1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 /*
29  *
30  * Support functions for managing command queues used for
31  * various hardware blocks.
32  *
33  * The common command queue infrastructure abstracts out the
34  * software necessary for adding to Octeon's chained queue
35  * structures. These structures are used for commands to the
36  * PKO, ZIP, DFA, RAID, and DMA engine blocks. Although each
37  * hardware unit takes commands and CSRs of different types,
38  * they all use basic linked command buffers to store the
39  * pending request. In general, users of the CVMX API don't
40  * call cvmx-cmd-queue functions directly. Instead the hardware
41  * unit specific wrapper should be used. The wrappers perform
42  * unit specific validation and CSR writes to submit the
43  * commands.
44  *
45  * Even though most software will never directly interact with
46  * cvmx-cmd-queue, knowledge of its internal working can help
47  * in diagnosing performance problems and help with debugging.
48  *
49  * Command queue pointers are stored in a global named block
50  * called "cvmx_cmd_queues". Except for the PKO queues, each
51  * hardware queue is stored in its own cache line to reduce SMP
52  * contention on spin locks. The PKO queues are stored such that
53  * every 16th queue is next to each other in memory. This scheme
54  * allows for queues being in separate cache lines when there
55  * are low number of queues per port. With 16 queues per port,
56  * the first queue for each port is in the same cache area. The
57  * second queues for each port are in another area, etc. This
58  * allows software to implement very efficient lockless PKO with
59  * 16 queues per port using a minimum of cache lines per core.
60  * All queues for a given core will be isolated in the same
61  * cache area.
62  *
63  * In addition to the memory pointer layout, cvmx-cmd-queue
64  * provides an optimized fair ll/sc locking mechanism for the
65  * queues. The lock uses a "ticket / now serving" model to
66  * maintain fair order on contended locks. In addition, it uses
67  * predicted locking time to limit cache contention. When a core
68  * know it must wait in line for a lock, it spins on the
69  * internal cycle counter to completely eliminate any causes of
70  * bus traffic.
71  *
72  */
73 
74 #ifndef __CVMX_CMD_QUEUE_H__
75 #define __CVMX_CMD_QUEUE_H__
76 
77 #include <linux/prefetch.h>
78 
79 #include "cvmx-fpa.h"
80 /**
81  * By default we disable the max depth support. Most programs
82  * don't use it and it slows down the command queue processing
83  * significantly.
84  */
85 #ifndef CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH
86 #define CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH 0
87 #endif
88 
89 /**
90  * Enumeration representing all hardware blocks that use command
91  * queues. Each hardware block has up to 65536 sub identifiers for
92  * multiple command queues. Not all chips support all hardware
93  * units.
94  */
95 typedef enum {
96 	CVMX_CMD_QUEUE_PKO_BASE = 0x00000,
97 
98 #define CVMX_CMD_QUEUE_PKO(queue) \
99 	((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_PKO_BASE + (0xffff&(queue))))
100 
101 	CVMX_CMD_QUEUE_ZIP = 0x10000,
102 	CVMX_CMD_QUEUE_DFA = 0x20000,
103 	CVMX_CMD_QUEUE_RAID = 0x30000,
104 	CVMX_CMD_QUEUE_DMA_BASE = 0x40000,
105 
106 #define CVMX_CMD_QUEUE_DMA(queue) \
107 	((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_DMA_BASE + (0xffff&(queue))))
108 
109 	CVMX_CMD_QUEUE_END = 0x50000,
110 } cvmx_cmd_queue_id_t;
111 
112 /**
113  * Command write operations can fail if the command queue needs
114  * a new buffer and the associated FPA pool is empty. It can also
115  * fail if the number of queued command words reaches the maximum
116  * set at initialization.
