmaengine_get(void);
1351 void dmaengine_put(void);
1352 #else
dmaengine_get(void)1353 static inline void dmaengine_get(void)
1354 {
1355 }
dmaengine_put(void)1356 static inline void dmaengine_put(void)
1357 {
1358 }
1359 #endif
1360
1361 #ifdef CONFIG_ASYNC_TX_DMA
1362 #define async_dmaengine_get() dmaengine_get()
1363 #define async_dmaengine_put() dmaengine_put()
1364 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1365 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1366 #else
1367 #define async_dma_find_channel(type) dma_find_channel(type)
1368 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1369 #else
async_dmaengine_get(void)1370 static inline void async_dmaengine_get(void)
1371 {
1372 }
async_dmaengine_put(void)1373 static inline void async_dmaengine_put(void)
1374 {
1375 }
1376 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1377 async_dma_find_channel(enum dma_transaction_type type)
1378 {
1379 return NULL;
1380 }
1381 #endif /* CONFIG_ASYNC_TX_DMA */
1382 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1383 struct dma_chan *chan);
1384
async_tx_ack(struct dma_async_tx_descriptor * tx)1385 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1386 {
1387 tx->flags |= DMA_CTRL_ACK;
1388 }
1389
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1390 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1391 {
1392 tx->flags &= ~DMA_CTRL_ACK;
1393 }
1394
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1395 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1396 {
1397 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1398 }
1399
1400 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1401 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1402 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1403 {
1404 set_bit(tx_type, dstp->bits);
1405 }
1406
1407 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1408 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1409 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1410 {
1411 clear_bit(tx_type, dstp->bits);
1412 }
1413
1414 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1415 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1416 {
1417 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1418 }
1419
1420 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1421 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1422 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1423 {
1424 return test_bit(tx_type, srcp->bits);
1425 }
1426
1427 #define for_each_dma_cap_mask(cap, mask) \
1428 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1429
1430 /**
1431 * dma_async_issue_pending - flush pending transactions to HW
1432 * @chan: target DMA channel
1433 *
1434 * This allows drivers to push copies to HW in batches,
1435 * reducing MMIO writes where possible.
1436 */
dma_async_issue_pending(struct dma_chan * chan)1437 static inline void dma_async_issue_pending(struct dma_chan *chan)
1438 {
1439 chan->device->device_issue_pending(chan);
1440 }
1441
1442 /**
1443 * dma_async_is_tx_complete - poll for transaction completion
1444 * @chan: DMA channel
1445 * @cookie: transaction identifier to check status of
1446 * @last: returns last completed cookie, can be NULL
1447 * @used: returns last issued cookie, can be NULL
1448 *
1449 * If @last and @used are passed in, upon return they reflect the driver
1450 * internal state and can be used with dma_async_is_complete() to check
1451 * the status of multiple cookies without re-checking hardware state.
1452 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1453 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1454 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1455 {
1456 struct dma_tx_state state;
1457 enum dma_status status;
1458
1459 status = chan->device->device_tx_status(chan, cookie, &state);
1460 if (last)
1461 *last = state.last;
1462 if (used)
1463 *used = state.used;
1464 return status;
1465 }
1466
1467 /**
1468 * dma_async_is_complete - test a cookie against chan state
1469 * @cookie: transaction identifier to test status of
1470 * @last_complete: last know completed transaction
1471 * @last_used: last cookie value handed out
1472 *
1473 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1474 * the test logic is separated for lightweight testing of multiple cookies
1475 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1476 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1477 dma_cookie_t last_complete, dma_cookie_t last_used)
1478 {
1479 if (last_complete <= last_used) {
1480 if ((cookie <= last_complete) || (cookie > last_used))
1481 return DMA_COMPLETE;
1482 } else {
1483 if ((cookie <= last_complete) && (cookie > last_used))
1484 return DMA_COMPLETE;
1485 }
1486 return DMA_IN_PROGRESS;
1487 }
1488
1489 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1490 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1491 {
1492 if (!st)
1493 return;
1494
1495 st->last = last;
1496 st->used = used;
1497 st->residue = residue;
1498 }
1499
1500 #ifdef CONFIG_DMA_ENGINE
