1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
3
4 Copyright 1994, 1995 Digital Equipment Corporation.
5
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9 The author may be reached at davies@maniac.ultranet.com.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
15
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
30
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
33
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
39
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
43
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
49
50 So far the driver is known to work with the following cards:
51
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
63
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
70
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
74
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
81
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
86
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
91
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
98
99 To utilise this ability, you have to do 8 things:
100
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
107
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
110
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
113
114 insmod de4x5
115
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
126
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
129
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
134
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
139
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
146
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
149
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
153
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
158
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
169
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
190
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
198
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
205
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
213
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
237
238 TO DO:
239 ------
240
241 Revision History
242 ----------------
243
244 Version Date Description
245
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
444 */
445
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479
480 #include "de4x5.h"
481
482 static const char version[] __devinitconst =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485 #define c_char const char
486
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
499 };
500
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
518 };
519
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
521
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
530 };
531
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
542 };
543
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
552
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560
561 #define SMC 1
562 #define ACCTON 2
563
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
574 };
575
576
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598
599 struct parameters {
600 bool fdx;
601 int autosense;
602 };
603
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
607
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
613
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
625
626
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
645
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
652
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
684 }
685
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
690 }
691
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
695 }
696
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
701 }
702
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
710 }
711
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
716 }
717
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
722
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS 250
727
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
764 };
765
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
772
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
785 };
786
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
860 };
861
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
880
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
891
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894 /*
895 ** Public Functions
896 */
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907 /*
908 ** Private functions
909 */
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct net_device *dev);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
918
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int de4x5_strncmp(char *a, char *b, int n);
999 static int dc21041_infoleaf(struct net_device *dev);
1000 static int dc21140_infoleaf(struct net_device *dev);
1001 static int dc21142_infoleaf(struct net_device *dev);
1002 static int dc21143_infoleaf(struct net_device *dev);
1003 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1010
1011 /*
1012 ** Note now that module autoprobing is allowed under EISA and PCI. The
1013 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1014 ** to "do the right thing".
1015 */
1016
1017 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1018
1019 module_param(io, int, 0);
1020 module_param(de4x5_debug, int, 0);
1021 module_param(dec_only, int, 0);
1022 module_param(args, charp, 0);
1023
1024 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1025 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1026 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1027 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1028 MODULE_LICENSE("GPL");
1029
1030 /*
1031 ** List the SROM infoleaf functions and chipsets
1032 */
1033 struct InfoLeaf {
1034 int chipset;
1035 int (*fn)(struct net_device *);
1036 };
1037 static struct InfoLeaf infoleaf_array[] = {
1038 {DC21041, dc21041_infoleaf},
1039 {DC21140, dc21140_infoleaf},
1040 {DC21142, dc21142_infoleaf},
1041 {DC21143, dc21143_infoleaf}
1042 };
1043 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1044
1045 /*
1046 ** List the SROM info block functions
1047 */
1048 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1049 type0_infoblock,
1050 type1_infoblock,
1051 type2_infoblock,
1052 type3_infoblock,
1053 type4_infoblock,
1054 type5_infoblock,
1055 compact_infoblock
1056 };
1057
1058 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1059
1060 /*
1061 ** Miscellaneous defines...
1062 */
1063 #define RESET_DE4X5 {\
1064 int i;\
1065 i=inl(DE4X5_BMR);\
1066 mdelay(1);\
1067 outl(i | BMR_SWR, DE4X5_BMR);\
1068 mdelay(1);\
1069 outl(i, DE4X5_BMR);\
1070 mdelay(1);\
1071 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1072 mdelay(1);\
1073 }
1074
1075 #define PHY_HARD_RESET {\
1076 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1077 mdelay(1); /* Assert for 1ms */\
1078 outl(0x00, DE4X5_GEP);\
1079 mdelay(2); /* Wait for 2ms */\
1080 }
1081
1082 static const struct net_device_ops de4x5_netdev_ops = {
1083 .ndo_open = de4x5_open,
1084 .ndo_stop = de4x5_close,
1085 .ndo_start_xmit = de4x5_queue_pkt,
1086 .ndo_get_stats = de4x5_get_stats,
1087 .ndo_set_multicast_list = set_multicast_list,
1088 .ndo_do_ioctl = de4x5_ioctl,
1089 .ndo_change_mtu = eth_change_mtu,
1090 .ndo_set_mac_address= eth_mac_addr,
1091 .ndo_validate_addr = eth_validate_addr,
1092 };
1093
1094
1095 static int __devinit
de4x5_hw_init(struct net_device * dev,u_long iobase,struct device * gendev)1096 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1097 {
1098 char name[DE4X5_NAME_LENGTH + 1];
1099 struct de4x5_private *lp = netdev_priv(dev);
1100 struct pci_dev *pdev = NULL;
1101 int i, status=0;
1102
1103 dev_set_drvdata(gendev, dev);
1104
1105 /* Ensure we're not sleeping */
1106 if (lp->bus == EISA) {
1107 outb(WAKEUP, PCI_CFPM);
1108 } else {
1109 pdev = to_pci_dev (gendev);
1110 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1111 }
1112 mdelay(10);
1113
1114 RESET_DE4X5;
1115
1116 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1117 return -ENXIO; /* Hardware could not reset */
1118 }
1119
1120 /*
1121 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1122 */
1123 lp->useSROM = false;
1124 if (lp->bus == PCI) {
1125 PCI_signature(name, lp);
1126 } else {
1127 EISA_signature(name, gendev);
1128 }
1129
1130 if (*name == '\0') { /* Not found a board signature */
1131 return -ENXIO;
1132 }
1133
1134 dev->base_addr = iobase;
1135 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1136
1137 status = get_hw_addr(dev);
1138 printk(", h/w address %pM\n", dev->dev_addr);
1139
1140 if (status != 0) {
1141 printk(" which has an Ethernet PROM CRC error.\n");
1142 return -ENXIO;
1143 } else {
1144 skb_queue_head_init(&lp->cache.queue);
1145 lp->cache.gepc = GEP_INIT;
1146 lp->asBit = GEP_SLNK;
1147 lp->asPolarity = GEP_SLNK;
1148 lp->asBitValid = ~0;
1149 lp->timeout = -1;
1150 lp->gendev = gendev;
1151 spin_lock_init(&lp->lock);
1152 init_timer(&lp->timer);
1153 lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1154 lp->timer.data = (unsigned long)dev;
1155 de4x5_parse_params(dev);
1156
1157 /*
1158 ** Choose correct autosensing in case someone messed up
1159 */
1160 lp->autosense = lp->params.autosense;
1161 if (lp->chipset != DC21140) {
1162 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1163 lp->params.autosense = TP;
1164 }
1165 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1166 lp->params.autosense = BNC;
1167 }
1168 }
1169 lp->fdx = lp->params.fdx;
1170 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1171
1172 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1173 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1174 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1175 #endif
1176 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1177 &lp->dma_rings, GFP_ATOMIC);
1178 if (lp->rx_ring == NULL) {
1179 return -ENOMEM;
1180 }
1181
1182 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1183
1184 /*
1185 ** Set up the RX descriptor ring (Intels)
1186 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1187 */
1188 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1189 for (i=0; i<NUM_RX_DESC; i++) {
1190 lp->rx_ring[i].status = 0;
1191 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1192 lp->rx_ring[i].buf = 0;
1193 lp->rx_ring[i].next = 0;
1194 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1195 }
1196
1197 #else
1198 {
1199 dma_addr_t dma_rx_bufs;
1200
1201 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1202 * sizeof(struct de4x5_desc);
1203 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1204 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1205 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1206 for (i=0; i<NUM_RX_DESC; i++) {
1207 lp->rx_ring[i].status = 0;
1208 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1209 lp->rx_ring[i].buf =
1210 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1211 lp->rx_ring[i].next = 0;
1212 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1213 }
1214
1215 }
1216 #endif
1217
1218 barrier();
1219
1220 lp->rxRingSize = NUM_RX_DESC;
1221 lp->txRingSize = NUM_TX_DESC;
1222
1223 /* Write the end of list marker to the descriptor lists */
1224 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1225 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1226
1227 /* Tell the adapter where the TX/RX rings are located. */
1228 outl(lp->dma_rings, DE4X5_RRBA);
1229 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1230 DE4X5_TRBA);
1231
1232 /* Initialise the IRQ mask and Enable/Disable */
1233 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1234 lp->irq_en = IMR_NIM | IMR_AIM;
1235
1236 /* Create a loopback packet frame for later media probing */
1237 create_packet(dev, lp->frame, sizeof(lp->frame));
1238
1239 /* Check if the RX overflow bug needs testing for */
1240 i = lp->cfrv & 0x000000fe;
1241 if ((lp->chipset == DC21140) && (i == 0x20)) {
1242 lp->rx_ovf = 1;
1243 }
1244
1245 /* Initialise the SROM pointers if possible */
1246 if (lp->useSROM) {
1247 lp->state = INITIALISED;
1248 if (srom_infoleaf_info(dev)) {
1249 dma_free_coherent (gendev, lp->dma_size,
1250 lp->rx_ring, lp->dma_rings);
1251 return -ENXIO;
1252 }
1253 srom_init(dev);
1254 }
1255
1256 lp->state = CLOSED;
1257
1258 /*
1259 ** Check for an MII interface
1260 */
1261 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1262 mii_get_phy(dev);
1263 }
1264
1265 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1266 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1267 }
1268
1269 if (de4x5_debug & DEBUG_VERSION) {
1270 printk(version);
1271 }
1272
1273 /* The DE4X5-specific entries in the device structure. */
1274 SET_NETDEV_DEV(dev, gendev);
1275 dev->netdev_ops = &de4x5_netdev_ops;
1276 dev->mem_start = 0;
1277
1278 /* Fill in the generic fields of the device structure. */
1279 if ((status = register_netdev (dev))) {
1280 dma_free_coherent (gendev, lp->dma_size,
1281 lp->rx_ring, lp->dma_rings);
1282 return status;
1283 }
1284
1285 /* Let the adapter sleep to save power */
1286 yawn(dev, SLEEP);
1287
1288 return status;
1289 }
1290
1291
1292 static int
de4x5_open(struct net_device * dev)1293 de4x5_open(struct net_device *dev)
1294 {
1295 struct de4x5_private *lp = netdev_priv(dev);
1296 u_long iobase = dev->base_addr;
1297 int i, status = 0;
1298 s32 omr;
1299
1300 /* Allocate the RX buffers */
1301 for (i=0; i<lp->rxRingSize; i++) {
1302 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1303 de4x5_free_rx_buffs(dev);
1304 return -EAGAIN;
1305 }
1306 }
1307
1308 /*
1309 ** Wake up the adapter
1310 */
1311 yawn(dev, WAKEUP);
1312
1313 /*
1314 ** Re-initialize the DE4X5...
1315 */
1316 status = de4x5_init(dev);
1317 spin_lock_init(&lp->lock);
1318 lp->state = OPEN;
1319 de4x5_dbg_open(dev);
1320
1321 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1322 lp->adapter_name, dev)) {
1323 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1324 if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1325 lp->adapter_name, dev)) {
1326 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1327 disable_ast(dev);
1328 de4x5_free_rx_buffs(dev);
1329 de4x5_free_tx_buffs(dev);
1330 yawn(dev, SLEEP);
1331 lp->state = CLOSED;
1332 return -EAGAIN;
1333 } else {
1334 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1335 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1336 }
1337 }
1338
1339 lp->interrupt = UNMASK_INTERRUPTS;
1340 dev->trans_start = jiffies; /* prevent tx timeout */
1341
1342 START_DE4X5;
1343
1344 de4x5_setup_intr(dev);
1345
1346 if (de4x5_debug & DEBUG_OPEN) {
1347 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1348 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1349 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1350 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1351 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1352 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1353 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1354 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1355 }
1356
1357 return status;
1358 }
1359
1360 /*
1361 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1362 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1363 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1364 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1365 ** to be data corruption problems if it is larger (UDP errors seen from a
1366 ** ttcp source).
1367 */
1368 static int
de4x5_init(struct net_device * dev)1369 de4x5_init(struct net_device *dev)
1370 {
1371 /* Lock out other processes whilst setting up the hardware */
1372 netif_stop_queue(dev);
1373
1374 de4x5_sw_reset(dev);
1375
1376 /* Autoconfigure the connected port */
1377 autoconf_media(dev);
1378
1379 return 0;
1380 }
1381
1382 static int
de4x5_sw_reset(struct net_device * dev)1383 de4x5_sw_reset(struct net_device *dev)
1384 {
1385 struct de4x5_private *lp = netdev_priv(dev);
1386 u_long iobase = dev->base_addr;
1387 int i, j, status = 0;
1388 s32 bmr, omr;
1389
1390 /* Select the MII or SRL port now and RESET the MAC */
1391 if (!lp->useSROM) {
1392 if (lp->phy[lp->active].id != 0) {
1393 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1394 } else {
1395 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1396 }
1397 de4x5_switch_mac_port(dev);
1398 }
1399
1400 /*
1401 ** Set the programmable burst length to 8 longwords for all the DC21140
1402 ** Fasternet chips and 4 longwords for all others: DMA errors result
1403 ** without these values. Cache align 16 long.
1404 */
1405 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1406 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1407 outl(bmr, DE4X5_BMR);
1408
1409 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1410 if (lp->chipset == DC21140) {
1411 omr |= (OMR_SDP | OMR_SB);
1412 }
1413 lp->setup_f = PERFECT;
1414 outl(lp->dma_rings, DE4X5_RRBA);
1415 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1416 DE4X5_TRBA);
1417
1418 lp->rx_new = lp->rx_old = 0;
1419 lp->tx_new = lp->tx_old = 0;
1420
1421 for (i = 0; i < lp->rxRingSize; i++) {
1422 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1423 }
1424
1425 for (i = 0; i < lp->txRingSize; i++) {
1426 lp->tx_ring[i].status = cpu_to_le32(0);
1427 }
1428
1429 barrier();
1430
1431 /* Build the setup frame depending on filtering mode */
1432 SetMulticastFilter(dev);
1433
1434 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1435 outl(omr|OMR_ST, DE4X5_OMR);
1436
1437 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1438
1439 for (j=0, i=0;(i<500) && (j==0);i++) { /* Up to 500ms delay */
1440 mdelay(1);
1441 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1442 }
1443 outl(omr, DE4X5_OMR); /* Stop everything! */
1444
1445 if (j == 0) {
1446 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1447 inl(DE4X5_STS));
1448 status = -EIO;
1449 }
1450
1451 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1452 lp->tx_old = lp->tx_new;
1453
1454 return status;
1455 }
1456
1457 /*
1458 ** Writes a socket buffer address to the next available transmit descriptor.
1459 */
1460 static netdev_tx_t
de4x5_queue_pkt(struct sk_buff * skb,struct net_device * dev)1461 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1462 {
1463 struct de4x5_private *lp = netdev_priv(dev);
1464 u_long iobase = dev->base_addr;
1465 u_long flags = 0;
1466
1467 netif_stop_queue(dev);
1468 if (!lp->tx_enable) /* Cannot send for now */
1469 return NETDEV_TX_LOCKED;
1470
1471 /*
1472 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1473 ** interrupts are lost by delayed descriptor status updates relative to
1474 ** the irq assertion, especially with a busy PCI bus.
1475 */
1476 spin_lock_irqsave(&lp->lock, flags);
1477 de4x5_tx(dev);
1478 spin_unlock_irqrestore(&lp->lock, flags);
1479
1480 /* Test if cache is already locked - requeue skb if so */
1481 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1482 return NETDEV_TX_LOCKED;
1483
1484 /* Transmit descriptor ring full or stale skb */
1485 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1486 if (lp->interrupt) {
1487 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1488 } else {
1489 de4x5_put_cache(dev, skb);
1490 }
1491 if (de4x5_debug & DEBUG_TX) {
1492 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1493 }
1494 } else if (skb->len > 0) {
1495 /* If we already have stuff queued locally, use that first */
1496 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1497 de4x5_put_cache(dev, skb);
1498 skb = de4x5_get_cache(dev);
1499 }
1500
1501 while (skb && !netif_queue_stopped(dev) &&
1502 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1503 spin_lock_irqsave(&lp->lock, flags);
1504 netif_stop_queue(dev);
1505 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1506 lp->stats.tx_bytes += skb->len;
1507 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1508
1509 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1510
1511 if (TX_BUFFS_AVAIL) {
1512 netif_start_queue(dev); /* Another pkt may be queued */
1513 }
1514 skb = de4x5_get_cache(dev);
1515 spin_unlock_irqrestore(&lp->lock, flags);
1516 }
1517 if (skb) de4x5_putb_cache(dev, skb);
1518 }
1519
1520 lp->cache.lock = 0;
1521
1522 return NETDEV_TX_OK;
1523 }
1524
1525 /*
1526 ** The DE4X5 interrupt handler.
1527 **
1528 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1529 ** so that the asserted interrupt always has some real data to work with -
1530 ** if these I/O accesses are ever changed to memory accesses, ensure the
1531 ** STS write is read immediately to complete the transaction if the adapter
1532 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1533 ** is high and descriptor status bits cannot be set before the associated
1534 ** interrupt is asserted and this routine entered.
