1 /*
2  * Page table support for the Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
23 
24 /*
25  * Page table definitions for Qualcomm Hexagon processor.
26  */
27 #include <linux/swap.h>
28 #include <asm/page.h>
29 #include <asm-generic/pgtable-nopmd.h>
30 
31 /* A handy thing to have if one has the RAM. Declared in head.S */
32 extern unsigned long empty_zero_page;
33 extern unsigned long zero_page_mask;
34 
35 /*
36  * The PTE model described here is that of the Hexagon Virtual Machine,
37  * which autonomously walks 2-level page tables.  At a lower level, we
38  * also describe the RISCish software-loaded TLB entry structure of
39  * the underlying Hexagon processor. A kernel built to run on the
40  * virtual machine has no need to know about the underlying hardware.
41  */
42 #include <asm/vm_mmu.h>
43 
44 /*
45  * To maximize the comfort level for the PTE manipulation macros,
46  * define the "well known" architecture-specific bits.
47  */
48 #define _PAGE_READ	__HVM_PTE_R
49 #define _PAGE_WRITE	__HVM_PTE_W
50 #define _PAGE_EXECUTE	__HVM_PTE_X
51 #define _PAGE_USER	__HVM_PTE_U
52 
53 /*
54  * We have a total of 4 "soft" bits available in the abstract PTE.
55  * The two mandatory software bits are Dirty and Accessed.
56  * To make nonlinear swap work according to the more recent
57  * model, we want a low order "Present" bit to indicate whether
58  * the PTE describes MMU programming or swap space.
59  */
60 #define _PAGE_PRESENT	(1<<0)
61 #define _PAGE_DIRTY	(1<<1)
62 #define _PAGE_ACCESSED	(1<<2)
63 
64 /*
65  * _PAGE_FILE is only meaningful if _PAGE_PRESENT is false, while
66  * _PAGE_DIRTY is only meaningful if _PAGE_PRESENT is true.
67  * So we can overload the bit...
68  */
69 #define _PAGE_FILE	_PAGE_DIRTY /* set:  pagecache, unset = swap */
70 
71 /*
72  * For now, let's say that Valid and Present are the same thing.
73  * Alternatively, we could say that it's the "or" of R, W, and X
74  * permissions.
75  */
76 #define _PAGE_VALID	_PAGE_PRESENT
77 
78 /*
79  * We're not defining _PAGE_GLOBAL here, since there's no concept
80  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
81  * and we want to use the same page table structures and macros in
82  * the native kernel as we do in the virtual machine kernel.
83  * So we'll put up with a bit of inefficiency for now...
84  */
85 
86 /*
87  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
88  * only the second from the bottom, pgd and pud both being collapsed.
89  * Each entry represents 4MB of virtual address space, 4K of table
90  * thus maps the full 4GB.
91  */
92 #define PGDIR_SHIFT 22
93 #define PTRS_PER_PGD 1024
94 
95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK (~(PGDIR_SIZE-1))
97 
98 #ifdef CONFIG_PAGE_SIZE_4KB
99 #define PTRS_PER_PTE 1024
100 #endif
101 
102 #ifdef CONFIG_PAGE_SIZE_16KB
103 #define PTRS_PER_PTE 256
104 #endif
105 
106 #ifdef CONFIG_PAGE_SIZE_64KB
107 #define PTRS_PER_PTE 64
108 #endif
109 
110 #ifdef CONFIG_PAGE_SIZE_256KB
111 #define PTRS_PER_PTE 16
112 #endif
113 
114 #ifdef CONFIG_PAGE_SIZE_1MB
115 #define PTRS_PER_PTE 4
116 #endif
117 
118 /*  Any bigger and the PTE disappears.  */
119 #define pgd_ERROR(e) \
120 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
121 		pgd_val(e))
122 
123 /*
124  * Page Protection Constants. Includes (in this variant) cache attributes.
125  */
126 extern unsigned long _dflt_cache_att;
127 
128 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
129 				_dflt_cache_att)
130 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
131 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
132 #define PAGE_COPY	PAGE_READONLY
133 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
134 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
135 #define PAGE_COPY_EXEC	PAGE_EXEC
136 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
137 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
138 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
139 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
140 
141 
142 /*
143  * Aliases for mapping mmap() protection bits to page protections.