117  */
118 typedef enum {
119 	CVMX_CMD_QUEUE_SUCCESS = 0,
120 	CVMX_CMD_QUEUE_NO_MEMORY = -1,
121 	CVMX_CMD_QUEUE_FULL = -2,
122 	CVMX_CMD_QUEUE_INVALID_PARAM = -3,
123 	CVMX_CMD_QUEUE_ALREADY_SETUP = -4,
124 } cvmx_cmd_queue_result_t;
125 
126 typedef struct {
127 	/* You have lock when this is your ticket */
128 	uint8_t now_serving;
129 	uint64_t unused1:24;
130 	/* Maximum outstanding command words */
131 	uint32_t max_depth;
132 	/* FPA pool buffers come from */
133 	uint64_t fpa_pool:3;
134 	/* Top of command buffer pointer shifted 7 */
135 	uint64_t base_ptr_div128:29;
136 	uint64_t unused2:6;
137 	/* FPA buffer size in 64bit words minus 1 */
138 	uint64_t pool_size_m1:13;
139 	/* Number of commands already used in buffer */
140 	uint64_t index:13;
141 } __cvmx_cmd_queue_state_t;
142 
143 /**
144  * This structure contains the global state of all command queues.
145  * It is stored in a bootmem named block and shared by all
146  * applications running on Octeon. Tickets are stored in a differnet
147  * cahce line that queue information to reduce the contention on the
148  * ll/sc used to get a ticket. If this is not the case, the update
149  * of queue state causes the ll/sc to fail quite often.
150  */
151 typedef struct {
152 	uint64_t ticket[(CVMX_CMD_QUEUE_END >> 16) * 256];
153 	__cvmx_cmd_queue_state_t state[(CVMX_CMD_QUEUE_END >> 16) * 256];
154 } __cvmx_cmd_queue_all_state_t;
155 
156 /**
157  * Initialize a command queue for use. The initial FPA buffer is
158  * allocated and the hardware unit is configured to point to the
159  * new command queue.
160  *
161  * @queue_id:  Hardware command queue to initialize.
162  * @max_depth: Maximum outstanding commands that can be queued.
163  * @fpa_pool:  FPA pool the command queues should come from.
164  * @pool_size: Size of each buffer in the FPA pool (bytes)
165  *
166  * Returns CVMX_CMD_QUEUE_SUCCESS or a failure code
167  */
168 cvmx_cmd_queue_result_t cvmx_cmd_queue_initialize(cvmx_cmd_queue_id_t queue_id,
169 						  int max_depth, int fpa_pool,
170 						  int pool_size);
171 
172 /**
173  * Shutdown a queue a free it's command buffers to the FPA. The
174  * hardware connected to the queue must be stopped before this
175  * function is called.
176  *
177  * @queue_id: Queue to shutdown
178  *
179  * Returns CVMX_CMD_QUEUE_SUCCESS or a failure code
180  */
181 cvmx_cmd_queue_result_t cvmx_cmd_queue_shutdown(cvmx_cmd_queue_id_t queue_id);
182 
183 /**
184  * Return the number of command words pending in the queue. This
185  * function may be relatively slow for some hardware units.
186  *
187  * @queue_id: Hardware command queue to query
188  *
189  * Returns Number of outstanding commands
190  */
191 int cvmx_cmd_queue_length(cvmx_cmd_queue_id_t queue_id);
192 
193 /**
194  * Return the command buffer to be written to. The purpose of this
195  * function is to allow CVMX routine access t othe low level buffer
196  * for initial hardware setup. User applications should not call this
197  * function directly.
198  *
199  * @queue_id: Command queue to query
200  *
201  * Returns Command buffer or NULL on failure
202  */
203 void *cvmx_cmd_queue_buffer(cvmx_cmd_queue_id_t queue_id);
204 
205 /**
206  * Get the index into the state arrays for the supplied queue id.
207  *
208  * @queue_id: Queue ID to get an index for
209  *
210  * Returns Index into the state arrays
211  */
__cvmx_cmd_queue_get_index(cvmx_cmd_queue_id_t queue_id)212 static inline int __cvmx_cmd_queue_get_index(cvmx_cmd_queue_id_t queue_id)
213 {
214 	/*
215 	 * Warning: This code currently only works with devices that
216 	 * have 256 queues or less. Devices with more than 16 queues
217 	 * are laid out in memory to allow cores quick access to
218 	 * every 16th queue. This reduces cache thrashing when you are
219 	 * running 16 queues per port to support lockless operation.
