1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] __devinitconst =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	struct timer_list timer; /* Link status detection timer. */
172 	u8 autong_complete; /* 1: auto-negotiate complete  */
173 
174 	u32 msg_enable;
175 
176 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177 	unsigned int cur_tx, dirty_tx;
178 
179 	/* The saved address of a sent/receive-in-place packet buffer */
180 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
181 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
182 	BufferDesc *tx_ring;
183 	BufferDesc *rx_ring;
184 
185 	dma_addr_t tx_ring_dma;
186 	dma_addr_t rx_ring_dma;
187 
188 	unsigned int tx_full; /* The Tx queue is full. */
189 	u8 host_bridge_rev;
190 	u8 chipset_rev;
191 };
192 
193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195 MODULE_LICENSE("GPL");
196 
197 module_param(multicast_filter_limit, int, 0444);
198 module_param(max_interrupt_work, int, 0444);
199 module_param(sis900_debug, int, 0444);
200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
203 
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 static void sis900_poll(struct net_device *dev);
206 #endif
207 static int sis900_open(struct net_device *net_dev);
208 static int sis900_mii_probe (struct net_device * net_dev);
209 static void sis900_init_rxfilter (struct net_device * net_dev);
210 static u16 read_eeprom(long ioaddr, int location);
211 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213 static void sis900_timer(unsigned long data);
214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215 static void sis900_tx_timeout(struct net_device *net_dev);
216 static void sis900_init_tx_ring(struct net_device *net_dev);
217 static void sis900_init_rx_ring(struct net_device *net_dev);
218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219 				     struct net_device *net_dev);
220 static int sis900_rx(struct net_device *net_dev);
221 static void sis900_finish_xmit (struct net_device *net_dev);
222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223 static int sis900_close(struct net_device *net_dev);
224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226 static void set_rx_mode(struct net_device *net_dev);
227 static void sis900_reset(struct net_device *net_dev);
228 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230 static u16 sis900_default_phy(struct net_device * net_dev);
231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234 static void sis900_set_mode (long ioaddr, int speed, int duplex);
235 static const struct ethtool_ops sis900_ethtool_ops;
236 
237 /**
238  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239  *	@pci_dev: the sis900 pci device
240  *	@net_dev: the net device to get address for
241  *
242  *	Older SiS900 and friends, use EEPROM to store MAC address.
243  *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
244  *	@net_dev->perm_addr.
245  */
246 
sis900_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)247 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
248 {
249 	long ioaddr = pci_resource_start(pci_dev, 0);
250 	u16 signature;
251 	int i;
252 
253 	/* check to see if we have sane EEPROM */
254 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
255 	if (signature == 0xffff || signature == 0x0000) {
256 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
257 			pci_name(pci_dev), signature);
258 		return 0;
259 	}
260 
261 	/* get MAC address from EEPROM */
262 	for (i = 0; i < 3; i++)
263 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
264 
265 	/* Store MAC Address in perm_addr */
266 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
267 
268 	return 1;
269 }
270 
271 /**
272  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
273  *	@pci_dev: the sis900 pci device
274  *	@net_dev: the net device to get address for
275  *
276  *	SiS630E model, use APC CMOS RAM to store MAC address.
277  *	APC CMOS RAM is accessed through ISA bridge.
278  *	MAC address is read into @net_dev->dev_addr and
279  *	@net_dev->perm_addr.
280  */
281 
sis630e_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)282 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
283 					struct net_device *net_dev)
284 {
285 	struct pci_dev *isa_bridge = NULL;
286 	u8 reg;
287 	int i;
288 
289 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
290 	if (!isa_bridge)
291 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
292 	if (!isa_bridge) {
293 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
294 		       pci_name(pci_dev));
295 		return 0;
296 	}
297 	pci_read_config_byte(isa_bridge, 0x48, &reg);
298 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
299 
300 	for (i = 0; i < 6; i++) {
301 		outb(0x09 + i, 0x70);
302 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
303 	}
304 
305 	/* Store MAC Address in perm_addr */
306 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
307 
308 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
309 	pci_dev_put(isa_bridge);
310 
311 	return 1;
312 }
313 
314 
315 /**
316  *	sis635_get_mac_addr - Get MAC address for SIS635 model
317  *	@pci_dev: the sis900 pci device
318  *	@net_dev: the net device to get address for
319  *
320  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
321  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
322  *	@net_dev->dev_addr and @net_dev->perm_addr.
323  */
324 
sis635_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)325 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
326 					struct net_device *net_dev)
327 {
328 	long ioaddr = net_dev->base_addr;
329 	u32 rfcrSave;
330 	u32 i;
331 
332 	rfcrSave = inl(rfcr + ioaddr);
333 
334 	outl(rfcrSave | RELOAD, ioaddr + cr);
335 	outl(0, ioaddr + cr);
336 
337 	/* disable packet filtering before setting filter */
338 	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
339 
340 	/* load MAC addr to filter data register */
341 	for (i = 0 ; i < 3 ; i++) {
342 		outl((i << RFADDR_shift), ioaddr + rfcr);
343 		*( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
344 	}
345 
346 	/* Store MAC Address in perm_addr */
347 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
348 
349 	/* enable packet filtering */
350 	outl(rfcrSave | RFEN, rfcr + ioaddr);
351 
352 	return 1;
353 }
354 
355 /**
356  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357  *	@pci_dev: the sis900 pci device
358  *	@net_dev: the net device to get address for
359  *
360  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361  *	is shared by
362  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365  *	EEDONE signal to refuse EEPROM access by LAN.
366  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367  *	The signature field in SiS962 or SiS963 spec is meaningless.
368  *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
369  */
370 
sis96x_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)371 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
372 					struct net_device *net_dev)
373 {
374 	long ioaddr = net_dev->base_addr;
375 	long ee_addr = ioaddr + mear;
376 	u32 waittime = 0;
377 	int i;
378 
379 	outl(EEREQ, ee_addr);
380 	while(waittime < 2000) {
381 		if(inl(ee_addr) & EEGNT) {
382 
383 			/* get MAC address from EEPROM */
384 			for (i = 0; i < 3; i++)
385 			        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
386 
387 			/* Store MAC Address in perm_addr */
388 			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
389 
390 			outl(EEDONE, ee_addr);
391 			return 1;
392 		} else {
393 			udelay(1);
394 			waittime ++;
395 		}
396 	}
397 	outl(EEDONE, ee_addr);
398 	return 0;
399 }
400 
401 static const struct net_device_ops sis900_netdev_ops = {
402 	.ndo_open		 = sis900_open,
403 	.ndo_stop		= sis900_close,
404 	.ndo_start_xmit		= sis900_start_xmit,
405 	.ndo_set_config		= sis900_set_config,
406 	.ndo_set_multicast_list	= set_rx_mode,
407 	.ndo_change_mtu		= eth_change_mtu,
408 	.ndo_validate_addr	= eth_validate_addr,
409 	.ndo_set_mac_address 	= eth_mac_addr,
410 	.ndo_do_ioctl		= mii_ioctl,
411 	.ndo_tx_timeout		= sis900_tx_timeout,
412 #ifdef CONFIG_NET_POLL_CONTROLLER
413         .ndo_poll_controller	= sis900_poll,
414 #endif
415 };
416 
417 /**
418  *	sis900_probe - Probe for sis900 device
419  *	@pci_dev: the sis900 pci device
420  *	@pci_id: the pci device ID
421  *
422  *	Check and probe sis900 net device for @pci_dev.
423  *	Get mac address according to the chip revision,
424  *	and assign SiS900-specific entries in the device structure.