144  * These get used for static initialization, so using the _dflt_cache_att
145  * variable for the default cache attribute isn't workable. If the
146  * default gets changed at boot time, the boot option code has to
147  * update data structures like the protaction_map[] array.
148  */
149 #define CACHEDEF	(CACHE_DEFAULT << 6)
150 
151 /* Private (copy-on-write) page protections. */
152 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
153 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
154 #define __P010 __P000	/* Write-only copy-on-write */
155 #define __P011 __P001	/* Read/Write copy-on-write */
156 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
157 			_PAGE_EXECUTE | CACHEDEF)
158 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
159 			_PAGE_READ | CACHEDEF)
160 #define __P110 __P100	/* Write/execute copy-on-write */
161 #define __P111 __P101	/* Read/Write/Execute, copy-on-write */
162 
163 /* Shared page protections. */
164 #define __S000 __P000
165 #define __S001 __P001
166 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
167 			_PAGE_WRITE | CACHEDEF)
168 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
169 			_PAGE_WRITE | CACHEDEF)
170 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
171 			_PAGE_EXECUTE | CACHEDEF)
172 #define __S101 __P101
173 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
174 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
175 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
176 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
177 
178 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
179 
180 /* Seems to be zero even in architectures where the zero page is firewalled? */
181 #define FIRST_USER_ADDRESS 0
182 #define pte_special(pte)	0
183 #define pte_mkspecial(pte)	(pte)
184 
185 /*  HUGETLB not working currently  */
186 #ifdef CONFIG_HUGETLB_PAGE
187 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
188 #endif
189 
190 /*
191  * For now, assume that higher-level code will do TLB/MMU invalidations
192  * and don't insert that overhead into this low-level function.
193  */
194 extern void sync_icache_dcache(pte_t pte);
195 
196 #define pte_present_exec_user(pte) \
197 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
198 	(_PAGE_EXECUTE | _PAGE_USER))
199 
set_pte(pte_t * ptep,pte_t pteval)200 static inline void set_pte(pte_t *ptep, pte_t pteval)
201 {
202 	/*  should really be using pte_exec, if it weren't declared later. */
203 	if (pte_present_exec_user(pteval))
204 		sync_icache_dcache(pteval);
205 
206 	*ptep = pteval;
207 }
208 
209 /*
210  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
211  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
212  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
213  * as a universal null entry, but some of those least significant bits
214  * are interpreted by software.
215  */
216 #define _NULL_PMD	0x7
217 #define _NULL_PTE	0x0
218 
pmd_clear(pmd_t * pmd_entry_ptr)219 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
220 {
221 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
222 }
223 
224 /*
225  * Conveniently, a null PTE value is invalid.
226  */
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)227 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
228 				pte_t *ptep)
229 {
230 	pte_val(*ptep) = _NULL_PTE;
231 }
232 
233 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
234 /**
235  * pmd_index - returns the index of the entry in the PMD page
236  * which would control the given virtual address
237  */
238 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
239 
240 #endif
241 
242 /**
243  * pgd_index - returns the index of the entry in the PGD page
244  * which would control the given virtual address
245  *
246  * This returns the *index* for the address in the pgd_t
247  */
248 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
249 
250 /*
251  * pgd_offset - find an offset in a page-table-directory
252  */
253 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
254 
255 /*
256  * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
257  */
258 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
259 
260 /**
261  * pmd_none - check if pmd_entry is mapped
262  * @pmd_entry:  pmd entry
263  *
264  * MIPS checks it against that "invalid pte table" thing.
265  */
pmd_none(pmd_t pmd)266 static inline int pmd_none(pmd_t pmd)
267 {
268 	return pmd_val(pmd) == _NULL_PMD;
269 }
270 
271 /**
272  * pmd_present - is there a page table behind this?
273  * Essentially the inverse of pmd_none.  We maybe
274  * save an inline instruction by defining it this
275  * way, instead of simply "!pmd_none".
276  */
pmd_present(pmd_t pmd)277 static inline int pmd_present(pmd_t pmd)
278 {
279 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
280 }
281 
282 /**
283  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
284  * As we have no known cause of badness, it's null, as it is for many
285  * architectures.
