1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14
15 #include <uapi/linux/hyperv.h>
16
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <asm/hyperv-tlfs.h>
28
29 #define MAX_PAGE_BUFFER_COUNT 32
30 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
31
32 #pragma pack(push, 1)
33
34 /*
35 * Types for GPADL, decides is how GPADL header is created.
36 *
37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38 * same as HV_HYP_PAGE_SIZE.
39 *
40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43 * HV_HYP_PAGE will be different between different types of GPADL, for example
44 * if PAGE_SIZE is 64K:
45 *
46 * BUFFER:
47 *
48 * gva: |-- 64k --|-- 64k --| ... |
49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50 * index: 0 1 2 15 16 17 18 .. 31 32 ...
51 * | | ... | | | ... | ...
52 * v V V V V V
53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ...
55 *
56 * RING:
57 *
58 * | header | data | header | data |
59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... |
60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n
62 * | / / / | / /
63 * | / / / | / /
64 * | / / ... / ... | / ... /
65 * | / / / | / /
66 * | / / / | / /
67 * V V V V V V v
68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... |
69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30
70 */
71 enum hv_gpadl_type {
72 HV_GPADL_BUFFER,
73 HV_GPADL_RING
74 };
75
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 u32 len;
79 u32 offset;
80 u64 pfn;
81 };
82
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 /* Length and Offset determines the # of pfns in the array */
86 u32 len;
87 u32 offset;
88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90
91 /*
92 * Multiple-page buffer array; the pfn array is variable size:
93 * The number of entries in the PFN array is determined by
94 * "len" and "offset".
95 */
96 struct hv_mpb_array {
97 /* Length and Offset determines the # of pfns in the array */
98 u32 len;
99 u32 offset;
100 u64 pfn_array[];
101 };
102
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
105 (sizeof(struct hv_page_buffer) * \
106 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
108 sizeof(struct hv_multipage_buffer))
109
110
111 #pragma pack(pop)
112
113 struct hv_ring_buffer {
114 /* Offset in bytes from the start of ring data below */
115 u32 write_index;
116
117 /* Offset in bytes from the start of ring data below */
118 u32 read_index;
119
120 u32 interrupt_mask;
121
122 /*
123 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 * driven flow management. The feature bit feat_pending_send_sz
125 * is set by the host on the host->guest ring buffer, and by the
126 * guest on the guest->host ring buffer.
127 *
128 * The meaning of the feature bit is a bit complex in that it has
129 * semantics that apply to both ring buffers. If the guest sets
130 * the feature bit in the guest->host ring buffer, the guest is
131 * telling the host that:
132 * 1) It will set the pending_send_sz field in the guest->host ring
133 * buffer when it is waiting for space to become available, and
134 * 2) It will read the pending_send_sz field in the host->guest
135 * ring buffer and interrupt the host when it frees enough space
136 *
137 * Similarly, if the host sets the feature bit in the host->guest
138 * ring buffer, the host is telling the guest that:
139 * 1) It will set the pending_send_sz field in the host->guest ring
140 * buffer when it is waiting for space to become available, and
141 * 2) It will read the pending_send_sz field in the guest->host
142 * ring buffer and interrupt the guest when it frees enough space
143 *
144 * If either the guest or host does not set the feature bit that it
145 * owns, that guest or host must do polling if it encounters a full
146 * ring buffer, and not signal the other end with an interrupt.
147 */
148 u32 pending_send_sz;
149 u32 reserved1[12];
150 union {
151 struct {
152 u32 feat_pending_send_sz:1;
153 };
154 u32 value;
155 } feature_bits;
156
157 /* Pad it to PAGE_SIZE so that data starts on page boundary */
158 u8 reserved2[PAGE_SIZE - 68];
159
160 /*
161 * Ring data starts here + RingDataStartOffset
162 * !!! DO NOT place any fields below this !!!
163 */
164 u8 buffer[];
165 } __packed;
166
167 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
168 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 (payload_sz))
170
171 struct hv_ring_buffer_info {
172 struct hv_ring_buffer *ring_buffer;
173 u32 ring_size; /* Include the shared header */
174 struct reciprocal_value ring_size_div10_reciprocal;
175 spinlock_t ring_lock;
176
177 u32 ring_datasize; /* < ring_size */
178 u32 priv_read_index;
179 /*
180 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 * being freed while the ring buffer is being accessed.
182 */
183 struct mutex ring_buffer_mutex;
184
185 /* Buffer that holds a copy of an incoming host packet */
186 void *pkt_buffer;
187 u32 pkt_buffer_size;
188 };
189
190
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)191 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
192 {
193 u32 read_loc, write_loc, dsize, read;
194
195 dsize = rbi->ring_datasize;
196 read_loc = rbi->ring_buffer->read_index;
197 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
198
199 read = write_loc >= read_loc ? (write_loc - read_loc) :
200 (dsize - read_loc) + write_loc;
201
202 return read;
203 }
204
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)205 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
206 {
207 u32 read_loc, write_loc, dsize, write;
208
209 dsize = rbi->ring_datasize;
210 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
211 write_loc = rbi->ring_buffer->write_index;
212
213 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
214 read_loc - write_loc;
215 return write;
216 }
217
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)218 static inline u32 hv_get_avail_to_write_percent(
219 const struct hv_ring_buffer_info *rbi)
220 {
221 u32 avail_write = hv_get_bytes_to_write(rbi);
222
223 return reciprocal_divide(
224 (avail_write << 3) + (avail_write << 1),
225 rbi->ring_size_div10_reciprocal);
226 }
227
228 /*
229 * VMBUS version is 32 bit entity broken up into
230 * two 16 bit quantities: major_number. minor_number.
231 *
232 * 0 . 13 (Windows Server 2008)
233 * 1 . 1 (Windows 7, WS2008 R2)
234 * 2 . 4 (Windows 8, WS2012)
235 * 3 . 0 (Windows 8.1, WS2012 R2)
236 * 4 . 0 (Windows 10)
237 * 4 . 1 (Windows 10 RS3)
238 * 5 . 0 (Newer Windows 10)
239 * 5 . 1 (Windows 10 RS4)
240 * 5 . 2 (Windows Server 2019, RS5)
241 * 5 . 3 (Windows Server 2022)
242 *
243 * The WS2008 and WIN7 versions are listed here for
244 * completeness but are no longer supported in the
245 * Linux kernel.