425  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
426  */
427 
sis900_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_id)428 static int __devinit sis900_probe(struct pci_dev *pci_dev,
429 				const struct pci_device_id *pci_id)
430 {
431 	struct sis900_private *sis_priv;
432 	struct net_device *net_dev;
433 	struct pci_dev *dev;
434 	dma_addr_t ring_dma;
435 	void *ring_space;
436 	long ioaddr;
437 	int i, ret;
438 	const char *card_name = card_names[pci_id->driver_data];
439 	const char *dev_name = pci_name(pci_dev);
440 
441 /* when built into the kernel, we only print version if device is found */
442 #ifndef MODULE
443 	static int printed_version;
444 	if (!printed_version++)
445 		printk(version);
446 #endif
447 
448 	/* setup various bits in PCI command register */
449 	ret = pci_enable_device(pci_dev);
450 	if(ret) return ret;
451 
452 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
453 	if(i){
454 		printk(KERN_ERR "sis900.c: architecture does not support "
455 			"32bit PCI busmaster DMA\n");
456 		return i;
457 	}
458 
459 	pci_set_master(pci_dev);
460 
461 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
462 	if (!net_dev)
463 		return -ENOMEM;
464 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
465 
466 	/* We do a request_region() to register /proc/ioports info. */
467 	ioaddr = pci_resource_start(pci_dev, 0);
468 	ret = pci_request_regions(pci_dev, "sis900");
469 	if (ret)
470 		goto err_out;
471 
472 	sis_priv = netdev_priv(net_dev);
473 	net_dev->base_addr = ioaddr;
474 	net_dev->irq = pci_dev->irq;
475 	sis_priv->pci_dev = pci_dev;
476 	spin_lock_init(&sis_priv->lock);
477 
478 	pci_set_drvdata(pci_dev, net_dev);
479 
480 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 	if (!ring_space) {
482 		ret = -ENOMEM;
483 		goto err_out_cleardev;
484 	}
485 	sis_priv->tx_ring = (BufferDesc *)ring_space;
486 	sis_priv->tx_ring_dma = ring_dma;
487 
488 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 	if (!ring_space) {
490 		ret = -ENOMEM;
491 		goto err_unmap_tx;
492 	}
493 	sis_priv->rx_ring = (BufferDesc *)ring_space;
494 	sis_priv->rx_ring_dma = ring_dma;
495 
496 	/* The SiS900-specific entries in the device structure. */
497 	net_dev->netdev_ops = &sis900_netdev_ops;
498 	net_dev->watchdog_timeo = TX_TIMEOUT;
499 	net_dev->ethtool_ops = &sis900_ethtool_ops;
500 
501 	if (sis900_debug > 0)
502 		sis_priv->msg_enable = sis900_debug;
503 	else
504 		sis_priv->msg_enable = SIS900_DEF_MSG;
505 
506 	sis_priv->mii_info.dev = net_dev;
507 	sis_priv->mii_info.mdio_read = mdio_read;
508 	sis_priv->mii_info.mdio_write = mdio_write;
509 	sis_priv->mii_info.phy_id_mask = 0x1f;
510 	sis_priv->mii_info.reg_num_mask = 0x1f;
511 
512 	/* Get Mac address according to the chip revision */
513 	sis_priv->chipset_rev = pci_dev->revision;
514 	if(netif_msg_probe(sis_priv))
515 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 				"trying to get MAC address...\n",
517 				dev_name, sis_priv->chipset_rev);
518 
519 	ret = 0;
520 	if (sis_priv->chipset_rev == SIS630E_900_REV)
521 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 		ret = sis635_get_mac_addr(pci_dev, net_dev);
524 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 	else
527 		ret = sis900_get_mac_addr(pci_dev, net_dev);
528 
529 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 		random_ether_addr(net_dev->dev_addr);
531 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 				"using random generated one\n", dev_name);
533 	}
534 
535 	/* 630ET : set the mii access mode as software-mode */
536 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 		outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
538 
539 	/* probe for mii transceiver */
540 	if (sis900_mii_probe(net_dev) == 0) {
541 		printk(KERN_WARNING "%s: Error probing MII device.\n",
542 		       dev_name);
543 		ret = -ENODEV;
544 		goto err_unmap_rx;
545 	}
546 
547 	/* save our host bridge revision */
548 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 	if (dev) {
550 		sis_priv->host_bridge_rev = dev->revision;
551 		pci_dev_put(dev);
552 	}
553 
554 	ret = register_netdev(net_dev);
555 	if (ret)
556 		goto err_unmap_rx;
557 
558 	/* print some information about our NIC */
559 	printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
560 	       net_dev->name, card_name, ioaddr, net_dev->irq,
561 	       net_dev->dev_addr);
562 
563 	/* Detect Wake on Lan support */
564 	ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
565 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567 
568 	return 0;
569 
570  err_unmap_rx:
571 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 		sis_priv->rx_ring_dma);
573  err_unmap_tx:
574 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 		sis_priv->tx_ring_dma);
576  err_out_cleardev:
577  	pci_set_drvdata(pci_dev, NULL);
578 	pci_release_regions(pci_dev);
579  err_out:
580 	free_netdev(net_dev);
581 	return ret;
582 }
583 
584 /**
585  *	sis900_mii_probe - Probe MII PHY for sis900
586  *	@net_dev: the net device to probe for
587  *
588  *	Search for total of 32 possible mii phy addresses.
589  *	Identify and set current phy if found one,
590  *	return error if it failed to found.
591  */
592 
sis900_mii_probe(struct net_device * net_dev)593 static int __devinit sis900_mii_probe(struct net_device * net_dev)
594 {
595 	struct sis900_private *sis_priv = netdev_priv(net_dev);
596 	const char *dev_name = pci_name(sis_priv->pci_dev);
597 	u16 poll_bit = MII_STAT_LINK, status = 0;
598 	unsigned long timeout = jiffies + 5 * HZ;
599 	int phy_addr;
600 
601 	sis_priv->mii = NULL;
602 
603 	/* search for total of 32 possible mii phy addresses */
604 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
605 		struct mii_phy * mii_phy = NULL;
606 		u16 mii_status;
607 		int i;
608 
609 		mii_phy = NULL;
610 		for(i = 0; i < 2; i++)
611 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
612 
613 		if (mii_status == 0xffff || mii_status == 0x0000) {
614 			if (netif_msg_probe(sis_priv))
615 				printk(KERN_DEBUG "%s: MII at address %d"
616 						" not accessible\n",
617 						dev_name, phy_addr);
618 			continue;
619 		}
620 
621 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
622 			printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
623 			mii_phy = sis_priv->first_mii;
624 			while (mii_phy) {
625 				struct mii_phy *phy;
626 				phy = mii_phy;
627 				mii_phy = mii_phy->next;
628 				kfree(phy);
629 			}
630 			return 0;
631 		}
632 
633 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
634 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
635 		mii_phy->phy_addr = phy_addr;
636 		mii_phy->status = mii_status;
637 		mii_phy->next = sis_priv->mii;
638 		sis_priv->mii = mii_phy;
639 		sis_priv->first_mii = mii_phy;
640 
641 		for (i = 0; mii_chip_table[i].phy_id1; i++)
642 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
643 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
644 				mii_phy->phy_types = mii_chip_table[i].phy_types;
645 				if (mii_chip_table[i].phy_types == MIX)
646 					mii_phy->phy_types =
647 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
648 				printk(KERN_INFO "%s: %s transceiver found "
649 							"at address %d.\n",
650 							dev_name,
651 							mii_chip_table[i].name,
652 							phy_addr);
653 				break;
654 			}
655 
656 		if( !mii_chip_table[i].phy_id1 ) {
657 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
658 			       dev_name, phy_addr);
659 			mii_phy->phy_types = UNKNOWN;
660 		}
661 	}
662 
663 	if (sis_priv->mii == NULL) {
664 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
665 		return 0;
666 	}
667 
668 	/* select default PHY for mac */
669 	sis_priv->mii = NULL;
670 	sis900_default_phy( net_dev );
671 
672 	/* Reset phy if default phy is internal sis900 */
673         if ((sis_priv->mii->phy_id0 == 0x001D) &&
674 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
675         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
676 
677         /* workaround for ICS1893 PHY */
678         if ((sis_priv->mii->phy_id0 == 0x0015) &&
679             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
680             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
681 
682 	if(status & MII_STAT_LINK){
683 		while (poll_bit) {
684 			yield();
685 
686 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
687 			if (time_after_eq(jiffies, timeout)) {
688 				printk(KERN_WARNING "%s: reset phy and link down now\n",
689 				       dev_name);
690 				return -ETIME;
691 			}
692 		}
693 	}
694 
695 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
696 		/* SiS 630E has some bugs on default value of PHY registers */
697 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
700 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
701 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
702 	}
703 
704 	if (sis_priv->mii->status & MII_STAT_LINK)
705 		netif_carrier_on(net_dev);
706 	else
707 		netif_carrier_off(net_dev);
708 
709 	return 1;
710 }
711 
712 /**
713  *	sis900_default_phy - Select default PHY for sis900 mac.
714  *	@net_dev: the net device to probe for
715  *
716  *	Select first detected PHY with link as default.
717  *	If no one is link on, select PHY whose types is HOME as default.
718  *	If HOME doesn't exist, select LAN.
719  */
720 
sis900_default_phy(struct net_device * net_dev)721 static u16 sis900_default_phy(struct net_device * net_dev)
722 {
723 	struct sis900_private *sis_priv = netdev_priv(net_dev);
724  	struct mii_phy *phy = NULL, *phy_home = NULL,
725 		*default_phy = NULL, *phy_lan = NULL;
726 	u16 status;
727 
728         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
729 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731 
732 		/* Link ON & Not select default PHY & not ghost PHY */
733 		 if ((status & MII_STAT_LINK) && !default_phy &&
734 					(phy->phy_types != UNKNOWN))
735 		 	default_phy = phy;
736 		 else {
737 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
738 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
739 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
740 			if (phy->phy_types == HOME)
741 				phy_home = phy;
742 			else if(phy->phy_types == LAN)
743 				phy_lan = phy;
744 		 }
745 	}
746 
747 	if (!default_phy && phy_home)
748 		default_phy = phy_home;
749 	else if (!default_phy && phy_lan)
750 		default_phy = phy_lan;
751 	else if (!default_phy)
752 		default_phy = sis_priv->first_mii;
753 
754 	if (sis_priv->mii != default_phy) {
755 		sis_priv->mii = default_phy;
756 		sis_priv->cur_phy = default_phy->phy_addr;
757 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
758 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
759 	}
760 
761 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
762 
763 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
764 	status &= (~MII_CNTL_ISOLATE);
765 
766 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
767 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769 
770 	return status;
771 }
772 
773 
774 /**
775  * 	sis900_set_capability - set the media capability of network adapter.
776  *	@net_dev : the net device to probe for
777  *	@phy : default PHY
778  *
779  *	Set the media capability of network adapter according to
780  *	mii status register. It's necessary before auto-negotiate.
781  */
782 
sis900_set_capability(struct net_device * net_dev,struct mii_phy * phy)783 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
784 {
785 	u16 cap;
786 	u16 status;
787 
788 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790 
791 	cap = MII_NWAY_CSMA_CD |
792 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
793 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
794 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
795 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
796 
797 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
798 }
799 
800 
801 /* Delay between EEPROM clock transitions. */
802 #define eeprom_delay()  inl(ee_addr)
803 
804 /**
805  *	read_eeprom - Read Serial EEPROM
806  *	@ioaddr: base i/o address
807  *	@location: the EEPROM location to read
808  *
809  *	Read Serial EEPROM through EEPROM Access Register.
