1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12
13 /*
14 * This header contains the structure definitions and constants used
15 * by file system objects that can be retrieved using
16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
17 * is needed to describe a leaf node's key or item contents.
18 */
19
20 /* holds pointers to all of the tree roots */
21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
22
23 /* stores information about which extents are in use, and reference counts */
24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25
26 /*
27 * chunk tree stores translations from logical -> physical block numbering
28 * the super block points to the chunk tree
29 */
30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31
32 /*
33 * stores information about which areas of a given device are in use.
34 * one per device. The tree of tree roots points to the device tree
35 */
36 #define BTRFS_DEV_TREE_OBJECTID 4ULL
37
38 /* one per subvolume, storing files and directories */
39 #define BTRFS_FS_TREE_OBJECTID 5ULL
40
41 /* directory objectid inside the root tree */
42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43
44 /* holds checksums of all the data extents */
45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
46
47 /* holds quota configuration and tracking */
48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49
50 /* for storing items that use the BTRFS_UUID_KEY* types */
51 #define BTRFS_UUID_TREE_OBJECTID 9ULL
52
53 /* tracks free space in block groups. */
54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55
56 /* Holds the block group items for extent tree v2. */
57 #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
58
59 /* device stats in the device tree */
60 #define BTRFS_DEV_STATS_OBJECTID 0ULL
61
62 /* for storing balance parameters in the root tree */
63 #define BTRFS_BALANCE_OBJECTID -4ULL
64
65 /* orphan objectid for tracking unlinked/truncated files */
66 #define BTRFS_ORPHAN_OBJECTID -5ULL
67
68 /* does write ahead logging to speed up fsyncs */
69 #define BTRFS_TREE_LOG_OBJECTID -6ULL
70 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
71
72 /* for space balancing */
73 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
74 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
75
76 /*
77 * extent checksums all have this objectid
78 * this allows them to share the logging tree
79 * for fsyncs
80 */
81 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
82
83 /* For storing free space cache */
84 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
85
86 /*
87 * The inode number assigned to the special inode for storing
88 * free ino cache
89 */
90 #define BTRFS_FREE_INO_OBJECTID -12ULL
91
92 /* dummy objectid represents multiple objectids */
93 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
94
95 /*
96 * All files have objectids in this range.
97 */
98 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
99 #define BTRFS_LAST_FREE_OBJECTID -256ULL
100 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
101
102
103 /*
104 * the device items go into the chunk tree. The key is in the form
105 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
106 */
107 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
108
109 #define BTRFS_BTREE_INODE_OBJECTID 1
110
111 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
112
113 #define BTRFS_DEV_REPLACE_DEVID 0ULL
114
115 /*
116 * inode items have the data typically returned from stat and store other
117 * info about object characteristics. There is one for every file and dir in
118 * the FS
119 */
120 #define BTRFS_INODE_ITEM_KEY 1
121 #define BTRFS_INODE_REF_KEY 12
122 #define BTRFS_INODE_EXTREF_KEY 13
123 #define BTRFS_XATTR_ITEM_KEY 24
124
125 /*
126 * fs verity items are stored under two different key types on disk.
127 * The descriptor items:
128 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
129 *
130 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
131 * of the descriptor item and some extra data for encryption.
132 * Starting at offset 1, these hold the generic fs verity descriptor. The
133 * latter are opaque to btrfs, we just read and write them as a blob for the
134 * higher level verity code. The most common descriptor size is 256 bytes.
135 *
136 * The merkle tree items:
137 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
138 *
139 * These also start at offset 0, and correspond to the merkle tree bytes. When
140 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
141 * offset 0 for this key type. These are also opaque to btrfs, we're blindly
142 * storing whatever fsverity sends down.
143 */
144 #define BTRFS_VERITY_DESC_ITEM_KEY 36
145 #define BTRFS_VERITY_MERKLE_ITEM_KEY 37
146
147 #define BTRFS_ORPHAN_ITEM_KEY 48
148 /* reserve 2-15 close to the inode for later flexibility */
149
150 /*
151 * dir items are the name -> inode pointers in a directory. There is one
152 * for every name in a directory. BTRFS_DIR_LOG_ITEM_KEY is no longer used
153 * but it's still defined here for documentation purposes and to help avoid
154 * having its numerical value reused in the future.