1535 */
1536 static irqreturn_t
de4x5_interrupt(int irq,void * dev_id)1537 de4x5_interrupt(int irq, void *dev_id)
1538 {
1539 struct net_device *dev = dev_id;
1540 struct de4x5_private *lp;
1541 s32 imr, omr, sts, limit;
1542 u_long iobase;
1543 unsigned int handled = 0;
1544
1545 lp = netdev_priv(dev);
1546 spin_lock(&lp->lock);
1547 iobase = dev->base_addr;
1548
1549 DISABLE_IRQs; /* Ensure non re-entrancy */
1550
1551 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1552 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1553
1554 synchronize_irq(dev->irq);
1555
1556 for (limit=0; limit<8; limit++) {
1557 sts = inl(DE4X5_STS); /* Read IRQ status */
1558 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1559
1560 if (!(sts & lp->irq_mask)) break;/* All done */
1561 handled = 1;
1562
1563 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1564 de4x5_rx(dev);
1565
1566 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1567 de4x5_tx(dev);
1568
1569 if (sts & STS_LNF) { /* TP Link has failed */
1570 lp->irq_mask &= ~IMR_LFM;
1571 }
1572
1573 if (sts & STS_UNF) { /* Transmit underrun */
1574 de4x5_txur(dev);
1575 }
1576
1577 if (sts & STS_SE) { /* Bus Error */
1578 STOP_DE4X5;
1579 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1580 dev->name, sts);
1581 spin_unlock(&lp->lock);
1582 return IRQ_HANDLED;
1583 }
1584 }
1585
1586 /* Load the TX ring with any locally stored packets */
1587 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1588 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1589 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1590 }
1591 lp->cache.lock = 0;
1592 }
1593
1594 lp->interrupt = UNMASK_INTERRUPTS;
1595 ENABLE_IRQs;
1596 spin_unlock(&lp->lock);
1597
1598 return IRQ_RETVAL(handled);
1599 }
1600
1601 static int
de4x5_rx(struct net_device * dev)1602 de4x5_rx(struct net_device *dev)
1603 {
1604 struct de4x5_private *lp = netdev_priv(dev);
1605 u_long iobase = dev->base_addr;
1606 int entry;
1607 s32 status;
1608
1609 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1610 entry=lp->rx_new) {
1611 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1612
1613 if (lp->rx_ovf) {
1614 if (inl(DE4X5_MFC) & MFC_FOCM) {
1615 de4x5_rx_ovfc(dev);
1616 break;
1617 }
1618 }
1619
1620 if (status & RD_FS) { /* Remember the start of frame */
1621 lp->rx_old = entry;
1622 }
1623
1624 if (status & RD_LS) { /* Valid frame status */
1625 if (lp->tx_enable) lp->linkOK++;
1626 if (status & RD_ES) { /* There was an error. */
1627 lp->stats.rx_errors++; /* Update the error stats. */
1628 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1629 if (status & RD_CE) lp->stats.rx_crc_errors++;
1630 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1631 if (status & RD_TL) lp->stats.rx_length_errors++;
1632 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1633 if (status & RD_CS) lp->pktStats.rx_collision++;
1634 if (status & RD_DB) lp->pktStats.rx_dribble++;
1635 if (status & RD_OF) lp->pktStats.rx_overflow++;
1636 } else { /* A valid frame received */
1637 struct sk_buff *skb;
1638 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1639 >> 16) - 4;
1640
1641 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1642 printk("%s: Insufficient memory; nuking packet.\n",
1643 dev->name);
1644 lp->stats.rx_dropped++;
1645 } else {
1646 de4x5_dbg_rx(skb, pkt_len);
1647
1648 /* Push up the protocol stack */
1649 skb->protocol=eth_type_trans(skb,dev);
1650 de4x5_local_stats(dev, skb->data, pkt_len);
1651 netif_rx(skb);
1652
1653 /* Update stats */
1654 lp->stats.rx_packets++;
1655 lp->stats.rx_bytes += pkt_len;
1656 }
1657 }
1658
1659 /* Change buffer ownership for this frame, back to the adapter */
1660 for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1661 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1662 barrier();
1663 }
1664 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1665 barrier();
1666 }
1667
1668 /*
1669 ** Update entry information
1670 */
1671 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static inline void
de4x5_free_tx_buff(struct de4x5_private * lp,int entry)1678 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1679 {
1680 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1681 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1682 DMA_TO_DEVICE);
1683 if ((u_long) lp->tx_skb[entry] > 1)
1684 dev_kfree_skb_irq(lp->tx_skb[entry]);
1685 lp->tx_skb[entry] = NULL;
1686 }
1687
1688 /*
1689 ** Buffer sent - check for TX buffer errors.
1690 */
1691 static int
de4x5_tx(struct net_device * dev)1692 de4x5_tx(struct net_device *dev)
1693 {
1694 struct de4x5_private *lp = netdev_priv(dev);
1695 u_long iobase = dev->base_addr;
1696 int entry;
1697 s32 status;
1698
1699 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1700 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1701 if (status < 0) { /* Buffer not sent yet */
1702 break;
1703 } else if (status != 0x7fffffff) { /* Not setup frame */
1704 if (status & TD_ES) { /* An error happened */
1705 lp->stats.tx_errors++;
1706 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1707 if (status & TD_LC) lp->stats.tx_window_errors++;
1708 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1709 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1710 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1711
1712 if (TX_PKT_PENDING) {
1713 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1714 }
1715 } else { /* Packet sent */
1716 lp->stats.tx_packets++;
1717 if (lp->tx_enable) lp->linkOK++;
1718 }
1719 /* Update the collision counter */
1720 lp->stats.collisions += ((status & TD_EC) ? 16 :
1721 ((status & TD_CC) >> 3));
1722
1723 /* Free the buffer. */
1724 if (lp->tx_skb[entry] != NULL)
1725 de4x5_free_tx_buff(lp, entry);
1726 }
1727
1728 /* Update all the pointers */
1729 lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1730 }
1731
1732 /* Any resources available? */
1733 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1734 if (lp->interrupt)
1735 netif_wake_queue(dev);
1736 else
1737 netif_start_queue(dev);
1738 }
1739
1740 return 0;
1741 }
1742
1743 static void
de4x5_ast(struct net_device * dev)1744 de4x5_ast(struct net_device *dev)
1745 {
1746 struct de4x5_private *lp = netdev_priv(dev);
1747 int next_tick = DE4X5_AUTOSENSE_MS;
1748 int dt;
1749
1750 if (lp->useSROM)
1751 next_tick = srom_autoconf(dev);
1752 else if (lp->chipset == DC21140)
1753 next_tick = dc21140m_autoconf(dev);
1754 else if (lp->chipset == DC21041)
1755 next_tick = dc21041_autoconf(dev);
1756 else if (lp->chipset == DC21040)
1757 next_tick = dc21040_autoconf(dev);
1758 lp->linkOK = 0;
1759
1760 dt = (next_tick * HZ) / 1000;
1761
1762 if (!dt)
1763 dt = 1;
1764
1765 mod_timer(&lp->timer, jiffies + dt);
1766 }
1767
1768 static int
de4x5_txur(struct net_device * dev)1769 de4x5_txur(struct net_device *dev)
1770 {
1771 struct de4x5_private *lp = netdev_priv(dev);
1772 u_long iobase = dev->base_addr;
1773 int omr;
1774
1775 omr = inl(DE4X5_OMR);
1776 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777 omr &= ~(OMR_ST|OMR_SR);
1778 outl(omr, DE4X5_OMR);
1779 while (inl(DE4X5_STS) & STS_TS);
1780 if ((omr & OMR_TR) < OMR_TR) {
1781 omr += 0x4000;
1782 } else {
1783 omr |= OMR_SF;
1784 }
1785 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int
de4x5_rx_ovfc(struct net_device * dev)1792 de4x5_rx_ovfc(struct net_device *dev)
1793 {
1794 struct de4x5_private *lp = netdev_priv(dev);
1795 u_long iobase = dev->base_addr;
1796 int omr;
1797
1798 omr = inl(DE4X5_OMR);
1799 outl(omr & ~OMR_SR, DE4X5_OMR);
1800 while (inl(DE4X5_STS) & STS_RS);
1801
1802 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805 }
1806
1807 outl(omr, DE4X5_OMR);
1808
1809 return 0;
1810 }
1811
1812 static int
de4x5_close(struct net_device * dev)1813 de4x5_close(struct net_device *dev)
1814 {
1815 struct de4x5_private *lp = netdev_priv(dev);
1816 u_long iobase = dev->base_addr;
1817 s32 imr, omr;
1818
1819 disable_ast(dev);
1820
1821 netif_stop_queue(dev);
1822
1823 if (de4x5_debug & DEBUG_CLOSE) {
1824 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 dev->name, inl(DE4X5_STS));
1826 }
1827
1828 /*
1829 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830 */
1831 DISABLE_IRQs;
1832 STOP_DE4X5;
1833
1834 /* Free the associated irq */
1835 free_irq(dev->irq, dev);
1836 lp->state = CLOSED;
1837
1838 /* Free any socket buffers */
1839 de4x5_free_rx_buffs(dev);
1840 de4x5_free_tx_buffs(dev);
1841
1842 /* Put the adapter to sleep to save power */
1843 yawn(dev, SLEEP);
1844
1845 return 0;
1846 }
1847
1848 static struct net_device_stats *
de4x5_get_stats(struct net_device * dev)1849 de4x5_get_stats(struct net_device *dev)
1850 {
1851 struct de4x5_private *lp = netdev_priv(dev);
1852 u_long iobase = dev->base_addr;
1853
1854 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856 return &lp->stats;
1857 }
1858
1859 static void
de4x5_local_stats(struct net_device * dev,char * buf,int pkt_len)1860 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861 {
1862 struct de4x5_private *lp = netdev_priv(dev);
1863 int i;
1864
1865 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867 lp->pktStats.bins[i]++;
1868 i = DE4X5_PKT_STAT_SZ;
1869 }
1870 }
1871 if (buf[0] & 0x01) { /* Multicast/Broadcast */
1872 if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) {
1873 lp->pktStats.broadcast++;
1874 } else {
1875 lp->pktStats.multicast++;
1876 }
1877 } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) &&
1878 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1879 lp->pktStats.unicast++;
1880 }
1881
1882 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1883 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1884 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1885 }
1886 }
1887
1888 /*
1889 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1890 ** If the flag is changed on a descriptor that is being read by the hardware,
1891 ** I assume PCI transaction ordering will mean you are either successful or
1892 ** just miss asserting the change to the hardware. Anyway you're messing with
1893 ** a descriptor you don't own, but this shouldn't kill the chip provided
1894 ** the descriptor register is read only to the hardware.
1895 */
1896 static void
load_packet(struct net_device * dev,char * buf,u32 flags,struct sk_buff * skb)1897 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1898 {
1899 struct de4x5_private *lp = netdev_priv(dev);
1900 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1901 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1902
1903 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1904 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1905 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1906 lp->tx_skb[lp->tx_new] = skb;
1907 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1908 barrier();
1909
1910 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1911 barrier();
1912 }
1913
1914 /*
1915 ** Set or clear the multicast filter for this adaptor.
1916 */
1917 static void
set_multicast_list(struct net_device * dev)1918 set_multicast_list(struct net_device *dev)
1919 {
1920 struct de4x5_private *lp = netdev_priv(dev);
1921 u_long iobase = dev->base_addr;
1922
1923 /* First, double check that the adapter is open */
1924 if (lp->state == OPEN) {
1925 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1926 u32 omr;
1927 omr = inl(DE4X5_OMR);
1928 omr |= OMR_PR;
1929 outl(omr, DE4X5_OMR);
1930 } else {
1931 SetMulticastFilter(dev);
1932 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1933 SETUP_FRAME_LEN, (struct sk_buff *)1);
1934
1935 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1936 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1937 dev->trans_start = jiffies; /* prevent tx timeout */
1938 }
1939 }
1940 }
1941
1942 /*
1943 ** Calculate the hash code and update the logical address filter
1944 ** from a list of ethernet multicast addresses.
1945 ** Little endian crc one liner from Matt Thomas, DEC.
1946 */
1947 static void
SetMulticastFilter(struct net_device * dev)1948 SetMulticastFilter(struct net_device *dev)
1949 {
1950 struct de4x5_private *lp = netdev_priv(dev);
1951 struct netdev_hw_addr *ha;
1952 u_long iobase = dev->base_addr;
1953 int i, bit, byte;
1954 u16 hashcode;
1955 u32 omr, crc;
1956 char *pa;
1957 unsigned char *addrs;
1958
1959 omr = inl(DE4X5_OMR);
1960 omr &= ~(OMR_PR | OMR_PM);
1961 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1962
1963 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1964 omr |= OMR_PM; /* Pass all multicasts */
1965 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1966 netdev_for_each_mc_addr(ha, dev) {
1967 addrs = ha->addr;
1968 if ((*addrs & 0x01) == 1) { /* multicast address? */
1969 crc = ether_crc_le(ETH_ALEN, addrs);
1970 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1971
1972 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1973 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1974
1975 byte <<= 1; /* calc offset into setup frame */
1976 if (byte & 0x02) {
1977 byte -= 1;
1978 }
1979 lp->setup_frame[byte] |= bit;
1980 }
1981 }
1982 } else { /* Perfect filtering */
1983 netdev_for_each_mc_addr(ha, dev) {
1984 addrs = ha->addr;
1985 for (i=0; i<ETH_ALEN; i++) {
1986 *(pa + (i&1)) = *addrs++;
1987 if (i & 0x01) pa += 4;
1988 }
1989 }
1990 }
1991 outl(omr, DE4X5_OMR);
1992 }
1993
1994 #ifdef CONFIG_EISA
1995
1996 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1997
de4x5_eisa_probe(struct device * gendev)1998 static int __init de4x5_eisa_probe (struct device *gendev)
1999 {
2000 struct eisa_device *edev;
2001 u_long iobase;
2002 u_char irq, regval;
2003 u_short vendor;
2004 u32 cfid;
2005 int status, device;
2006 struct net_device *dev;
2007 struct de4x5_private *lp;
2008
2009 edev = to_eisa_device (gendev);
2010 iobase = edev->base_addr;
2011
2012 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2013 return -EBUSY;
2014
2015 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2016 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2017 status = -EBUSY;
2018 goto release_reg_1;
2019 }
2020
2021 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2022 status = -ENOMEM;
2023 goto release_reg_2;
2024 }
2025 lp = netdev_priv(dev);
2026
2027 cfid = (u32) inl(PCI_CFID);
2028 lp->cfrv = (u_short) inl(PCI_CFRV);
2029 device = (cfid >> 8) & 0x00ffff00;
2030 vendor = (u_short) cfid;
2031
2032 /* Read the EISA Configuration Registers */
2033 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2034 #ifdef CONFIG_ALPHA
2035 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2036 * care about the EISA configuration, and thus doesn't
2037 * configure the PLX bridge properly. Oh well... Simply mimic
2038 * the EISA config file to sort it out. */
2039
2040 /* EISA REG1: Assert DecChip 21040 HW Reset */
2041 outb (ER1_IAM | 1, EISA_REG1);
2042 mdelay (1);
2043
2044 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2045 outb (ER1_IAM, EISA_REG1);
2046 mdelay (1);
2047
2048 /* EISA REG3: R/W Burst Transfer Enable */
2049 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2050
2051 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2052 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2053 #endif
2054 irq = de4x5_irq[(regval >> 1) & 0x03];
2055
2056 if (is_DC2114x) {
2057 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2058 }
2059 lp->chipset = device;
2060 lp->bus = EISA;
2061
2062 /* Write the PCI Configuration Registers */
2063 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2064 outl(0x00006000, PCI_CFLT);
2065 outl(iobase, PCI_CBIO);
2066
2067 DevicePresent(dev, EISA_APROM);
2068
2069 dev->irq = irq;
2070
2071 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2072 return 0;
2073 }
2074
2075 free_netdev (dev);
2076 release_reg_2:
2077 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2078 release_reg_1:
2079 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2080
2081 return status;
2082 }
2083
de4x5_eisa_remove(struct device * device)2084 static int __devexit de4x5_eisa_remove (struct device *device)
2085 {
2086 struct net_device *dev;
2087 u_long iobase;
2088
2089 dev = dev_get_drvdata(device);
2090 iobase = dev->base_addr;
2091
2092 unregister_netdev (dev);
2093 free_netdev (dev);
2094 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2095 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2096
2097 return 0;
2098 }
2099
2100 static struct eisa_device_id de4x5_eisa_ids[] = {
2101 { "DEC4250", 0 }, /* 0 is the board name index... */
2102 { "" }
2103 };
2104 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2105
2106 static struct eisa_driver de4x5_eisa_driver = {
2107 .id_table = de4x5_eisa_ids,
2108 .driver = {
2109 .name = "de4x5",
2110 .probe = de4x5_eisa_probe,
2111 .remove = __devexit_p (de4x5_eisa_remove),
2112 }
2113 };
2114 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2115 #endif
2116
2117 #ifdef CONFIG_PCI
2118
2119 /*
2120 ** This function searches the current bus (which is >0) for a DECchip with an
2121 ** SROM, so that in multiport cards that have one SROM shared between multiple
2122 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2123 ** For single port cards this is a time waster...