246 */
247
248 #define VERSION_WS2008 ((0 << 16) | (13))
249 #define VERSION_WIN7 ((1 << 16) | (1))
250 #define VERSION_WIN8 ((2 << 16) | (4))
251 #define VERSION_WIN8_1 ((3 << 16) | (0))
252 #define VERSION_WIN10 ((4 << 16) | (0))
253 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
254 #define VERSION_WIN10_V5 ((5 << 16) | (0))
255 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
256 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
257 #define VERSION_WIN10_V5_3 ((5 << 16) | (3))
258
259 /* Make maximum size of pipe payload of 16K */
260 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
261
262 /* Define PipeMode values. */
263 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
264 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
265
266 /* The size of the user defined data buffer for non-pipe offers. */
267 #define MAX_USER_DEFINED_BYTES 120
268
269 /* The size of the user defined data buffer for pipe offers. */
270 #define MAX_PIPE_USER_DEFINED_BYTES 116
271
272 /*
273 * At the center of the Channel Management library is the Channel Offer. This
274 * struct contains the fundamental information about an offer.
275 */
276 struct vmbus_channel_offer {
277 guid_t if_type;
278 guid_t if_instance;
279
280 /*
281 * These two fields are not currently used.
282 */
283 u64 reserved1;
284 u64 reserved2;
285
286 u16 chn_flags;
287 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
288
289 union {
290 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
291 struct {
292 unsigned char user_def[MAX_USER_DEFINED_BYTES];
293 } std;
294
295 /*
296 * Pipes:
297 * The following structure is an integrated pipe protocol, which
298 * is implemented on top of standard user-defined data. Pipe
299 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
300 * use.
301 */
302 struct {
303 u32 pipe_mode;
304 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
305 } pipe;
306 } u;
307 /*
308 * The sub_channel_index is defined in Win8: a value of zero means a
309 * primary channel and a value of non-zero means a sub-channel.
310 *
311 * Before Win8, the field is reserved, meaning it's always zero.
312 */
313 u16 sub_channel_index;
314 u16 reserved3;
315 } __packed;
316
317 /* Server Flags */
318 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
319 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
320 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
321 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
322 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
323 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
324 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
325 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
326
327 struct vmpacket_descriptor {
328 u16 type;
329 u16 offset8;
330 u16 len8;
331 u16 flags;
332 u64 trans_id;
333 } __packed;
334
335 struct vmpacket_header {
336 u32 prev_pkt_start_offset;
337 struct vmpacket_descriptor descriptor;
338 } __packed;
339
340 struct vmtransfer_page_range {
341 u32 byte_count;
342 u32 byte_offset;
343 } __packed;
344
345 struct vmtransfer_page_packet_header {
346 struct vmpacket_descriptor d;
347 u16 xfer_pageset_id;
348 u8 sender_owns_set;
349 u8 reserved;
350 u32 range_cnt;
351 struct vmtransfer_page_range ranges[1];
352 } __packed;
353
354 struct vmgpadl_packet_header {
355 struct vmpacket_descriptor d;
356 u32 gpadl;
357 u32 reserved;
358 } __packed;
359
360 struct vmadd_remove_transfer_page_set {
361 struct vmpacket_descriptor d;
362 u32 gpadl;
363 u16 xfer_pageset_id;
364 u16 reserved;
365 } __packed;
366
367 /*
368 * This structure defines a range in guest physical space that can be made to
369 * look virtually contiguous.
370 */
371 struct gpa_range {
372 u32 byte_count;
373 u32 byte_offset;
374 u64 pfn_array[];
375 };
376
377 /*
378 * This is the format for an Establish Gpadl packet, which contains a handle by
379 * which this GPADL will be known and a set of GPA ranges associated with it.
380 * This can be converted to a MDL by the guest OS. If there are multiple GPA
381 * ranges, then the resulting MDL will be "chained," representing multiple VA
382 * ranges.
383 */
384 struct vmestablish_gpadl {
385 struct vmpacket_descriptor d;
386 u32 gpadl;
387 u32 range_cnt;
388 struct gpa_range range[1];
389 } __packed;
390
391 /*
392 * This is the format for a Teardown Gpadl packet, which indicates that the
393 * GPADL handle in the Establish Gpadl packet will never be referenced again.
394 */
395 struct vmteardown_gpadl {
396 struct vmpacket_descriptor d;
397 u32 gpadl;
398 u32 reserved; /* for alignment to a 8-byte boundary */
399 } __packed;
400
401 /*
402 * This is the format for a GPA-Direct packet, which contains a set of GPA
403 * ranges, in addition to commands and/or data.
404 */
405 struct vmdata_gpa_direct {
406 struct vmpacket_descriptor d;
407 u32 reserved;
408 u32 range_cnt;
409 struct gpa_range range[1];
410 } __packed;
411
412 /* This is the format for a Additional Data Packet. */
413 struct vmadditional_data {
414 struct vmpacket_descriptor d;
415 u64 total_bytes;
416 u32 offset;
417 u32 byte_cnt;
418 unsigned char data[1];
419 } __packed;
420
421 union vmpacket_largest_possible_header {
422 struct vmpacket_descriptor simple_hdr;
423 struct vmtransfer_page_packet_header xfer_page_hdr;
424 struct vmgpadl_packet_header gpadl_hdr;
425 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
426 struct vmestablish_gpadl establish_gpadl_hdr;
427 struct vmteardown_gpadl teardown_gpadl_hdr;
428 struct vmdata_gpa_direct data_gpa_direct_hdr;
429 };
430
431 #define VMPACKET_DATA_START_ADDRESS(__packet) \
432 (void *)(((unsigned char *)__packet) + \
433 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
434
435 #define VMPACKET_DATA_LENGTH(__packet) \
436 ((((struct vmpacket_descriptor)__packet)->len8 - \