220 	 */
221 	int unit = queue_id >> 16;
222 	int q = (queue_id >> 4) & 0xf;
223 	int core = queue_id & 0xf;
224 	return unit * 256 + core * 16 + q;
225 }
226 
227 /**
228  * Lock the supplied queue so nobody else is updating it at the same
229  * time as us.
230  *
231  * @queue_id: Queue ID to lock
232  * @qptr:     Pointer to the queue's global state
233  */
__cvmx_cmd_queue_lock(cvmx_cmd_queue_id_t queue_id,__cvmx_cmd_queue_state_t * qptr)234 static inline void __cvmx_cmd_queue_lock(cvmx_cmd_queue_id_t queue_id,
235 					 __cvmx_cmd_queue_state_t *qptr)
236 {
237 	extern __cvmx_cmd_queue_all_state_t
238 	    *__cvmx_cmd_queue_state_ptr;
239 	int tmp;
240 	int my_ticket;
241 	prefetch(qptr);
242 	asm volatile (
243 		".set push\n"
244 		".set noreorder\n"
245 		"1:\n"
246 		/* Atomic add one to ticket_ptr */
247 		"ll     %[my_ticket], %[ticket_ptr]\n"
248 		/* and store the original value */
249 		"li     %[ticket], 1\n"
250 		/* in my_ticket */
251 		"baddu  %[ticket], %[my_ticket]\n"
252 		"sc     %[ticket], %[ticket_ptr]\n"
253 		"beqz   %[ticket], 1b\n"
254 		" nop\n"
255 		/* Load the current now_serving ticket */
256 		"lbu    %[ticket], %[now_serving]\n"
257 		"2:\n"
258 		/* Jump out if now_serving == my_ticket */
259 		"beq    %[ticket], %[my_ticket], 4f\n"
260 		/* Find out how many tickets are in front of me */
261 		" subu   %[ticket], %[my_ticket], %[ticket]\n"
262 		/* Use tickets in front of me minus one to delay */
263 		"subu  %[ticket], 1\n"
264 		/* Delay will be ((tickets in front)-1)*32 loops */
265 		"cins   %[ticket], %[ticket], 5, 7\n"
266 		"3:\n"
267 		/* Loop here until our ticket might be up */
268 		"bnez   %[ticket], 3b\n"
269 		" subu  %[ticket], 1\n"
270 		/* Jump back up to check out ticket again */
271 		"b      2b\n"
272 		/* Load the current now_serving ticket */
273 		" lbu   %[ticket], %[now_serving]\n"
274 		"4:\n"
275 		".set pop\n" :
276 		[ticket_ptr] "=m"(__cvmx_cmd_queue_state_ptr->ticket[__cvmx_cmd_queue_get_index(queue_id)]),
277 		[now_serving] "=m"(qptr->now_serving), [ticket] "=r"(tmp),
278 		[my_ticket] "=r"(my_ticket)
279 	    );
280 }
281 
282 /**
283  * Unlock the queue, flushing all writes.
284  *
285  * @qptr:   Queue to unlock
286  */
__cvmx_cmd_queue_unlock(__cvmx_cmd_queue_state_t * qptr)287 static inline void __cvmx_cmd_queue_unlock(__cvmx_cmd_queue_state_t *qptr)
288 {
289 	qptr->now_serving++;
290 	CVMX_SYNCWS;
291 }
292 
293 /**
294  * Get the queue state structure for the given queue id
295  *
296  * @queue_id: Queue id to get
297  *
298  * Returns Queue structure or NULL on failure
299  */
300 static inline __cvmx_cmd_queue_state_t
__cvmx_cmd_queue_get_state(cvmx_cmd_queue_id_t queue_id)301     *__cvmx_cmd_queue_get_state(cvmx_cmd_queue_id_t queue_id)
302 {
303 	extern __cvmx_cmd_queue_all_state_t
304 	    *__cvmx_cmd_queue_state_ptr;
305 	return &__cvmx_cmd_queue_state_ptr->
306 	    state[__cvmx_cmd_queue_get_index(queue_id)];
307 }
308 
309 /**
310  * Write an arbitrary number of command words to a command queue.