810  *	Note that location is in word (16 bits) unit
811  */
812 
read_eeprom(long ioaddr,int location)813 static u16 __devinit read_eeprom(long ioaddr, int location)
814 {
815 	int i;
816 	u16 retval = 0;
817 	long ee_addr = ioaddr + mear;
818 	u32 read_cmd = location | EEread;
819 
820 	outl(0, ee_addr);
821 	eeprom_delay();
822 	outl(EECS, ee_addr);
823 	eeprom_delay();
824 
825 	/* Shift the read command (9) bits out. */
826 	for (i = 8; i >= 0; i--) {
827 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828 		outl(dataval, ee_addr);
829 		eeprom_delay();
830 		outl(dataval | EECLK, ee_addr);
831 		eeprom_delay();
832 	}
833 	outl(EECS, ee_addr);
834 	eeprom_delay();
835 
836 	/* read the 16-bits data in */
837 	for (i = 16; i > 0; i--) {
838 		outl(EECS, ee_addr);
839 		eeprom_delay();
840 		outl(EECS | EECLK, ee_addr);
841 		eeprom_delay();
842 		retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
843 		eeprom_delay();
844 	}
845 
846 	/* Terminate the EEPROM access. */
847 	outl(0, ee_addr);
848 	eeprom_delay();
849 
850 	return retval;
851 }
852 
853 /* Read and write the MII management registers using software-generated
854    serial MDIO protocol. Note that the command bits and data bits are
855    send out separately */
856 #define mdio_delay()    inl(mdio_addr)
857 
mdio_idle(long mdio_addr)858 static void mdio_idle(long mdio_addr)
859 {
860 	outl(MDIO | MDDIR, mdio_addr);
861 	mdio_delay();
862 	outl(MDIO | MDDIR | MDC, mdio_addr);
863 }
864 
865 /* Syncronize the MII management interface by shifting 32 one bits out. */
mdio_reset(long mdio_addr)866 static void mdio_reset(long mdio_addr)
867 {
868 	int i;
869 
870 	for (i = 31; i >= 0; i--) {
871 		outl(MDDIR | MDIO, mdio_addr);
872 		mdio_delay();
873 		outl(MDDIR | MDIO | MDC, mdio_addr);
874 		mdio_delay();
875 	}
876 }
877 
878 /**
879  *	mdio_read - read MII PHY register
880  *	@net_dev: the net device to read
881  *	@phy_id: the phy address to read
882  *	@location: the phy regiester id to read
883  *
884  *	Read MII registers through MDIO and MDC
885  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
886  *	Please see SiS7014 or ICS spec
887  */
888 
mdio_read(struct net_device * net_dev,int phy_id,int location)889 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
890 {
891 	long mdio_addr = net_dev->base_addr + mear;
892 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
893 	u16 retval = 0;
894 	int i;
895 
896 	mdio_reset(mdio_addr);
897 	mdio_idle(mdio_addr);
898 
899 	for (i = 15; i >= 0; i--) {
900 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
901 		outl(dataval, mdio_addr);
902 		mdio_delay();
903 		outl(dataval | MDC, mdio_addr);
904 		mdio_delay();
905 	}
906 
907 	/* Read the 16 data bits. */
908 	for (i = 16; i > 0; i--) {
909 		outl(0, mdio_addr);
910 		mdio_delay();
911 		retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
912 		outl(MDC, mdio_addr);
913 		mdio_delay();
914 	}
915 	outl(0x00, mdio_addr);
916 
917 	return retval;
918 }
919 
920 /**
921  *	mdio_write - write MII PHY register
922  *	@net_dev: the net device to write
923  *	@phy_id: the phy address to write
924  *	@location: the phy regiester id to write
925  *	@value: the register value to write with
926  *
927  *	Write MII registers with @value through MDIO and MDC
928  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
929  *	please see SiS7014 or ICS spec
930  */
931 
mdio_write(struct net_device * net_dev,int phy_id,int location,int value)932 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
933 			int value)
934 {
935 	long mdio_addr = net_dev->base_addr + mear;
936 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
937 	int i;
938 
939 	mdio_reset(mdio_addr);
940 	mdio_idle(mdio_addr);
941 
942 	/* Shift the command bits out. */
943 	for (i = 15; i >= 0; i--) {
944 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
945 		outb(dataval, mdio_addr);
946 		mdio_delay();
947 		outb(dataval | MDC, mdio_addr);
948 		mdio_delay();
949 	}
950 	mdio_delay();
951 
952 	/* Shift the value bits out. */
953 	for (i = 15; i >= 0; i--) {
954 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
955 		outl(dataval, mdio_addr);
956 		mdio_delay();
957 		outl(dataval | MDC, mdio_addr);
958 		mdio_delay();
959 	}
960 	mdio_delay();
961 
962 	/* Clear out extra bits. */
963 	for (i = 2; i > 0; i--) {
964 		outb(0, mdio_addr);
965 		mdio_delay();
966 		outb(MDC, mdio_addr);
967 		mdio_delay();
968 	}
969 	outl(0x00, mdio_addr);
970 }
971 
972 
973 /**
974  *	sis900_reset_phy - reset sis900 mii phy.
975  *	@net_dev: the net device to write
976  *	@phy_addr: default phy address
977  *
978  *	Some specific phy can't work properly without reset.
979  *	This function will be called during initialization and
980  *	link status change from ON to DOWN.
981  */
982 
sis900_reset_phy(struct net_device * net_dev,int phy_addr)983 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
984 {
985 	int i;
986 	u16 status;
987 
988 	for (i = 0; i < 2; i++)
989 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
990 
991 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
992 
993 	return status;
994 }
995 
996 #ifdef CONFIG_NET_POLL_CONTROLLER
997 /*
998  * Polling 'interrupt' - used by things like netconsole to send skbs
999  * without having to re-enable interrupts. It's not called while
1000  * the interrupt routine is executing.
1001 */
sis900_poll(struct net_device * dev)1002 static void sis900_poll(struct net_device *dev)
1003 {
1004 	disable_irq(dev->irq);
1005 	sis900_interrupt(dev->irq, dev);
1006 	enable_irq(dev->irq);
1007 }
1008 #endif
1009 
1010 /**
1011  *	sis900_open - open sis900 device
1012  *	@net_dev: the net device to open
1013  *
1014  *	Do some initialization and start net interface.
1015  *	enable interrupts and set sis900 timer.
1016  */
1017 
1018 static int
sis900_open(struct net_device * net_dev)1019 sis900_open(struct net_device *net_dev)
1020 {
1021 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1022 	long ioaddr = net_dev->base_addr;
1023 	int ret;
1024 
1025 	/* Soft reset the chip. */
1026 	sis900_reset(net_dev);
1027 
1028 	/* Equalizer workaround Rule */
1029 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1030 
1031 	ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1032 						net_dev->name, net_dev);
1033 	if (ret)
1034 		return ret;
1035 
1036 	sis900_init_rxfilter(net_dev);
1037 
1038 	sis900_init_tx_ring(net_dev);
1039 	sis900_init_rx_ring(net_dev);
1040 
1041 	set_rx_mode(net_dev);
1042 
1043 	netif_start_queue(net_dev);
1044 
1045 	/* Workaround for EDB */
1046 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1047 
1048 	/* Enable all known interrupts by setting the interrupt mask. */
1049 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1050 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1051 	outl(IE, ioaddr + ier);
1052 
1053 	sis900_check_mode(net_dev, sis_priv->mii);
1054 
1055 	/* Set the timer to switch to check for link beat and perhaps switch
1056 	   to an alternate media type. */
1057 	init_timer(&sis_priv->timer);
1058 	sis_priv->timer.expires = jiffies + HZ;
1059 	sis_priv->timer.data = (unsigned long)net_dev;
1060 	sis_priv->timer.function = sis900_timer;
1061 	add_timer(&sis_priv->timer);
1062 
1063 	return 0;
1064 }
1065 
1066 /**
1067  *	sis900_init_rxfilter - Initialize the Rx filter
1068  *	@net_dev: the net device to initialize for
1069  *
1070  *	Set receive filter address to our MAC address
1071  *	and enable packet filtering.