437 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
438
439 #define VMPACKET_TRANSFER_MODE(__packet) \
440 (((struct IMPACT)__packet)->type)
441
442 enum vmbus_packet_type {
443 VM_PKT_INVALID = 0x0,
444 VM_PKT_SYNCH = 0x1,
445 VM_PKT_ADD_XFER_PAGESET = 0x2,
446 VM_PKT_RM_XFER_PAGESET = 0x3,
447 VM_PKT_ESTABLISH_GPADL = 0x4,
448 VM_PKT_TEARDOWN_GPADL = 0x5,
449 VM_PKT_DATA_INBAND = 0x6,
450 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
451 VM_PKT_DATA_USING_GPADL = 0x8,
452 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
453 VM_PKT_CANCEL_REQUEST = 0xa,
454 VM_PKT_COMP = 0xb,
455 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
456 VM_PKT_ADDITIONAL_DATA = 0xd
457 };
458
459 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
460
461
462 /* Version 1 messages */
463 enum vmbus_channel_message_type {
464 CHANNELMSG_INVALID = 0,
465 CHANNELMSG_OFFERCHANNEL = 1,
466 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
467 CHANNELMSG_REQUESTOFFERS = 3,
468 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
469 CHANNELMSG_OPENCHANNEL = 5,
470 CHANNELMSG_OPENCHANNEL_RESULT = 6,
471 CHANNELMSG_CLOSECHANNEL = 7,
472 CHANNELMSG_GPADL_HEADER = 8,
473 CHANNELMSG_GPADL_BODY = 9,
474 CHANNELMSG_GPADL_CREATED = 10,
475 CHANNELMSG_GPADL_TEARDOWN = 11,
476 CHANNELMSG_GPADL_TORNDOWN = 12,
477 CHANNELMSG_RELID_RELEASED = 13,
478 CHANNELMSG_INITIATE_CONTACT = 14,
479 CHANNELMSG_VERSION_RESPONSE = 15,
480 CHANNELMSG_UNLOAD = 16,
481 CHANNELMSG_UNLOAD_RESPONSE = 17,
482 CHANNELMSG_18 = 18,
483 CHANNELMSG_19 = 19,
484 CHANNELMSG_20 = 20,
485 CHANNELMSG_TL_CONNECT_REQUEST = 21,
486 CHANNELMSG_MODIFYCHANNEL = 22,
487 CHANNELMSG_TL_CONNECT_RESULT = 23,
488 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24,
489 CHANNELMSG_COUNT
490 };
491
492 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
493 #define INVALID_RELID U32_MAX
494
495 struct vmbus_channel_message_header {
496 enum vmbus_channel_message_type msgtype;
497 u32 padding;
498 } __packed;
499
500 /* Query VMBus Version parameters */
501 struct vmbus_channel_query_vmbus_version {
502 struct vmbus_channel_message_header header;
503 u32 version;
504 } __packed;
505
506 /* VMBus Version Supported parameters */
507 struct vmbus_channel_version_supported {
508 struct vmbus_channel_message_header header;
509 u8 version_supported;
510 } __packed;
511
512 /* Offer Channel parameters */
513 struct vmbus_channel_offer_channel {
514 struct vmbus_channel_message_header header;
515 struct vmbus_channel_offer offer;
516 u32 child_relid;
517 u8 monitorid;
518 /*
519 * win7 and beyond splits this field into a bit field.
520 */
521 u8 monitor_allocated:1;
522 u8 reserved:7;
523 /*
524 * These are new fields added in win7 and later.
525 * Do not access these fields without checking the
526 * negotiated protocol.
527 *
528 * If "is_dedicated_interrupt" is set, we must not set the
529 * associated bit in the channel bitmap while sending the
530 * interrupt to the host.
531 *
532 * connection_id is to be used in signaling the host.
533 */
534 u16 is_dedicated_interrupt:1;
535 u16 reserved1:15;
536 u32 connection_id;
537 } __packed;
538
539 /* Rescind Offer parameters */
540 struct vmbus_channel_rescind_offer {
541 struct vmbus_channel_message_header header;
542 u32 child_relid;
543 } __packed;
544
545 /*
546 * Request Offer -- no parameters, SynIC message contains the partition ID
547 * Set Snoop -- no parameters, SynIC message contains the partition ID
548 * Clear Snoop -- no parameters, SynIC message contains the partition ID
549 * All Offers Delivered -- no parameters, SynIC message contains the partition
550 * ID
551 * Flush Client -- no parameters, SynIC message contains the partition ID
552 */
553
554 /* Open Channel parameters */
555 struct vmbus_channel_open_channel {
556 struct vmbus_channel_message_header header;
557
558 /* Identifies the specific VMBus channel that is being opened. */
559 u32 child_relid;
560
561 /* ID making a particular open request at a channel offer unique. */
562 u32 openid;
563
564 /* GPADL for the channel's ring buffer. */
565 u32 ringbuffer_gpadlhandle;
566
567 /*
568 * Starting with win8, this field will be used to specify
569 * the target virtual processor on which to deliver the interrupt for
570 * the host to guest communication.
571 * Prior to win8, incoming channel interrupts would only
572 * be delivered on cpu 0. Setting this value to 0 would
573 * preserve the earlier behavior.
574 */
575 u32 target_vp;
576
577 /*
578 * The upstream ring buffer begins at offset zero in the memory
579 * described by RingBufferGpadlHandle. The downstream ring buffer
580 * follows it at this offset (in pages).
581 */
582 u32 downstream_ringbuffer_pageoffset;
583
584 /* User-specific data to be passed along to the server endpoint. */
585 unsigned char userdata[MAX_USER_DEFINED_BYTES];
586 } __packed;
587
588 /* Open Channel Result parameters */
589 struct vmbus_channel_open_result {
590 struct vmbus_channel_message_header header;
591 u32 child_relid;
592 u32 openid;
593 u32 status;
594 } __packed;
595
596 /* Modify Channel Result parameters */
597 struct vmbus_channel_modifychannel_response {
598 struct vmbus_channel_message_header header;
599 u32 child_relid;
600 u32 status;
601 } __packed;
602
603 /* Close channel parameters; */
604 struct vmbus_channel_close_channel {
605 struct vmbus_channel_message_header header;
606 u32 child_relid;
607 } __packed;
608
609 /* Channel Message GPADL */
610 #define GPADL_TYPE_RING_BUFFER 1
611 #define GPADL_TYPE_SERVER_SAVE_AREA 2
612 #define GPADL_TYPE_TRANSACTION 8
613
614 /*
615 * The number of PFNs in a GPADL message is defined by the number of
616 * pages that would be spanned by ByteCount and ByteOffset. If the
617 * implied number of PFNs won't fit in this packet, there will be a
618 * follow-up packet that contains more.