155 */
156 #define BTRFS_DIR_LOG_ITEM_KEY 60
157 #define BTRFS_DIR_LOG_INDEX_KEY 72
158 #define BTRFS_DIR_ITEM_KEY 84
159 #define BTRFS_DIR_INDEX_KEY 96
160 /*
161 * extent data is for file data
162 */
163 #define BTRFS_EXTENT_DATA_KEY 108
164
165 /*
166 * extent csums are stored in a separate tree and hold csums for
167 * an entire extent on disk.
168 */
169 #define BTRFS_EXTENT_CSUM_KEY 128
170
171 /*
172 * root items point to tree roots. They are typically in the root
173 * tree used by the super block to find all the other trees
174 */
175 #define BTRFS_ROOT_ITEM_KEY 132
176
177 /*
178 * root backrefs tie subvols and snapshots to the directory entries that
179 * reference them
180 */
181 #define BTRFS_ROOT_BACKREF_KEY 144
182
183 /*
184 * root refs make a fast index for listing all of the snapshots and
185 * subvolumes referenced by a given root. They point directly to the
186 * directory item in the root that references the subvol
187 */
188 #define BTRFS_ROOT_REF_KEY 156
189
190 /*
191 * extent items are in the extent map tree. These record which blocks
192 * are used, and how many references there are to each block
193 */
194 #define BTRFS_EXTENT_ITEM_KEY 168
195
196 /*
197 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
198 * the length, so we save the level in key->offset instead of the length.
199 */
200 #define BTRFS_METADATA_ITEM_KEY 169
201
202 #define BTRFS_TREE_BLOCK_REF_KEY 176
203
204 #define BTRFS_EXTENT_DATA_REF_KEY 178
205
206 #define BTRFS_EXTENT_REF_V0_KEY 180
207
208 #define BTRFS_SHARED_BLOCK_REF_KEY 182
209
210 #define BTRFS_SHARED_DATA_REF_KEY 184
211
212 /*
213 * block groups give us hints into the extent allocation trees. Which
214 * blocks are free etc etc
215 */
216 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
217
218 /*
219 * Every block group is represented in the free space tree by a free space info
220 * item, which stores some accounting information. It is keyed on
221 * (block_group_start, FREE_SPACE_INFO, block_group_length).
222 */
223 #define BTRFS_FREE_SPACE_INFO_KEY 198
224
225 /*
226 * A free space extent tracks an extent of space that is free in a block group.
227 * It is keyed on (start, FREE_SPACE_EXTENT, length).
228 */
229 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
230
231 /*
232 * When a block group becomes very fragmented, we convert it to use bitmaps
233 * instead of extents. A free space bitmap is keyed on
234 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
235 * (length / sectorsize) bits.
236 */
237 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
238
239 #define BTRFS_DEV_EXTENT_KEY 204
240 #define BTRFS_DEV_ITEM_KEY 216
241 #define BTRFS_CHUNK_ITEM_KEY 228
242
243 /*
244 * Records the overall state of the qgroups.
245 * There's only one instance of this key present,
246 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
247 */
248 #define BTRFS_QGROUP_STATUS_KEY 240
249 /*
250 * Records the currently used space of the qgroup.
251 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
252 */
253 #define BTRFS_QGROUP_INFO_KEY 242
254 /*
255 * Contains the user configured limits for the qgroup.
256 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
257 */
258 #define BTRFS_QGROUP_LIMIT_KEY 244
259 /*
260 * Records the child-parent relationship of qgroups. For
261 * each relation, 2 keys are present:
262 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
263 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
264 */
265 #define BTRFS_QGROUP_RELATION_KEY 246
266
267 /*
268 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
269 */
270 #define BTRFS_BALANCE_ITEM_KEY 248
271
272 /*
273 * The key type for tree items that are stored persistently, but do not need to
274 * exist for extended period of time. The items can exist in any tree.
275 *
276 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
277 *
278 * Existing items:
279 *
280 * - balance status item
281 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
282 */
283 #define BTRFS_TEMPORARY_ITEM_KEY 248
284
285 /*
286 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
287 */
288 #define BTRFS_DEV_STATS_KEY 249
289
290 /*
291 * The key type for tree items that are stored persistently and usually exist
292 * for a long period, eg. filesystem lifetime. The item kinds can be status
293 * information, stats or preference values. The item can exist in any tree.