1072  */
1073 
1074 static void
sis900_init_rxfilter(struct net_device * net_dev)1075 sis900_init_rxfilter (struct net_device * net_dev)
1076 {
1077 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1078 	long ioaddr = net_dev->base_addr;
1079 	u32 rfcrSave;
1080 	u32 i;
1081 
1082 	rfcrSave = inl(rfcr + ioaddr);
1083 
1084 	/* disable packet filtering before setting filter */
1085 	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1086 
1087 	/* load MAC addr to filter data register */
1088 	for (i = 0 ; i < 3 ; i++) {
1089 		u32 w;
1090 
1091 		w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1092 		outl((i << RFADDR_shift), ioaddr + rfcr);
1093 		outl(w, ioaddr + rfdr);
1094 
1095 		if (netif_msg_hw(sis_priv)) {
1096 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1097 			       net_dev->name, i, inl(ioaddr + rfdr));
1098 		}
1099 	}
1100 
1101 	/* enable packet filtering */
1102 	outl(rfcrSave | RFEN, rfcr + ioaddr);
1103 }
1104 
1105 /**
1106  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1107  *	@net_dev: the net device to initialize for
1108  *
1109  *	Initialize the Tx descriptor ring,
1110  */
1111 
1112 static void
sis900_init_tx_ring(struct net_device * net_dev)1113 sis900_init_tx_ring(struct net_device *net_dev)
1114 {
1115 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1116 	long ioaddr = net_dev->base_addr;
1117 	int i;
1118 
1119 	sis_priv->tx_full = 0;
1120 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1121 
1122 	for (i = 0; i < NUM_TX_DESC; i++) {
1123 		sis_priv->tx_skbuff[i] = NULL;
1124 
1125 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1126 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1127 		sis_priv->tx_ring[i].cmdsts = 0;
1128 		sis_priv->tx_ring[i].bufptr = 0;
1129 	}
1130 
1131 	/* load Transmit Descriptor Register */
1132 	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1133 	if (netif_msg_hw(sis_priv))
1134 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1135 		       net_dev->name, inl(ioaddr + txdp));
1136 }
1137 
1138 /**
1139  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1140  *	@net_dev: the net device to initialize for
1141  *
1142  *	Initialize the Rx descriptor ring,
1143  *	and pre-allocate recevie buffers (socket buffer)
1144  */
1145 
1146 static void
sis900_init_rx_ring(struct net_device * net_dev)1147 sis900_init_rx_ring(struct net_device *net_dev)
1148 {
1149 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1150 	long ioaddr = net_dev->base_addr;
1151 	int i;
1152 
1153 	sis_priv->cur_rx = 0;
1154 	sis_priv->dirty_rx = 0;
1155 
1156 	/* init RX descriptor */
1157 	for (i = 0; i < NUM_RX_DESC; i++) {
1158 		sis_priv->rx_skbuff[i] = NULL;
1159 
1160 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1161 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1162 		sis_priv->rx_ring[i].cmdsts = 0;
1163 		sis_priv->rx_ring[i].bufptr = 0;
1164 	}
1165 
1166 	/* allocate sock buffers */
1167 	for (i = 0; i < NUM_RX_DESC; i++) {
1168 		struct sk_buff *skb;
1169 
1170 		if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1171 			/* not enough memory for skbuff, this makes a "hole"
1172 			   on the buffer ring, it is not clear how the
1173 			   hardware will react to this kind of degenerated
1174 			   buffer */
1175 			break;
1176 		}
1177 		sis_priv->rx_skbuff[i] = skb;
1178 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1179                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1180                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1181 	}
1182 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1183 
1184 	/* load Receive Descriptor Register */
1185 	outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1186 	if (netif_msg_hw(sis_priv))
1187 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1188 		       net_dev->name, inl(ioaddr + rxdp));
1189 }
1190 
1191 /**
1192  *	sis630_set_eq - set phy equalizer value for 630 LAN
1193  *	@net_dev: the net device to set equalizer value
1194  *	@revision: 630 LAN revision number
1195  *
1196  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1197  *	PHY register 14h(Test)
1198  *	Bit 14: 0 -- Automatically detect (default)
1199  *		1 -- Manually set Equalizer filter
1200  *	Bit 13: 0 -- (Default)
1201  *		1 -- Speed up convergence of equalizer setting
1202  *	Bit 9 : 0 -- (Default)
1203  *		1 -- Disable Baseline Wander
1204  *	Bit 3~7   -- Equalizer filter setting
1205  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1206  *	Then calculate equalizer value
1207  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1208  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1209  *	Calculate Equalizer value:
1210  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1211  *	When the equalizer is stable, this value is not a fixed value. It will be within
1212  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1213  *	0 <= max <= 4  --> set equalizer to max
1214  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1215  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1216  */
1217 
sis630_set_eq(struct net_device * net_dev,u8 revision)1218 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1219 {
1220 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1221 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1222 	int i, maxcount=10;
1223 
1224 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1225 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1226 		return;
1227 
1228 	if (netif_carrier_ok(net_dev)) {
1229 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1230 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1231 					(0x2200 | reg14h) & 0xBFFF);
1232 		for (i=0; i < maxcount; i++) {
1233 			eq_value = (0x00F8 & mdio_read(net_dev,
1234 					sis_priv->cur_phy, MII_RESV)) >> 3;
1235 			if (i == 0)
1236 				max_value=min_value=eq_value;
1237 			max_value = (eq_value > max_value) ?
1238 						eq_value : max_value;
1239 			min_value = (eq_value < min_value) ?
1240 						eq_value : min_value;
1241 		}
1242 		/* 630E rule to determine the equalizer value */
1243 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1244 		    revision == SIS630ET_900_REV) {
1245 			if (max_value < 5)
1246 				eq_value = max_value;
1247 			else if (max_value >= 5 && max_value < 15)
1248 				eq_value = (max_value == min_value) ?
1249 						max_value+2 : max_value+1;
1250 			else if (max_value >= 15)
1251 				eq_value=(max_value == min_value) ?
1252 						max_value+6 : max_value+5;
1253 		}
1254 		/* 630B0&B1 rule to determine the equalizer value */
1255 		if (revision == SIS630A_900_REV &&
1256 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1257 		     sis_priv->host_bridge_rev == SIS630B1)) {
1258 			if (max_value == 0)
1259 				eq_value = 3;
1260 			else
1261 				eq_value = (max_value + min_value + 1)/2;
1262 		}
1263 		/* write equalizer value and setting */
1264 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1265 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1266 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1267 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1268 	} else {
1269 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1270 		if (revision == SIS630A_900_REV &&
1271 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1272 		     sis_priv->host_bridge_rev == SIS630B1))
1273 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1274 						(reg14h | 0x2200) & 0xBFFF);
1275 		else
1276 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1277 						(reg14h | 0x2000) & 0xBFFF);
1278 	}
1279 }
1280 
1281 /**
1282  *	sis900_timer - sis900 timer routine
1283  *	@data: pointer to sis900 net device
1284  *
1285  *	On each timer ticks we check two things,
1286  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1287  */
1288 
sis900_timer(unsigned long data)1289 static void sis900_timer(unsigned long data)
1290 {
1291 	struct net_device *net_dev = (struct net_device *)data;
1292 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1293 	struct mii_phy *mii_phy = sis_priv->mii;
1294 	static const int next_tick = 5*HZ;
1295 	u16 status;
1296 
1297 	if (!sis_priv->autong_complete){
1298 		int uninitialized_var(speed), duplex = 0;
1299 
1300 		sis900_read_mode(net_dev, &speed, &duplex);
1301 		if (duplex){
1302 			sis900_set_mode(net_dev->base_addr, speed, duplex);
1303 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1304 			netif_start_queue(net_dev);
1305 		}
1306 
1307 		sis_priv->timer.expires = jiffies + HZ;
1308 		add_timer(&sis_priv->timer);
1309 		return;
1310 	}
1311 
1312 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1314 
1315 	/* Link OFF -> ON */
1316 	if (!netif_carrier_ok(net_dev)) {
1317 	LookForLink:
1318 		/* Search for new PHY */
1319 		status = sis900_default_phy(net_dev);
1320 		mii_phy = sis_priv->mii;
1321 
1322 		if (status & MII_STAT_LINK){
1323 			sis900_check_mode(net_dev, mii_phy);
1324 			netif_carrier_on(net_dev);
1325 		}
1326 	} else {
1327 	/* Link ON -> OFF */
1328                 if (!(status & MII_STAT_LINK)){
1329                 	netif_carrier_off(net_dev);
1330 			if(netif_msg_link(sis_priv))
1331                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1332 
1333                 	/* Change mode issue */
1334                 	if ((mii_phy->phy_id0 == 0x001D) &&
1335 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1336                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1337 
1338 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1339 
1340                 	goto LookForLink;
1341                 }
1342 	}
1343 
1344 	sis_priv->timer.expires = jiffies + next_tick;
1345 	add_timer(&sis_priv->timer);
1346 }
1347 
1348 /**
1349  *	sis900_check_mode - check the media mode for sis900
1350  *	@net_dev: the net device to be checked
1351  *	@mii_phy: the mii phy
1352  *
1353  *	Older driver gets the media mode from mii status output
1354  *	register. Now we set our media capability and auto-negotiate
1355  *	to get the upper bound of speed and duplex between two ends.
1356  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1357  *	and autong_complete should be set to 1.
1358  */
1359 
sis900_check_mode(struct net_device * net_dev,struct mii_phy * mii_phy)1360 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1361 {
1362 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1363 	long ioaddr = net_dev->base_addr;
1364 	int speed, duplex;
1365 
1366 	if (mii_phy->phy_types == LAN) {
1367 		outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1368 		sis900_set_capability(net_dev , mii_phy);
1369 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1370 	} else {
1371 		outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1372 		speed = HW_SPEED_HOME;
1373 		duplex = FDX_CAPABLE_HALF_SELECTED;
1374 		sis900_set_mode(ioaddr, speed, duplex);
1375 		sis_priv->autong_complete = 1;
1376 	}
1377 }
1378 
1379 /**
1380  *	sis900_set_mode - Set the media mode of mac register.
1381  *	@ioaddr: the address of the device
1382  *	@speed : the transmit speed to be determined
1383  *	@duplex: the duplex mode to be determined
1384  *
1385  *	Set the media mode of mac register txcfg/rxcfg according to
1386  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1387  *	bus is used instead of PCI bus. When this bit is set 1, the
1388  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1389  *	double words.