619 */
620 struct vmbus_channel_gpadl_header {
621 struct vmbus_channel_message_header header;
622 u32 child_relid;
623 u32 gpadl;
624 u16 range_buflen;
625 u16 rangecount;
626 struct gpa_range range[];
627 } __packed;
628
629 /* This is the followup packet that contains more PFNs. */
630 struct vmbus_channel_gpadl_body {
631 struct vmbus_channel_message_header header;
632 u32 msgnumber;
633 u32 gpadl;
634 u64 pfn[];
635 } __packed;
636
637 struct vmbus_channel_gpadl_created {
638 struct vmbus_channel_message_header header;
639 u32 child_relid;
640 u32 gpadl;
641 u32 creation_status;
642 } __packed;
643
644 struct vmbus_channel_gpadl_teardown {
645 struct vmbus_channel_message_header header;
646 u32 child_relid;
647 u32 gpadl;
648 } __packed;
649
650 struct vmbus_channel_gpadl_torndown {
651 struct vmbus_channel_message_header header;
652 u32 gpadl;
653 } __packed;
654
655 struct vmbus_channel_relid_released {
656 struct vmbus_channel_message_header header;
657 u32 child_relid;
658 } __packed;
659
660 struct vmbus_channel_initiate_contact {
661 struct vmbus_channel_message_header header;
662 u32 vmbus_version_requested;
663 u32 target_vcpu; /* The VCPU the host should respond to */
664 union {
665 u64 interrupt_page;
666 struct {
667 u8 msg_sint;
668 u8 padding1[3];
669 u32 padding2;
670 };
671 };
672 u64 monitor_page1;
673 u64 monitor_page2;
674 } __packed;
675
676 /* Hyper-V socket: guest's connect()-ing to host */
677 struct vmbus_channel_tl_connect_request {
678 struct vmbus_channel_message_header header;
679 guid_t guest_endpoint_id;
680 guid_t host_service_id;
681 } __packed;
682
683 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
684 struct vmbus_channel_modifychannel {
685 struct vmbus_channel_message_header header;
686 u32 child_relid;
687 u32 target_vp;
688 } __packed;
689
690 struct vmbus_channel_version_response {
691 struct vmbus_channel_message_header header;
692 u8 version_supported;
693
694 u8 connection_state;
695 u16 padding;
696
697 /*
698 * On new hosts that support VMBus protocol 5.0, we must use
699 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
700 * and for subsequent messages, we must use the Message Connection ID
701 * field in the host-returned Version Response Message.
702 *
703 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
704 */
705 u32 msg_conn_id;
706 } __packed;
707
708 enum vmbus_channel_state {
709 CHANNEL_OFFER_STATE,
710 CHANNEL_OPENING_STATE,
711 CHANNEL_OPEN_STATE,
712 CHANNEL_OPENED_STATE,
713 };
714
715 /*
716 * Represents each channel msg on the vmbus connection This is a
717 * variable-size data structure depending on the msg type itself
718 */
719 struct vmbus_channel_msginfo {
720 /* Bookkeeping stuff */
721 struct list_head msglistentry;
722
723 /* So far, this is only used to handle gpadl body message */
724 struct list_head submsglist;
725
726 /* Synchronize the request/response if needed */
727 struct completion waitevent;
728 struct vmbus_channel *waiting_channel;
729 union {
730 struct vmbus_channel_version_supported version_supported;
731 struct vmbus_channel_open_result open_result;
732 struct vmbus_channel_gpadl_torndown gpadl_torndown;
733 struct vmbus_channel_gpadl_created gpadl_created;
734 struct vmbus_channel_version_response version_response;
735 struct vmbus_channel_modifychannel_response modify_response;
736 } response;
737
738 u32 msgsize;
739 /*
740 * The channel message that goes out on the "wire".
741 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
742 */
743 unsigned char msg[];
744 };
745
746 struct vmbus_close_msg {
747 struct vmbus_channel_msginfo info;
748 struct vmbus_channel_close_channel msg;
749 };
750
751 /* Define connection identifier type. */
752 union hv_connection_id {
753 u32 asu32;
754 struct {
755 u32 id:24;
756 u32 reserved:8;
757 } u;
758 };
759
760 enum vmbus_device_type {
761 HV_IDE = 0,
762 HV_SCSI,
763 HV_FC,
764 HV_NIC,
765 HV_ND,
766 HV_PCIE,
767 HV_FB,
768 HV_KBD,
769 HV_MOUSE,
770 HV_KVP,
771 HV_TS,
772 HV_HB,
773 HV_SHUTDOWN,
774 HV_FCOPY,
775 HV_BACKUP,
776 HV_DM,
777 HV_UNKNOWN,
778 };
779
780 /*
781 * Provides request ids for VMBus. Encapsulates guest memory
782 * addresses and stores the next available slot in req_arr
783 * to generate new ids in constant time.
784 */
785 struct vmbus_requestor {
786 u64 *req_arr;
787 unsigned long *req_bitmap; /* is a given slot available? */
788 u32 size;
789 u64 next_request_id;
790 spinlock_t req_lock; /* provides atomicity */
791 };
792
793 #define VMBUS_NO_RQSTOR U64_MAX
794 #define VMBUS_RQST_ERROR (U64_MAX - 1)
795 #define VMBUS_RQST_ADDR_ANY U64_MAX
796 /* NetVSC-specific */
797 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
798 /* StorVSC-specific */
799 #define VMBUS_RQST_INIT (U64_MAX - 2)
800 #define VMBUS_RQST_RESET (U64_MAX - 3)
801
802 struct vmbus_device {
803 u16 dev_type;
804 guid_t guid;
805 bool perf_device;
806 bool allowed_in_isolated;
807 };
808
809 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
810
811 struct vmbus_gpadl {
812 u32 gpadl_handle;
813 u32 size;
814 void *buffer;
815 };
816
817 struct vmbus_channel {
818 struct list_head listentry;
819
820 struct hv_device *device_obj;
821
822 enum vmbus_channel_state state;
823
824 struct vmbus_channel_offer_channel offermsg;
825 /*
826 * These are based on the OfferMsg.MonitorId.
827 * Save it here for easy access.
828 */
829 u8 monitor_grp;
830 u8 monitor_bit;
831
832 bool rescind; /* got rescind msg */
833 bool rescind_ref; /* got rescind msg, got channel reference */
834 struct completion rescind_event;
835
836 struct vmbus_gpadl ringbuffer_gpadlhandle;
837
838 /* Allocated memory for ring buffer */
839 struct page *ringbuffer_page;
840 u32 ringbuffer_pagecount;
841 u32 ringbuffer_send_offset;
842 struct hv_ring_buffer_info outbound; /* send to parent */
843 struct hv_ring_buffer_info inbound; /* receive from parent */
844
845 struct vmbus_close_msg close_msg;
846
847 /* Statistics */
848 u64 interrupts; /* Host to Guest interrupts */
849 u64 sig_events; /* Guest to Host events */
850
851 /*
852 * Guest to host interrupts caused by the outbound ring buffer changing
853 * from empty to not empty.
854 */
855 u64 intr_out_empty;
856
857 /*
858 * Indicates that a full outbound ring buffer was encountered. The flag
859 * is set to true when a full outbound ring buffer is encountered and
860 * set to false when a write to the outbound ring buffer is completed.
861 */
862 bool out_full_flag;
863
864 /* Channel callback's invoked in softirq context */
865 struct tasklet_struct callback_event;
866 void (*onchannel_callback)(void *context);
867 void *channel_callback_context;
868
869 void (*change_target_cpu_callback)(struct vmbus_channel *channel,
870 u32 old, u32 new);
871
872 /*
873 * Synchronize channel scheduling and channel removal; see the inline
874 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
875 */
876 spinlock_t sched_lock;
877
878 /*
879 * A channel can be marked for one of three modes of reading:
880 * BATCHED - callback called from taslket and should read
881 * channel until empty. Interrupts from the host
882 * are masked while read is in process (default).