294 *
295 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
296 *
297 * Existing items:
298 *
299 * - device statistics, store IO stats in the device tree, one key for all
300 * stats
301 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
302 */
303 #define BTRFS_PERSISTENT_ITEM_KEY 249
304
305 /*
306 * Persistently stores the device replace state in the device tree.
307 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
308 */
309 #define BTRFS_DEV_REPLACE_KEY 250
310
311 /*
312 * Stores items that allow to quickly map UUIDs to something else.
313 * These items are part of the filesystem UUID tree.
314 * The key is built like this:
315 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
316 */
317 #if BTRFS_UUID_SIZE != 16
318 #error "UUID items require BTRFS_UUID_SIZE == 16!"
319 #endif
320 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
321 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
322 * received subvols */
323
324 /*
325 * string items are for debugging. They just store a short string of
326 * data in the FS
327 */
328 #define BTRFS_STRING_ITEM_KEY 253
329
330 /* Maximum metadata block size (nodesize) */
331 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
332
333 /* 32 bytes in various csum fields */
334 #define BTRFS_CSUM_SIZE 32
335
336 /* csum types */
337 enum btrfs_csum_type {
338 BTRFS_CSUM_TYPE_CRC32 = 0,
339 BTRFS_CSUM_TYPE_XXHASH = 1,
340 BTRFS_CSUM_TYPE_SHA256 = 2,
341 BTRFS_CSUM_TYPE_BLAKE2 = 3,
342 };
343
344 /*
345 * flags definitions for directory entry item type
346 *
347 * Used by:
348 * struct btrfs_dir_item.type
349 *
350 * Values 0..7 must match common file type values in fs_types.h.
351 */
352 #define BTRFS_FT_UNKNOWN 0
353 #define BTRFS_FT_REG_FILE 1
354 #define BTRFS_FT_DIR 2
355 #define BTRFS_FT_CHRDEV 3
356 #define BTRFS_FT_BLKDEV 4
357 #define BTRFS_FT_FIFO 5
358 #define BTRFS_FT_SOCK 6
359 #define BTRFS_FT_SYMLINK 7
360 #define BTRFS_FT_XATTR 8
361 #define BTRFS_FT_MAX 9
362
363 /*
364 * The key defines the order in the tree, and so it also defines (optimal)
365 * block layout.
366 *
367 * objectid corresponds to the inode number.
368 *
369 * type tells us things about the object, and is a kind of stream selector.
370 * so for a given inode, keys with type of 1 might refer to the inode data,
371 * type of 2 may point to file data in the btree and type == 3 may point to
372 * extents.
373 *
374 * offset is the starting byte offset for this key in the stream.
375 *
376 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
377 * in cpu native order. Otherwise they are identical and their sizes
378 * should be the same (ie both packed)
379 */
380 struct btrfs_disk_key {
381 __le64 objectid;
382 __u8 type;
383 __le64 offset;
384 } __attribute__ ((__packed__));
385
386 struct btrfs_key {
387 __u64 objectid;
388 __u8 type;
389 __u64 offset;
390 } __attribute__ ((__packed__));
391
392 struct btrfs_dev_item {
393 /* the internal btrfs device id */
394 __le64 devid;
395
396 /* size of the device */
397 __le64 total_bytes;
398
399 /* bytes used */
400 __le64 bytes_used;
401
402 /* optimal io alignment for this device */
403 __le32 io_align;
404
405 /* optimal io width for this device */
406 __le32 io_width;
407
408 /* minimal io size for this device */
409 __le32 sector_size;
410
411 /* type and info about this device */
412 __le64 type;
413
414 /* expected generation for this device */
415 __le64 generation;
416
417 /*
418 * starting byte of this partition on the device,
419 * to allow for stripe alignment in the future
420 */
421 __le64 start_offset;
422
423 /* grouping information for allocation decisions */
424 __le32 dev_group;