286  */
pmd_bad(pmd_t pmd)287 static inline int pmd_bad(pmd_t pmd)
288 {
289 	return 0;
290 }
291 
292 /*
293  * pmd_page - converts a PMD entry to a page pointer
294  */
295 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
296 #define pmd_pgtable(pmd) pmd_page(pmd)
297 
298 /**
299  * pte_none - check if pte is mapped
300  * @pte: pte_t entry
301  */
pte_none(pte_t pte)302 static inline int pte_none(pte_t pte)
303 {
304 	return pte_val(pte) == _NULL_PTE;
305 };
306 
307 /*
308  * pte_present - check if page is present
309  */
pte_present(pte_t pte)310 static inline int pte_present(pte_t pte)
311 {
312 	return pte_val(pte) & _PAGE_PRESENT;
313 }
314 
315 /* mk_pte - make a PTE out of a page pointer and protection bits */
316 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
317 
318 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
319 #define pte_page(x) pfn_to_page(pte_pfn(x))
320 
321 /* pte_mkold - mark PTE as not recently accessed */
pte_mkold(pte_t pte)322 static inline pte_t pte_mkold(pte_t pte)
323 {
324 	pte_val(pte) &= ~_PAGE_ACCESSED;
325 	return pte;
326 }
327 
328 /* pte_mkyoung - mark PTE as recently accessed */
pte_mkyoung(pte_t pte)329 static inline pte_t pte_mkyoung(pte_t pte)
330 {
331 	pte_val(pte) |= _PAGE_ACCESSED;
332 	return pte;
333 }
334 
335 /* pte_mkclean - mark page as in sync with backing store */
pte_mkclean(pte_t pte)336 static inline pte_t pte_mkclean(pte_t pte)
337 {
338 	pte_val(pte) &= ~_PAGE_DIRTY;
339 	return pte;
340 }
341 
342 /* pte_mkdirty - mark page as modified */
pte_mkdirty(pte_t pte)343 static inline pte_t pte_mkdirty(pte_t pte)
344 {
345 	pte_val(pte) |= _PAGE_DIRTY;
346 	return pte;
347 }
348 
349 /* pte_young - "is PTE marked as accessed"? */
pte_young(pte_t pte)350 static inline int pte_young(pte_t pte)
351 {
352 	return pte_val(pte) & _PAGE_ACCESSED;
353 }
354 
355 /* pte_dirty - "is PTE dirty?" */
pte_dirty(pte_t pte)356 static inline int pte_dirty(pte_t pte)
357 {
358 	return pte_val(pte) & _PAGE_DIRTY;
359 }
360 
361 /* pte_modify - set protection bits on PTE */
pte_modify(pte_t pte,pgprot_t prot)362 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
363 {
364 	pte_val(pte) &= PAGE_MASK;
365 	pte_val(pte) |= pgprot_val(prot);
366 	return pte;
367 }
368 
369 /* pte_wrprotect - mark page as not writable */
pte_wrprotect(pte_t pte)370 static inline pte_t pte_wrprotect(pte_t pte)
371 {
372 	pte_val(pte) &= ~_PAGE_WRITE;
373 	return pte;
374 }
375 
376 /* pte_mkwrite - mark page as writable */
pte_mkwrite(pte_t pte)377 static inline pte_t pte_mkwrite(pte_t pte)
378 {
379 	pte_val(pte) |= _PAGE_WRITE;
380 	return pte;
381 }
382 
383 /* pte_mkexec - mark PTE as executable */
pte_mkexec(pte_t pte)384 static inline pte_t pte_mkexec(pte_t pte)
385 {
386 	pte_val(pte) |= _PAGE_EXECUTE;
387 	return pte;
388 }
389 
390 /* pte_read - "is PTE marked as readable?" */
pte_read(pte_t pte)391 static inline int pte_read(pte_t pte)
392 {
393 	return pte_val(pte) & _PAGE_READ;
394 }
395 
396 /* pte_write - "is PTE marked as writable?" */
pte_write(pte_t pte)397 static inline int pte_write(pte_t pte)
398 {
399 	return pte_val(pte) & _PAGE_WRITE;
400 }
401 
402 
403 /* pte_exec - "is PTE marked as executable?" */
pte_exec(pte_t pte)404 static inline int pte_exec(pte_t pte)
405 {
406 	return pte_val(pte) & _PAGE_EXECUTE;
407 }
408 
409 /* __pte_to_swp_entry - extract swap entry from PTE */
410 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
411 
412 /* __swp_entry_to_pte - extract PTE from swap entry */
413 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
414 
415 /* pfn_pte - convert page number and protection value to page table entry */
416 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
417 
418 /* pte_pfn - convert pte to page frame number */
419 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
420 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
421 
422 /*
423  * set_pte_at - update page table and do whatever magic may be
424  * necessary to make the underlying hardware/firmware take note.