883 * DIRECT - callback called from tasklet (softirq).
884 * ISR - callback called in interrupt context and must
885 * invoke its own deferred processing.
886 * Host interrupts are disabled and must be re-enabled
887 * when ring is empty.
888 */
889 enum hv_callback_mode {
890 HV_CALL_BATCHED,
891 HV_CALL_DIRECT,
892 HV_CALL_ISR
893 } callback_mode;
894
895 bool is_dedicated_interrupt;
896 u64 sig_event;
897
898 /*
899 * Starting with win8, this field will be used to specify the
900 * target CPU on which to deliver the interrupt for the host
901 * to guest communication.
902 *
903 * Prior to win8, incoming channel interrupts would only be
904 * delivered on CPU 0. Setting this value to 0 would preserve
905 * the earlier behavior.
906 */
907 u32 target_cpu;
908 /*
909 * Support for sub-channels. For high performance devices,
910 * it will be useful to have multiple sub-channels to support
911 * a scalable communication infrastructure with the host.
912 * The support for sub-channels is implemented as an extension
913 * to the current infrastructure.
914 * The initial offer is considered the primary channel and this
915 * offer message will indicate if the host supports sub-channels.
916 * The guest is free to ask for sub-channels to be offered and can
917 * open these sub-channels as a normal "primary" channel. However,
918 * all sub-channels will have the same type and instance guids as the
919 * primary channel. Requests sent on a given channel will result in a
920 * response on the same channel.
921 */
922
923 /*
924 * Sub-channel creation callback. This callback will be called in
925 * process context when a sub-channel offer is received from the host.
926 * The guest can open the sub-channel in the context of this callback.
927 */
928 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
929
930 /*
931 * Channel rescind callback. Some channels (the hvsock ones), need to
932 * register a callback which is invoked in vmbus_onoffer_rescind().
933 */
934 void (*chn_rescind_callback)(struct vmbus_channel *channel);
935
936 /*
937 * All Sub-channels of a primary channel are linked here.
938 */
939 struct list_head sc_list;
940 /*
941 * The primary channel this sub-channel belongs to.
942 * This will be NULL for the primary channel.
943 */
944 struct vmbus_channel *primary_channel;
945 /*
946 * Support per-channel state for use by vmbus drivers.
947 */
948 void *per_channel_state;
949
950 /*
951 * Defer freeing channel until after all cpu's have
952 * gone through grace period.
953 */
954 struct rcu_head rcu;
955
956 /*
957 * For sysfs per-channel properties.
958 */
959 struct kobject kobj;
960
961 /*
962 * For performance critical channels (storage, networking
963 * etc,), Hyper-V has a mechanism to enhance the throughput
964 * at the expense of latency:
965 * When the host is to be signaled, we just set a bit in a shared page
966 * and this bit will be inspected by the hypervisor within a certain
967 * window and if the bit is set, the host will be signaled. The window
968 * of time is the monitor latency - currently around 100 usecs. This
969 * mechanism improves throughput by:
970 *
971 * A) Making the host more efficient - each time it wakes up,
972 * potentially it will process morev number of packets. The
973 * monitor latency allows a batch to build up.
974 * B) By deferring the hypercall to signal, we will also minimize
975 * the interrupts.
976 *
977 * Clearly, these optimizations improve throughput at the expense of
978 * latency. Furthermore, since the channel is shared for both
979 * control and data messages, control messages currently suffer
980 * unnecessary latency adversely impacting performance and boot
981 * time. To fix this issue, permit tagging the channel as being
982 * in "low latency" mode. In this mode, we will bypass the monitor
983 * mechanism.
984 */
985 bool low_latency;
986
987 bool probe_done;
988
989 /*
990 * Cache the device ID here for easy access; this is useful, in
991 * particular, in situations where the channel's device_obj has
992 * not been allocated/initialized yet.
993 */
994 u16 device_id;
995
996 /*
997 * We must offload the handling of the primary/sub channels
998 * from the single-threaded vmbus_connection.work_queue to
999 * two different workqueue, otherwise we can block
1000 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
1001 */
1002 struct work_struct add_channel_work;
1003
1004 /*
1005 * Guest to host interrupts caused by the inbound ring buffer changing
1006 * from full to not full while a packet is waiting.
1007 */
1008 u64 intr_in_full;
1009
1010 /*
1011 * The total number of write operations that encountered a full
1012 * outbound ring buffer.
1013 */
1014 u64 out_full_total;
1015
1016 /*
1017 * The number of write operations that were the first to encounter a
1018 * full outbound ring buffer.
1019 */
1020 u64 out_full_first;
1021
1022 /* enabling/disabling fuzz testing on the channel (default is false)*/
1023 bool fuzz_testing_state;
1024
1025 /*
1026 * Interrupt delay will delay the guest from emptying the ring buffer
1027 * for a specific amount of time. The delay is in microseconds and will
1028 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1029 * The Message delay will delay guest reading on a per message basis
1030 * in microseconds between 1 to 1000 with the default being 0
1031 * (no delay).