425
426 /* seek speed 0-100 where 100 is fastest */
427 __u8 seek_speed;
428
429 /* bandwidth 0-100 where 100 is fastest */
430 __u8 bandwidth;
431
432 /* btrfs generated uuid for this device */
433 __u8 uuid[BTRFS_UUID_SIZE];
434
435 /* uuid of FS who owns this device */
436 __u8 fsid[BTRFS_UUID_SIZE];
437 } __attribute__ ((__packed__));
438
439 struct btrfs_stripe {
440 __le64 devid;
441 __le64 offset;
442 __u8 dev_uuid[BTRFS_UUID_SIZE];
443 } __attribute__ ((__packed__));
444
445 struct btrfs_chunk {
446 /* size of this chunk in bytes */
447 __le64 length;
448
449 /* objectid of the root referencing this chunk */
450 __le64 owner;
451
452 __le64 stripe_len;
453 __le64 type;
454
455 /* optimal io alignment for this chunk */
456 __le32 io_align;
457
458 /* optimal io width for this chunk */
459 __le32 io_width;
460
461 /* minimal io size for this chunk */
462 __le32 sector_size;
463
464 /* 2^16 stripes is quite a lot, a second limit is the size of a single
465 * item in the btree
466 */
467 __le16 num_stripes;
468
469 /* sub stripes only matter for raid10 */
470 __le16 sub_stripes;
471 struct btrfs_stripe stripe;
472 /* additional stripes go here */
473 } __attribute__ ((__packed__));
474
475 #define BTRFS_FREE_SPACE_EXTENT 1
476 #define BTRFS_FREE_SPACE_BITMAP 2
477
478 struct btrfs_free_space_entry {
479 __le64 offset;
480 __le64 bytes;
481 __u8 type;
482 } __attribute__ ((__packed__));
483
484 struct btrfs_free_space_header {
485 struct btrfs_disk_key location;
486 __le64 generation;
487 __le64 num_entries;
488 __le64 num_bitmaps;
489 } __attribute__ ((__packed__));
490
491 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
492 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
493
494 /* Super block flags */
495 /* Errors detected */
496 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
497
498 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
499 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
500 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
501 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
502 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
503
504
505 /*
506 * items in the extent btree are used to record the objectid of the
507 * owner of the block and the number of references
508 */
509
510 struct btrfs_extent_item {
511 __le64 refs;
512 __le64 generation;
513 __le64 flags;
514 } __attribute__ ((__packed__));
515
516 struct btrfs_extent_item_v0 {
517 __le32 refs;
518 } __attribute__ ((__packed__));
519
520
521 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
522 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
523
524 /* following flags only apply to tree blocks */
525
526 /* use full backrefs for extent pointers in the block */
527 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
528
529 /*
530 * this flag is only used internally by scrub and may be changed at any time
531 * it is only declared here to avoid collisions
532 */
533 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
534
535 struct btrfs_tree_block_info {
536 struct btrfs_disk_key key;
537 __u8 level;
538 } __attribute__ ((__packed__));
539
540 struct btrfs_extent_data_ref {
541 __le64 root;
542 __le64 objectid;
543 __le64 offset;
544 __le32 count;
545 } __attribute__ ((__packed__));
546
547 struct btrfs_shared_data_ref {
548 __le32 count;
549 } __attribute__ ((__packed__));
550
551 struct btrfs_extent_inline_ref {
552 __u8 type;
553 __le64 offset;
554 } __attribute__ ((__packed__));
555
556 /* dev extents record free space on individual devices. The owner
557 * field points back to the chunk allocation mapping tree that allocated