311  * This is a generic function; the fixed number of command word
312  * functions yield higher performance.
313  *
314  * @queue_id:  Hardware command queue to write to
315  * @use_locking:
316  *                  Use internal locking to ensure exclusive access for queue
317  *                  updates. If you don't use this locking you must ensure
318  *                  exclusivity some other way. Locking is strongly recommended.
319  * @cmd_count: Number of command words to write
320  * @cmds:      Array of commands to write
321  *
322  * Returns CVMX_CMD_QUEUE_SUCCESS or a failure code
323  */
cvmx_cmd_queue_write(cvmx_cmd_queue_id_t queue_id,int use_locking,int cmd_count,uint64_t * cmds)324 static inline cvmx_cmd_queue_result_t cvmx_cmd_queue_write(cvmx_cmd_queue_id_t
325 							   queue_id,
326 							   int use_locking,
327 							   int cmd_count,
328 							   uint64_t *cmds)
329 {
330 	__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
331 
332 	/* Make sure nobody else is updating the same queue */
333 	if (likely(use_locking))
334 		__cvmx_cmd_queue_lock(queue_id, qptr);
335 
336 	/*
337 	 * If a max queue length was specified then make sure we don't
338 	 * exceed it. If any part of the command would be below the
339 	 * limit we allow it.
340 	 */
341 	if (CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH && unlikely(qptr->max_depth)) {
342 		if (unlikely
343 		    (cvmx_cmd_queue_length(queue_id) > (int)qptr->max_depth)) {
344 			if (likely(use_locking))
345 				__cvmx_cmd_queue_unlock(qptr);
346 			return CVMX_CMD_QUEUE_FULL;
347 		}
348 	}
349 
350 	/*
351 	 * Normally there is plenty of room in the current buffer for
352 	 * the command.
353 	 */
354 	if (likely(qptr->index + cmd_count < qptr->pool_size_m1)) {
355 		uint64_t *ptr =
356 		    (uint64_t *) cvmx_phys_to_ptr((uint64_t) qptr->
357 						  base_ptr_div128 << 7);
358 		ptr += qptr->index;
359 		qptr->index += cmd_count;
360 		while (cmd_count--)
361 			*ptr++ = *cmds++;
362 	} else {
363 		uint64_t *ptr;
364 		int count;
365 		/*
366 		 * We need a new command buffer. Fail if there isn't
367 		 * one available.
368 		 */
369 		uint64_t *new_buffer =
370 		    (uint64_t *) cvmx_fpa_alloc(qptr->fpa_pool);
371 		if (unlikely(new_buffer == NULL)) {
372 			if (likely(use_locking))
373 				__cvmx_cmd_queue_unlock(qptr);
374 			return CVMX_CMD_QUEUE_NO_MEMORY;
375 		}
376 		ptr =
377 		    (uint64_t *) cvmx_phys_to_ptr((uint64_t) qptr->
378 						  base_ptr_div128 << 7);
379 		/*
380 		 * Figure out how many command words will fit in this
381 		 * buffer. One location will be needed for the next
382 		 * buffer pointer.
383 		 */
384 		count = qptr->pool_size_m1 - qptr->index;
385 		ptr += qptr->index;
386 		cmd_count -= count;
387 		while (count--)
388 			*ptr++ = *cmds++;
389 		*ptr = cvmx_ptr_to_phys(new_buffer);
390 		/*
391 		 * The current buffer is full and has a link to the
392 		 * next buffer. Time to write the rest of the commands
393 		 * into the new buffer.
394 		 */
395 		qptr->base_ptr_div128 = *ptr >> 7;
396 		qptr->index = cmd_count;
397 		ptr = new_buffer;
398 		while (cmd_count--)
399 			*ptr++ = *cmds++;
400 	}
401 
402 	/* All updates are complete. Release the lock and return */
403 	if (likely(use_locking))
404 		__cvmx_cmd_queue_unlock(qptr);
405 	return CVMX_CMD_QUEUE_SUCCESS;
406 }
407 
408 /**
409  * Simple function to write two command words to a command
410  * queue.