1390  */
1391 
sis900_set_mode(long ioaddr,int speed,int duplex)1392 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1393 {
1394 	u32 tx_flags = 0, rx_flags = 0;
1395 
1396 	if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1397 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1398 					(TX_FILL_THRESH << TxFILLT_shift);
1399 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1400 	} else {
1401 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1402 					(TX_FILL_THRESH << TxFILLT_shift);
1403 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1404 	}
1405 
1406 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1407 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1408 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1409 	} else {
1410 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1411 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1412 	}
1413 
1414 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1415 		tx_flags |= (TxCSI | TxHBI);
1416 		rx_flags |= RxATX;
1417 	}
1418 
1419 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1420 	/* Can accept Jumbo packet */
1421 	rx_flags |= RxAJAB;
1422 #endif
1423 
1424 	outl (tx_flags, ioaddr + txcfg);
1425 	outl (rx_flags, ioaddr + rxcfg);
1426 }
1427 
1428 /**
1429  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1430  *	@net_dev: the net device to read mode for
1431  *	@phy_addr: mii phy address
1432  *
1433  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1434  *	autong_complete should be set to 0 when starting auto-negotiation.
1435  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1436  *	sis900_timer will wait for link on again if autong_complete = 0.
1437  */
1438 
sis900_auto_negotiate(struct net_device * net_dev,int phy_addr)1439 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1440 {
1441 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1442 	int i = 0;
1443 	u32 status;
1444 
1445 	for (i = 0; i < 2; i++)
1446 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1447 
1448 	if (!(status & MII_STAT_LINK)){
1449 		if(netif_msg_link(sis_priv))
1450 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1451 		sis_priv->autong_complete = 1;
1452 		netif_carrier_off(net_dev);
1453 		return;
1454 	}
1455 
1456 	/* (Re)start AutoNegotiate */
1457 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1458 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1459 	sis_priv->autong_complete = 0;
1460 }
1461 
1462 
1463 /**
1464  *	sis900_read_mode - read media mode for sis900 internal phy
1465  *	@net_dev: the net device to read mode for
1466  *	@speed  : the transmit speed to be determined
1467  *	@duplex : the duplex mode to be determined
1468  *
1469  *	The capability of remote end will be put in mii register autorec
1470  *	after auto-negotiation. Use AND operation to get the upper bound
1471  *	of speed and duplex between two ends.
1472  */
1473 
sis900_read_mode(struct net_device * net_dev,int * speed,int * duplex)1474 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1475 {
1476 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1477 	struct mii_phy *phy = sis_priv->mii;
1478 	int phy_addr = sis_priv->cur_phy;
1479 	u32 status;
1480 	u16 autoadv, autorec;
1481 	int i;
1482 
1483 	for (i = 0; i < 2; i++)
1484 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1485 
1486 	if (!(status & MII_STAT_LINK))
1487 		return;
1488 
1489 	/* AutoNegotiate completed */
1490 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1491 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1492 	status = autoadv & autorec;
1493 
1494 	*speed = HW_SPEED_10_MBPS;
1495 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1496 
1497 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1498 		*speed = HW_SPEED_100_MBPS;
1499 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1500 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1501 
1502 	sis_priv->autong_complete = 1;
1503 
1504 	/* Workaround for Realtek RTL8201 PHY issue */
1505 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1506 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1507 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1508 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1509 			*speed = HW_SPEED_100_MBPS;
1510 	}
1511 
1512 	if(netif_msg_link(sis_priv))
1513 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1514 	       				net_dev->name,
1515 	       				*speed == HW_SPEED_100_MBPS ?
1516 	       					"100mbps" : "10mbps",
1517 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1518 	       					"full" : "half");
1519 }
1520 
1521 /**
1522  *	sis900_tx_timeout - sis900 transmit timeout routine
1523  *	@net_dev: the net device to transmit
1524  *
1525  *	print transmit timeout status
1526  *	disable interrupts and do some tasks
1527  */
1528 
sis900_tx_timeout(struct net_device * net_dev)1529 static void sis900_tx_timeout(struct net_device *net_dev)
1530 {
1531 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1532 	long ioaddr = net_dev->base_addr;
1533 	unsigned long flags;
1534 	int i;
1535 
1536 	if(netif_msg_tx_err(sis_priv))
1537 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1538 	       		net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1539 
1540 	/* Disable interrupts by clearing the interrupt mask. */
1541 	outl(0x0000, ioaddr + imr);
1542 
1543 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1544 	spin_lock_irqsave(&sis_priv->lock, flags);
1545 
1546 	/* discard unsent packets */
1547 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1548 	for (i = 0; i < NUM_TX_DESC; i++) {
1549 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1550 
1551 		if (skb) {
1552 			pci_unmap_single(sis_priv->pci_dev,
1553 				sis_priv->tx_ring[i].bufptr, skb->len,
1554 				PCI_DMA_TODEVICE);
1555 			dev_kfree_skb_irq(skb);
1556 			sis_priv->tx_skbuff[i] = NULL;
1557 			sis_priv->tx_ring[i].cmdsts = 0;
1558 			sis_priv->tx_ring[i].bufptr = 0;
1559 			net_dev->stats.tx_dropped++;
1560 		}
1561 	}
1562 	sis_priv->tx_full = 0;
1563 	netif_wake_queue(net_dev);
1564 
1565 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1566 
1567 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1568 
1569 	/* load Transmit Descriptor Register */
1570 	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1571 
1572 	/* Enable all known interrupts by setting the interrupt mask. */
1573 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1574 }
1575 
1576 /**
1577  *	sis900_start_xmit - sis900 start transmit routine
1578  *	@skb: socket buffer pointer to put the data being transmitted
1579  *	@net_dev: the net device to transmit with
1580  *
1581  *	Set the transmit buffer descriptor,
1582  *	and write TxENA to enable transmit state machine.
1583  *	tell upper layer if the buffer is full
1584  */
1585 
1586 static netdev_tx_t
sis900_start_xmit(struct sk_buff * skb,struct net_device * net_dev)1587 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1588 {
1589 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1590 	long ioaddr = net_dev->base_addr;
1591 	unsigned int  entry;
1592 	unsigned long flags;
1593 	unsigned int  index_cur_tx, index_dirty_tx;
1594 	unsigned int  count_dirty_tx;
1595 
1596 	/* Don't transmit data before the complete of auto-negotiation */
1597 	if(!sis_priv->autong_complete){
1598 		netif_stop_queue(net_dev);
1599 		return NETDEV_TX_BUSY;
1600 	}
1601 
1602 	spin_lock_irqsave(&sis_priv->lock, flags);
1603 
1604 	/* Calculate the next Tx descriptor entry. */
1605 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1606 	sis_priv->tx_skbuff[entry] = skb;
1607 
1608 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1609 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1610 		skb->data, skb->len, PCI_DMA_TODEVICE);
1611 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1612 	outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1613 
1614 	sis_priv->cur_tx ++;
1615 	index_cur_tx = sis_priv->cur_tx;
1616 	index_dirty_tx = sis_priv->dirty_tx;
1617 
1618 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1619 		count_dirty_tx ++;
1620 
1621 	if (index_cur_tx == index_dirty_tx) {
1622 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1623 		sis_priv->tx_full = 1;
1624 		netif_stop_queue(net_dev);
1625 	} else if (count_dirty_tx < NUM_TX_DESC) {
1626 		/* Typical path, tell upper layer that more transmission is possible */
1627 		netif_start_queue(net_dev);
1628 	} else {
1629 		/* buffer full, tell upper layer no more transmission */
1630 		sis_priv->tx_full = 1;
1631 		netif_stop_queue(net_dev);
1632 	}
1633 