558 * the extent. The chunk tree uuid field is a way to double check the owner
559 */
560 struct btrfs_dev_extent {
561 __le64 chunk_tree;
562 __le64 chunk_objectid;
563 __le64 chunk_offset;
564 __le64 length;
565 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
566 } __attribute__ ((__packed__));
567
568 struct btrfs_inode_ref {
569 __le64 index;
570 __le16 name_len;
571 /* name goes here */
572 } __attribute__ ((__packed__));
573
574 struct btrfs_inode_extref {
575 __le64 parent_objectid;
576 __le64 index;
577 __le16 name_len;
578 __u8 name[];
579 /* name goes here */
580 } __attribute__ ((__packed__));
581
582 struct btrfs_timespec {
583 __le64 sec;
584 __le32 nsec;
585 } __attribute__ ((__packed__));
586
587 struct btrfs_inode_item {
588 /* nfs style generation number */
589 __le64 generation;
590 /* transid that last touched this inode */
591 __le64 transid;
592 __le64 size;
593 __le64 nbytes;
594 __le64 block_group;
595 __le32 nlink;
596 __le32 uid;
597 __le32 gid;
598 __le32 mode;
599 __le64 rdev;
600 __le64 flags;
601
602 /* modification sequence number for NFS */
603 __le64 sequence;
604
605 /*
606 * a little future expansion, for more than this we can
607 * just grow the inode item and version it
608 */
609 __le64 reserved[4];
610 struct btrfs_timespec atime;
611 struct btrfs_timespec ctime;
612 struct btrfs_timespec mtime;
613 struct btrfs_timespec otime;
614 } __attribute__ ((__packed__));
615
616 struct btrfs_dir_log_item {
617 __le64 end;
618 } __attribute__ ((__packed__));
619
620 struct btrfs_dir_item {
621 struct btrfs_disk_key location;
622 __le64 transid;
623 __le16 data_len;
624 __le16 name_len;
625 __u8 type;
626 } __attribute__ ((__packed__));
627
628 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
629
630 /*
631 * Internal in-memory flag that a subvolume has been marked for deletion but
632 * still visible as a directory
633 */
634 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
635
636 struct btrfs_root_item {
637 struct btrfs_inode_item inode;
638 __le64 generation;
639 __le64 root_dirid;
640 __le64 bytenr;
641 __le64 byte_limit;
642 __le64 bytes_used;
643 __le64 last_snapshot;
644 __le64 flags;
645 __le32 refs;
646 struct btrfs_disk_key drop_progress;
647 __u8 drop_level;
648 __u8 level;
649
650 /*
651 * The following fields appear after subvol_uuids+subvol_times
652 * were introduced.
653 */
654
655 /*
656 * This generation number is used to test if the new fields are valid
657 * and up to date while reading the root item. Every time the root item
658 * is written out, the "generation" field is copied into this field. If
659 * anyone ever mounted the fs with an older kernel, we will have
660 * mismatching generation values here and thus must invalidate the
661 * new fields. See btrfs_update_root and btrfs_find_last_root for
662 * details.
663 * the offset of generation_v2 is also used as the start for the memset
664 * when invalidating the fields.
665 */
666 __le64 generation_v2;
667 __u8 uuid[BTRFS_UUID_SIZE];
668 __u8 parent_uuid[BTRFS_UUID_SIZE];
669 __u8 received_uuid[BTRFS_UUID_SIZE];
670 __le64 ctransid; /* updated when an inode changes */
671 __le64 otransid; /* trans when created */
672 __le64 stransid; /* trans when sent. non-zero for received subvol */
673 __le64 rtransid; /* trans when received. non-zero for received subvol */
674 struct btrfs_timespec ctime;
675 struct btrfs_timespec otime;
676 struct btrfs_timespec stime;
677 struct btrfs_timespec rtime;
678 __le64 reserved[8]; /* for future */
679 } __attribute__ ((__packed__));
680
681 /*
682 * Btrfs root item used to be smaller than current size. The old format ends
683 * at where member generation_v2 is.