2124 */
2125 static void __devinit
srom_search(struct net_device * dev,struct pci_dev * pdev)2126 srom_search(struct net_device *dev, struct pci_dev *pdev)
2127 {
2128 u_char pb;
2129 u_short vendor, status;
2130 u_int irq = 0, device;
2131 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2132 int i, j;
2133 struct de4x5_private *lp = netdev_priv(dev);
2134 struct list_head *walk;
2135
2136 list_for_each(walk, &pdev->bus_list) {
2137 struct pci_dev *this_dev = pci_dev_b(walk);
2138
2139 /* Skip the pci_bus list entry */
2140 if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2141
2142 vendor = this_dev->vendor;
2143 device = this_dev->device << 8;
2144 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2145
2146 /* Get the chip configuration revision register */
2147 pb = this_dev->bus->number;
2148
2149 /* Set the device number information */
2150 lp->device = PCI_SLOT(this_dev->devfn);
2151 lp->bus_num = pb;
2152
2153 /* Set the chipset information */
2154 if (is_DC2114x) {
2155 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2156 ? DC21142 : DC21143);
2157 }
2158 lp->chipset = device;
2159
2160 /* Get the board I/O address (64 bits on sparc64) */
2161 iobase = pci_resource_start(this_dev, 0);
2162
2163 /* Fetch the IRQ to be used */
2164 irq = this_dev->irq;
2165 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2166
2167 /* Check if I/O accesses are enabled */
2168 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2169 if (!(status & PCI_COMMAND_IO)) continue;
2170
2171 /* Search for a valid SROM attached to this DECchip */
2172 DevicePresent(dev, DE4X5_APROM);
2173 for (j=0, i=0; i<ETH_ALEN; i++) {
2174 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2175 }
2176 if (j != 0 && j != 6 * 0xff) {
2177 last.chipset = device;
2178 last.bus = pb;
2179 last.irq = irq;
2180 for (i=0; i<ETH_ALEN; i++) {
2181 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2182 }
2183 return;
2184 }
2185 }
2186 }
2187
2188 /*
2189 ** PCI bus I/O device probe
2190 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2191 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2192 ** enabled by the user first in the set up utility. Hence we just check for
2193 ** enabled features and silently ignore the card if they're not.
2194 **
2195 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2196 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2197 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2198 ** PC doesn't conform to the PCI standard)!
2199 **
2200 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2201 ** kernels use the V0.535[n] drivers.
2202 */
2203
de4x5_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2204 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2205 const struct pci_device_id *ent)
2206 {
2207 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2208 u_short vendor, status;
2209 u_int irq = 0, device;
2210 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2211 int error;
2212 struct net_device *dev;
2213 struct de4x5_private *lp;
2214
2215 dev_num = PCI_SLOT(pdev->devfn);
2216 pb = pdev->bus->number;
2217
2218 if (io) { /* probe a single PCI device */
2219 pbus = (u_short)(io >> 8);
2220 dnum = (u_short)(io & 0xff);
2221 if ((pbus != pb) || (dnum != dev_num))
2222 return -ENODEV;
2223 }
2224
2225 vendor = pdev->vendor;
2226 device = pdev->device << 8;
2227 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2228 return -ENODEV;
2229
2230 /* Ok, the device seems to be for us. */
2231 if ((error = pci_enable_device (pdev)))
2232 return error;
2233
2234 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2235 error = -ENOMEM;
2236 goto disable_dev;
2237 }
2238
2239 lp = netdev_priv(dev);
2240 lp->bus = PCI;
2241 lp->bus_num = 0;
2242
2243 /* Search for an SROM on this bus */
2244 if (lp->bus_num != pb) {
2245 lp->bus_num = pb;
2246 srom_search(dev, pdev);
2247 }
2248
2249 /* Get the chip configuration revision register */
2250 lp->cfrv = pdev->revision;
2251
2252 /* Set the device number information */
2253 lp->device = dev_num;
2254 lp->bus_num = pb;
2255
2256 /* Set the chipset information */
2257 if (is_DC2114x) {
2258 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2259 }
2260 lp->chipset = device;
2261
2262 /* Get the board I/O address (64 bits on sparc64) */
2263 iobase = pci_resource_start(pdev, 0);
2264
2265 /* Fetch the IRQ to be used */
2266 irq = pdev->irq;
2267 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2268 error = -ENODEV;
2269 goto free_dev;
2270 }
2271
2272 /* Check if I/O accesses and Bus Mastering are enabled */
2273 pci_read_config_word(pdev, PCI_COMMAND, &status);
2274 #ifdef __powerpc__
2275 if (!(status & PCI_COMMAND_IO)) {
2276 status |= PCI_COMMAND_IO;
2277 pci_write_config_word(pdev, PCI_COMMAND, status);
2278 pci_read_config_word(pdev, PCI_COMMAND, &status);
2279 }
2280 #endif /* __powerpc__ */
2281 if (!(status & PCI_COMMAND_IO)) {
2282 error = -ENODEV;
2283 goto free_dev;
2284 }
2285
2286 if (!(status & PCI_COMMAND_MASTER)) {
2287 status |= PCI_COMMAND_MASTER;
2288 pci_write_config_word(pdev, PCI_COMMAND, status);
2289 pci_read_config_word(pdev, PCI_COMMAND, &status);
2290 }
2291 if (!(status & PCI_COMMAND_MASTER)) {
2292 error = -ENODEV;
2293 goto free_dev;
2294 }
2295
2296 /* Check the latency timer for values >= 0x60 */
2297 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2298 if (timer < 0x60) {
2299 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2300 }
2301
2302 DevicePresent(dev, DE4X5_APROM);
2303
2304 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2305 error = -EBUSY;
2306 goto free_dev;
2307 }
2308
2309 dev->irq = irq;
2310
2311 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2312 goto release;
2313 }
2314
2315 return 0;
2316
2317 release:
2318 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2319 free_dev:
2320 free_netdev (dev);
2321 disable_dev:
2322 pci_disable_device (pdev);
2323 return error;
2324 }
2325
de4x5_pci_remove(struct pci_dev * pdev)2326 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2327 {
2328 struct net_device *dev;
2329 u_long iobase;
2330
2331 dev = dev_get_drvdata(&pdev->dev);
2332 iobase = dev->base_addr;
2333
2334 unregister_netdev (dev);
2335 free_netdev (dev);
2336 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2337 pci_disable_device (pdev);
2338 }
2339
2340 static struct pci_device_id de4x5_pci_tbl[] = {
2341 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2342 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2343 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2344 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2345 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2346 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2347 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2348 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2349 { },
2350 };
2351
2352 static struct pci_driver de4x5_pci_driver = {
2353 .name = "de4x5",
2354 .id_table = de4x5_pci_tbl,
2355 .probe = de4x5_pci_probe,
2356 .remove = __devexit_p (de4x5_pci_remove),
2357 };
2358
2359 #endif
2360
2361 /*
2362 ** Auto configure the media here rather than setting the port at compile
2363 ** time. This routine is called by de4x5_init() and when a loss of media is
2364 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2365 ** [TP] or no recent receive activity) to check whether the user has been
2366 ** sneaky and changed the port on us.
2367 */
2368 static int
autoconf_media(struct net_device * dev)2369 autoconf_media(struct net_device *dev)
2370 {
2371 struct de4x5_private *lp = netdev_priv(dev);
2372 u_long iobase = dev->base_addr;
2373
2374 disable_ast(dev);
2375
2376 lp->c_media = AUTO; /* Bogus last media */
2377 inl(DE4X5_MFC); /* Zero the lost frames counter */
2378 lp->media = INIT;
2379 lp->tcount = 0;
2380
2381 de4x5_ast(dev);
2382
2383 return lp->media;
2384 }
2385
2386 /*
2387 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2388 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2389 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2390 ** The only way to test for that is to place a loopback packet onto the
2391 ** network and watch for errors. Since we're messing with the interrupt mask
2392 ** register, disable the board interrupts and do not allow any more packets to
2393 ** be queued to the hardware. Re-enable everything only when the media is
2394 ** found.
2395 ** I may have to "age out" locally queued packets so that the higher layer
2396 ** timeouts don't effectively duplicate packets on the network.
2397 */
2398 static int
dc21040_autoconf(struct net_device * dev)2399 dc21040_autoconf(struct net_device *dev)
2400 {
2401 struct de4x5_private *lp = netdev_priv(dev);
2402 u_long iobase = dev->base_addr;
2403 int next_tick = DE4X5_AUTOSENSE_MS;
2404 s32 imr;
2405
2406 switch (lp->media) {
2407 case INIT:
2408 DISABLE_IRQs;
2409 lp->tx_enable = false;
2410 lp->timeout = -1;
2411 de4x5_save_skbs(dev);
2412 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2413 lp->media = TP;
2414 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2415 lp->media = BNC_AUI;
2416 } else if (lp->autosense == EXT_SIA) {
2417 lp->media = EXT_SIA;
2418 } else {
2419 lp->media = NC;
2420 }
2421 lp->local_state = 0;
2422 next_tick = dc21040_autoconf(dev);
2423 break;
2424
2425 case TP:
2426 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2427 TP_SUSPECT, test_tp);
2428 break;
2429
2430 case TP_SUSPECT:
2431 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2432 break;
2433
2434 case BNC:
2435 case AUI:
2436 case BNC_AUI:
2437 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2438 BNC_AUI_SUSPECT, ping_media);
2439 break;
2440
2441 case BNC_AUI_SUSPECT:
2442 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2443 break;
2444
2445 case EXT_SIA:
2446 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2447 NC, EXT_SIA_SUSPECT, ping_media);
2448 break;
2449
2450 case EXT_SIA_SUSPECT:
2451 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2452 break;
2453
2454 case NC:
2455 /* default to TP for all */
2456 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2457 if (lp->media != lp->c_media) {
2458 de4x5_dbg_media(dev);
2459 lp->c_media = lp->media;
2460 }
2461 lp->media = INIT;
2462 lp->tx_enable = false;
2463 break;
2464 }
2465
2466 return next_tick;
2467 }
2468
2469 static int
dc21040_state(struct net_device * dev,int csr13,int csr14,int csr15,int timeout,int next_state,int suspect_state,int (* fn)(struct net_device *,int))2470 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2471 int next_state, int suspect_state,
2472 int (*fn)(struct net_device *, int))
2473 {
2474 struct de4x5_private *lp = netdev_priv(dev);
2475 int next_tick = DE4X5_AUTOSENSE_MS;
2476 int linkBad;
2477
2478 switch (lp->local_state) {
2479 case 0:
2480 reset_init_sia(dev, csr13, csr14, csr15);
2481 lp->local_state++;
2482 next_tick = 500;
2483 break;
2484
2485 case 1:
2486 if (!lp->tx_enable) {
2487 linkBad = fn(dev, timeout);
2488 if (linkBad < 0) {
2489 next_tick = linkBad & ~TIMER_CB;
2490 } else {
2491 if (linkBad && (lp->autosense == AUTO)) {
2492 lp->local_state = 0;
2493 lp->media = next_state;
2494 } else {
2495 de4x5_init_connection(dev);
2496 }
2497 }
2498 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2499 lp->media = suspect_state;
2500 next_tick = 3000;
2501 }
2502 break;
2503 }
2504
2505 return next_tick;
2506 }
2507
2508 static int
de4x5_suspect_state(struct net_device * dev,int timeout,int prev_state,int (* fn)(struct net_device *,int),int (* asfn)(struct net_device *))2509 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2510 int (*fn)(struct net_device *, int),
2511 int (*asfn)(struct net_device *))
2512 {
2513 struct de4x5_private *lp = netdev_priv(dev);
2514 int next_tick = DE4X5_AUTOSENSE_MS;
2515 int linkBad;
2516
2517 switch (lp->local_state) {
2518 case 1:
2519 if (lp->linkOK) {
2520 lp->media = prev_state;
2521 } else {
2522 lp->local_state++;
2523 next_tick = asfn(dev);
2524 }
2525 break;
2526
2527 case 2:
2528 linkBad = fn(dev, timeout);
2529 if (linkBad < 0) {
2530 next_tick = linkBad & ~TIMER_CB;
2531 } else if (!linkBad) {
2532 lp->local_state--;
2533 lp->media = prev_state;
2534 } else {
2535 lp->media = INIT;
2536 lp->tcount++;
2537 }
2538 }
2539
2540 return next_tick;
2541 }
2542
2543 /*
2544 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2545 ** before BNC, because the BNC port will indicate activity if it's not
2546 ** terminated correctly. The only way to test for that is to place a loopback
2547 ** packet onto the network and watch for errors. Since we're messing with
2548 ** the interrupt mask register, disable the board interrupts and do not allow
2549 ** any more packets to be queued to the hardware. Re-enable everything only
2550 ** when the media is found.
2551 */
2552 static int
dc21041_autoconf(struct net_device * dev)2553 dc21041_autoconf(struct net_device *dev)
2554 {
2555 struct de4x5_private *lp = netdev_priv(dev);
2556 u_long iobase = dev->base_addr;
2557 s32 sts, irqs, irq_mask, imr, omr;
2558 int next_tick = DE4X5_AUTOSENSE_MS;
2559
2560 switch (lp->media) {
2561 case INIT:
2562 DISABLE_IRQs;
2563 lp->tx_enable = false;
2564 lp->timeout = -1;
2565 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2566 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2567 lp->media = TP; /* On chip auto negotiation is broken */
2568 } else if (lp->autosense == TP) {
2569 lp->media = TP;
2570 } else if (lp->autosense == BNC) {
2571 lp->media = BNC;
2572 } else if (lp->autosense == AUI) {
2573 lp->media = AUI;
2574 } else {
2575 lp->media = NC;
2576 }
2577 lp->local_state = 0;
2578 next_tick = dc21041_autoconf(dev);
2579 break;
2580
2581 case TP_NW:
2582 if (lp->timeout < 0) {
2583 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2584 outl(omr | OMR_FDX, DE4X5_OMR);
2585 }
2586 irqs = STS_LNF | STS_LNP;
2587 irq_mask = IMR_LFM | IMR_LPM;
2588 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2589 if (sts < 0) {
2590 next_tick = sts & ~TIMER_CB;
2591 } else {
2592 if (sts & STS_LNP) {
2593 lp->media = ANS;
2594 } else {
2595 lp->media = AUI;
2596 }
2597 next_tick = dc21041_autoconf(dev);
2598 }
2599 break;
2600
2601 case ANS:
2602 if (!lp->tx_enable) {
2603 irqs = STS_LNP;
2604 irq_mask = IMR_LPM;
2605 sts = test_ans(dev, irqs, irq_mask, 3000);
2606 if (sts < 0) {
2607 next_tick = sts & ~TIMER_CB;
2608 } else {
2609 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2610 lp->media = TP;
2611 next_tick = dc21041_autoconf(dev);
2612 } else {
2613 lp->local_state = 1;
2614 de4x5_init_connection(dev);
2615 }
2616 }
2617 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2618 lp->media = ANS_SUSPECT;
2619 next_tick = 3000;
2620 }
2621 break;
2622
2623 case ANS_SUSPECT:
2624 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2625 break;
2626
2627 case TP:
2628 if (!lp->tx_enable) {
2629 if (lp->timeout < 0) {
2630 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2631 outl(omr & ~OMR_FDX, DE4X5_OMR);
2632 }
2633 irqs = STS_LNF | STS_LNP;
2634 irq_mask = IMR_LFM | IMR_LPM;
2635 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2636 if (sts < 0) {
2637 next_tick = sts & ~TIMER_CB;
2638 } else {
2639 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2640 if (inl(DE4X5_SISR) & SISR_NRA) {
2641 lp->media = AUI; /* Non selected port activity */
2642 } else {
2643 lp->media = BNC;
2644 }
2645 next_tick = dc21041_autoconf(dev);
2646 } else {
2647 lp->local_state = 1;
2648 de4x5_init_connection(dev);
2649 }
2650 }
2651 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2652 lp->media = TP_SUSPECT;
2653 next_tick = 3000;
2654 }
2655 break;
2656
2657 case TP_SUSPECT:
2658 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2659 break;
2660
2661 case AUI:
2662 if (!lp->tx_enable) {
2663 if (lp->timeout < 0) {
2664 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2665 outl(omr & ~OMR_FDX, DE4X5_OMR);
2666 }
2667 irqs = 0;
2668 irq_mask = 0;
2669 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2670 if (sts < 0) {
2671 next_tick = sts & ~TIMER_CB;
2672 } else {
2673 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2674 lp->media = BNC;
2675 next_tick = dc21041_autoconf(dev);
2676 } else {
2677 lp->local_state = 1;
2678 de4x5_init_connection(dev);
2679 }
2680 }
2681 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2682 lp->media = AUI_SUSPECT;
2683 next_tick = 3000;
2684 }
2685 break;
2686
2687 case AUI_SUSPECT:
2688 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2689 break;
2690
2691 case BNC:
2692 switch (lp->local_state) {
2693 case 0:
2694 if (lp->timeout < 0) {
2695 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2696 outl(omr & ~OMR_FDX, DE4X5_OMR);
2697 }
2698 irqs = 0;
2699 irq_mask = 0;
2700 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2701 if (sts < 0) {
2702 next_tick = sts & ~TIMER_CB;
2703 } else {
2704 lp->local_state++; /* Ensure media connected */
2705 next_tick = dc21041_autoconf(dev);
2706 }
2707 break;
2708
2709 case 1:
2710 if (!lp->tx_enable) {
2711 if ((sts = ping_media(dev, 3000)) < 0) {
2712 next_tick = sts & ~TIMER_CB;
2713 } else {
2714 if (sts) {
2715 lp->local_state = 0;
2716 lp->media = NC;
2717 } else {
2718 de4x5_init_connection(dev);
2719 }
2720 }
2721 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2722 lp->media = BNC_SUSPECT;
2723 next_tick = 3000;
2724 }
2725 break;
2726 }
2727 break;
2728
2729 case BNC_SUSPECT:
2730 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2731 break;
2732
2733 case NC:
2734 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2735 outl(omr | OMR_FDX, DE4X5_OMR);
2736 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2737 if (lp->media != lp->c_media) {
2738 de4x5_dbg_media(dev);
2739 lp->c_media = lp->media;
2740 }
2741 lp->media = INIT;
2742 lp->tx_enable = false;
2743 break;
2744 }
2745
2746 return next_tick;
2747 }
2748
2749 /*
2750 ** Some autonegotiation chips are broken in that they do not return the
2751 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2752 ** register, except at the first power up negotiation.