1032 */
1033 u32 fuzz_testing_interrupt_delay;
1034 u32 fuzz_testing_message_delay;
1035
1036 /* callback to generate a request ID from a request address */
1037 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1038 /* callback to retrieve a request address from a request ID */
1039 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1040
1041 /* request/transaction ids for VMBus */
1042 struct vmbus_requestor requestor;
1043 u32 rqstor_size;
1044
1045 /* The max size of a packet on this channel */
1046 u32 max_pkt_size;
1047 };
1048
1049 #define lock_requestor(channel, flags) \
1050 do { \
1051 struct vmbus_requestor *rqstor = &(channel)->requestor; \
1052 \
1053 spin_lock_irqsave(&rqstor->req_lock, flags); \
1054 } while (0)
1055
unlock_requestor(struct vmbus_channel * channel,unsigned long flags)1056 static __always_inline void unlock_requestor(struct vmbus_channel *channel,
1057 unsigned long flags)
1058 {
1059 struct vmbus_requestor *rqstor = &channel->requestor;
1060
1061 spin_unlock_irqrestore(&rqstor->req_lock, flags);
1062 }
1063
1064 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1065 u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1066 u64 rqst_addr);
1067 u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1068 u64 rqst_addr);
1069 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1070
is_hvsock_offer(const struct vmbus_channel_offer_channel * o)1071 static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o)
1072 {
1073 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1074 }
1075
is_hvsock_channel(const struct vmbus_channel * c)1076 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1077 {
1078 return is_hvsock_offer(&c->offermsg);
1079 }
1080
is_sub_channel(const struct vmbus_channel * c)1081 static inline bool is_sub_channel(const struct vmbus_channel *c)
1082 {
1083 return c->offermsg.offer.sub_channel_index != 0;
1084 }
1085
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)1086 static inline void set_channel_read_mode(struct vmbus_channel *c,
1087 enum hv_callback_mode mode)
1088 {
1089 c->callback_mode = mode;
1090 }
1091
set_per_channel_state(struct vmbus_channel * c,void * s)1092 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1093 {
1094 c->per_channel_state = s;
1095 }
1096
get_per_channel_state(struct vmbus_channel * c)1097 static inline void *get_per_channel_state(struct vmbus_channel *c)
1098 {
1099 return c->per_channel_state;
1100 }
1101
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)1102 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1103 u32 size)
1104 {
1105 unsigned long flags;
1106
1107 if (size) {
1108 spin_lock_irqsave(&c->outbound.ring_lock, flags);
1109 ++c->out_full_total;
1110
1111 if (!c->out_full_flag) {
1112 ++c->out_full_first;
1113 c->out_full_flag = true;
1114 }
1115 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1116 } else {
1117 c->out_full_flag = false;
1118 }
1119
1120 c->outbound.ring_buffer->pending_send_sz = size;
1121 }
1122
1123 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1124
1125 int vmbus_request_offers(void);
1126
1127 /*
1128 * APIs for managing sub-channels.
1129 */
1130
1131 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1132 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1133
1134 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1135 void (*chn_rescind_cb)(struct vmbus_channel *));
1136
1137 /* The format must be the same as struct vmdata_gpa_direct */
1138 struct vmbus_channel_packet_page_buffer {
1139 u16 type;
1140 u16 dataoffset8;
1141 u16 length8;
1142 u16 flags;
1143 u64 transactionid;
1144 u32 reserved;
1145 u32 rangecount;
1146 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1147 } __packed;
1148
1149 /* The format must be the same as struct vmdata_gpa_direct */
1150 struct vmbus_channel_packet_multipage_buffer {
1151 u16 type;
1152 u16 dataoffset8;
1153 u16 length8;
1154 u16 flags;
1155 u64 transactionid;
1156 u32 reserved;
1157 u32 rangecount; /* Always 1 in this case */
1158 struct hv_multipage_buffer range;
1159 } __packed;
1160
1161 /* The format must be the same as struct vmdata_gpa_direct */
1162 struct vmbus_packet_mpb_array {
1163 u16 type;
1164 u16 dataoffset8;
1165 u16 length8;
1166 u16 flags;
1167 u64 transactionid;
1168 u32 reserved;
1169 u32 rangecount; /* Always 1 in this case */
1170 struct hv_mpb_array range;
1171 } __packed;
1172
1173 int vmbus_alloc_ring(struct vmbus_channel *channel,
1174 u32 send_size, u32 recv_size);
1175 void vmbus_free_ring(struct vmbus_channel *channel);
1176
1177 int vmbus_connect_ring(struct vmbus_channel *channel,
1178 void (*onchannel_callback)(void *context),
1179 void *context);
1180 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1181
1182 extern int vmbus_open(struct vmbus_channel *channel,
1183 u32 send_ringbuffersize,
1184 u32 recv_ringbuffersize,
1185 void *userdata,
1186 u32 userdatalen,
1187 void (*onchannel_callback)(void *context),
1188 void *context);
1189
1190 extern void vmbus_close(struct vmbus_channel *channel);
1191
1192 extern int vmbus_sendpacket_getid(struct vmbus_channel *channel,
1193 void *buffer,
1194 u32 bufferLen,
1195 u64 requestid,
1196 u64 *trans_id,
1197 enum vmbus_packet_type type,
1198 u32 flags);
1199 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1200 void *buffer,
1201 u32 bufferLen,
1202 u64 requestid,
1203 enum vmbus_packet_type type,
1204 u32 flags);
1205
1206 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1207 struct hv_page_buffer pagebuffers[],
1208 u32 pagecount,
1209 void *buffer,
1210 u32 bufferlen,
1211 u64 requestid);
1212
1213 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1214 struct vmbus_packet_mpb_array *mpb,
1215 u32 desc_size,
1216 void *buffer,
1217 u32 bufferlen,
1218 u64 requestid);
1219
1220 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1221 void *kbuffer,
1222 u32 size,
1223 struct vmbus_gpadl *gpadl);
1224
1225 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1226 struct vmbus_gpadl *gpadl);
1227
1228 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1229
1230 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1231 void *buffer,
1232 u32 bufferlen,
1233 u32 *buffer_actual_len,
1234 u64 *requestid);
1235
1236 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1237 void *buffer,
1238 u32 bufferlen,
1239 u32 *buffer_actual_len,
1240 u64 *requestid);
1241
1242
1243 extern void vmbus_ontimer(unsigned long data);
1244
1245 /* Base driver object */
1246 struct hv_driver {
1247 const char *name;
1248
1249 /*
1250 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1251 * channel flag, actually doesn't mean a synthetic device because the
1252 * offer's if_type/if_instance can change for every new hvsock
1253 * connection.
1254 *
1255 * However, to facilitate the notification of new-offer/rescind-offer
1256 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1257 * a special vmbus device, and hence we need the below flag to
1258 * indicate if the driver is the hvsock driver or not: we need to
1259 * specially treat the hvosck offer & driver in vmbus_match().
1260 */
1261 bool hvsock;
1262
1263 /* the device type supported by this driver */
1264 guid_t dev_type;
1265 const struct hv_vmbus_device_id *id_table;
1266
1267 struct device_driver driver;
1268
1269 /* dynamic device GUID's */
1270 struct {
1271 spinlock_t lock;
1272 struct list_head list;
1273 } dynids;
1274
1275 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1276 int (*remove)(struct hv_device *);
1277 void (*shutdown)(struct hv_device *);
1278
1279 int (*suspend)(struct hv_device *);
1280 int (*resume)(struct hv_device *);
1281
1282 };
1283
1284 /* Base device object */
1285 struct hv_device {
1286 /* the device type id of this device */
1287 guid_t dev_type;
1288
1289 /* the device instance id of this device */
1290 guid_t dev_instance;
1291 u16 vendor_id;
1292 u16 device_id;
1293
1294 struct device device;
1295 /*
1296 * Driver name to force a match. Do not set directly, because core
1297 * frees it. Use driver_set_override() to set or clear it.