684 */
btrfs_legacy_root_item_size(void)685 static inline __u32 btrfs_legacy_root_item_size(void)
686 {
687 return offsetof(struct btrfs_root_item, generation_v2);
688 }
689
690 /*
691 * this is used for both forward and backward root refs
692 */
693 struct btrfs_root_ref {
694 __le64 dirid;
695 __le64 sequence;
696 __le16 name_len;
697 } __attribute__ ((__packed__));
698
699 struct btrfs_disk_balance_args {
700 /*
701 * profiles to operate on, single is denoted by
702 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
703 */
704 __le64 profiles;
705
706 /*
707 * usage filter
708 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
709 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
710 */
711 union {
712 __le64 usage;
713 struct {
714 __le32 usage_min;
715 __le32 usage_max;
716 };
717 };
718
719 /* devid filter */
720 __le64 devid;
721
722 /* devid subset filter [pstart..pend) */
723 __le64 pstart;
724 __le64 pend;
725
726 /* btrfs virtual address space subset filter [vstart..vend) */
727 __le64 vstart;
728 __le64 vend;
729
730 /*
731 * profile to convert to, single is denoted by
732 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
733 */
734 __le64 target;
735
736 /* BTRFS_BALANCE_ARGS_* */
737 __le64 flags;
738
739 /*
740 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
741 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
742 * and maximum
743 */
744 union {
745 __le64 limit;
746 struct {
747 __le32 limit_min;
748 __le32 limit_max;
749 };
750 };
751
752 /*
753 * Process chunks that cross stripes_min..stripes_max devices,
754 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
755 */
756 __le32 stripes_min;
757 __le32 stripes_max;
758
759 __le64 unused[6];
760 } __attribute__ ((__packed__));
761
762 /*
763 * store balance parameters to disk so that balance can be properly
764 * resumed after crash or unmount
765 */
766 struct btrfs_balance_item {
767 /* BTRFS_BALANCE_* */
768 __le64 flags;
769
770 struct btrfs_disk_balance_args data;
771 struct btrfs_disk_balance_args meta;
772 struct btrfs_disk_balance_args sys;
773
774 __le64 unused[4];
775 } __attribute__ ((__packed__));
776
777 enum {
778 BTRFS_FILE_EXTENT_INLINE = 0,
779 BTRFS_FILE_EXTENT_REG = 1,
780 BTRFS_FILE_EXTENT_PREALLOC = 2,
781 BTRFS_NR_FILE_EXTENT_TYPES = 3,
782 };
783
784 struct btrfs_file_extent_item {
785 /*
786 * transaction id that created this extent
787 */
788 __le64 generation;
789 /*
790 * max number of bytes to hold this extent in ram
791 * when we split a compressed extent we can't know how big
792 * each of the resulting pieces will be. So, this is
793 * an upper limit on the size of the extent in ram instead of
794 * an exact limit.
795 */
796 __le64 ram_bytes;
797
798 /*
799 * 32 bits for the various ways we might encode the data,
800 * including compression and encryption. If any of these
801 * are set to something a given disk format doesn't understand
802 * it is treated like an incompat flag for reading and writing,
803 * but not for stat.
804 */
805 __u8 compression;
806 __u8 encryption;
807 __le16 other_encoding; /* spare for later use */
808
809 /* are we inline data or a real extent? */
810 __u8 type;
811
812 /*
813 * disk space consumed by the extent, checksum blocks are included
814 * in these numbers
815 *
816 * At this offset in the structure, the inline extent data start.
817 */
818 __le64 disk_bytenr;
819 __le64 disk_num_bytes;
820 /*
821 * the logical offset in file blocks (no csums)
822 * this extent record is for. This allows a file extent to point
823 * into the middle of an existing extent on disk, sharing it
824 * between two snapshots (useful if some bytes in the middle of the
825 * extent have changed
826 */
827 __le64 offset;
828 /*
829 * the logical number of file blocks (no csums included). This
830 * always reflects the size uncompressed and without encoding.
831 */
832 __le64 num_bytes;
833
834 } __attribute__ ((__packed__));
835
836 struct btrfs_csum_item {
837 __u8 csum;
838 } __attribute__ ((__packed__));
839
840 struct btrfs_dev_stats_item {
841 /*
842 * grow this item struct at the end for future enhancements and keep
843 * the existing values unchanged
844 */
845 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
846 } __attribute__ ((__packed__));
847
848 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
849 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
850
851 struct btrfs_dev_replace_item {
852 /*
853 * grow this item struct at the end for future enhancements and keep
854 * the existing values unchanged
855 */
856 __le64 src_devid;
857 __le64 cursor_left;
858 __le64 cursor_right;
859 __le64 cont_reading_from_srcdev_mode;
860
861 __le64 replace_state;
862 __le64 time_started;
863 __le64 time_stopped;
864 __le64 num_write_errors;
865 __le64 num_uncorrectable_read_errors;
866 } __attribute__ ((__packed__));
867
868 /* different types of block groups (and chunks) */
869 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
870 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
871 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
872 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
873 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
874 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
875 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
876 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
877 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
878 #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
879 #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
880 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
881 BTRFS_SPACE_INFO_GLOBAL_RSV)
882
883 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
884 BTRFS_BLOCK_GROUP_SYSTEM | \
885 BTRFS_BLOCK_GROUP_METADATA)
886
887 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
888 BTRFS_BLOCK_GROUP_RAID1 | \
889 BTRFS_BLOCK_GROUP_RAID1C3 | \
890 BTRFS_BLOCK_GROUP_RAID1C4 | \
891 BTRFS_BLOCK_GROUP_RAID5 | \
892 BTRFS_BLOCK_GROUP_RAID6 | \
893 BTRFS_BLOCK_GROUP_DUP | \
894 BTRFS_BLOCK_GROUP_RAID10)
895 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
896 BTRFS_BLOCK_GROUP_RAID6)
897
898 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
899 BTRFS_BLOCK_GROUP_RAID1C3 | \
900 BTRFS_BLOCK_GROUP_RAID1C4)
901
902 /*
903 * We need a bit for restriper to be able to tell when chunks of type
904 * SINGLE are available. This "extended" profile format is used in
905 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
906 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
907 * to avoid remappings between two formats in future.