2753 */
2754 static int
dc21140m_autoconf(struct net_device * dev)2755 dc21140m_autoconf(struct net_device *dev)
2756 {
2757 struct de4x5_private *lp = netdev_priv(dev);
2758 int ana, anlpa, cap, cr, slnk, sr;
2759 int next_tick = DE4X5_AUTOSENSE_MS;
2760 u_long imr, omr, iobase = dev->base_addr;
2761
2762 switch(lp->media) {
2763 case INIT:
2764 if (lp->timeout < 0) {
2765 DISABLE_IRQs;
2766 lp->tx_enable = false;
2767 lp->linkOK = 0;
2768 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2769 }
2770 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2771 next_tick &= ~TIMER_CB;
2772 } else {
2773 if (lp->useSROM) {
2774 if (srom_map_media(dev) < 0) {
2775 lp->tcount++;
2776 return next_tick;
2777 }
2778 srom_exec(dev, lp->phy[lp->active].gep);
2779 if (lp->infoblock_media == ANS) {
2780 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2781 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2782 }
2783 } else {
2784 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2785 SET_10Mb;
2786 if (lp->autosense == _100Mb) {
2787 lp->media = _100Mb;
2788 } else if (lp->autosense == _10Mb) {
2789 lp->media = _10Mb;
2790 } else if ((lp->autosense == AUTO) &&
2791 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2792 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2793 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2794 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2795 lp->media = ANS;
2796 } else if (lp->autosense == AUTO) {
2797 lp->media = SPD_DET;
2798 } else if (is_spd_100(dev) && is_100_up(dev)) {
2799 lp->media = _100Mb;
2800 } else {
2801 lp->media = NC;
2802 }
2803 }
2804 lp->local_state = 0;
2805 next_tick = dc21140m_autoconf(dev);
2806 }
2807 break;
2808
2809 case ANS:
2810 switch (lp->local_state) {
2811 case 0:
2812 if (lp->timeout < 0) {
2813 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2814 }
2815 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2816 if (cr < 0) {
2817 next_tick = cr & ~TIMER_CB;
2818 } else {
2819 if (cr) {
2820 lp->local_state = 0;
2821 lp->media = SPD_DET;
2822 } else {
2823 lp->local_state++;
2824 }
2825 next_tick = dc21140m_autoconf(dev);
2826 }
2827 break;
2828
2829 case 1:
2830 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2831 next_tick = sr & ~TIMER_CB;
2832 } else {
2833 lp->media = SPD_DET;
2834 lp->local_state = 0;
2835 if (sr) { /* Success! */
2836 lp->tmp = MII_SR_ASSC;
2837 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2838 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2839 if (!(anlpa & MII_ANLPA_RF) &&
2840 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2841 if (cap & MII_ANA_100M) {
2842 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2843 lp->media = _100Mb;
2844 } else if (cap & MII_ANA_10M) {
2845 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2846
2847 lp->media = _10Mb;
2848 }
2849 }
2850 } /* Auto Negotiation failed to finish */
2851 next_tick = dc21140m_autoconf(dev);
2852 } /* Auto Negotiation failed to start */
2853 break;
2854 }
2855 break;
2856
2857 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2858 if (lp->timeout < 0) {
2859 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2860 (~gep_rd(dev) & GEP_LNP));
2861 SET_100Mb_PDET;
2862 }
2863 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2864 next_tick = slnk & ~TIMER_CB;
2865 } else {
2866 if (is_spd_100(dev) && is_100_up(dev)) {
2867 lp->media = _100Mb;
2868 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2869 lp->media = _10Mb;
2870 } else {
2871 lp->media = NC;
2872 }
2873 next_tick = dc21140m_autoconf(dev);
2874 }
2875 break;
2876
2877 case _100Mb: /* Set 100Mb/s */
2878 next_tick = 3000;
2879 if (!lp->tx_enable) {
2880 SET_100Mb;
2881 de4x5_init_connection(dev);
2882 } else {
2883 if (!lp->linkOK && (lp->autosense == AUTO)) {
2884 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2885 lp->media = INIT;
2886 lp->tcount++;
2887 next_tick = DE4X5_AUTOSENSE_MS;
2888 }
2889 }
2890 }
2891 break;
2892
2893 case BNC:
2894 case AUI:
2895 case _10Mb: /* Set 10Mb/s */
2896 next_tick = 3000;
2897 if (!lp->tx_enable) {
2898 SET_10Mb;
2899 de4x5_init_connection(dev);
2900 } else {
2901 if (!lp->linkOK && (lp->autosense == AUTO)) {
2902 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2903 lp->media = INIT;
2904 lp->tcount++;
2905 next_tick = DE4X5_AUTOSENSE_MS;
2906 }
2907 }
2908 }
2909 break;
2910
2911 case NC:
2912 if (lp->media != lp->c_media) {
2913 de4x5_dbg_media(dev);
2914 lp->c_media = lp->media;
2915 }
2916 lp->media = INIT;
2917 lp->tx_enable = false;
2918 break;
2919 }
2920
2921 return next_tick;
2922 }
2923
2924 /*
2925 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2926 ** changing how I figure out the media - but trying to keep it backwards
2927 ** compatible with the de500-xa and de500-aa.
2928 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2929 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2930 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2931 ** active.
2932 ** When autonegotiation is working, the ANS part searches the SROM for
2933 ** the highest common speed (TP) link that both can run and if that can
2934 ** be full duplex. That infoblock is executed and then the link speed set.
2935 **
2936 ** Only _10Mb and _100Mb are tested here.
2937 */
2938 static int
dc2114x_autoconf(struct net_device * dev)2939 dc2114x_autoconf(struct net_device *dev)
2940 {
2941 struct de4x5_private *lp = netdev_priv(dev);
2942 u_long iobase = dev->base_addr;
2943 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2944 int next_tick = DE4X5_AUTOSENSE_MS;
2945
2946 switch (lp->media) {
2947 case INIT:
2948 if (lp->timeout < 0) {
2949 DISABLE_IRQs;
2950 lp->tx_enable = false;
2951 lp->linkOK = 0;
2952 lp->timeout = -1;
2953 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2954 if (lp->params.autosense & ~AUTO) {
2955 srom_map_media(dev); /* Fixed media requested */
2956 if (lp->media != lp->params.autosense) {
2957 lp->tcount++;
2958 lp->media = INIT;
2959 return next_tick;
2960 }
2961 lp->media = INIT;
2962 }
2963 }
2964 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2965 next_tick &= ~TIMER_CB;
2966 } else {
2967 if (lp->autosense == _100Mb) {
2968 lp->media = _100Mb;
2969 } else if (lp->autosense == _10Mb) {
2970 lp->media = _10Mb;
2971 } else if (lp->autosense == TP) {
2972 lp->media = TP;
2973 } else if (lp->autosense == BNC) {
2974 lp->media = BNC;
2975 } else if (lp->autosense == AUI) {
2976 lp->media = AUI;
2977 } else {
2978 lp->media = SPD_DET;
2979 if ((lp->infoblock_media == ANS) &&
2980 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2981 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2982 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2983 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2984 lp->media = ANS;
2985 }
2986 }
2987 lp->local_state = 0;
2988 next_tick = dc2114x_autoconf(dev);
2989 }
2990 break;
2991
2992 case ANS:
2993 switch (lp->local_state) {
2994 case 0:
2995 if (lp->timeout < 0) {
2996 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2997 }
2998 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2999 if (cr < 0) {
3000 next_tick = cr & ~TIMER_CB;
3001 } else {
3002 if (cr) {
3003 lp->local_state = 0;
3004 lp->media = SPD_DET;
3005 } else {
3006 lp->local_state++;
3007 }
3008 next_tick = dc2114x_autoconf(dev);
3009 }
3010 break;
3011
3012 case 1:
3013 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3014 if (sr < 0) {
3015 next_tick = sr & ~TIMER_CB;
3016 } else {
3017 lp->media = SPD_DET;
3018 lp->local_state = 0;
3019 if (sr) { /* Success! */
3020 lp->tmp = MII_SR_ASSC;
3021 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3022 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3023 if (!(anlpa & MII_ANLPA_RF) &&
3024 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3025 if (cap & MII_ANA_100M) {
3026 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3027 lp->media = _100Mb;
3028 } else if (cap & MII_ANA_10M) {
3029 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3030 lp->media = _10Mb;
3031 }
3032 }
3033 } /* Auto Negotiation failed to finish */
3034 next_tick = dc2114x_autoconf(dev);
3035 } /* Auto Negotiation failed to start */
3036 break;
3037 }
3038 break;
3039
3040 case AUI:
3041 if (!lp->tx_enable) {
3042 if (lp->timeout < 0) {
3043 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3044 outl(omr & ~OMR_FDX, DE4X5_OMR);
3045 }
3046 irqs = 0;
3047 irq_mask = 0;
3048 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3049 if (sts < 0) {
3050 next_tick = sts & ~TIMER_CB;
3051 } else {
3052 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3053 lp->media = BNC;
3054 next_tick = dc2114x_autoconf(dev);
3055 } else {
3056 lp->local_state = 1;
3057 de4x5_init_connection(dev);
3058 }
3059 }
3060 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3061 lp->media = AUI_SUSPECT;
3062 next_tick = 3000;
3063 }
3064 break;
3065
3066 case AUI_SUSPECT:
3067 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3068 break;
3069
3070 case BNC:
3071 switch (lp->local_state) {
3072 case 0:
3073 if (lp->timeout < 0) {
3074 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3075 outl(omr & ~OMR_FDX, DE4X5_OMR);
3076 }
3077 irqs = 0;
3078 irq_mask = 0;
3079 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3080 if (sts < 0) {
3081 next_tick = sts & ~TIMER_CB;
3082 } else {
3083 lp->local_state++; /* Ensure media connected */
3084 next_tick = dc2114x_autoconf(dev);
3085 }
3086 break;
3087
3088 case 1:
3089 if (!lp->tx_enable) {
3090 if ((sts = ping_media(dev, 3000)) < 0) {
3091 next_tick = sts & ~TIMER_CB;
3092 } else {
3093 if (sts) {
3094 lp->local_state = 0;
3095 lp->tcount++;
3096 lp->media = INIT;
3097 } else {
3098 de4x5_init_connection(dev);
3099 }
3100 }
3101 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3102 lp->media = BNC_SUSPECT;
3103 next_tick = 3000;
3104 }
3105 break;
3106 }
3107 break;
3108
3109 case BNC_SUSPECT:
3110 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3111 break;
3112
3113 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3114 if (srom_map_media(dev) < 0) {
3115 lp->tcount++;
3116 lp->media = INIT;
3117 return next_tick;
3118 }
3119 if (lp->media == _100Mb) {
3120 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3121 lp->media = SPD_DET;
3122 return slnk & ~TIMER_CB;
3123 }
3124 } else {
3125 if (wait_for_link(dev) < 0) {
3126 lp->media = SPD_DET;
3127 return PDET_LINK_WAIT;
3128 }
3129 }
3130 if (lp->media == ANS) { /* Do MII parallel detection */
3131 if (is_spd_100(dev)) {
3132 lp->media = _100Mb;
3133 } else {
3134 lp->media = _10Mb;
3135 }
3136 next_tick = dc2114x_autoconf(dev);
3137 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3138 (((lp->media == _10Mb) || (lp->media == TP) ||
3139 (lp->media == BNC) || (lp->media == AUI)) &&
3140 is_10_up(dev))) {
3141 next_tick = dc2114x_autoconf(dev);
3142 } else {
3143 lp->tcount++;
3144 lp->media = INIT;
3145 }
3146 break;
3147
3148 case _10Mb:
3149 next_tick = 3000;
3150 if (!lp->tx_enable) {
3151 SET_10Mb;
3152 de4x5_init_connection(dev);
3153 } else {
3154 if (!lp->linkOK && (lp->autosense == AUTO)) {
3155 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3156 lp->media = INIT;
3157 lp->tcount++;
3158 next_tick = DE4X5_AUTOSENSE_MS;
3159 }
3160 }
3161 }
3162 break;
3163
3164 case _100Mb:
3165 next_tick = 3000;
3166 if (!lp->tx_enable) {
3167 SET_100Mb;
3168 de4x5_init_connection(dev);
3169 } else {
3170 if (!lp->linkOK && (lp->autosense == AUTO)) {
3171 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3172 lp->media = INIT;
3173 lp->tcount++;
3174 next_tick = DE4X5_AUTOSENSE_MS;
3175 }
3176 }
3177 }
3178 break;
3179
3180 default:
3181 lp->tcount++;
3182 printk("Huh?: media:%02x\n", lp->media);
3183 lp->media = INIT;
3184 break;
3185 }
3186
3187 return next_tick;
3188 }
3189
3190 static int
srom_autoconf(struct net_device * dev)3191 srom_autoconf(struct net_device *dev)
3192 {
3193 struct de4x5_private *lp = netdev_priv(dev);
3194
3195 return lp->infoleaf_fn(dev);
3196 }
3197
3198 /*
3199 ** This mapping keeps the original media codes and FDX flag unchanged.
3200 ** While it isn't strictly necessary, it helps me for the moment...
3201 ** The early return avoids a media state / SROM media space clash.
3202 */
3203 static int
srom_map_media(struct net_device * dev)3204 srom_map_media(struct net_device *dev)
3205 {
3206 struct de4x5_private *lp = netdev_priv(dev);
3207
3208 lp->fdx = false;
3209 if (lp->infoblock_media == lp->media)
3210 return 0;
3211
3212 switch(lp->infoblock_media) {
3213 case SROM_10BASETF:
3214 if (!lp->params.fdx) return -1;
3215 lp->fdx = true;
3216 case SROM_10BASET:
3217 if (lp->params.fdx && !lp->fdx) return -1;
3218 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3219 lp->media = _10Mb;
3220 } else {
3221 lp->media = TP;
3222 }
3223 break;
3224
3225 case SROM_10BASE2:
3226 lp->media = BNC;
3227 break;
3228
3229 case SROM_10BASE5:
3230 lp->media = AUI;
3231 break;
3232
3233 case SROM_100BASETF:
3234 if (!lp->params.fdx) return -1;
3235 lp->fdx = true;
3236 case SROM_100BASET:
3237 if (lp->params.fdx && !lp->fdx) return -1;
3238 lp->media = _100Mb;
3239 break;
3240
3241 case SROM_100BASET4:
3242 lp->media = _100Mb;
3243 break;
3244
3245 case SROM_100BASEFF:
3246 if (!lp->params.fdx) return -1;
3247 lp->fdx = true;
3248 case SROM_100BASEF:
3249 if (lp->params.fdx && !lp->fdx) return -1;
3250 lp->media = _100Mb;
3251 break;
3252
3253 case ANS:
3254 lp->media = ANS;
3255 lp->fdx = lp->params.fdx;
3256 break;
3257
3258 default:
3259 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3260 lp->infoblock_media);
3261 return -1;
3262 break;
3263 }
3264
3265 return 0;
3266 }
3267
3268 static void
de4x5_init_connection(struct net_device * dev)3269 de4x5_init_connection(struct net_device *dev)
3270 {
3271 struct de4x5_private *lp = netdev_priv(dev);
3272 u_long iobase = dev->base_addr;
3273 u_long flags = 0;
3274
3275 if (lp->media != lp->c_media) {
3276 de4x5_dbg_media(dev);
3277 lp->c_media = lp->media; /* Stop scrolling media messages */
3278 }
3279
3280 spin_lock_irqsave(&lp->lock, flags);
3281 de4x5_rst_desc_ring(dev);
3282 de4x5_setup_intr(dev);
3283 lp->tx_enable = true;
3284 spin_unlock_irqrestore(&lp->lock, flags);
3285 outl(POLL_DEMAND, DE4X5_TPD);
3286
3287 netif_wake_queue(dev);
3288 }
3289
3290 /*
3291 ** General PHY reset function. Some MII devices don't reset correctly
3292 ** since their MII address pins can float at voltages that are dependent
3293 ** on the signal pin use. Do a double reset to ensure a reset.