1634 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1635 
1636 	if (netif_msg_tx_queued(sis_priv))
1637 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1638 		       "to slot %d.\n",
1639 		       net_dev->name, skb->data, (int)skb->len, entry);
1640 
1641 	return NETDEV_TX_OK;
1642 }
1643 
1644 /**
1645  *	sis900_interrupt - sis900 interrupt handler
1646  *	@irq: the irq number
1647  *	@dev_instance: the client data object
1648  *
1649  *	The interrupt handler does all of the Rx thread work,
1650  *	and cleans up after the Tx thread
1651  */
1652 
sis900_interrupt(int irq,void * dev_instance)1653 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1654 {
1655 	struct net_device *net_dev = dev_instance;
1656 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1657 	int boguscnt = max_interrupt_work;
1658 	long ioaddr = net_dev->base_addr;
1659 	u32 status;
1660 	unsigned int handled = 0;
1661 
1662 	spin_lock (&sis_priv->lock);
1663 
1664 	do {
1665 		status = inl(ioaddr + isr);
1666 
1667 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1668 			/* nothing intresting happened */
1669 			break;
1670 		handled = 1;
1671 
1672 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1673 		if (status & (RxORN | RxERR | RxOK))
1674 			/* Rx interrupt */
1675 			sis900_rx(net_dev);
1676 
1677 		if (status & (TxURN | TxERR | TxIDLE))
1678 			/* Tx interrupt */
1679 			sis900_finish_xmit(net_dev);
1680 
1681 		/* something strange happened !!! */
1682 		if (status & HIBERR) {
1683 			if(netif_msg_intr(sis_priv))
1684 				printk(KERN_INFO "%s: Abnormal interrupt, "
1685 					"status %#8.8x.\n", net_dev->name, status);
1686 			break;
1687 		}
1688 		if (--boguscnt < 0) {
1689 			if(netif_msg_intr(sis_priv))
1690 				printk(KERN_INFO "%s: Too much work at interrupt, "
1691 					"interrupt status = %#8.8x.\n",
1692 					net_dev->name, status);
1693 			break;
1694 		}
1695 	} while (1);
1696 
1697 	if(netif_msg_intr(sis_priv))
1698 		printk(KERN_DEBUG "%s: exiting interrupt, "
1699 		       "interrupt status = 0x%#8.8x.\n",
1700 		       net_dev->name, inl(ioaddr + isr));
1701 
1702 	spin_unlock (&sis_priv->lock);
1703 	return IRQ_RETVAL(handled);
1704 }
1705 
1706 /**
1707  *	sis900_rx - sis900 receive routine
1708  *	@net_dev: the net device which receives data
1709  *
1710  *	Process receive interrupt events,
1711  *	put buffer to higher layer and refill buffer pool
1712  *	Note: This function is called by interrupt handler,
1713  *	don't do "too much" work here
1714  */
1715 
sis900_rx(struct net_device * net_dev)1716 static int sis900_rx(struct net_device *net_dev)
1717 {
1718 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1719 	long ioaddr = net_dev->base_addr;
1720 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1721 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1722 	int rx_work_limit;
1723 
1724 	if (netif_msg_rx_status(sis_priv))
1725 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1726 		       "status:0x%8.8x\n",
1727 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1728 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1729 
1730 	while (rx_status & OWN) {
1731 		unsigned int rx_size;
1732 		unsigned int data_size;
1733 
1734 		if (--rx_work_limit < 0)
1735 			break;
1736 
1737 		data_size = rx_status & DSIZE;
1738 		rx_size = data_size - CRC_SIZE;
1739 
1740 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1741 		/* ``TOOLONG'' flag means jumbo packet received. */
1742 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1743 			rx_status &= (~ ((unsigned int)TOOLONG));
1744 #endif
1745 
1746 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1747 			/* corrupted packet received */
1748 			if (netif_msg_rx_err(sis_priv))
1749 				printk(KERN_DEBUG "%s: Corrupted packet "
1750 				       "received, buffer status = 0x%8.8x/%d.\n",
1751 				       net_dev->name, rx_status, data_size);
1752 			net_dev->stats.rx_errors++;
1753 			if (rx_status & OVERRUN)
1754 				net_dev->stats.rx_over_errors++;
1755 			if (rx_status & (TOOLONG|RUNT))
1756 				net_dev->stats.rx_length_errors++;
1757 			if (rx_status & (RXISERR | FAERR))
1758 				net_dev->stats.rx_frame_errors++;
1759 			if (rx_status & CRCERR)
1760 				net_dev->stats.rx_crc_errors++;
1761 			/* reset buffer descriptor state */
1762 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1763 		} else {
1764 			struct sk_buff * skb;
1765 			struct sk_buff * rx_skb;
1766 
1767 			pci_unmap_single(sis_priv->pci_dev,
1768 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1769 				PCI_DMA_FROMDEVICE);
1770 
1771 			/* refill the Rx buffer, what if there is not enough
1772 			 * memory for new socket buffer ?? */
1773 			if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1774 				/*
1775 				 * Not enough memory to refill the buffer
1776 				 * so we need to recycle the old one so
1777 				 * as to avoid creating a memory hole
1778 				 * in the rx ring
1779 				 */
1780 				skb = sis_priv->rx_skbuff[entry];
1781 				net_dev->stats.rx_dropped++;
1782 				goto refill_rx_ring;
1783 			}
1784 
1785 			/* This situation should never happen, but due to
1786 			   some unknown bugs, it is possible that
1787 			   we are working on NULL sk_buff :-( */
1788 			if (sis_priv->rx_skbuff[entry] == NULL) {
1789 				if (netif_msg_rx_err(sis_priv))
1790 					printk(KERN_WARNING "%s: NULL pointer "
1791 					      "encountered in Rx ring\n"
1792 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1793 					      net_dev->name, sis_priv->cur_rx,
1794 					      sis_priv->dirty_rx);
1795 				dev_kfree_skb(skb);
1796 				break;
1797 			}
1798 
1799 			/* give the socket buffer to upper layers */
1800 			rx_skb = sis_priv->rx_skbuff[entry];
1801 			skb_put(rx_skb, rx_size);
1802 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1803 			netif_rx(rx_skb);
1804 
1805 			/* some network statistics */
1806 			if ((rx_status & BCAST) == MCAST)
1807 				net_dev->stats.multicast++;
1808 			net_dev->stats.rx_bytes += rx_size;
1809 			net_dev->stats.rx_packets++;
1810 			sis_priv->dirty_rx++;
1811 refill_rx_ring:
1812 			sis_priv->rx_skbuff[entry] = skb;
1813 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1814                 	sis_priv->rx_ring[entry].bufptr =
1815 				pci_map_single(sis_priv->pci_dev, skb->data,
1816 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1817 		}
1818 		sis_priv->cur_rx++;
1819 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1820 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1821 	} // while
1822 
1823 	/* refill the Rx buffer, what if the rate of refilling is slower
1824 	 * than consuming ?? */
1825 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1826 		struct sk_buff *skb;
1827 
1828 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1829 
1830 		if (sis_priv->rx_skbuff[entry] == NULL) {
1831 			if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1832 				/* not enough memory for skbuff, this makes a
1833 				 * "hole" on the buffer ring, it is not clear
1834 				 * how the hardware will react to this kind
1835 				 * of degenerated buffer */
1836 				if (netif_msg_rx_err(sis_priv))
1837 					printk(KERN_INFO "%s: Memory squeeze, "
1838 						"deferring packet.\n",
1839 						net_dev->name);
1840 				net_dev->stats.rx_dropped++;
1841 				break;
1842 			}
1843 			sis_priv->rx_skbuff[entry] = skb;
1844 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1845                 	sis_priv->rx_ring[entry].bufptr =
1846 				pci_map_single(sis_priv->pci_dev, skb->data,
1847 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1848 		}
1849 	}
1850 	/* re-enable the potentially idle receive state matchine */
1851 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1852 
1853 	return 0;
1854 }
1855 
1856 /**
1857  *	sis900_finish_xmit - finish up transmission of packets
1858  *	@net_dev: the net device to be transmitted on
1859  *
1860  *	Check for error condition and free socket buffer etc
1861  *	schedule for more transmission as needed
1862  *	Note: This function is called by interrupt handler,
1863  *	don't do "too much" work here
1864  */
1865 
sis900_finish_xmit(struct net_device * net_dev)1866 static void sis900_finish_xmit (struct net_device *net_dev)
1867 {
1868 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1869 
1870 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1871 		struct sk_buff *skb;
1872 		unsigned int entry;
1873 		u32 tx_status;
1874 
1875 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1876 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1877 
1878 		if (tx_status & OWN) {
1879 			/* The packet is not transmitted yet (owned by hardware) !