1501 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1502 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1503 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1504 void dma_issue_pending_all(void);
1505 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1506 dma_filter_fn fn, void *fn_param,
1507 struct device_node *np);
1508
1509 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1510 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1511
1512 void dma_release_channel(struct dma_chan *chan);
1513 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1514 #else
dma_find_channel(enum dma_transaction_type tx_type)1515 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1516 {
1517 return NULL;
1518 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1519 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1520 {
1521 return DMA_COMPLETE;
1522 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1523 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1524 {
1525 return DMA_COMPLETE;
1526 }
dma_issue_pending_all(void)1527 static inline void dma_issue_pending_all(void)
1528 {
1529 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1530 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1531 dma_filter_fn fn,
1532 void *fn_param,
1533 struct device_node *np)
1534 {
1535 return NULL;
1536 }
dma_request_chan(struct device * dev,const char * name)1537 static inline struct dma_chan *dma_request_chan(struct device *dev,
1538 const char *name)
1539 {
1540 return ERR_PTR(-ENODEV);
1541 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1542 static inline struct dma_chan *dma_request_chan_by_mask(
1543 const dma_cap_mask_t *mask)
1544 {
1545 return ERR_PTR(-ENODEV);
1546 }
dma_release_channel(struct dma_chan * chan)1547 static inline void dma_release_channel(struct dma_chan *chan)
1548 {
1549 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1550 static inline int dma_get_slave_caps(struct dma_chan *chan,
1551 struct dma_slave_caps *caps)
1552 {
1553 return -ENXIO;
1554 }
1555 #endif
1556
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1557 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1558 {
1559 struct dma_slave_caps caps;
1560 int ret;
1561
1562 ret = dma_get_slave_caps(tx->chan, &caps);
1563 if (ret)
1564 return ret;
1565
1566 if (!caps.descriptor_reuse)
1567 return -EPERM;
1568
1569 tx->flags |= DMA_CTRL_REUSE;
1570 return 0;
1571 }
1572
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1573 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1574 {
1575 tx->flags &= ~DMA_CTRL_REUSE;
1576 }
1577
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1578 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1579 {
1580 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1581 }
1582
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1583 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1584 {
1585 /* this is supported for reusable desc, so check that */
1586 if (!dmaengine_desc_test_reuse(desc))
1587 return -EPERM;
1588
1589 return desc->desc_free(desc);
1590 }
1591
1592 /* --- DMA device --- */
1593
1594 int dma_async_device_register(struct dma_device *device);
1595 int dmaenginem_async_device_register(struct dma_device *device);
1596 void dma_async_device_unregister(struct dma_device *device);
1597 int dma_async_device_channel_register(struct dma_device *device,
1598 struct dma_chan *chan);
1599 void dma_async_device_channel_unregister(struct dma_device *device,
1600 struct dma_chan *chan);
1601 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1602 #define dma_request_channel(mask, x, y) \
1603 __dma_request_channel(&(mask), x, y, NULL)
1604
1605 /* Deprecated, please use dma_request_chan() directly */
1606 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1607 dma_request_slave_channel(struct device *dev, const char *name)
1608 {
1609 struct dma_chan *ch = dma_request_chan(dev, name);
1610
1611 return IS_ERR(ch) ? NULL : ch;
1612 }
1613
1614 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1615 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1616 dma_filter_fn fn, void *fn_param,
1617 struct device *dev, const char *name)
1618 {
1619 struct dma_chan *chan;
1620
1621 chan = dma_request_slave_channel(dev, name);
1622 if (chan)
1623 return chan;
1624
1625 if (!fn || !fn_param)
1626 return NULL;
1627
1628 return __dma_request_channel(&mask, fn, fn_param, NULL);
1629 }
1630
1631 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1632 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1633 {
1634 switch (dir) {
1635 case DMA_DEV_TO_MEM:
1636 return "DEV_TO_MEM";
1637 case DMA_MEM_TO_DEV:
1638 return "MEM_TO_DEV";
1639 case DMA_MEM_TO_MEM:
1640 return "MEM_TO_MEM";
1641 case DMA_DEV_TO_DEV:
1642 return "DEV_TO_DEV";
1643 default:
1644 return "invalid";
1645 }
1646 }
1647
dmaengine_get_dma_device(struct dma_chan * chan)1648 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1649 {
1650 if (chan->dev->chan_dma_dev)
1651 return &chan->dev->device;
1652
1653 return chan->device->dev;
1654 }
1655
1656 #endif /* DMAENGINE_H */
1657