3294 */
3295 static int
de4x5_reset_phy(struct net_device * dev)3296 de4x5_reset_phy(struct net_device *dev)
3297 {
3298 struct de4x5_private *lp = netdev_priv(dev);
3299 u_long iobase = dev->base_addr;
3300 int next_tick = 0;
3301
3302 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3303 if (lp->timeout < 0) {
3304 if (lp->useSROM) {
3305 if (lp->phy[lp->active].rst) {
3306 srom_exec(dev, lp->phy[lp->active].rst);
3307 srom_exec(dev, lp->phy[lp->active].rst);
3308 } else if (lp->rst) { /* Type 5 infoblock reset */
3309 srom_exec(dev, lp->rst);
3310 srom_exec(dev, lp->rst);
3311 }
3312 } else {
3313 PHY_HARD_RESET;
3314 }
3315 if (lp->useMII) {
3316 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3317 }
3318 }
3319 if (lp->useMII) {
3320 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3321 }
3322 } else if (lp->chipset == DC21140) {
3323 PHY_HARD_RESET;
3324 }
3325
3326 return next_tick;
3327 }
3328
3329 static int
test_media(struct net_device * dev,s32 irqs,s32 irq_mask,s32 csr13,s32 csr14,s32 csr15,s32 msec)3330 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3331 {
3332 struct de4x5_private *lp = netdev_priv(dev);
3333 u_long iobase = dev->base_addr;
3334 s32 sts, csr12;
3335
3336 if (lp->timeout < 0) {
3337 lp->timeout = msec/100;
3338 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3339 reset_init_sia(dev, csr13, csr14, csr15);
3340 }
3341
3342 /* set up the interrupt mask */
3343 outl(irq_mask, DE4X5_IMR);
3344
3345 /* clear all pending interrupts */
3346 sts = inl(DE4X5_STS);
3347 outl(sts, DE4X5_STS);
3348
3349 /* clear csr12 NRA and SRA bits */
3350 if ((lp->chipset == DC21041) || lp->useSROM) {
3351 csr12 = inl(DE4X5_SISR);
3352 outl(csr12, DE4X5_SISR);
3353 }
3354 }
3355
3356 sts = inl(DE4X5_STS) & ~TIMER_CB;
3357
3358 if (!(sts & irqs) && --lp->timeout) {
3359 sts = 100 | TIMER_CB;
3360 } else {
3361 lp->timeout = -1;
3362 }
3363
3364 return sts;
3365 }
3366
3367 static int
test_tp(struct net_device * dev,s32 msec)3368 test_tp(struct net_device *dev, s32 msec)
3369 {
3370 struct de4x5_private *lp = netdev_priv(dev);
3371 u_long iobase = dev->base_addr;
3372 int sisr;
3373
3374 if (lp->timeout < 0) {
3375 lp->timeout = msec/100;
3376 }
3377
3378 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3379
3380 if (sisr && --lp->timeout) {
3381 sisr = 100 | TIMER_CB;
3382 } else {
3383 lp->timeout = -1;
3384 }
3385
3386 return sisr;
3387 }
3388
3389 /*
3390 ** Samples the 100Mb Link State Signal. The sample interval is important
3391 ** because too fast a rate can give erroneous results and confuse the
3392 ** speed sense algorithm.
3393 */
3394 #define SAMPLE_INTERVAL 500 /* ms */
3395 #define SAMPLE_DELAY 2000 /* ms */
3396 static int
test_for_100Mb(struct net_device * dev,int msec)3397 test_for_100Mb(struct net_device *dev, int msec)
3398 {
3399 struct de4x5_private *lp = netdev_priv(dev);
3400 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3401
3402 if (lp->timeout < 0) {
3403 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3404 if (msec > SAMPLE_DELAY) {
3405 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3406 gep = SAMPLE_DELAY | TIMER_CB;
3407 return gep;
3408 } else {
3409 lp->timeout = msec/SAMPLE_INTERVAL;
3410 }
3411 }
3412
3413 if (lp->phy[lp->active].id || lp->useSROM) {
3414 gep = is_100_up(dev) | is_spd_100(dev);
3415 } else {
3416 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3417 }
3418 if (!(gep & ret) && --lp->timeout) {
3419 gep = SAMPLE_INTERVAL | TIMER_CB;
3420 } else {
3421 lp->timeout = -1;
3422 }
3423
3424 return gep;
3425 }
3426
3427 static int
wait_for_link(struct net_device * dev)3428 wait_for_link(struct net_device *dev)
3429 {
3430 struct de4x5_private *lp = netdev_priv(dev);
3431
3432 if (lp->timeout < 0) {
3433 lp->timeout = 1;
3434 }
3435
3436 if (lp->timeout--) {
3437 return TIMER_CB;
3438 } else {
3439 lp->timeout = -1;
3440 }
3441
3442 return 0;
3443 }
3444
3445 /*
3446 **
3447 **
3448 */
3449 static int
test_mii_reg(struct net_device * dev,int reg,int mask,bool pol,long msec)3450 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3451 {
3452 struct de4x5_private *lp = netdev_priv(dev);
3453 int test;
3454 u_long iobase = dev->base_addr;
3455
3456 if (lp->timeout < 0) {
3457 lp->timeout = msec/100;
3458 }
3459
3460 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3461 test = (reg ^ (pol ? ~0 : 0)) & mask;
3462
3463 if (test && --lp->timeout) {
3464 reg = 100 | TIMER_CB;
3465 } else {
3466 lp->timeout = -1;
3467 }
3468
3469 return reg;
3470 }
3471
3472 static int
is_spd_100(struct net_device * dev)3473 is_spd_100(struct net_device *dev)
3474 {
3475 struct de4x5_private *lp = netdev_priv(dev);
3476 u_long iobase = dev->base_addr;
3477 int spd;
3478
3479 if (lp->useMII) {
3480 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3481 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3482 spd &= lp->phy[lp->active].spd.mask;
3483 } else if (!lp->useSROM) { /* de500-xa */
3484 spd = ((~gep_rd(dev)) & GEP_SLNK);
3485 } else {
3486 if ((lp->ibn == 2) || !lp->asBitValid)
3487 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3488
3489 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3490 (lp->linkOK & ~lp->asBitValid);
3491 }
3492
3493 return spd;
3494 }
3495
3496 static int
is_100_up(struct net_device * dev)3497 is_100_up(struct net_device *dev)
3498 {
3499 struct de4x5_private *lp = netdev_priv(dev);
3500 u_long iobase = dev->base_addr;
3501
3502 if (lp->useMII) {
3503 /* Double read for sticky bits & temporary drops */
3504 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3505 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3506 } else if (!lp->useSROM) { /* de500-xa */
3507 return (~gep_rd(dev)) & GEP_SLNK;
3508 } else {
3509 if ((lp->ibn == 2) || !lp->asBitValid)
3510 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3511
3512 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3513 (lp->linkOK & ~lp->asBitValid);
3514 }
3515 }
3516
3517 static int
is_10_up(struct net_device * dev)3518 is_10_up(struct net_device *dev)
3519 {
3520 struct de4x5_private *lp = netdev_priv(dev);
3521 u_long iobase = dev->base_addr;
3522
3523 if (lp->useMII) {
3524 /* Double read for sticky bits & temporary drops */
3525 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3526 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3527 } else if (!lp->useSROM) { /* de500-xa */
3528 return (~gep_rd(dev)) & GEP_LNP;
3529 } else {
3530 if ((lp->ibn == 2) || !lp->asBitValid)
3531 return ((lp->chipset & ~0x00ff) == DC2114x) ?
3532 (~inl(DE4X5_SISR)&SISR_LS10):
3533 0;
3534
3535 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3536 (lp->linkOK & ~lp->asBitValid);
3537 }
3538 }
3539
3540 static int
is_anc_capable(struct net_device * dev)3541 is_anc_capable(struct net_device *dev)
3542 {
3543 struct de4x5_private *lp = netdev_priv(dev);
3544 u_long iobase = dev->base_addr;
3545
3546 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3547 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3548 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3549 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3550 } else {
3551 return 0;
3552 }
3553 }
3554
3555 /*
3556 ** Send a packet onto the media and watch for send errors that indicate the
3557 ** media is bad or unconnected.
3558 */
3559 static int
ping_media(struct net_device * dev,int msec)3560 ping_media(struct net_device *dev, int msec)
3561 {
3562 struct de4x5_private *lp = netdev_priv(dev);
3563 u_long iobase = dev->base_addr;
3564 int sisr;
3565
3566 if (lp->timeout < 0) {
3567 lp->timeout = msec/100;
3568
3569 lp->tmp = lp->tx_new; /* Remember the ring position */
3570 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3571 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3572 outl(POLL_DEMAND, DE4X5_TPD);
3573 }
3574
3575 sisr = inl(DE4X5_SISR);
3576
3577 if ((!(sisr & SISR_NCR)) &&
3578 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3579 (--lp->timeout)) {
3580 sisr = 100 | TIMER_CB;
3581 } else {
3582 if ((!(sisr & SISR_NCR)) &&
3583 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3584 lp->timeout) {
3585 sisr = 0;
3586 } else {
3587 sisr = 1;
3588 }
3589 lp->timeout = -1;
3590 }
3591
3592 return sisr;
3593 }
3594
3595 /*
3596 ** This function does 2 things: on Intels it kmalloc's another buffer to
3597 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3598 ** into which the packet is copied.
3599 */
3600 static struct sk_buff *
de4x5_alloc_rx_buff(struct net_device * dev,int index,int len)3601 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3602 {
3603 struct de4x5_private *lp = netdev_priv(dev);
3604 struct sk_buff *p;
3605
3606 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3607 struct sk_buff *ret;
3608 u_long i=0, tmp;
3609
3610 p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3611 if (!p) return NULL;
3612
3613 tmp = virt_to_bus(p->data);
3614 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3615 skb_reserve(p, i);
3616 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3617
3618 ret = lp->rx_skb[index];
3619 lp->rx_skb[index] = p;
3620
3621 if ((u_long) ret > 1) {
3622 skb_put(ret, len);
3623 }
3624
3625 return ret;
3626
3627 #else
3628 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3629
3630 p = dev_alloc_skb(len + 2);
3631 if (!p) return NULL;
3632
3633 skb_reserve(p, 2); /* Align */
3634 if (index < lp->rx_old) { /* Wrapped buffer */
3635 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3636 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3637 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3638 } else { /* Linear buffer */
3639 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3640 }
3641
3642 return p;
3643 #endif
3644 }
3645
3646 static void
de4x5_free_rx_buffs(struct net_device * dev)3647 de4x5_free_rx_buffs(struct net_device *dev)
3648 {
3649 struct de4x5_private *lp = netdev_priv(dev);
3650 int i;
3651
3652 for (i=0; i<lp->rxRingSize; i++) {
3653 if ((u_long) lp->rx_skb[i] > 1) {
3654 dev_kfree_skb(lp->rx_skb[i]);
3655 }
3656 lp->rx_ring[i].status = 0;
3657 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3658 }
3659 }
3660
3661 static void
de4x5_free_tx_buffs(struct net_device * dev)3662 de4x5_free_tx_buffs(struct net_device *dev)
3663 {
3664 struct de4x5_private *lp = netdev_priv(dev);
3665 int i;
3666
3667 for (i=0; i<lp->txRingSize; i++) {
3668 if (lp->tx_skb[i])
3669 de4x5_free_tx_buff(lp, i);
3670 lp->tx_ring[i].status = 0;
3671 }
3672
3673 /* Unload the locally queued packets */
3674 __skb_queue_purge(&lp->cache.queue);
3675 }
3676
3677 /*
3678 ** When a user pulls a connection, the DECchip can end up in a
3679 ** 'running - waiting for end of transmission' state. This means that we
3680 ** have to perform a chip soft reset to ensure that we can synchronize
3681 ** the hardware and software and make any media probes using a loopback
3682 ** packet meaningful.
3683 */
3684 static void
de4x5_save_skbs(struct net_device * dev)3685 de4x5_save_skbs(struct net_device *dev)
3686 {
3687 struct de4x5_private *lp = netdev_priv(dev);
3688 u_long iobase = dev->base_addr;
3689 s32 omr;
3690
3691 if (!lp->cache.save_cnt) {
3692 STOP_DE4X5;
3693 de4x5_tx(dev); /* Flush any sent skb's */
3694 de4x5_free_tx_buffs(dev);
3695 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3696 de4x5_sw_reset(dev);
3697 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3698 lp->cache.save_cnt++;
3699 START_DE4X5;
3700 }
3701 }
3702
3703 static void
de4x5_rst_desc_ring(struct net_device * dev)3704 de4x5_rst_desc_ring(struct net_device *dev)
3705 {
3706 struct de4x5_private *lp = netdev_priv(dev);
3707 u_long iobase = dev->base_addr;
3708 int i;
3709 s32 omr;
3710
3711 if (lp->cache.save_cnt) {
3712 STOP_DE4X5;
3713 outl(lp->dma_rings, DE4X5_RRBA);
3714 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3715 DE4X5_TRBA);
3716
3717 lp->rx_new = lp->rx_old = 0;
3718 lp->tx_new = lp->tx_old = 0;
3719
3720 for (i = 0; i < lp->rxRingSize; i++) {
3721 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3722 }
3723
3724 for (i = 0; i < lp->txRingSize; i++) {
3725 lp->tx_ring[i].status = cpu_to_le32(0);
3726 }
3727
3728 barrier();
3729 lp->cache.save_cnt--;
3730 START_DE4X5;
3731 }
3732 }
3733
3734 static void
de4x5_cache_state(struct net_device * dev,int flag)3735 de4x5_cache_state(struct net_device *dev, int flag)
3736 {
3737 struct de4x5_private *lp = netdev_priv(dev);
3738 u_long iobase = dev->base_addr;
3739
3740 switch(flag) {
3741 case DE4X5_SAVE_STATE:
3742 lp->cache.csr0 = inl(DE4X5_BMR);
3743 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3744 lp->cache.csr7 = inl(DE4X5_IMR);
3745 break;
3746
3747 case DE4X5_RESTORE_STATE:
3748 outl(lp->cache.csr0, DE4X5_BMR);
3749 outl(lp->cache.csr6, DE4X5_OMR);
3750 outl(lp->cache.csr7, DE4X5_IMR);
3751 if (lp->chipset == DC21140) {
3752 gep_wr(lp->cache.gepc, dev);
3753 gep_wr(lp->cache.gep, dev);
3754 } else {
3755 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3756 lp->cache.csr15);
3757 }
3758 break;
3759 }
3760 }
3761
3762 static void
de4x5_put_cache(struct net_device * dev,struct sk_buff * skb)3763 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3764 {
3765 struct de4x5_private *lp = netdev_priv(dev);
3766
3767 __skb_queue_tail(&lp->cache.queue, skb);
3768 }
3769
3770 static void
de4x5_putb_cache(struct net_device * dev,struct sk_buff * skb)3771 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3772 {
3773 struct de4x5_private *lp = netdev_priv(dev);
3774
3775 __skb_queue_head(&lp->cache.queue, skb);
3776 }
3777
3778 static struct sk_buff *
de4x5_get_cache(struct net_device * dev)3779 de4x5_get_cache(struct net_device *dev)
3780 {
3781 struct de4x5_private *lp = netdev_priv(dev);
3782
3783 return __skb_dequeue(&lp->cache.queue);
3784 }
3785
3786 /*
3787 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3788 ** is received and the auto-negotiation status is NWAY OK.