908 */
909 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
910
911 /*
912 * A fake block group type that is used to communicate global block reserve
913 * size to userspace via the SPACE_INFO ioctl.
914 */
915 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
916
917 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
918 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
919
chunk_to_extended(__u64 flags)920 static inline __u64 chunk_to_extended(__u64 flags)
921 {
922 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
923 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
924
925 return flags;
926 }
extended_to_chunk(__u64 flags)927 static inline __u64 extended_to_chunk(__u64 flags)
928 {
929 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
930 }
931
932 struct btrfs_block_group_item {
933 __le64 used;
934 __le64 chunk_objectid;
935 __le64 flags;
936 } __attribute__ ((__packed__));
937
938 struct btrfs_free_space_info {
939 __le32 extent_count;
940 __le32 flags;
941 } __attribute__ ((__packed__));
942
943 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
944
945 #define BTRFS_QGROUP_LEVEL_SHIFT 48
btrfs_qgroup_level(__u64 qgroupid)946 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
947 {
948 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
949 }
950
951 /*
952 * is subvolume quota turned on?
953 */
954 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
955 /*
956 * RESCAN is set during the initialization phase
957 */
958 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
959 /*
960 * Some qgroup entries are known to be out of date,
961 * either because the configuration has changed in a way that
962 * makes a rescan necessary, or because the fs has been mounted
963 * with a non-qgroup-aware version.
964 * Turning qouta off and on again makes it inconsistent, too.
965 */
966 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
967
968 #define BTRFS_QGROUP_STATUS_FLAGS_MASK (BTRFS_QGROUP_STATUS_FLAG_ON | \
969 BTRFS_QGROUP_STATUS_FLAG_RESCAN | \
970 BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT)
971
972 #define BTRFS_QGROUP_STATUS_VERSION 1
973
974 struct btrfs_qgroup_status_item {
975 __le64 version;
976 /*
977 * the generation is updated during every commit. As older
978 * versions of btrfs are not aware of qgroups, it will be
979 * possible to detect inconsistencies by checking the
980 * generation on mount time
981 */
982 __le64 generation;
983
984 /* flag definitions see above */
985 __le64 flags;
986
987 /*
988 * only used during scanning to record the progress
989 * of the scan. It contains a logical address
990 */
991 __le64 rescan;
992 } __attribute__ ((__packed__));
993
994 struct btrfs_qgroup_info_item {
995 __le64 generation;
996 __le64 rfer;
997 __le64 rfer_cmpr;
998 __le64 excl;
999 __le64 excl_cmpr;
1000 } __attribute__ ((__packed__));
1001
1002 struct btrfs_qgroup_limit_item {
1003 /*
1004 * only updated when any of the other values change
1005 */
1006 __le64 flags;
1007 __le64 max_rfer;
1008 __le64 max_excl;
1009 __le64 rsv_rfer;
1010 __le64 rsv_excl;
1011 } __attribute__ ((__packed__));
1012
1013 struct btrfs_verity_descriptor_item {
1014 /* Size of the verity descriptor in bytes */
1015 __le64 size;
1016 /*
1017 * When we implement support for fscrypt, we will need to encrypt the
1018 * Merkle tree for encrypted verity files. These 128 bits are for the
1019 * eventual storage of an fscrypt initialization vector.
1020 */
1021 __le64 reserved[2];
1022 __u8 encryption;
1023 } __attribute__ ((__packed__));
1024
1025 #endif /* _BTRFS_CTREE_H_ */
1026