1298 */
1299 const char *driver_override;
1300
1301 struct vmbus_channel *channel;
1302 struct kset *channels_kset;
1303 struct device_dma_parameters dma_parms;
1304 u64 dma_mask;
1305
1306 /* place holder to keep track of the dir for hv device in debugfs */
1307 struct dentry *debug_dir;
1308
1309 };
1310
1311
device_to_hv_device(struct device * d)1312 static inline struct hv_device *device_to_hv_device(struct device *d)
1313 {
1314 return container_of(d, struct hv_device, device);
1315 }
1316
drv_to_hv_drv(struct device_driver * d)1317 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1318 {
1319 return container_of(d, struct hv_driver, driver);
1320 }
1321
hv_set_drvdata(struct hv_device * dev,void * data)1322 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1323 {
1324 dev_set_drvdata(&dev->device, data);
1325 }
1326
hv_get_drvdata(struct hv_device * dev)1327 static inline void *hv_get_drvdata(struct hv_device *dev)
1328 {
1329 return dev_get_drvdata(&dev->device);
1330 }
1331
1332 struct hv_ring_buffer_debug_info {
1333 u32 current_interrupt_mask;
1334 u32 current_read_index;
1335 u32 current_write_index;
1336 u32 bytes_avail_toread;
1337 u32 bytes_avail_towrite;
1338 };
1339
1340
1341 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1342 struct hv_ring_buffer_debug_info *debug_info);
1343
1344 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel);
1345
1346 /* Vmbus interface */
1347 #define vmbus_driver_register(driver) \
1348 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1349 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1350 struct module *owner,
1351 const char *mod_name);
1352 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1353
1354 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1355
1356 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1357 resource_size_t min, resource_size_t max,
1358 resource_size_t size, resource_size_t align,
1359 bool fb_overlap_ok);
1360 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1361
1362 /*
1363 * GUID definitions of various offer types - services offered to the guest.
1364 */
1365
1366 /*
1367 * Network GUID
1368 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1369 */
1370 #define HV_NIC_GUID \
1371 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1372 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1373
1374 /*
1375 * IDE GUID
1376 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1377 */
1378 #define HV_IDE_GUID \
1379 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1380 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1381
1382 /*
1383 * SCSI GUID
1384 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1385 */
1386 #define HV_SCSI_GUID \
1387 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1388 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1389
1390 /*
1391 * Shutdown GUID
1392 * {0e0b6031-5213-4934-818b-38d90ced39db}
1393 */
1394 #define HV_SHUTDOWN_GUID \
1395 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1396 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1397
1398 /*
1399 * Time Synch GUID
1400 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1401 */
1402 #define HV_TS_GUID \
1403 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1404 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1405
1406 /*
1407 * Heartbeat GUID
1408 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1409 */
1410 #define HV_HEART_BEAT_GUID \
1411 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1412 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1413
1414 /*
1415 * KVP GUID
1416 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1417 */
1418 #define HV_KVP_GUID \
1419 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1420 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1421
1422 /*
1423 * Dynamic memory GUID
1424 * {525074dc-8985-46e2-8057-a307dc18a502}
1425 */
1426 #define HV_DM_GUID \
1427 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1428 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1429
1430 /*
1431 * Mouse GUID
1432 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1433 */
1434 #define HV_MOUSE_GUID \
1435 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1436 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1437
1438 /*
1439 * Keyboard GUID
1440 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1441 */
1442 #define HV_KBD_GUID \
1443 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1444 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1445
1446 /*
1447 * VSS (Backup/Restore) GUID
1448 */
1449 #define HV_VSS_GUID \
1450 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1451 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1452 /*
1453 * Synthetic Video GUID
1454 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1455 */
1456 #define HV_SYNTHVID_GUID \
1457 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1458 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1459
1460 /*
1461 * Synthetic FC GUID
1462 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1463 */
1464 #define HV_SYNTHFC_GUID \
1465 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1466 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1467
1468 /*
1469 * Guest File Copy Service
1470 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1471 */
1472
1473 #define HV_FCOPY_GUID \
1474 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1475 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1476
1477 /*
1478 * NetworkDirect. This is the guest RDMA service.
1479 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1480 */
1481 #define HV_ND_GUID \
1482 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1483 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1484
1485 /*
1486 * PCI Express Pass Through
1487 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1488 */
1489
1490 #define HV_PCIE_GUID \
1491 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1492 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1493
1494 /*
1495 * Linux doesn't support these 4 devices: the first two are for
1496 * Automatic Virtual Machine Activation, the third is for
1497 * Remote Desktop Virtualization, and the fourth is Initial
1498 * Machine Configuration (IMC) used only by Windows guests.
1499 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1500 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1501 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1502 * {c376c1c3-d276-48d2-90a9-c04748072c60}
1503 */
1504
1505 #define HV_AVMA1_GUID \
1506 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1507 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1508
1509 #define HV_AVMA2_GUID \
1510 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1511 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1512
1513 #define HV_RDV_GUID \
1514 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1515 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1516
1517 #define HV_IMC_GUID \
1518 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \
1519 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60)
1520
1521 /*
1522 * Common header for Hyper-V ICs
1523 */
1524
1525 #define ICMSGTYPE_NEGOTIATE 0
1526 #define ICMSGTYPE_HEARTBEAT 1
1527 #define ICMSGTYPE_KVPEXCHANGE 2
1528 #define ICMSGTYPE_SHUTDOWN 3
1529 #define ICMSGTYPE_TIMESYNC 4
1530 #define ICMSGTYPE_VSS 5
1531 #define ICMSGTYPE_FCOPY 7
1532
1533 #define ICMSGHDRFLAG_TRANSACTION 1
1534 #define ICMSGHDRFLAG_REQUEST 2
1535 #define ICMSGHDRFLAG_RESPONSE 4
1536
1537
1538 /*
1539 * While we want to handle util services as regular devices,
1540 * there is only one instance of each of these services; so
1541 * we statically allocate the service specific state.