3789 */
3790 static int
test_ans(struct net_device * dev,s32 irqs,s32 irq_mask,s32 msec)3791 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3792 {
3793 struct de4x5_private *lp = netdev_priv(dev);
3794 u_long iobase = dev->base_addr;
3795 s32 sts, ans;
3796
3797 if (lp->timeout < 0) {
3798 lp->timeout = msec/100;
3799 outl(irq_mask, DE4X5_IMR);
3800
3801 /* clear all pending interrupts */
3802 sts = inl(DE4X5_STS);
3803 outl(sts, DE4X5_STS);
3804 }
3805
3806 ans = inl(DE4X5_SISR) & SISR_ANS;
3807 sts = inl(DE4X5_STS) & ~TIMER_CB;
3808
3809 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3810 sts = 100 | TIMER_CB;
3811 } else {
3812 lp->timeout = -1;
3813 }
3814
3815 return sts;
3816 }
3817
3818 static void
de4x5_setup_intr(struct net_device * dev)3819 de4x5_setup_intr(struct net_device *dev)
3820 {
3821 struct de4x5_private *lp = netdev_priv(dev);
3822 u_long iobase = dev->base_addr;
3823 s32 imr, sts;
3824
3825 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3826 imr = 0;
3827 UNMASK_IRQs;
3828 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3829 outl(sts, DE4X5_STS);
3830 ENABLE_IRQs;
3831 }
3832 }
3833
3834 /*
3835 **
3836 */
3837 static void
reset_init_sia(struct net_device * dev,s32 csr13,s32 csr14,s32 csr15)3838 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3839 {
3840 struct de4x5_private *lp = netdev_priv(dev);
3841 u_long iobase = dev->base_addr;
3842
3843 RESET_SIA;
3844 if (lp->useSROM) {
3845 if (lp->ibn == 3) {
3846 srom_exec(dev, lp->phy[lp->active].rst);
3847 srom_exec(dev, lp->phy[lp->active].gep);
3848 outl(1, DE4X5_SICR);
3849 return;
3850 } else {
3851 csr15 = lp->cache.csr15;
3852 csr14 = lp->cache.csr14;
3853 csr13 = lp->cache.csr13;
3854 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3855 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3856 }
3857 } else {
3858 outl(csr15, DE4X5_SIGR);
3859 }
3860 outl(csr14, DE4X5_STRR);
3861 outl(csr13, DE4X5_SICR);
3862
3863 mdelay(10);
3864 }
3865
3866 /*
3867 ** Create a loopback ethernet packet
3868 */
3869 static void
create_packet(struct net_device * dev,char * frame,int len)3870 create_packet(struct net_device *dev, char *frame, int len)
3871 {
3872 int i;
3873 char *buf = frame;
3874
3875 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3876 *buf++ = dev->dev_addr[i];
3877 }
3878 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3879 *buf++ = dev->dev_addr[i];
3880 }
3881
3882 *buf++ = 0; /* Packet length (2 bytes) */
3883 *buf++ = 1;
3884 }
3885
3886 /*
3887 ** Look for a particular board name in the EISA configuration space
3888 */
3889 static int
EISA_signature(char * name,struct device * device)3890 EISA_signature(char *name, struct device *device)
3891 {
3892 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3893 struct eisa_device *edev;
3894
3895 *name = '\0';
3896 edev = to_eisa_device (device);
3897 i = edev->id.driver_data;
3898
3899 if (i >= 0 && i < siglen) {
3900 strcpy (name, de4x5_signatures[i]);
3901 status = 1;
3902 }
3903
3904 return status; /* return the device name string */
3905 }
3906
3907 /*
3908 ** Look for a particular board name in the PCI configuration space
3909 */
3910 static int
PCI_signature(char * name,struct de4x5_private * lp)3911 PCI_signature(char *name, struct de4x5_private *lp)
3912 {
3913 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3914
3915 if (lp->chipset == DC21040) {
3916 strcpy(name, "DE434/5");
3917 return status;
3918 } else { /* Search for a DEC name in the SROM */
3919 int tmp = *((char *)&lp->srom + 19) * 3;
3920 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3921 }
3922 name[8] = '\0';
3923 for (i=0; i<siglen; i++) {
3924 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3925 }
3926 if (i == siglen) {
3927 if (dec_only) {
3928 *name = '\0';
3929 } else { /* Use chip name to avoid confusion */
3930 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3931 ((lp->chipset == DC21041) ? "DC21041" :
3932 ((lp->chipset == DC21140) ? "DC21140" :
3933 ((lp->chipset == DC21142) ? "DC21142" :
3934 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3935 )))))));
3936 }
3937 if (lp->chipset != DC21041) {
3938 lp->useSROM = true; /* card is not recognisably DEC */
3939 }
3940 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3941 lp->useSROM = true;
3942 }
3943
3944 return status;
3945 }
3946
3947 /*
3948 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3949 ** the DC21040, else read the SROM for the other chips.
3950 ** The SROM may not be present in a multi-MAC card, so first read the
3951 ** MAC address and check for a bad address. If there is a bad one then exit
3952 ** immediately with the prior srom contents intact (the h/w address will
3953 ** be fixed up later).
3954 */
3955 static void
DevicePresent(struct net_device * dev,u_long aprom_addr)3956 DevicePresent(struct net_device *dev, u_long aprom_addr)
3957 {
3958 int i, j=0;
3959 struct de4x5_private *lp = netdev_priv(dev);
3960
3961 if (lp->chipset == DC21040) {
3962 if (lp->bus == EISA) {
3963 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3964 } else {
3965 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3966 }
3967 } else { /* Read new srom */
3968 u_short tmp;
3969 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3970 for (i=0; i<(ETH_ALEN>>1); i++) {
3971 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3972 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3973 *p = cpu_to_le16(tmp);
3974 }
3975 if (j == 0 || j == 3 * 0xffff) {
3976 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3977 return;
3978 }
3979
3980 p = (__le16 *)&lp->srom;
3981 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3982 tmp = srom_rd(aprom_addr, i);
3983 *p++ = cpu_to_le16(tmp);
3984 }
3985 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
3986 }
3987 }
3988
3989 /*
3990 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3991 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3992 ** it...from depca.c.
3993 */
3994 static void
enet_addr_rst(u_long aprom_addr)3995 enet_addr_rst(u_long aprom_addr)
3996 {
3997 union {
3998 struct {
3999 u32 a;
4000 u32 b;
4001 } llsig;
4002 char Sig[sizeof(u32) << 1];
4003 } dev;
4004 short sigLength=0;
4005 s8 data;
4006 int i, j;
4007
4008 dev.llsig.a = ETH_PROM_SIG;
4009 dev.llsig.b = ETH_PROM_SIG;
4010 sigLength = sizeof(u32) << 1;
4011
4012 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4013 data = inb(aprom_addr);
4014 if (dev.Sig[j] == data) { /* track signature */
4015 j++;
4016 } else { /* lost signature; begin search again */
4017 if (data == dev.Sig[0]) { /* rare case.... */
4018 j=1;
4019 } else {
4020 j=0;
4021 }
4022 }
4023 }
4024 }
4025
4026 /*
4027 ** For the bad status case and no SROM, then add one to the previous
4028 ** address. However, need to add one backwards in case we have 0xff
4029 ** as one or more of the bytes. Only the last 3 bytes should be checked
4030 ** as the first three are invariant - assigned to an organisation.
4031 */
4032 static int
get_hw_addr(struct net_device * dev)4033 get_hw_addr(struct net_device *dev)
4034 {
4035 u_long iobase = dev->base_addr;
4036 int broken, i, k, tmp, status = 0;
4037 u_short j,chksum;
4038 struct de4x5_private *lp = netdev_priv(dev);
4039
4040 broken = de4x5_bad_srom(lp);
4041
4042 for (i=0,k=0,j=0;j<3;j++) {
4043 k <<= 1;
4044 if (k > 0xffff) k-=0xffff;
4045
4046 if (lp->bus == PCI) {
4047 if (lp->chipset == DC21040) {
4048 while ((tmp = inl(DE4X5_APROM)) < 0);
4049 k += (u_char) tmp;
4050 dev->dev_addr[i++] = (u_char) tmp;
4051 while ((tmp = inl(DE4X5_APROM)) < 0);
4052 k += (u_short) (tmp << 8);
4053 dev->dev_addr[i++] = (u_char) tmp;
4054 } else if (!broken) {
4055 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4056 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4057 } else if ((broken == SMC) || (broken == ACCTON)) {
4058 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4059 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4060 }
4061 } else {
4062 k += (u_char) (tmp = inb(EISA_APROM));
4063 dev->dev_addr[i++] = (u_char) tmp;
4064 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4065 dev->dev_addr[i++] = (u_char) tmp;
4066 }
4067
4068 if (k > 0xffff) k-=0xffff;
4069 }
4070 if (k == 0xffff) k=0;
4071
4072 if (lp->bus == PCI) {
4073 if (lp->chipset == DC21040) {
4074 while ((tmp = inl(DE4X5_APROM)) < 0);
4075 chksum = (u_char) tmp;
4076 while ((tmp = inl(DE4X5_APROM)) < 0);
4077 chksum |= (u_short) (tmp << 8);
4078 if ((k != chksum) && (dec_only)) status = -1;
4079 }
4080 } else {
4081 chksum = (u_char) inb(EISA_APROM);
4082 chksum |= (u_short) (inb(EISA_APROM) << 8);
4083 if ((k != chksum) && (dec_only)) status = -1;
4084 }
4085
4086 /* If possible, try to fix a broken card - SMC only so far */
4087 srom_repair(dev, broken);
4088
4089 #ifdef CONFIG_PPC_PMAC
4090 /*
4091 ** If the address starts with 00 a0, we have to bit-reverse
4092 ** each byte of the address.
4093 */
4094 if ( machine_is(powermac) &&
4095 (dev->dev_addr[0] == 0) &&
4096 (dev->dev_addr[1] == 0xa0) )
4097 {
4098 for (i = 0; i < ETH_ALEN; ++i)
4099 {
4100 int x = dev->dev_addr[i];
4101 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4102 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4103 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4104 }
4105 }
4106 #endif /* CONFIG_PPC_PMAC */
4107
4108 /* Test for a bad enet address */
4109 status = test_bad_enet(dev, status);
4110
4111 return status;
4112 }
4113
4114 /*
4115 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4116 ** didn't seem to work here...?
4117 */
4118 static int
de4x5_bad_srom(struct de4x5_private * lp)4119 de4x5_bad_srom(struct de4x5_private *lp)
4120 {
4121 int i, status = 0;
4122
4123 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4124 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4125 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4126 if (i == 0) {
4127 status = SMC;
4128 } else if (i == 1) {
4129 status = ACCTON;
4130 }
4131 break;
4132 }
4133 }
4134
4135 return status;
4136 }
4137
4138 static int
de4x5_strncmp(char * a,char * b,int n)4139 de4x5_strncmp(char *a, char *b, int n)
4140 {
4141 int ret=0;
4142
4143 for (;n && !ret; n--) {
4144 ret = *a++ - *b++;
4145 }
4146
4147 return ret;
4148 }
4149
4150 static void
srom_repair(struct net_device * dev,int card)4151 srom_repair(struct net_device *dev, int card)
4152 {
4153 struct de4x5_private *lp = netdev_priv(dev);
4154
4155 switch(card) {
4156 case SMC:
4157 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4158 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4159 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4160 lp->useSROM = true;
4161 break;
4162 }
4163 }
4164
4165 /*
4166 ** Assume that the irq's do not follow the PCI spec - this is seems
4167 ** to be true so far (2 for 2).
4168 */
4169 static int
test_bad_enet(struct net_device * dev,int status)4170 test_bad_enet(struct net_device *dev, int status)
4171 {
4172 struct de4x5_private *lp = netdev_priv(dev);
4173 int i, tmp;
4174
4175 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4176 if ((tmp == 0) || (tmp == 0x5fa)) {
4177 if ((lp->chipset == last.chipset) &&
4178 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4179 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4180 for (i=ETH_ALEN-1; i>2; --i) {
4181 dev->dev_addr[i] += 1;
4182 if (dev->dev_addr[i] != 0) break;
4183 }
4184 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4185 if (!an_exception(lp)) {
4186 dev->irq = last.irq;
4187 }
4188
4189 status = 0;
4190 }
4191 } else if (!status) {
4192 last.chipset = lp->chipset;
4193 last.bus = lp->bus_num;
4194 last.irq = dev->irq;
4195 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4196 }
4197
4198 return status;
4199 }
4200
4201 /*
4202 ** List of board exceptions with correctly wired IRQs
4203 */
4204 static int
an_exception(struct de4x5_private * lp)4205 an_exception(struct de4x5_private *lp)
4206 {
4207 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4208 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4209 return -1;
4210 }
4211
4212 return 0;
4213 }
4214
4215 /*
4216 ** SROM Read
4217 */
4218 static short
srom_rd(u_long addr,u_char offset)4219 srom_rd(u_long addr, u_char offset)
4220 {
4221 sendto_srom(SROM_RD | SROM_SR, addr);
4222
4223 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4224 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4225 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4226
4227 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4228 }
4229
4230 static void
srom_latch(u_int command,u_long addr)4231 srom_latch(u_int command, u_long addr)
4232 {
4233 sendto_srom(command, addr);
4234 sendto_srom(command | DT_CLK, addr);
4235 sendto_srom(command, addr);
4236 }
4237
4238 static void
srom_command(u_int command,u_long addr)4239 srom_command(u_int command, u_long addr)
4240 {
4241 srom_latch(command, addr);
4242 srom_latch(command, addr);
4243 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4244 }
4245
4246 static void
srom_address(u_int command,u_long addr,u_char offset)4247 srom_address(u_int command, u_long addr, u_char offset)
4248 {
4249 int i, a;
4250
4251 a = offset << 2;
4252 for (i=0; i<6; i++, a <<= 1) {
4253 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4254 }
4255 udelay(1);
4256
4257 i = (getfrom_srom(addr) >> 3) & 0x01;
4258 }
4259
4260 static short
srom_data(u_int command,u_long addr)4261 srom_data(u_int command, u_long addr)
4262 {
4263 int i;
4264 short word = 0;
4265 s32 tmp;
4266
4267 for (i=0; i<16; i++) {
4268 sendto_srom(command | DT_CLK, addr);
4269 tmp = getfrom_srom(addr);
4270 sendto_srom(command, addr);
4271
4272 word = (word << 1) | ((tmp >> 3) & 0x01);
4273 }
4274
4275 sendto_srom(command & 0x0000ff00, addr);
4276
4277 return word;
4278 }
4279
4280 /*
4281 static void
4282 srom_busy(u_int command, u_long addr)
4283 {
4284 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4285
4286 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4287 mdelay(1);
4288 }
4289
4290 sendto_srom(command & 0x0000ff00, addr);
4291 }
4292 */
4293
4294 static void
sendto_srom(u_int command,u_long addr)4295 sendto_srom(u_int command, u_long addr)
4296 {
4297 outl(command, addr);
4298 udelay(1);
4299 }
4300
4301 static int
getfrom_srom(u_long addr)4302 getfrom_srom(u_long addr)
4303 {
4304 s32 tmp;
4305
4306 tmp = inl(addr);
4307 udelay(1);
4308
4309 return tmp;
4310 }
4311
4312 static int
srom_infoleaf_info(struct net_device * dev)4313 srom_infoleaf_info(struct net_device *dev)
4314 {
4315 struct de4x5_private *lp = netdev_priv(dev);
4316 int i, count;
4317 u_char *p;
4318
4319 /* Find the infoleaf decoder function that matches this chipset */
4320 for (i=0; i<INFOLEAF_SIZE; i++) {
4321 if (lp->chipset == infoleaf_array[i].chipset) break;
4322 }
4323 if (i == INFOLEAF_SIZE) {
4324 lp->useSROM = false;
4325 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4326 dev->name);
4327 return -ENXIO;
4328 }
4329
4330 lp->infoleaf_fn = infoleaf_array[i].fn;
4331
4332 /* Find the information offset that this function should use */
4333 count = *((u_char *)&lp->srom + 19);
4334 p = (u_char *)&lp->srom + 26;
4335
4336 if (count > 1) {
4337 for (i=count; i; --i, p+=3) {
4338 if (lp->device == *p) break;
4339 }
4340 if (i == 0) {
4341 lp->useSROM = false;
4342 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4343 dev->name, lp->device);
4344 return -ENXIO;
4345 }
4346 }
4347
4348 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4349
4350 return 0;
4351 }
4352
4353 /*
4354 ** This routine loads any type 1 or 3 MII info into the mii device
4355 ** struct and executes any type 5 code to reset PHY devices for this
4356 ** controller.
4357 ** The info for the MII devices will be valid since the index used
4358 ** will follow the discovery process from MII address 1-31 then 0.
4359 */
4360 static void
srom_init(struct net_device * dev)4361 srom_init(struct net_device *dev)
4362 {
4363 struct de4x5_private *lp = netdev_priv(dev);
4364 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4365 u_char count;
4366
4367 p+=2;
4368 if (lp->chipset == DC21140) {
4369 lp->cache.gepc = (*p++ | GEP_CTRL);
4370 gep_wr(lp->cache.gepc, dev);
4371 }
4372
4373 /* Block count */
4374 count = *p++;
4375
4376 /* Jump the infoblocks to find types */
4377 for (;count; --count) {
4378 if (*p < 128) {
4379 p += COMPACT_LEN;
4380 } else if (*(p+1) == 5) {
4381 type5_infoblock(dev, 1, p);
4382 p += ((*p & BLOCK_LEN) + 1);
4383 } else if (*(p+1) == 4) {
4384 p += ((*p & BLOCK_LEN) + 1);
4385 } else if (*(p+1) == 3) {
4386 type3_infoblock(dev, 1, p);
4387 p += ((*p & BLOCK_LEN) + 1);
4388 } else if (*(p+1) == 2) {
4389 p += ((*p & BLOCK_LEN) + 1);
4390 } else if (*(p+1) == 1) {
4391 type1_infoblock(dev, 1, p);
4392 p += ((*p & BLOCK_LEN) + 1);
4393 } else {
4394 p += ((*p & BLOCK_LEN) + 1);
4395 }
4396 }
4397 }
4398
4399 /*
4400 ** A generic routine that writes GEP control, data and reset information
4401 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4402 */
4403 static void
srom_exec(struct net_device * dev,u_char * p)4404 srom_exec(struct net_device *dev, u_char *p)
4405 {
4406 struct de4x5_private *lp = netdev_priv(dev);
4407 u_long iobase = dev->base_addr;
4408 u_char count = (p ? *p++ : 0);
4409 u_short *w = (u_short *)p;
4410
4411 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4412
4413 if (lp->chipset != DC21140) RESET_SIA;
4414
4415 while (count--) {
4416 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4417 *p++ : get_unaligned_le16(w++)), dev);
4418 mdelay(2); /* 2ms per action */
4419 }
4420
4421 if (lp->chipset != DC21140) {
4422 outl(lp->cache.csr14, DE4X5_STRR);
4423 outl(lp->cache.csr13, DE4X5_SICR);
4424 }
4425 }
4426
4427 /*
4428 ** Basically this function is a NOP since it will never be called,
4429 ** unless I implement the DC21041 SROM functions. There's no need
4430 ** since the existing code will be satisfactory for all boards.