1880 			 * Note: the interrupt is generated only when Tx Machine
1881 			 * is idle, so this is an almost impossible case */
1882 			break;
1883 		}
1884 
1885 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1886 			/* packet unsuccessfully transmitted */
1887 			if (netif_msg_tx_err(sis_priv))
1888 				printk(KERN_DEBUG "%s: Transmit "
1889 				       "error, Tx status %8.8x.\n",
1890 				       net_dev->name, tx_status);
1891 			net_dev->stats.tx_errors++;
1892 			if (tx_status & UNDERRUN)
1893 				net_dev->stats.tx_fifo_errors++;
1894 			if (tx_status & ABORT)
1895 				net_dev->stats.tx_aborted_errors++;
1896 			if (tx_status & NOCARRIER)
1897 				net_dev->stats.tx_carrier_errors++;
1898 			if (tx_status & OWCOLL)
1899 				net_dev->stats.tx_window_errors++;
1900 		} else {
1901 			/* packet successfully transmitted */
1902 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1903 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1904 			net_dev->stats.tx_packets++;
1905 		}
1906 		/* Free the original skb. */
1907 		skb = sis_priv->tx_skbuff[entry];
1908 		pci_unmap_single(sis_priv->pci_dev,
1909 			sis_priv->tx_ring[entry].bufptr, skb->len,
1910 			PCI_DMA_TODEVICE);
1911 		dev_kfree_skb_irq(skb);
1912 		sis_priv->tx_skbuff[entry] = NULL;
1913 		sis_priv->tx_ring[entry].bufptr = 0;
1914 		sis_priv->tx_ring[entry].cmdsts = 0;
1915 	}
1916 
1917 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1918 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1919 		/* The ring is no longer full, clear tx_full and schedule
1920 		 * more transmission by netif_wake_queue(net_dev) */
1921 		sis_priv->tx_full = 0;
1922 		netif_wake_queue (net_dev);
1923 	}
1924 }
1925 
1926 /**
1927  *	sis900_close - close sis900 device
1928  *	@net_dev: the net device to be closed
1929  *
1930  *	Disable interrupts, stop the Tx and Rx Status Machine
1931  *	free Tx and RX socket buffer
1932  */
1933 
sis900_close(struct net_device * net_dev)1934 static int sis900_close(struct net_device *net_dev)
1935 {
1936 	long ioaddr = net_dev->base_addr;
1937 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1938 	struct sk_buff *skb;
1939 	int i;
1940 
1941 	netif_stop_queue(net_dev);
1942 
1943 	/* Disable interrupts by clearing the interrupt mask. */
1944 	outl(0x0000, ioaddr + imr);
1945 	outl(0x0000, ioaddr + ier);
1946 
1947 	/* Stop the chip's Tx and Rx Status Machine */
1948 	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1949 
1950 	del_timer(&sis_priv->timer);
1951 
1952 	free_irq(net_dev->irq, net_dev);
1953 
1954 	/* Free Tx and RX skbuff */
1955 	for (i = 0; i < NUM_RX_DESC; i++) {
1956 		skb = sis_priv->rx_skbuff[i];
1957 		if (skb) {
1958 			pci_unmap_single(sis_priv->pci_dev,
1959 				sis_priv->rx_ring[i].bufptr,
1960 				RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1961 			dev_kfree_skb(skb);
1962 			sis_priv->rx_skbuff[i] = NULL;
1963 		}
1964 	}
1965 	for (i = 0; i < NUM_TX_DESC; i++) {
1966 		skb = sis_priv->tx_skbuff[i];
1967 		if (skb) {
1968 			pci_unmap_single(sis_priv->pci_dev,
1969 				sis_priv->tx_ring[i].bufptr, skb->len,
1970 				PCI_DMA_TODEVICE);
1971 			dev_kfree_skb(skb);
1972 			sis_priv->tx_skbuff[i] = NULL;
1973 		}
1974 	}
1975 
1976 	/* Green! Put the chip in low-power mode. */
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  *	sis900_get_drvinfo - Return information about driver
1983  *	@net_dev: the net device to probe
1984  *	@info: container for info returned
1985  *
1986  *	Process ethtool command such as "ehtool -i" to show information
1987  */
1988 
sis900_get_drvinfo(struct net_device * net_dev,struct ethtool_drvinfo * info)1989 static void sis900_get_drvinfo(struct net_device *net_dev,
1990 			       struct ethtool_drvinfo *info)
1991 {
1992 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1993 
1994 	strcpy (info->driver, SIS900_MODULE_NAME);
1995 	strcpy (info->version, SIS900_DRV_VERSION);
1996 	strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1997 }
1998 
sis900_get_msglevel(struct net_device * net_dev)1999 static u32 sis900_get_msglevel(struct net_device *net_dev)
2000 {
2001 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2002 	return sis_priv->msg_enable;
2003 }
2004 
sis900_set_msglevel(struct net_device * net_dev,u32 value)2005 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2006 {
2007 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2008 	sis_priv->msg_enable = value;
2009 }
2010 
sis900_get_link(struct net_device * net_dev)2011 static u32 sis900_get_link(struct net_device *net_dev)
2012 {
2013 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2014 	return mii_link_ok(&sis_priv->mii_info);
2015 }
2016 
sis900_get_settings(struct net_device * net_dev,struct ethtool_cmd * cmd)2017 static int sis900_get_settings(struct net_device *net_dev,
2018 				struct ethtool_cmd *cmd)
2019 {
2020 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2021 	spin_lock_irq(&sis_priv->lock);
2022 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2023 	spin_unlock_irq(&sis_priv->lock);
2024 	return 0;
2025 }
2026 
sis900_set_settings(struct net_device * net_dev,struct ethtool_cmd * cmd)2027 static int sis900_set_settings(struct net_device *net_dev,
2028 				struct ethtool_cmd *cmd)
2029 {
2030 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2031 	int rt;
2032 	spin_lock_irq(&sis_priv->lock);
2033 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2034 	spin_unlock_irq(&sis_priv->lock);
2035 	return rt;
2036 }
2037 
sis900_nway_reset(struct net_device * net_dev)2038 static int sis900_nway_reset(struct net_device *net_dev)
2039 {
2040 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2041 	return mii_nway_restart(&sis_priv->mii_info);
2042 }
2043 
2044 /**
2045  *	sis900_set_wol - Set up Wake on Lan registers
2046  *	@net_dev: the net device to probe
2047  *	@wol: container for info passed to the driver
2048  *
2049  *	Process ethtool command "wol" to setup wake on lan features.
2050  *	SiS900 supports sending WoL events if a correct packet is received,
2051  *	but there is no simple way to filter them to only a subset (broadcast,
2052  *	multicast, unicast or arp).
2053  */
2054 
sis900_set_wol(struct net_device * net_dev,struct ethtool_wolinfo * wol)2055 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2056 {
2057 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2058 	long pmctrl_addr = net_dev->base_addr + pmctrl;
2059 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2060 
2061 	if (wol->wolopts == 0) {
2062 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2063 		cfgpmcsr &= ~PME_EN;
2064 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2065 		outl(pmctrl_bits, pmctrl_addr);
2066 		if (netif_msg_wol(sis_priv))
2067 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2068 		return 0;
2069 	}
2070 
2071 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2072 				| WAKE_BCAST | WAKE_ARP))
2073 		return -EINVAL;
2074 
2075 	if (wol->wolopts & WAKE_MAGIC)
2076 		pmctrl_bits |= MAGICPKT;
2077 	if (wol->wolopts & WAKE_PHY)
2078 		pmctrl_bits |= LINKON;
2079 
2080 	outl(pmctrl_bits, pmctrl_addr);
2081 
2082 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2083 	cfgpmcsr |= PME_EN;
2084 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2085 	if (netif_msg_wol(sis_priv))
2086 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2087 
2088 	return 0;
2089 }
2090 
sis900_get_wol(struct net_device * net_dev,struct ethtool_wolinfo * wol)2091 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2092 {
2093 	long pmctrl_addr = net_dev->base_addr + pmctrl;
2094 	u32 pmctrl_bits;
2095 
2096 	pmctrl_bits = inl(pmctrl_addr);
2097 	if (pmctrl_bits & MAGICPKT)
2098 		wol->wolopts |= WAKE_MAGIC;
2099 	if (pmctrl_bits & LINKON)
2100 		wol->wolopts |= WAKE_PHY;
2101 
2102 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2103 }
2104 
2105 static const struct ethtool_ops sis900_ethtool_ops = {
2106 	.get_drvinfo 	= sis900_get_drvinfo,
2107 	.get_msglevel	= sis900_get_msglevel,
2108 	.set_msglevel	= sis900_set_msglevel,
2109 	.get_link	= sis900_get_link,
2110 	.get_settings	= sis900_get_settings,
2111 	.set_settings	= sis900_set_settings,
2112 	.nway_reset	= sis900_nway_reset,
2113 	.get_wol	= sis900_get_wol,
2114 	.set_wol	= sis900_set_wol
2115 };
2116 
2117 /**
2118  *	mii_ioctl - process MII i/o control command
2119  *	@net_dev: the net device to command for
2120  *	@rq: parameter for command
2121  *	@cmd: the i/o command
2122  *
2123  *	Process MII command like read/write MII register
2124  */
2125 
mii_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)2126 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2127 {
2128 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2129 	struct mii_ioctl_data *data = if_mii(rq);
2130 
2131 	switch(cmd) {
2132 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2133 		data->phy_id = sis_priv->mii->phy_addr;
2134 		/* Fall Through */
2135 
2136 	case SIOCGMIIREG:		/* Read MII PHY register. */
2137 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2138 		return 0;
2139 
2140 	case SIOCSMIIREG:		/* Write MII PHY register. */
2141 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2142 		return 0;
2143 	default:
2144 		return -EOPNOTSUPP;
2145 	}
2146 }
2147 
2148 /**
2149  *	sis900_set_config - Set media type by net_device.set_config
2150  *	@dev: the net device for media type change
2151  *	@map: ifmap passed by ifconfig
2152  *
2153  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2154  *	we support only port changes. All other runtime configuration
2155  *	changes will be ignored
2156  */
2157 
sis900_set_config(struct net_device * dev,struct ifmap * map)2158 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2159 {
2160 	struct sis900_private *sis_priv = netdev_priv(dev);
2161 	struct mii_phy *mii_phy = sis_priv->mii;
2162 
2163 	u16 status;
2164 
2165 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2166 		/* we switch on the ifmap->port field. I couldn't find anything
2167 		 * like a definition or standard for the values of that field.
2168 		 * I think the meaning of those values is device specific. But
2169 		 * since I would like to change the media type via the ifconfig
2170 		 * command I use the definition from linux/netdevice.h
2171 		 * (which seems to be different from the ifport(pcmcia) definition) */
2172 		switch(map->port){
2173 		case IF_PORT_UNKNOWN: /* use auto here */
2174 			dev->if_port = map->port;
2175 			/* we are going to change the media type, so the Link
2176 			 * will be temporary down and we need to reflect that
2177 			 * here. When the Link comes up again, it will be
2178 			 * sensed by the sis_timer procedure, which also does
2179 			 * all the rest for us */
2180 			netif_carrier_off(dev);
2181 
2182 			/* read current state */
2183 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2184 
2185 			/* enable auto negotiation and reset the negotioation
2186 			 * (I don't really know what the auto negatiotiation
2187 			 * reset really means, but it sounds for me right to
2188 			 * do one here) */
2189 			mdio_write(dev, mii_phy->phy_addr,
2190 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2191 
2192 			break;
2193 
2194 		case IF_PORT_10BASET: /* 10BaseT */
2195 			dev->if_port = map->port;
2196 
2197 			/* we are going to change the media type, so the Link
2198 			 * will be temporary down and we need to reflect that
2199 			 * here. When the Link comes up again, it will be
2200 			 * sensed by the sis_timer procedure, which also does
2201 			 * all the rest for us */
2202 			netif_carrier_off(dev);
2203 
2204 			/* set Speed to 10Mbps */
2205 			/* read current state */
2206 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207 
2208 			/* disable auto negotiation and force 10MBit mode*/
2209 			mdio_write(dev, mii_phy->phy_addr,
2210 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2211 					MII_CNTL_AUTO));
2212 			break;
2213 
2214 		case IF_PORT_100BASET: /* 100BaseT */
2215 		case IF_PORT_100BASETX: /* 100BaseTx */
2216 			dev->if_port = map->port;
2217 
2218 			/* we are going to change the media type, so the Link
2219 			 * will be temporary down and we need to reflect that
2220 			 * here. When the Link comes up again, it will be
2221 			 * sensed by the sis_timer procedure, which also does
2222 			 * all the rest for us */
2223 			netif_carrier_off(dev);
2224 
2225 			/* set Speed to 100Mbps */
2226 			/* disable auto negotiation and enable 100MBit Mode */
2227 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2228 			mdio_write(dev, mii_phy->phy_addr,
2229 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2230 				   MII_CNTL_SPEED);
2231 
2232 			break;
2233 
2234 		case IF_PORT_10BASE2: /* 10Base2 */
2235 		case IF_PORT_AUI: /* AUI */
2236 		case IF_PORT_100BASEFX: /* 100BaseFx */
2237                 	/* These Modes are not supported (are they?)*/
2238 			return -EOPNOTSUPP;
2239 			break;
2240 
2241 		default:
2242 			return -EINVAL;
2243 		}
2244 	}
2245 	return 0;
2246 }
2247 
2248 /**
2249  *	sis900_mcast_bitnr - compute hashtable index
2250  *	@addr: multicast address
2251  *	@revision: revision id of chip
2252  *
2253  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2254  *	hash table, which makes this function a little bit different from other drivers
2255  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2256  *   	multicast hash table.
