1 /* bnx2x_init.h: Broadcom Everest network driver.
2 * Structures and macroes needed during the initialization.
3 *
4 * Copyright (c) 2007-2012 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 *
10 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
11 * Written by: Eliezer Tamir
12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com>
13 */
14
15 #ifndef BNX2X_INIT_H
16 #define BNX2X_INIT_H
17
18 /* Init operation types and structures */
19 enum {
20 OP_RD = 0x1, /* read a single register */
21 OP_WR, /* write a single register */
22 OP_SW, /* copy a string to the device */
23 OP_ZR, /* clear memory */
24 OP_ZP, /* unzip then copy with DMAE */
25 OP_WR_64, /* write 64 bit pattern */
26 OP_WB, /* copy a string using DMAE */
27 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
28 /* Skip the following ops if all of the init modes don't match */
29 OP_IF_MODE_OR,
30 /* Skip the following ops if any of the init modes don't match */
31 OP_IF_MODE_AND,
32 OP_MAX
33 };
34
35 enum {
36 STAGE_START,
37 STAGE_END,
38 };
39
40 /* Returns the index of start or end of a specific block stage in ops array*/
41 #define BLOCK_OPS_IDX(block, stage, end) \
42 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
43
44
45 /* structs for the various opcodes */
46 struct raw_op {
47 u32 op:8;
48 u32 offset:24;
49 u32 raw_data;
50 };
51
52 struct op_read {
53 u32 op:8;
54 u32 offset:24;
55 u32 val;
56 };
57
58 struct op_write {
59 u32 op:8;
60 u32 offset:24;
61 u32 val;
62 };
63
64 struct op_arr_write {
65 u32 op:8;
66 u32 offset:24;
67 #ifdef __BIG_ENDIAN
68 u16 data_len;
69 u16 data_off;
70 #else /* __LITTLE_ENDIAN */
71 u16 data_off;
72 u16 data_len;
73 #endif
74 };
75
76 struct op_zero {
77 u32 op:8;
78 u32 offset:24;
79 u32 len;
80 };
81
82 struct op_if_mode {
83 u32 op:8;
84 u32 cmd_offset:24;
85 u32 mode_bit_map;
86 };
87
88
89 union init_op {
90 struct op_read read;
91 struct op_write write;
92 struct op_arr_write arr_wr;
93 struct op_zero zero;
94 struct raw_op raw;
95 struct op_if_mode if_mode;
96 };
97
98
99 /* Init Phases */
100 enum {
101 PHASE_COMMON,
102 PHASE_PORT0,
103 PHASE_PORT1,
104 PHASE_PF0,
105 PHASE_PF1,
106 PHASE_PF2,
107 PHASE_PF3,
108 PHASE_PF4,
109 PHASE_PF5,
110 PHASE_PF6,
111 PHASE_PF7,
112 NUM_OF_INIT_PHASES
113 };
114
115 /* Init Modes */
116 enum {
117 MODE_ASIC = 0x00000001,
118 MODE_FPGA = 0x00000002,
119 MODE_EMUL = 0x00000004,
120 MODE_E2 = 0x00000008,
121 MODE_E3 = 0x00000010,
122 MODE_PORT2 = 0x00000020,
123 MODE_PORT4 = 0x00000040,
124 MODE_SF = 0x00000080,
125 MODE_MF = 0x00000100,
126 MODE_MF_SD = 0x00000200,
127 MODE_MF_SI = 0x00000400,
128 MODE_MF_NIV = 0x00000800,
129 MODE_E3_A0 = 0x00001000,
130 MODE_E3_B0 = 0x00002000,
131 MODE_COS3 = 0x00004000,
132 MODE_COS6 = 0x00008000,
133 MODE_LITTLE_ENDIAN = 0x00010000,
134 MODE_BIG_ENDIAN = 0x00020000,
135 };
136
137 /* Init Blocks */
138 enum {
139 BLOCK_ATC,
140 BLOCK_BRB1,
141 BLOCK_CCM,
142 BLOCK_CDU,
143 BLOCK_CFC,
144 BLOCK_CSDM,
145 BLOCK_CSEM,
146 BLOCK_DBG,
147 BLOCK_DMAE,
148 BLOCK_DORQ,
149 BLOCK_HC,
150 BLOCK_IGU,
151 BLOCK_MISC,
152 BLOCK_NIG,
153 BLOCK_PBF,
154 BLOCK_PGLUE_B,
155 BLOCK_PRS,