4431 */
4432 static int
dc21041_infoleaf(struct net_device * dev)4433 dc21041_infoleaf(struct net_device *dev)
4434 {
4435 return DE4X5_AUTOSENSE_MS;
4436 }
4437
4438 static int
dc21140_infoleaf(struct net_device * dev)4439 dc21140_infoleaf(struct net_device *dev)
4440 {
4441 struct de4x5_private *lp = netdev_priv(dev);
4442 u_char count = 0;
4443 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4444 int next_tick = DE4X5_AUTOSENSE_MS;
4445
4446 /* Read the connection type */
4447 p+=2;
4448
4449 /* GEP control */
4450 lp->cache.gepc = (*p++ | GEP_CTRL);
4451
4452 /* Block count */
4453 count = *p++;
4454
4455 /* Recursively figure out the info blocks */
4456 if (*p < 128) {
4457 next_tick = dc_infoblock[COMPACT](dev, count, p);
4458 } else {
4459 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4460 }
4461
4462 if (lp->tcount == count) {
4463 lp->media = NC;
4464 if (lp->media != lp->c_media) {
4465 de4x5_dbg_media(dev);
4466 lp->c_media = lp->media;
4467 }
4468 lp->media = INIT;
4469 lp->tcount = 0;
4470 lp->tx_enable = false;
4471 }
4472
4473 return next_tick & ~TIMER_CB;
4474 }
4475
4476 static int
dc21142_infoleaf(struct net_device * dev)4477 dc21142_infoleaf(struct net_device *dev)
4478 {
4479 struct de4x5_private *lp = netdev_priv(dev);
4480 u_char count = 0;
4481 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4482 int next_tick = DE4X5_AUTOSENSE_MS;
4483
4484 /* Read the connection type */
4485 p+=2;
4486
4487 /* Block count */
4488 count = *p++;
4489
4490 /* Recursively figure out the info blocks */
4491 if (*p < 128) {
4492 next_tick = dc_infoblock[COMPACT](dev, count, p);
4493 } else {
4494 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4495 }
4496
4497 if (lp->tcount == count) {
4498 lp->media = NC;
4499 if (lp->media != lp->c_media) {
4500 de4x5_dbg_media(dev);
4501 lp->c_media = lp->media;
4502 }
4503 lp->media = INIT;
4504 lp->tcount = 0;
4505 lp->tx_enable = false;
4506 }
4507
4508 return next_tick & ~TIMER_CB;
4509 }
4510
4511 static int
dc21143_infoleaf(struct net_device * dev)4512 dc21143_infoleaf(struct net_device *dev)
4513 {
4514 struct de4x5_private *lp = netdev_priv(dev);
4515 u_char count = 0;
4516 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4517 int next_tick = DE4X5_AUTOSENSE_MS;
4518
4519 /* Read the connection type */
4520 p+=2;
4521
4522 /* Block count */
4523 count = *p++;
4524
4525 /* Recursively figure out the info blocks */
4526 if (*p < 128) {
4527 next_tick = dc_infoblock[COMPACT](dev, count, p);
4528 } else {
4529 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4530 }
4531 if (lp->tcount == count) {
4532 lp->media = NC;
4533 if (lp->media != lp->c_media) {
4534 de4x5_dbg_media(dev);
4535 lp->c_media = lp->media;
4536 }
4537 lp->media = INIT;
4538 lp->tcount = 0;
4539 lp->tx_enable = false;
4540 }
4541
4542 return next_tick & ~TIMER_CB;
4543 }
4544
4545 /*
4546 ** The compact infoblock is only designed for DC21140[A] chips, so
4547 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4548 */
4549 static int
compact_infoblock(struct net_device * dev,u_char count,u_char * p)4550 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4551 {
4552 struct de4x5_private *lp = netdev_priv(dev);
4553 u_char flags, csr6;
4554
4555 /* Recursively figure out the info blocks */
4556 if (--count > lp->tcount) {
4557 if (*(p+COMPACT_LEN) < 128) {
4558 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4559 } else {
4560 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4561 }
4562 }
4563
4564 if ((lp->media == INIT) && (lp->timeout < 0)) {
4565 lp->ibn = COMPACT;
4566 lp->active = 0;
4567 gep_wr(lp->cache.gepc, dev);
4568 lp->infoblock_media = (*p++) & COMPACT_MC;
4569 lp->cache.gep = *p++;
4570 csr6 = *p++;
4571 flags = *p++;
4572
4573 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4574 lp->defMedium = (flags & 0x40) ? -1 : 0;
4575 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4576 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4577 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4578 lp->useMII = false;
4579
4580 de4x5_switch_mac_port(dev);
4581 }
4582
4583 return dc21140m_autoconf(dev);
4584 }
4585
4586 /*
4587 ** This block describes non MII media for the DC21140[A] only.
4588 */
4589 static int
type0_infoblock(struct net_device * dev,u_char count,u_char * p)4590 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4591 {
4592 struct de4x5_private *lp = netdev_priv(dev);
4593 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4594
4595 /* Recursively figure out the info blocks */
4596 if (--count > lp->tcount) {
4597 if (*(p+len) < 128) {
4598 return dc_infoblock[COMPACT](dev, count, p+len);
4599 } else {
4600 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4601 }
4602 }
4603
4604 if ((lp->media == INIT) && (lp->timeout < 0)) {
4605 lp->ibn = 0;
4606 lp->active = 0;
4607 gep_wr(lp->cache.gepc, dev);
4608 p+=2;
4609 lp->infoblock_media = (*p++) & BLOCK0_MC;
4610 lp->cache.gep = *p++;
4611 csr6 = *p++;
4612 flags = *p++;
4613
4614 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4615 lp->defMedium = (flags & 0x40) ? -1 : 0;
4616 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4617 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4618 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4619 lp->useMII = false;
4620
4621 de4x5_switch_mac_port(dev);
4622 }
4623
4624 return dc21140m_autoconf(dev);
4625 }
4626
4627 /* These functions are under construction! */
4628
4629 static int
type1_infoblock(struct net_device * dev,u_char count,u_char * p)4630 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4631 {
4632 struct de4x5_private *lp = netdev_priv(dev);
4633 u_char len = (*p & BLOCK_LEN)+1;
4634
4635 /* Recursively figure out the info blocks */
4636 if (--count > lp->tcount) {
4637 if (*(p+len) < 128) {
4638 return dc_infoblock[COMPACT](dev, count, p+len);
4639 } else {
4640 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4641 }
4642 }
4643
4644 p += 2;
4645 if (lp->state == INITIALISED) {
4646 lp->ibn = 1;
4647 lp->active = *p++;
4648 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4649 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4650 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4651 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4652 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4653 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4654 return 0;
4655 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4656 lp->ibn = 1;
4657 lp->active = *p;
4658 lp->infoblock_csr6 = OMR_MII_100;
4659 lp->useMII = true;
4660 lp->infoblock_media = ANS;
4661
4662 de4x5_switch_mac_port(dev);
4663 }
4664
4665 return dc21140m_autoconf(dev);
4666 }
4667
4668 static int
type2_infoblock(struct net_device * dev,u_char count,u_char * p)4669 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4670 {
4671 struct de4x5_private *lp = netdev_priv(dev);
4672 u_char len = (*p & BLOCK_LEN)+1;
4673
4674 /* Recursively figure out the info blocks */
4675 if (--count > lp->tcount) {
4676 if (*(p+len) < 128) {
4677 return dc_infoblock[COMPACT](dev, count, p+len);
4678 } else {
4679 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4680 }
4681 }
4682
4683 if ((lp->media == INIT) && (lp->timeout < 0)) {
4684 lp->ibn = 2;
4685 lp->active = 0;
4686 p += 2;
4687 lp->infoblock_media = (*p) & MEDIA_CODE;
4688
4689 if ((*p++) & EXT_FIELD) {
4690 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4691 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4692 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4693 } else {
4694 lp->cache.csr13 = CSR13;
4695 lp->cache.csr14 = CSR14;
4696 lp->cache.csr15 = CSR15;
4697 }
4698 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4699 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4700 lp->infoblock_csr6 = OMR_SIA;
4701 lp->useMII = false;
4702
4703 de4x5_switch_mac_port(dev);
4704 }
4705
4706 return dc2114x_autoconf(dev);
4707 }
4708
4709 static int
type3_infoblock(struct net_device * dev,u_char count,u_char * p)4710 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4711 {
4712 struct de4x5_private *lp = netdev_priv(dev);
4713 u_char len = (*p & BLOCK_LEN)+1;
4714
4715 /* Recursively figure out the info blocks */
4716 if (--count > lp->tcount) {
4717 if (*(p+len) < 128) {
4718 return dc_infoblock[COMPACT](dev, count, p+len);
4719 } else {
4720 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4721 }
4722 }
4723
4724 p += 2;
4725 if (lp->state == INITIALISED) {
4726 lp->ibn = 3;
4727 lp->active = *p++;
4728 if (MOTO_SROM_BUG) lp->active = 0;
4729 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4730 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4731 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4732 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4733 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4734 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4735 lp->phy[lp->active].mci = *p;
4736 return 0;
4737 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4738 lp->ibn = 3;
4739 lp->active = *p;
4740 if (MOTO_SROM_BUG) lp->active = 0;
4741 lp->infoblock_csr6 = OMR_MII_100;
4742 lp->useMII = true;
4743 lp->infoblock_media = ANS;
4744
4745 de4x5_switch_mac_port(dev);
4746 }
4747
4748 return dc2114x_autoconf(dev);
4749 }
4750
4751 static int
type4_infoblock(struct net_device * dev,u_char count,u_char * p)4752 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4753 {
4754 struct de4x5_private *lp = netdev_priv(dev);
4755 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4756
4757 /* Recursively figure out the info blocks */
4758 if (--count > lp->tcount) {
4759 if (*(p+len) < 128) {
4760 return dc_infoblock[COMPACT](dev, count, p+len);
4761 } else {
4762 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4763 }
4764 }
4765
4766 if ((lp->media == INIT) && (lp->timeout < 0)) {
4767 lp->ibn = 4;
4768 lp->active = 0;
4769 p+=2;
4770 lp->infoblock_media = (*p++) & MEDIA_CODE;
4771 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4772 lp->cache.csr14 = CSR14;
4773 lp->cache.csr15 = CSR15;
4774 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4775 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4776 csr6 = *p++;
4777 flags = *p++;
4778
4779 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4780 lp->defMedium = (flags & 0x40) ? -1 : 0;
4781 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4782 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4783 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4784 lp->useMII = false;
4785
4786 de4x5_switch_mac_port(dev);
4787 }
4788
4789 return dc2114x_autoconf(dev);
4790 }
4791
4792 /*
4793 ** This block type provides information for resetting external devices
4794 ** (chips) through the General Purpose Register.
4795 */
4796 static int
type5_infoblock(struct net_device * dev,u_char count,u_char * p)4797 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4798 {
4799 struct de4x5_private *lp = netdev_priv(dev);
4800 u_char len = (*p & BLOCK_LEN)+1;
4801
4802 /* Recursively figure out the info blocks */
4803 if (--count > lp->tcount) {
4804 if (*(p+len) < 128) {
4805 return dc_infoblock[COMPACT](dev, count, p+len);
4806 } else {
4807 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4808 }
4809 }
4810
4811 /* Must be initializing to run this code */
4812 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4813 p+=2;
4814 lp->rst = p;
4815 srom_exec(dev, lp->rst);
4816 }
4817
4818 return DE4X5_AUTOSENSE_MS;
4819 }
4820
4821 /*
4822 ** MII Read/Write
4823 */
4824
4825 static int
mii_rd(u_char phyreg,u_char phyaddr,u_long ioaddr)4826 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4827 {
4828 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4829 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4830 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4831 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4832 mii_address(phyreg, ioaddr); /* PHY Register to read */
4833 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4834
4835 return mii_rdata(ioaddr); /* Read data */
4836 }
4837
4838 static void
mii_wr(int data,u_char phyreg,u_char phyaddr,u_long ioaddr)4839 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4840 {
4841 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4842 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4843 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4844 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4845 mii_address(phyreg, ioaddr); /* PHY Register to write */
4846 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4847 data = mii_swap(data, 16); /* Swap data bit ordering */
4848 mii_wdata(data, 16, ioaddr); /* Write data */
4849 }
4850
4851 static int
mii_rdata(u_long ioaddr)4852 mii_rdata(u_long ioaddr)
4853 {
4854 int i;
4855 s32 tmp = 0;
4856
4857 for (i=0; i<16; i++) {
4858 tmp <<= 1;
4859 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4860 }
4861
4862 return tmp;
4863 }
4864
4865 static void
mii_wdata(int data,int len,u_long ioaddr)4866 mii_wdata(int data, int len, u_long ioaddr)
4867 {
4868 int i;
4869
4870 for (i=0; i<len; i++) {
4871 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4872 data >>= 1;
4873 }
4874 }
4875
4876 static void
mii_address(u_char addr,u_long ioaddr)4877 mii_address(u_char addr, u_long ioaddr)
4878 {
4879 int i;
4880
4881 addr = mii_swap(addr, 5);
4882 for (i=0; i<5; i++) {
4883 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4884 addr >>= 1;
4885 }
4886 }
4887
4888 static void
mii_ta(u_long rw,u_long ioaddr)4889 mii_ta(u_long rw, u_long ioaddr)
4890 {
4891 if (rw == MII_STWR) {
4892 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4893 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4894 } else {
4895 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4896 }
4897 }
4898
4899 static int
mii_swap(int data,int len)4900 mii_swap(int data, int len)
4901 {
4902 int i, tmp = 0;
4903
4904 for (i=0; i<len; i++) {
4905 tmp <<= 1;
4906 tmp |= (data & 1);
4907 data >>= 1;
4908 }
4909
4910 return tmp;
4911 }
4912
4913 static void
sendto_mii(u32 command,int data,u_long ioaddr)4914 sendto_mii(u32 command, int data, u_long ioaddr)
4915 {
4916 u32 j;
4917
4918 j = (data & 1) << 17;
4919 outl(command | j, ioaddr);
4920 udelay(1);
4921 outl(command | MII_MDC | j, ioaddr);
4922 udelay(1);
4923 }
4924
4925 static int
getfrom_mii(u32 command,u_long ioaddr)4926 getfrom_mii(u32 command, u_long ioaddr)
4927 {
4928 outl(command, ioaddr);
4929 udelay(1);
4930 outl(command | MII_MDC, ioaddr);
4931 udelay(1);
4932
4933 return (inl(ioaddr) >> 19) & 1;
4934 }
4935
4936 /*
4937 ** Here's 3 ways to calculate the OUI from the ID registers.