411  *
412  * @queue_id: Hardware command queue to write to
413  * @use_locking:
414  *                 Use internal locking to ensure exclusive access for queue
415  *                 updates. If you don't use this locking you must ensure
416  *                 exclusivity some other way. Locking is strongly recommended.
417  * @cmd1:     Command
418  * @cmd2:     Command
419  *
420  * Returns CVMX_CMD_QUEUE_SUCCESS or a failure code
421  */
cvmx_cmd_queue_write2(cvmx_cmd_queue_id_t queue_id,int use_locking,uint64_t cmd1,uint64_t cmd2)422 static inline cvmx_cmd_queue_result_t cvmx_cmd_queue_write2(cvmx_cmd_queue_id_t
423 							    queue_id,
424 							    int use_locking,
425 							    uint64_t cmd1,
426 							    uint64_t cmd2)
427 {
428 	__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
429 
430 	/* Make sure nobody else is updating the same queue */
431 	if (likely(use_locking))
432 		__cvmx_cmd_queue_lock(queue_id, qptr);
433 
434 	/*
435 	 * If a max queue length was specified then make sure we don't
436 	 * exceed it. If any part of the command would be below the
437 	 * limit we allow it.
438 	 */
439 	if (CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH && unlikely(qptr->max_depth)) {
440 		if (unlikely
441 		    (cvmx_cmd_queue_length(queue_id) > (int)qptr->max_depth)) {
442 			if (likely(use_locking))
443 				__cvmx_cmd_queue_unlock(qptr);
444 			return CVMX_CMD_QUEUE_FULL;
445 		}
446 	}
447 
448 	/*
449 	 * Normally there is plenty of room in the current buffer for
450 	 * the command.
451 	 */
452 	if (likely(qptr->index + 2 < qptr->pool_size_m1)) {
453 		uint64_t *ptr =
454 		    (uint64_t *) cvmx_phys_to_ptr((uint64_t) qptr->
455 						  base_ptr_div128 << 7);
456 		ptr += qptr->index;
457 		qptr->index += 2;
458 		ptr[0] = cmd1;
459 		ptr[1] = cmd2;
460 	} else {
461 		uint64_t *ptr;
462 		/*
463 		 * Figure out how many command words will fit in this
464 		 * buffer. One location will be needed for the next
465 		 * buffer pointer.
466 		 */
467 		int count = qptr->pool_size_m1 - qptr->index;
468 		/*
469 		 * We need a new command buffer. Fail if there isn't
470 		 * one available.
471 		 */
472 		uint64_t *new_buffer =
473 		    (uint64_t *) cvmx_fpa_alloc(qptr->fpa_pool);
474 		if (unlikely(new_buffer == NULL)) {
475 			if (likely(use_locking))
476 				__cvmx_cmd_queue_unlock(qptr);
477 			return CVMX_CMD_QUEUE_NO_MEMORY;
478 		}
479 		count--;
480 		ptr =
481 		    (uint64_t *) cvmx_phys_to_ptr((uint64_t) qptr->
482 						  base_ptr_div128 << 7);
483 		ptr += qptr->index;
484 		*ptr++ = cmd1;
485 		if (likely(count))
486 			*ptr++ = cmd2;
487 		*ptr = cvmx_ptr_to_phys(new_buffer);
488 		/*
489 		 * The current buffer is full and has a link to the
490 		 * next buffer. Time to write the rest of the commands
491 		 * into the new buffer.
492 		 */
493 		qptr->base_ptr_div128 = *ptr >> 7;
494 		qptr->index = 0;
495 		if (unlikely(count == 0)) {
496 			qptr->index = 1;
497 			new_buffer[0] = cmd2;
498 		}
499 	}
500 
501 	/* All updates are complete. Release the lock and return */
502 	if (likely(use_locking))
503 		__cvmx_cmd_queue_unlock(qptr);
504 	return CVMX_CMD_QUEUE_SUCCESS;
505 }
506 
507 /**
508  * Simple function to write three command words to a command
509  * queue.
510  *
511  * @queue_id: Hardware command queue to write to
512  * @use_locking:
513  *                 Use internal locking to ensure exclusive access for queue
514  *                 updates. If you don't use this locking you must ensure
515  *                 exclusivity some other way. Locking is strongly recommended.