156 BLOCK_PXP2,
157 BLOCK_PXP,
158 BLOCK_QM,
159 BLOCK_SRC,
160 BLOCK_TCM,
161 BLOCK_TM,
162 BLOCK_TSDM,
163 BLOCK_TSEM,
164 BLOCK_UCM,
165 BLOCK_UPB,
166 BLOCK_USDM,
167 BLOCK_USEM,
168 BLOCK_XCM,
169 BLOCK_XPB,
170 BLOCK_XSDM,
171 BLOCK_XSEM,
172 BLOCK_MISC_AEU,
173 NUM_OF_INIT_BLOCKS
174 };
175
176 /* QM queue numbers */
177 #define BNX2X_ETH_Q 0
178 #define BNX2X_TOE_Q 3
179 #define BNX2X_TOE_ACK_Q 6
180 #define BNX2X_ISCSI_Q 9
181 #define BNX2X_ISCSI_ACK_Q 11
182 #define BNX2X_FCOE_Q 10
183
184 /* Vnics per mode */
185 #define BNX2X_PORT2_MODE_NUM_VNICS 4
186 #define BNX2X_PORT4_MODE_NUM_VNICS 2
187
188 /* COS offset for port1 in E3 B0 4port mode */
189 #define BNX2X_E3B0_PORT1_COS_OFFSET 3
190
191 /* QM Register addresses */
192 #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
193 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
194 #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
195 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
196 #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
197 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
198
199 /* extracts the QM queue number for the specified port and vnic */
200 #define BNX2X_PF_Q_NUM(q_num, port, vnic)\
201 ((((port) << 1) | (vnic)) * 16 + (q_num))
202
203
204 /* Maps the specified queue to the specified COS */
bnx2x_map_q_cos(struct bnx2x * bp,u32 q_num,u32 new_cos)205 static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
206 {
207 /* find current COS mapping */
208 u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
209
210 /* check if queue->COS mapping has changed */
211 if (curr_cos != new_cos) {
212 u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
213 u32 reg_addr, reg_bit_map, vnic;
214
215 /* update parameters for 4port mode */
216 if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
217 num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
218 if (BP_PORT(bp)) {
219 curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
220 new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
221 }
222 }
223
224 /* change queue mapping for each VNIC */
225 for (vnic = 0; vnic < num_vnics; vnic++) {
226 u32 pf_q_num =
227 BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
228 u32 q_bit_map = 1 << (pf_q_num & 0x1f);
229
230 /* overwrite queue->VOQ mapping */
231 REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
232
233 /* clear queue bit from current COS bit map */
234 reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
235 reg_bit_map = REG_RD(bp, reg_addr);
236 REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
237
238 /* set queue bit in new COS bit map */
239 reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
240 reg_bit_map = REG_RD(bp, reg_addr);
241 REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
242
243 /* set/clear queue bit in command-queue bit map
244 (E2/E3A0 only, valid COS values are 0/1) */
245 if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
246 reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
247 reg_bit_map = REG_RD(bp, reg_addr);
248 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
249 reg_bit_map = new_cos ?