425  *
426  * VM may require a virtual instruction to alert the MMU.
427  */
428 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
429 
430 /*
431  * May need to invoke the virtual machine as well...
432  */
433 #define pte_unmap(pte)		do { } while (0)
434 #define pte_unmap_nested(pte)	do { } while (0)
435 
436 /*
437  * pte_offset_map - returns the linear address of the page table entry
438  * corresponding to an address
439  */
440 #define pte_offset_map(dir, address)                                    \
441 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
442 
443 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
444 
445 /* pte_offset_kernel - kernel version of pte_offset */
446 #define pte_offset_kernel(dir, address) \
447 	((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
448 				+  __pte_offset(address))
449 
450 /* ZERO_PAGE - returns the globally shared zero page */
451 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
452 
453 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
454 
455 /* Nothing special about IO remapping at this point */
456 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
457 	remap_pfn_range(vma, vaddr, pfn, size, prot)
458 
459 /*  I think this is in case we have page table caches; needed by init/main.c  */
460 #define pgtable_cache_init()    do { } while (0)
461 
462 /*
463  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the
464  * PTE is interpreted as swap information.  Depending on the _PAGE_FILE
465  * bit, the remaining free bits are eitehr interpreted as a file offset
466  * or a swap type/offset tuple.  Rather than have the TLB fill handler
467  * test _PAGE_PRESENT, we're going to reserve the permissions bits
468  * and set them to all zeros for swap entries, which speeds up the
469  * miss handler at the cost of 3 bits of offset.  That trade-off can
470  * be revisited if necessary, but Hexagon processor architecture and
471  * target applications suggest a lot of TLB misses and not much swap space.
472  *
473  * Format of swap PTE:
474  *	bit	0:	Present (zero)
475  *	bit	1:	_PAGE_FILE (zero)
476  *	bits	2-6:	swap type (arch independent layer uses 5 bits max)
477  *	bits	7-9:	bits 2:0 of offset
478  *	bits 10-12:	effectively _PAGE_PROTNONE (all zero)
479  *	bits 13-31:  bits 21:3 of swap offset
480  *
481  * Format of file PTE:
482  *	bit	0:	Present (zero)
483  *	bit	1:	_PAGE_FILE (zero)
484  *	bits	2-9:	bits 7:0 of offset
485  *	bits 10-12:	effectively _PAGE_PROTNONE (all zero)
486  *	bits 13-31:  bits 26:8 of swap offset
487  *
488  * The split offset makes some of the following macros a little gnarly,
489  * but there's plenty of precedent for this sort of thing.
490  */
491 #define PTE_FILE_MAX_BITS     27
492 
493 /* Used for swap PTEs */
494 #define __swp_type(swp_pte)		(((swp_pte).val >> 2) & 0x1f)
495 
496 #define __swp_offset(swp_pte) \
497 	((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x003ffff8))
498 
499 #define __swp_entry(type, offset) \
500 	((swp_entry_t)	{ \
501 		((type << 2) | \
502 		 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) })
503 
504 /* Used for file PTEs */
505 #define pte_file(pte) \
506 	((pte_val(pte) & (_PAGE_FILE | _PAGE_PRESENT)) == _PAGE_FILE)
507 
508 #define pte_to_pgoff(pte) \
509 	(((pte_val(pte) >> 2) & 0xff) | ((pte_val(pte) >> 5) & 0x07ffff00))
510 
511 #define pgoff_to_pte(off) \
512 	((pte_t) { ((((off) & 0x7ffff00) << 5) | (((off) & 0xff) << 2)\
513 	| _PAGE_FILE) })
514 
515 /*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
516 #include <asm-generic/pgtable.h>
517 
518 #endif
519