516  * @cmd1:     Command
517  * @cmd2:     Command
518  * @cmd3:     Command
519  *
520  * Returns CVMX_CMD_QUEUE_SUCCESS or a failure code
521  */
cvmx_cmd_queue_write3(cvmx_cmd_queue_id_t queue_id,int use_locking,uint64_t cmd1,uint64_t cmd2,uint64_t cmd3)522 static inline cvmx_cmd_queue_result_t cvmx_cmd_queue_write3(cvmx_cmd_queue_id_t
523 							    queue_id,
524 							    int use_locking,
525 							    uint64_t cmd1,
526 							    uint64_t cmd2,
527 							    uint64_t cmd3)
528 {
529 	__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
530 
531 	/* Make sure nobody else is updating the same queue */
532 	if (likely(use_locking))
533 		__cvmx_cmd_queue_lock(queue_id, qptr);
534 
535 	/*
536 	 * If a max queue length was specified then make sure we don't
537 	 * exceed it. If any part of the command would be below the
538 	 * limit we allow it.
539 	 */
540 	if (CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH && unlikely(qptr->max_depth)) {
541 		if (unlikely
542 		    (cvmx_cmd_queue_length(queue_id) > (int)qptr->max_depth)) {
543 			if (likely(use_locking))
544 				__cvmx_cmd_queue_unlock(qptr);
545 			return CVMX_CMD_QUEUE_FULL;
546 		}
547 	}
548 
549 	/*
550 	 * Normally there is plenty of room in the current buffer for
551 	 * the command.
552 	 */
553 	if (likely(qptr->index + 3 < qptr->pool_size_m1)) {
554 		uint64_t *ptr =
555 		    (uint64_t *) cvmx_phys_to_ptr((uint64_t) qptr->
556 						  base_ptr_div128 << 7);
557 		ptr += qptr->index;
558 		qptr->index += 3;
559 		ptr[0] = cmd1;
560 		ptr[1] = cmd2;
561 		ptr[2] = cmd3;
562 	} else {
563 		uint64_t *ptr;
564 		/*
565 		 * Figure out how many command words will fit in this
566 		 * buffer. One location will be needed for the next
567 		 * buffer pointer
568 		 */
569 		int count = qptr->pool_size_m1 - qptr->index;
570 		/*
571 		 * We need a new command buffer. Fail if there isn't
572 		 * one available
573 		 */
574 		uint64_t *new_buffer =
575 		    (uint64_t *) cvmx_fpa_alloc(qptr->fpa_pool);
576 		if (unlikely(new_buffer == NULL)) {
577 			if (likely(use_locking))
578 				__cvmx_cmd_queue_unlock(qptr);
579 			return CVMX_CMD_QUEUE_NO_MEMORY;
580 		}
581 		count--;
582 		ptr =
583 		    (uint64_t *) cvmx_phys_to_ptr((uint64_t) qptr->
584 						  base_ptr_div128 << 7);
585 		ptr += qptr->index;
586 		*ptr++ = cmd1;
587 		if (count) {
588 			*ptr++ = cmd2;
589 			if (count > 1)
590 				*ptr++ = cmd3;
591 		}
592 		*ptr = cvmx_ptr_to_phys(new_buffer);
593 		/*
594 		 * The current buffer is full and has a link to the
595 		 * next buffer. Time to write the rest of the commands
596 		 * into the new buffer.
597 		 */
598 		qptr->base_ptr_div128 = *ptr >> 7;
599 		qptr->index = 0;
600 		ptr = new_buffer;
601 		if (count == 0) {
602 			*ptr++ = cmd2;
603 			qptr->index++;
604 		}
605 		if (count < 2) {
606 			*ptr++ = cmd3;
607 			qptr->index++;
608 		}
609 	}
610 
611 	/* All updates are complete. Release the lock and return */
612 	if (likely(use_locking))
613 		__cvmx_cmd_queue_unlock(qptr);
614 	return CVMX_CMD_QUEUE_SUCCESS;
615 }
616 
617 #endif /* __CVMX_CMD_QUEUE_H__ */
618