4938 */
4939 static int
mii_get_oui(u_char phyaddr,u_long ioaddr)4940 mii_get_oui(u_char phyaddr, u_long ioaddr)
4941 {
4942 /*
4943 union {
4944 u_short reg;
4945 u_char breg[2];
4946 } a;
4947 int i, r2, r3, ret=0;*/
4948 int r2, r3;
4949
4950 /* Read r2 and r3 */
4951 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4952 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4953 /* SEEQ and Cypress way * /
4954 / * Shuffle r2 and r3 * /
4955 a.reg=0;
4956 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4957 r2 = ((r2>>2)&0x3fff);
4958
4959 / * Bit reverse r3 * /
4960 for (i=0;i<8;i++) {
4961 ret<<=1;
4962 ret |= (r3&1);
4963 r3>>=1;
4964 }
4965
4966 / * Bit reverse r2 * /
4967 for (i=0;i<16;i++) {
4968 a.reg<<=1;
4969 a.reg |= (r2&1);
4970 r2>>=1;
4971 }
4972
4973 / * Swap r2 bytes * /
4974 i=a.breg[0];
4975 a.breg[0]=a.breg[1];
4976 a.breg[1]=i;
4977
4978 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4979 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4980 return r2; /* (I did it) My way */
4981 }
4982
4983 /*
4984 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4985 */
4986 static int
mii_get_phy(struct net_device * dev)4987 mii_get_phy(struct net_device *dev)
4988 {
4989 struct de4x5_private *lp = netdev_priv(dev);
4990 u_long iobase = dev->base_addr;
4991 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4992 int id;
4993
4994 lp->active = 0;
4995 lp->useMII = true;
4996
4997 /* Search the MII address space for possible PHY devices */
4998 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4999 lp->phy[lp->active].addr = i;
5000 if (i==0) n++; /* Count cycles */
5001 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5002 id = mii_get_oui(i, DE4X5_MII);
5003 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5004 for (j=0; j<limit; j++) { /* Search PHY table */
5005 if (id != phy_info[j].id) continue; /* ID match? */
5006 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5007 if (k < DE4X5_MAX_PHY) {
5008 memcpy((char *)&lp->phy[k],
5009 (char *)&phy_info[j], sizeof(struct phy_table));
5010 lp->phy[k].addr = i;
5011 lp->mii_cnt++;
5012 lp->active++;
5013 } else {
5014 goto purgatory; /* Stop the search */
5015 }
5016 break;
5017 }
5018 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5019 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5020 lp->phy[k].addr = i;
5021 lp->phy[k].id = id;
5022 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5023 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5024 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5025 lp->mii_cnt++;
5026 lp->active++;
5027 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5028 j = de4x5_debug;
5029 de4x5_debug |= DEBUG_MII;
5030 de4x5_dbg_mii(dev, k);
5031 de4x5_debug = j;
5032 printk("\n");
5033 }
5034 }
5035 purgatory:
5036 lp->active = 0;
5037 if (lp->phy[0].id) { /* Reset the PHY devices */
5038 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5039 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5040 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5041
5042 de4x5_dbg_mii(dev, k);
5043 }
5044 }
5045 if (!lp->mii_cnt) lp->useMII = false;
5046
5047 return lp->mii_cnt;
5048 }
5049
5050 static char *
build_setup_frame(struct net_device * dev,int mode)5051 build_setup_frame(struct net_device *dev, int mode)
5052 {
5053 struct de4x5_private *lp = netdev_priv(dev);
5054 int i;
5055 char *pa = lp->setup_frame;
5056
5057 /* Initialise the setup frame */
5058 if (mode == ALL) {
5059 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5060 }
5061
5062 if (lp->setup_f == HASH_PERF) {
5063 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5064 *(pa + i) = dev->dev_addr[i]; /* Host address */
5065 if (i & 0x01) pa += 2;
5066 }
5067 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5068 } else {
5069 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5070 *(pa + (i&1)) = dev->dev_addr[i];
5071 if (i & 0x01) pa += 4;
5072 }
5073 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5074 *(pa + (i&1)) = (char) 0xff;
5075 if (i & 0x01) pa += 4;
5076 }
5077 }
5078
5079 return pa; /* Points to the next entry */
5080 }
5081
5082 static void
disable_ast(struct net_device * dev)5083 disable_ast(struct net_device *dev)
5084 {
5085 struct de4x5_private *lp = netdev_priv(dev);
5086 del_timer_sync(&lp->timer);
5087 }
5088
5089 static long
de4x5_switch_mac_port(struct net_device * dev)5090 de4x5_switch_mac_port(struct net_device *dev)
5091 {
5092 struct de4x5_private *lp = netdev_priv(dev);
5093 u_long iobase = dev->base_addr;
5094 s32 omr;
5095
5096 STOP_DE4X5;
5097
5098 /* Assert the OMR_PS bit in CSR6 */
5099 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5100 OMR_FDX));
5101 omr |= lp->infoblock_csr6;
5102 if (omr & OMR_PS) omr |= OMR_HBD;
5103 outl(omr, DE4X5_OMR);
5104
5105 /* Soft Reset */
5106 RESET_DE4X5;
5107
5108 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5109 if (lp->chipset == DC21140) {
5110 gep_wr(lp->cache.gepc, dev);
5111 gep_wr(lp->cache.gep, dev);
5112 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5113 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5114 }
5115
5116 /* Restore CSR6 */
5117 outl(omr, DE4X5_OMR);
5118
5119 /* Reset CSR8 */
5120 inl(DE4X5_MFC);
5121
5122 return omr;
5123 }
5124
5125 static void
gep_wr(s32 data,struct net_device * dev)5126 gep_wr(s32 data, struct net_device *dev)
5127 {
5128 struct de4x5_private *lp = netdev_priv(dev);
5129 u_long iobase = dev->base_addr;
5130
5131 if (lp->chipset == DC21140) {
5132 outl(data, DE4X5_GEP);
5133 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5134 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5135 }
5136 }
5137
5138 static int
gep_rd(struct net_device * dev)5139 gep_rd(struct net_device *dev)
5140 {
5141 struct de4x5_private *lp = netdev_priv(dev);
5142 u_long iobase = dev->base_addr;
5143
5144 if (lp->chipset == DC21140) {
5145 return inl(DE4X5_GEP);
5146 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5147 return inl(DE4X5_SIGR) & 0x000fffff;
5148 }
5149
5150 return 0;
5151 }
5152
5153 static void
yawn(struct net_device * dev,int state)5154 yawn(struct net_device *dev, int state)
5155 {
5156 struct de4x5_private *lp = netdev_priv(dev);
5157 u_long iobase = dev->base_addr;
5158
5159 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5160
5161 if(lp->bus == EISA) {
5162 switch(state) {
5163 case WAKEUP:
5164 outb(WAKEUP, PCI_CFPM);
5165 mdelay(10);
5166 break;
5167
5168 case SNOOZE:
5169 outb(SNOOZE, PCI_CFPM);
5170 break;
5171
5172 case SLEEP:
5173 outl(0, DE4X5_SICR);
5174 outb(SLEEP, PCI_CFPM);
5175 break;
5176 }
5177 } else {
5178 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5179 switch(state) {
5180 case WAKEUP:
5181 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5182 mdelay(10);
5183 break;
5184
5185 case SNOOZE:
5186 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5187 break;
5188
5189 case SLEEP:
5190 outl(0, DE4X5_SICR);
5191 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5192 break;
5193 }
5194 }
5195 }
5196
5197 static void
de4x5_parse_params(struct net_device * dev)5198 de4x5_parse_params(struct net_device *dev)
5199 {
5200 struct de4x5_private *lp = netdev_priv(dev);
5201 char *p, *q, t;
5202
5203 lp->params.fdx = 0;
5204 lp->params.autosense = AUTO;
5205
5206 if (args == NULL) return;
5207
5208 if ((p = strstr(args, dev->name))) {
5209 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5210 t = *q;
5211 *q = '\0';
5212
5213 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5214
5215 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5216 if (strstr(p, "TP")) {
5217 lp->params.autosense = TP;
5218 } else if (strstr(p, "TP_NW")) {
5219 lp->params.autosense = TP_NW;
5220 } else if (strstr(p, "BNC")) {
5221 lp->params.autosense = BNC;
5222 } else if (strstr(p, "AUI")) {
5223 lp->params.autosense = AUI;
5224 } else if (strstr(p, "BNC_AUI")) {
5225 lp->params.autosense = BNC;
5226 } else if (strstr(p, "10Mb")) {
5227 lp->params.autosense = _10Mb;
5228 } else if (strstr(p, "100Mb")) {
5229 lp->params.autosense = _100Mb;
5230 } else if (strstr(p, "AUTO")) {
5231 lp->params.autosense = AUTO;
5232 }
5233 }
5234 *q = t;
5235 }
5236 }
5237
5238 static void
de4x5_dbg_open(struct net_device * dev)5239 de4x5_dbg_open(struct net_device *dev)
5240 {
5241 struct de4x5_private *lp = netdev_priv(dev);
5242 int i;
5243
5244 if (de4x5_debug & DEBUG_OPEN) {
5245 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5246 printk("\tphysical address: ");
5247 for (i=0;i<6;i++) {
5248 printk("%2.2x:",(short)dev->dev_addr[i]);
5249 }
5250 printk("\n");
5251 printk("Descriptor head addresses:\n");
5252 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5253 printk("Descriptor addresses:\nRX: ");
5254 for (i=0;i<lp->rxRingSize-1;i++){
5255 if (i < 3) {
5256 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5257 }
5258 }
5259 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5260 printk("TX: ");
5261 for (i=0;i<lp->txRingSize-1;i++){
5262 if (i < 3) {
5263 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5264 }
5265 }
5266 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5267 printk("Descriptor buffers:\nRX: ");
5268 for (i=0;i<lp->rxRingSize-1;i++){
5269 if (i < 3) {
5270 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5271 }
5272 }
5273 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5274 printk("TX: ");
5275 for (i=0;i<lp->txRingSize-1;i++){
5276 if (i < 3) {
5277 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5278 }
5279 }
5280 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5281 printk("Ring size:\nRX: %d\nTX: %d\n",
5282 (short)lp->rxRingSize,
5283 (short)lp->txRingSize);
5284 }
5285 }
5286
5287 static void
de4x5_dbg_mii(struct net_device * dev,int k)5288 de4x5_dbg_mii(struct net_device *dev, int k)
5289 {
5290 struct de4x5_private *lp = netdev_priv(dev);
5291 u_long iobase = dev->base_addr;
5292
5293 if (de4x5_debug & DEBUG_MII) {
5294 printk("\nMII device address: %d\n", lp->phy[k].addr);
5295 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5296 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5297 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5298 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5299 if (lp->phy[k].id != BROADCOM_T4) {
5300 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5301 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5302 }
5303 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5304 if (lp->phy[k].id != BROADCOM_T4) {
5305 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5306 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5307 } else {
5308 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5309 }
5310 }
5311 }
5312
5313 static void
de4x5_dbg_media(struct net_device * dev)5314 de4x5_dbg_media(struct net_device *dev)
5315 {
5316 struct de4x5_private *lp = netdev_priv(dev);
5317
5318 if (lp->media != lp->c_media) {
5319 if (de4x5_debug & DEBUG_MEDIA) {
5320 printk("%s: media is %s%s\n", dev->name,
5321 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5322 (lp->media == TP ? "TP" :
5323 (lp->media == ANS ? "TP/Nway" :
5324 (lp->media == BNC ? "BNC" :
5325 (lp->media == AUI ? "AUI" :
5326 (lp->media == BNC_AUI ? "BNC/AUI" :
5327 (lp->media == EXT_SIA ? "EXT SIA" :
5328 (lp->media == _100Mb ? "100Mb/s" :
5329 (lp->media == _10Mb ? "10Mb/s" :
5330 "???"
5331 ))))))))), (lp->fdx?" full duplex.":"."));
5332 }
5333 lp->c_media = lp->media;
5334 }
5335 }
5336
5337 static void
de4x5_dbg_srom(struct de4x5_srom * p)5338 de4x5_dbg_srom(struct de4x5_srom *p)
5339 {
5340 int i;
5341
5342 if (de4x5_debug & DEBUG_SROM) {
5343 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5344 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5345 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5346 printk("SROM version: %02x\n", (u_char)(p->version));
5347 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5348
5349 printk("Hardware Address: %pM\n", p->ieee_addr);
5350 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5351 for (i=0; i<64; i++) {
5352 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5353 }
5354 }
5355 }
5356
5357 static void
de4x5_dbg_rx(struct sk_buff * skb,int len)5358 de4x5_dbg_rx(struct sk_buff *skb, int len)
5359 {
5360 int i, j;
5361
5362 if (de4x5_debug & DEBUG_RX) {
5363 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5364 skb->data, &skb->data[6],
5365 (u_char)skb->data[12],
5366 (u_char)skb->data[13],
5367 len);
5368 for (j=0; len>0;j+=16, len-=16) {
5369 printk(" %03x: ",j);
5370 for (i=0; i<16 && i<len; i++) {
5371 printk("%02x ",(u_char)skb->data[i+j]);
5372 }
5373 printk("\n");
5374 }
5375 }
5376 }
5377
5378 /*
5379 ** Perform IOCTL call functions here. Some are privileged operations and the
5380 ** effective uid is checked in those cases. In the normal course of events
5381 ** this function is only used for my testing.
5382 */
5383 static int
de4x5_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5384 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5385 {
5386 struct de4x5_private *lp = netdev_priv(dev);
5387 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5388 u_long iobase = dev->base_addr;
5389 int i, j, status = 0;
5390 s32 omr;
5391 union {
5392 u8 addr[144];
5393 u16 sval[72];
5394 u32 lval[36];
5395 } tmp;
5396 u_long flags = 0;
5397
5398 switch(ioc->cmd) {
5399 case DE4X5_GET_HWADDR: /* Get the hardware address */
5400 ioc->len = ETH_ALEN;
5401 for (i=0; i<ETH_ALEN; i++) {
5402 tmp.addr[i] = dev->dev_addr[i];
5403 }
5404 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5405 break;
5406
5407 case DE4X5_SET_HWADDR: /* Set the hardware address */
5408 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5409 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5410 if (netif_queue_stopped(dev))
5411 return -EBUSY;
5412 netif_stop_queue(dev);
5413 for (i=0; i<ETH_ALEN; i++) {
5414 dev->dev_addr[i] = tmp.addr[i];
5415 }
5416 build_setup_frame(dev, PHYS_ADDR_ONLY);
5417 /* Set up the descriptor and give ownership to the card */
5418 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5419 SETUP_FRAME_LEN, (struct sk_buff *)1);
5420 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5421 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5422 netif_wake_queue(dev); /* Unlock the TX ring */
5423 break;
5424
5425 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5426 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5427 printk("%s: Boo!\n", dev->name);
5428 break;
5429
5430 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5431 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5432 omr = inl(DE4X5_OMR);
5433 omr |= OMR_PM;
5434 outl(omr, DE4X5_OMR);
5435 break;
5436
5437 case DE4X5_GET_STATS: /* Get the driver statistics */
5438 {
5439 struct pkt_stats statbuf;
5440 ioc->len = sizeof(statbuf);
5441 spin_lock_irqsave(&lp->lock, flags);
5442 memcpy(&statbuf, &lp->pktStats, ioc->len);
5443 spin_unlock_irqrestore(&lp->lock, flags);
5444 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5445 return -EFAULT;
5446 break;
5447 }
5448 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5449 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5450 spin_lock_irqsave(&lp->lock, flags);
5451 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5452 spin_unlock_irqrestore(&lp->lock, flags);
5453 break;
5454
5455 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5456 tmp.addr[0] = inl(DE4X5_OMR);
5457 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5458 break;
5459
5460 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5461 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5462 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5463 outl(tmp.addr[0], DE4X5_OMR);
5464 break;
5465
5466 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5467 j = 0;
5468 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5469 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5470 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5471 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5472 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5473 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5474 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5475 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5476 ioc->len = j;
5477 if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5478 return -EFAULT;
5479 break;
5480
5481 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5482 /*
5483 case DE4X5_DUMP:
5484 j = 0;
5485 tmp.addr[j++] = dev->irq;
5486 for (i=0; i<ETH_ALEN; i++) {
5487 tmp.addr[j++] = dev->dev_addr[i];
5488 }
5489 tmp.addr[j++] = lp->rxRingSize;
5490 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5491 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5492
5493 for (i=0;i<lp->rxRingSize-1;i++){
5494 if (i < 3) {
5495 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5496 }
5497 }
5498 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5499 for (i=0;i<lp->txRingSize-1;i++){
5500 if (i < 3) {
5501 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5502 }
5503 }
5504 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5505
5506 for (i=0;i<lp->rxRingSize-1;i++){
5507 if (i < 3) {
5508 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5509 }
5510 }
5511 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5512 for (i=0;i<lp->txRingSize-1;i++){
5513 if (i < 3) {
5514 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5515 }
5516 }
5517 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5518
5519 for (i=0;i<lp->rxRingSize;i++){
5520 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5521 }
5522 for (i=0;i<lp->txRingSize;i++){
5523 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5524 }
5525
5526 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5527 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5528 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5529 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5530 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5531 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5532 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5533 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5534 tmp.lval[j>>2] = lp->chipset; j+=4;
5535 if (lp->chipset == DC21140) {
5536 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5537 } else {
5538 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5539 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5540 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5541 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5542 }
5543 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5544 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5545 tmp.lval[j>>2] = lp->active; j+=4;
5546 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5547 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5548 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5549 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5550 if (lp->phy[lp->active].id != BROADCOM_T4) {
5551 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5552 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5553 }
5554 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5555 if (lp->phy[lp->active].id != BROADCOM_T4) {
5556 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5557 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5558 } else {
5559 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5560 }
5561 }
5562
5563 tmp.addr[j++] = lp->txRingSize;
5564 tmp.addr[j++] = netif_queue_stopped(dev);
5565
5566 ioc->len = j;
5567 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5568 break;
5569
5570 */
5571 default:
5572 return -EOPNOTSUPP;
5573 }
5574
5575 return status;
5576 }
5577
de4x5_module_init(void)5578 static int __init de4x5_module_init (void)
5579 {
5580 int err = 0;
5581
5582 #ifdef CONFIG_PCI
5583 err = pci_register_driver(&de4x5_pci_driver);
5584 #endif
5585 #ifdef CONFIG_EISA
5586 err |= eisa_driver_register (&de4x5_eisa_driver);
5587 #endif
5588
5589 return err;
5590 }
5591
de4x5_module_exit(void)5592 static void __exit de4x5_module_exit (void)
5593 {
5594 #ifdef CONFIG_PCI
5595 pci_unregister_driver (&de4x5_pci_driver);
5596 #endif
5597 #ifdef CONFIG_EISA
5598 eisa_driver_unregister (&de4x5_eisa_driver);
5599 #endif
5600 }
5601
5602 module_init (de4x5_module_init);
5603 module_exit (de4x5_module_exit);
5604