2257  */
2258 
sis900_mcast_bitnr(u8 * addr,u8 revision)2259 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2260 {
2261 
2262 	u32 crc = ether_crc(6, addr);
2263 
2264 	/* leave 8 or 7 most siginifant bits */
2265 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2266 		return (int)(crc >> 24);
2267 	else
2268 		return (int)(crc >> 25);
2269 }
2270 
2271 /**
2272  *	set_rx_mode - Set SiS900 receive mode
2273  *	@net_dev: the net device to be set
2274  *
2275  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2276  *	And set the appropriate multicast filter.
2277  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2278  */
2279 
set_rx_mode(struct net_device * net_dev)2280 static void set_rx_mode(struct net_device *net_dev)
2281 {
2282 	long ioaddr = net_dev->base_addr;
2283 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2284 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2285 	int i, table_entries;
2286 	u32 rx_mode;
2287 
2288 	/* 635 Hash Table entries = 256(2^16) */
2289 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2290 			(sis_priv->chipset_rev == SIS900B_900_REV))
2291 		table_entries = 16;
2292 	else
2293 		table_entries = 8;
2294 
2295 	if (net_dev->flags & IFF_PROMISC) {
2296 		/* Accept any kinds of packets */
2297 		rx_mode = RFPromiscuous;
2298 		for (i = 0; i < table_entries; i++)
2299 			mc_filter[i] = 0xffff;
2300 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2301 		   (net_dev->flags & IFF_ALLMULTI)) {
2302 		/* too many multicast addresses or accept all multicast packet */
2303 		rx_mode = RFAAB | RFAAM;
2304 		for (i = 0; i < table_entries; i++)
2305 			mc_filter[i] = 0xffff;
2306 	} else {
2307 		/* Accept Broadcast packet, destination address matchs our
2308 		 * MAC address, use Receive Filter to reject unwanted MCAST
2309 		 * packets */
2310 		struct netdev_hw_addr *ha;
2311 		rx_mode = RFAAB;
2312 
2313 		netdev_for_each_mc_addr(ha, net_dev) {
2314 			unsigned int bit_nr;
2315 
2316 			bit_nr = sis900_mcast_bitnr(ha->addr,
2317 						    sis_priv->chipset_rev);
2318 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2319 		}
2320 	}
2321 
2322 	/* update Multicast Hash Table in Receive Filter */
2323 	for (i = 0; i < table_entries; i++) {
2324                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2325 		outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2326 		outl(mc_filter[i], ioaddr + rfdr);
2327 	}
2328 
2329 	outl(RFEN | rx_mode, ioaddr + rfcr);
2330 
2331 	/* sis900 is capable of looping back packets at MAC level for
2332 	 * debugging purpose */
2333 	if (net_dev->flags & IFF_LOOPBACK) {
2334 		u32 cr_saved;
2335 		/* We must disable Tx/Rx before setting loopback mode */
2336 		cr_saved = inl(ioaddr + cr);
2337 		outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2338 		/* enable loopback */
2339 		outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2340 		outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2341 		/* restore cr */
2342 		outl(cr_saved, ioaddr + cr);
2343 	}
2344 }
2345 
2346 /**
2347  *	sis900_reset - Reset sis900 MAC
2348  *	@net_dev: the net device to reset
2349  *
2350  *	reset sis900 MAC and wait until finished
2351  *	reset through command register
2352  *	change backoff algorithm for 900B0 & 635 M/B
2353  */
2354 
sis900_reset(struct net_device * net_dev)2355 static void sis900_reset(struct net_device *net_dev)
2356 {
2357 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2358 	long ioaddr = net_dev->base_addr;
2359 	int i = 0;
2360 	u32 status = TxRCMP | RxRCMP;
2361 
2362 	outl(0, ioaddr + ier);
2363 	outl(0, ioaddr + imr);
2364 	outl(0, ioaddr + rfcr);
2365 
2366 	outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2367 
2368 	/* Check that the chip has finished the reset. */
2369 	while (status && (i++ < 1000)) {
2370 		status ^= (inl(isr + ioaddr) & status);
2371 	}
2372 
2373 	if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2374 			(sis_priv->chipset_rev == SIS900B_900_REV) )
2375 		outl(PESEL | RND_CNT, ioaddr + cfg);
2376 	else
2377 		outl(PESEL, ioaddr + cfg);
2378 }
2379 
2380 /**
2381  *	sis900_remove - Remove sis900 device
2382  *	@pci_dev: the pci device to be removed
2383  *
2384  *	remove and release SiS900 net device
2385  */
2386 
sis900_remove(struct pci_dev * pci_dev)2387 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2388 {
2389 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2390 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2391 	struct mii_phy *phy = NULL;
2392 
2393 	while (sis_priv->first_mii) {
2394 		phy = sis_priv->first_mii;
2395 		sis_priv->first_mii = phy->next;
2396 		kfree(phy);
2397 	}
2398 
2399 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2400 		sis_priv->rx_ring_dma);
2401 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2402 		sis_priv->tx_ring_dma);
2403 	unregister_netdev(net_dev);
2404 	free_netdev(net_dev);
2405 	pci_release_regions(pci_dev);
2406 	pci_set_drvdata(pci_dev, NULL);
2407 }
2408 
2409 #ifdef CONFIG_PM
2410 
sis900_suspend(struct pci_dev * pci_dev,pm_message_t state)2411 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2412 {
2413 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2414 	long ioaddr = net_dev->base_addr;
2415 
2416 	if(!netif_running(net_dev))
2417 		return 0;
2418 
2419 	netif_stop_queue(net_dev);
2420 	netif_device_detach(net_dev);
2421 
2422 	/* Stop the chip's Tx and Rx Status Machine */
2423 	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2424 
2425 	pci_set_power_state(pci_dev, PCI_D3hot);
2426 	pci_save_state(pci_dev);
2427 
2428 	return 0;
2429 }
2430 
sis900_resume(struct pci_dev * pci_dev)2431 static int sis900_resume(struct pci_dev *pci_dev)
2432 {
2433 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2434 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2435 	long ioaddr = net_dev->base_addr;
2436 
2437 	if(!netif_running(net_dev))
2438 		return 0;
2439 	pci_restore_state(pci_dev);
2440 	pci_set_power_state(pci_dev, PCI_D0);
2441 
2442 	sis900_init_rxfilter(net_dev);
2443 
2444 	sis900_init_tx_ring(net_dev);
2445 	sis900_init_rx_ring(net_dev);
2446 
2447 	set_rx_mode(net_dev);
2448 
2449 	netif_device_attach(net_dev);
2450 	netif_start_queue(net_dev);
2451 
2452 	/* Workaround for EDB */
2453 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2454 
2455 	/* Enable all known interrupts by setting the interrupt mask. */
2456 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2457 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2458 	outl(IE, ioaddr + ier);
2459 
2460 	sis900_check_mode(net_dev, sis_priv->mii);
2461 
2462 	return 0;
2463 }
2464 #endif /* CONFIG_PM */
2465 
2466 static struct pci_driver sis900_pci_driver = {
2467 	.name		= SIS900_MODULE_NAME,
2468 	.id_table	= sis900_pci_tbl,
2469 	.probe		= sis900_probe,
2470 	.remove		= __devexit_p(sis900_remove),
2471 #ifdef CONFIG_PM
2472 	.suspend	= sis900_suspend,
2473 	.resume		= sis900_resume,
2474 #endif /* CONFIG_PM */
2475 };
2476 
sis900_init_module(void)2477 static int __init sis900_init_module(void)
2478 {
2479 /* when a module, this is printed whether or not devices are found in probe */
2480 #ifdef MODULE
2481 	printk(version);
2482 #endif
2483 
2484 	return pci_register_driver(&sis900_pci_driver);
2485 }
2486 
sis900_cleanup_module(void)2487 static void __exit sis900_cleanup_module(void)
2488 {
2489 	pci_unregister_driver(&sis900_pci_driver);
2490 }
2491 
2492 module_init(sis900_init_module);
2493 module_exit(sis900_cleanup_module);
2494 
2495