250 (reg_bit_map | q_bit_map) :
251 (reg_bit_map & (~q_bit_map));
252 REG_WR(bp, reg_addr, reg_bit_map);
253 }
254 }
255 }
256 }
257
258 /* Configures the QM according to the specified per-traffic-type COSes */
bnx2x_dcb_config_qm(struct bnx2x * bp,enum cos_mode mode,struct priority_cos * traffic_cos)259 static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
260 struct priority_cos *traffic_cos)
261 {
262 bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
263 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
264 bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
265 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
266 bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
267 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
268 if (mode != STATIC_COS) {
269 /* required only in backward compatible COS mode */
270 bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
271 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
272 bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
273 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
274 bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
275 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
276 }
277 }
278
279
280 /* Returns the index of start or end of a specific block stage in ops array*/
281 #define BLOCK_OPS_IDX(block, stage, end) \
282 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
283
284
285 #define INITOP_SET 0 /* set the HW directly */
286 #define INITOP_CLEAR 1 /* clear the HW directly */
287 #define INITOP_INIT 2 /* set the init-value array */
288
289 /****************************************************************************
290 * ILT management
291 ****************************************************************************/
292 struct ilt_line {
293 dma_addr_t page_mapping;
294 void *page;
295 u32 size;
296 };
297
298 struct ilt_client_info {
299 u32 page_size;
300 u16 start;
301 u16 end;
302 u16 client_num;
303 u16 flags;
304 #define ILT_CLIENT_SKIP_INIT 0x1
305 #define ILT_CLIENT_SKIP_MEM 0x2
306 };
307
308 struct bnx2x_ilt {
309 u32 start_line;
310 struct ilt_line *lines;
311 struct ilt_client_info clients[4];
312 #define ILT_CLIENT_CDU 0
313 #define ILT_CLIENT_QM 1
314 #define ILT_CLIENT_SRC 2
315 #define ILT_CLIENT_TM 3
316 };
317
318 /****************************************************************************
319 * SRC configuration
320 ****************************************************************************/
321 struct src_ent {
322 u8 opaque[56];
323 u64 next;
324 };
325
326 /****************************************************************************
327 * Parity configuration
328 ****************************************************************************/
329 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
330 { \
331 block##_REG_##block##_PRTY_MASK, \
332 block##_REG_##block##_PRTY_STS_CLR, \
333 en_mask, {m1, m1h, m2, m3}, #block \
334 }
335
336 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
337 { \
338 block##_REG_##block##_PRTY_MASK_0, \
339 block##_REG_##block##_PRTY_STS_CLR_0, \
340 en_mask, {m1, m1h, m2, m3}, #block"_0" \
341 }
342
343 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
344 { \
345 block##_REG_##block##_PRTY_MASK_1, \
346 block##_REG_##block##_PRTY_STS_CLR_1, \
347 en_mask, {m1, m1h, m2, m3}, #block"_1" \
348 }
349
350 static const struct {
351 u32 mask_addr;
352 u32 sts_clr_addr;
353 u32 en_mask; /* Mask to enable parity attentions */
354 struct {
355 u32 e1; /* 57710 */
356 u32 e1h; /* 57711 */
357 u32 e2; /* 57712 */
358 u32 e3; /* 578xx */
359 } reg_mask; /* Register mask (all valid bits) */
360 char name[7]; /* Block's longest name is 6 characters long
361 * (name + suffix)
362 */
363 } bnx2x_blocks_parity_data[] = {
364 /* bit 19 masked */
365 /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
366 /* bit 5,18,20-31 */
367 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
368 /* bit 5 */
369 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
370 /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
371 /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
372
373 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
374 * want to handle "system kill" flow at the moment.
375 */
376 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
377 0x7ffffff),
378 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
379 0xffffffff),
380 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
381 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
382 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
383 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
384 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
385 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
386 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
387 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
388 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
389 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
390 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
391 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
392 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
393 {0xf, 0xf, 0xf, 0xf}, "UPB"},
394 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
395 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
396 {0xf, 0xf, 0xf, 0xf}, "XPB"},
397 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
398 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
399 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
400 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
401 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
402 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
403 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
404 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
405 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
406 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
407 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
408 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
409 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
410 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
411 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
412 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
413 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
414 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
415 0xffffffff),
416 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
417 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
418 0xffffffff),
419 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
420 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
421 0xffffffff),
422 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
423 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
424 0xffffffff),
425 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
426 };
427
428
429 /* [28] MCP Latched rom_parity
430 * [29] MCP Latched ump_rx_parity
431 * [30] MCP Latched ump_tx_parity
432 * [31] MCP Latched scpad_parity
433 */
434 #define MISC_AEU_ENABLE_MCP_PRTY_BITS \
435 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
436 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
437 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
438 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
439
440 /* Below registers control the MCP parity attention output. When
441 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
442 * enabled, when cleared - disabled.