1542 */
1543
1544 struct hv_util_service {
1545 u8 *recv_buffer;
1546 void *channel;
1547 void (*util_cb)(void *);
1548 int (*util_init)(struct hv_util_service *);
1549 void (*util_deinit)(void);
1550 int (*util_pre_suspend)(void);
1551 int (*util_pre_resume)(void);
1552 };
1553
1554 struct vmbuspipe_hdr {
1555 u32 flags;
1556 u32 msgsize;
1557 } __packed;
1558
1559 struct ic_version {
1560 u16 major;
1561 u16 minor;
1562 } __packed;
1563
1564 struct icmsg_hdr {
1565 struct ic_version icverframe;
1566 u16 icmsgtype;
1567 struct ic_version icvermsg;
1568 u16 icmsgsize;
1569 u32 status;
1570 u8 ictransaction_id;
1571 u8 icflags;
1572 u8 reserved[2];
1573 } __packed;
1574
1575 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1576 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1577 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1578 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1579 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1580
1581 struct icmsg_negotiate {
1582 u16 icframe_vercnt;
1583 u16 icmsg_vercnt;
1584 u32 reserved;
1585 struct ic_version icversion_data[]; /* any size array */
1586 } __packed;
1587
1588 struct shutdown_msg_data {
1589 u32 reason_code;
1590 u32 timeout_seconds;
1591 u32 flags;
1592 u8 display_message[2048];
1593 } __packed;
1594
1595 struct heartbeat_msg_data {
1596 u64 seq_num;
1597 u32 reserved[8];
1598 } __packed;
1599
1600 /* Time Sync IC defs */
1601 #define ICTIMESYNCFLAG_PROBE 0
1602 #define ICTIMESYNCFLAG_SYNC 1
1603 #define ICTIMESYNCFLAG_SAMPLE 2
1604
1605 #ifdef __x86_64__
1606 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1607 #else
1608 #define WLTIMEDELTA 116444736000000000LL
1609 #endif
1610
1611 struct ictimesync_data {
1612 u64 parenttime;
1613 u64 childtime;
1614 u64 roundtriptime;
1615 u8 flags;
1616 } __packed;
1617
1618 struct ictimesync_ref_data {
1619 u64 parenttime;
1620 u64 vmreferencetime;
1621 u8 flags;
1622 char leapflags;
1623 char stratum;
1624 u8 reserved[3];
1625 } __packed;
1626
1627 struct hyperv_service_callback {
1628 u8 msg_type;
1629 char *log_msg;
1630 guid_t data;
1631 struct vmbus_channel *channel;
1632 void (*callback)(void *context);
1633 };
1634
1635 struct hv_dma_range {
1636 dma_addr_t dma;
1637 u32 mapping_size;
1638 };
1639
1640 #define MAX_SRV_VER 0x7ffffff
1641 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1642 const int *fw_version, int fw_vercnt,
1643 const int *srv_version, int srv_vercnt,
1644 int *nego_fw_version, int *nego_srv_version);
1645
1646 void hv_process_channel_removal(struct vmbus_channel *channel);
1647
1648 void vmbus_setevent(struct vmbus_channel *channel);
1649 /*
1650 * Negotiated version with the Host.
1651 */
1652
1653 extern __u32 vmbus_proto_version;
1654
1655 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1656 const guid_t *shv_host_servie_id);
1657 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1658 void vmbus_set_event(struct vmbus_channel *channel);
1659
1660 /* Get the start of the ring buffer. */
1661 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1662 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1663 {
1664 return ring_info->ring_buffer->buffer;
1665 }
1666
1667 /*
1668 * Mask off host interrupt callback notifications
1669 */
hv_begin_read(struct hv_ring_buffer_info * rbi)1670 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1671 {
1672 rbi->ring_buffer->interrupt_mask = 1;
1673
1674 /* make sure mask update is not reordered */
1675 virt_mb();
1676 }
1677
1678 /*
1679 * Re-enable host callback and return number of outstanding bytes
1680 */
hv_end_read(struct hv_ring_buffer_info * rbi)1681 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1682 {
1683
1684 rbi->ring_buffer->interrupt_mask = 0;
1685
1686 /* make sure mask update is not reordered */
1687 virt_mb();
1688
1689 /*
1690 * Now check to see if the ring buffer is still empty.
1691 * If it is not, we raced and we need to process new
1692 * incoming messages.
1693 */
1694 return hv_get_bytes_to_read(rbi);
1695 }
1696
1697 /*
1698 * An API to support in-place processing of incoming VMBUS packets.
1699 */
1700
1701 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1702 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1703 {
1704 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1705 }
1706
1707 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1708 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1709 {
1710 return (desc->len8 << 3) - (desc->offset8 << 3);
1711 }
1712
1713 /* Get packet length associated with descriptor */
hv_pkt_len(const struct vmpacket_descriptor * desc)1714 static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc)
1715 {
1716 return desc->len8 << 3;
1717 }
1718
1719 struct vmpacket_descriptor *
1720 hv_pkt_iter_first(struct vmbus_channel *channel);
1721
1722 struct vmpacket_descriptor *
1723 __hv_pkt_iter_next(struct vmbus_channel *channel,
1724 const struct vmpacket_descriptor *pkt);
1725
1726 void hv_pkt_iter_close(struct vmbus_channel *channel);
1727
1728 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1729 hv_pkt_iter_next(struct vmbus_channel *channel,
1730 const struct vmpacket_descriptor *pkt)
1731 {
1732 struct vmpacket_descriptor *nxt;
1733
1734 nxt = __hv_pkt_iter_next(channel, pkt);
1735 if (!nxt)
1736 hv_pkt_iter_close(channel);
1737
1738 return nxt;
1739 }
1740
1741 #define foreach_vmbus_pkt(pkt, channel) \
1742 for (pkt = hv_pkt_iter_first(channel); pkt; \
1743 pkt = hv_pkt_iter_next(channel, pkt))
1744
1745 /*
1746 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1747 * sends requests to read and write blocks. Each block must be 128 bytes or
1748 * smaller. Optionally, the VF driver can register a callback function which
1749 * will be invoked when the host says that one or more of the first 64 block
1750 * IDs is "invalid" which means that the VF driver should reread them.
1751 */
1752 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1753
1754 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1755 unsigned int block_id, unsigned int *bytes_returned);
1756 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1757 unsigned int block_id);
1758 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1759 void (*block_invalidate)(void *context,
1760 u64 block_mask));
1761
1762 struct hyperv_pci_block_ops {
1763 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1764 unsigned int block_id, unsigned int *bytes_returned);
1765 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1766 unsigned int block_id);
1767 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1768 void (*block_invalidate)(void *context,
1769 u64 block_mask));
1770 };
1771
1772 extern struct hyperv_pci_block_ops hvpci_block_ops;
1773
virt_to_hvpfn(void * addr)1774 static inline unsigned long virt_to_hvpfn(void *addr)
1775 {
1776 phys_addr_t paddr;
1777
1778 if (is_vmalloc_addr(addr))
1779 paddr = page_to_phys(vmalloc_to_page(addr)) +
1780 offset_in_page(addr);
1781 else
1782 paddr = __pa(addr);
1783
1784 return paddr >> HV_HYP_PAGE_SHIFT;
1785 }
1786
1787 #define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE)
1788 #define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1789 #define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1790 #define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT)
1791 #define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1792
1793 #endif /* _HYPERV_H */
1794