443 */
444 static const u32 mcp_attn_ctl_regs[] = {
445 MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
446 MISC_REG_AEU_ENABLE4_NIG_0,
447 MISC_REG_AEU_ENABLE4_PXP_0,
448 MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
449 MISC_REG_AEU_ENABLE4_NIG_1,
450 MISC_REG_AEU_ENABLE4_PXP_1
451 };
452
bnx2x_set_mcp_parity(struct bnx2x * bp,u8 enable)453 static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
454 {
455 int i;
456 u32 reg_val;
457
458 for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
459 reg_val = REG_RD(bp, mcp_attn_ctl_regs[i]);
460
461 if (enable)
462 reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
463 else
464 reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
465
466 REG_WR(bp, mcp_attn_ctl_regs[i], reg_val);
467 }
468 }
469
bnx2x_parity_reg_mask(struct bnx2x * bp,int idx)470 static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
471 {
472 if (CHIP_IS_E1(bp))
473 return bnx2x_blocks_parity_data[idx].reg_mask.e1;
474 else if (CHIP_IS_E1H(bp))
475 return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
476 else if (CHIP_IS_E2(bp))
477 return bnx2x_blocks_parity_data[idx].reg_mask.e2;
478 else /* CHIP_IS_E3 */
479 return bnx2x_blocks_parity_data[idx].reg_mask.e3;
480 }
481
bnx2x_disable_blocks_parity(struct bnx2x * bp)482 static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
483 {
484 int i;
485
486 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
487 u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
488
489 if (dis_mask) {
490 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
491 dis_mask);
492 DP(NETIF_MSG_HW, "Setting parity mask "
493 "for %s to\t\t0x%x\n",
494 bnx2x_blocks_parity_data[i].name, dis_mask);
495 }
496 }
497
498 /* Disable MCP parity attentions */
499 bnx2x_set_mcp_parity(bp, false);
500 }
501
502 /**
503 * Clear the parity error status registers.
504 */
bnx2x_clear_blocks_parity(struct bnx2x * bp)505 static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
506 {
507 int i;
508 u32 reg_val, mcp_aeu_bits =
509 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
510 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
511 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
512 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
513
514 /* Clear SEM_FAST parities */
515 REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
516 REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
517 REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
518 REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
519
520 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
521 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
522
523 if (reg_mask) {
524 reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
525 sts_clr_addr);
526 if (reg_val & reg_mask)
527 DP(NETIF_MSG_HW,
528 "Parity errors in %s: 0x%x\n",
529 bnx2x_blocks_parity_data[i].name,
530 reg_val & reg_mask);
531 }
532 }
533
534 /* Check if there were parity attentions in MCP */
535 reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
536 if (reg_val & mcp_aeu_bits)
537 DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
538 reg_val & mcp_aeu_bits);
539
540 /* Clear parity attentions in MCP:
541 * [7] clears Latched rom_parity
542 * [8] clears Latched ump_rx_parity
543 * [9] clears Latched ump_tx_parity
544 * [10] clears Latched scpad_parity (both ports)
545 */
546 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
547 }
548
bnx2x_enable_blocks_parity(struct bnx2x * bp)549 static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
550 {
551 int i;
552
553 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
554 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
555
556 if (reg_mask)
557 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
558 bnx2x_blocks_parity_data[i].en_mask & reg_mask);
559 }
560
561 /* Enable MCP parity attentions */
562 bnx2x_set_mcp_parity(bp, true);
563 }
564
565
566 #endif /* BNX2X_INIT_H */
567
568