1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/srcu.h>
26 #include <linux/uuid.h>
27 #include <linux/xarray.h>
28
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43
44 extern const struct device_type disk_type;
45 extern struct device_type part_type;
46 extern struct class block_class;
47
48 /* Must be consistent with blk_mq_poll_stats_bkt() */
49 #define BLK_MQ_POLL_STATS_BKTS 16
50
51 /* Doing classic polling */
52 #define BLK_MQ_POLL_CLASSIC -1
53
54 /*
55 * Maximum number of blkcg policies allowed to be registered concurrently.
56 * Defined here to simplify include dependency.
57 */
58 #define BLKCG_MAX_POLS 6
59
60 #define DISK_MAX_PARTS 256
61 #define DISK_NAME_LEN 32
62
63 #define PARTITION_META_INFO_VOLNAMELTH 64
64 /*
65 * Enough for the string representation of any kind of UUID plus NULL.
66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
67 */
68 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
69
70 struct partition_meta_info {
71 char uuid[PARTITION_META_INFO_UUIDLTH];
72 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
73 };
74
75 /**
76 * DOC: genhd capability flags
77 *
78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
79 * removable media. When set, the device remains present even when media is not
80 * inserted. Shall not be set for devices which are removed entirely when the
81 * media is removed.
82 *
83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
84 * doesn't appear in sysfs, and can't be opened from userspace or using
85 * blkdev_get*. Used for the underlying components of multipath devices.
86 *
87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
88 * scan for partitions from add_disk, and users can't add partitions manually.
89 *
90 */
91 enum {
92 GENHD_FL_REMOVABLE = 1 << 0,
93 GENHD_FL_HIDDEN = 1 << 1,
94 GENHD_FL_NO_PART = 1 << 2,
95 };
96
97 enum {
98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
100 };
101
102 enum {
103 /* Poll even if events_poll_msecs is unset */
104 DISK_EVENT_FLAG_POLL = 1 << 0,
105 /* Forward events to udev */
106 DISK_EVENT_FLAG_UEVENT = 1 << 1,
107 /* Block event polling when open for exclusive write */
108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
109 };
110
111 struct disk_events;
112 struct badblocks;
113
114 struct blk_integrity {
115 const struct blk_integrity_profile *profile;
116 unsigned char flags;
117 unsigned char tuple_size;
118 unsigned char interval_exp;
119 unsigned char tag_size;
120 };
121
122 struct gendisk {
123 /*
124 * major/first_minor/minors should not be set by any new driver, the
125 * block core will take care of allocating them automatically.
126 */
127 int major;
128 int first_minor;
129 int minors;
130
131 char disk_name[DISK_NAME_LEN]; /* name of major driver */
132
133 unsigned short events; /* supported events */
134 unsigned short event_flags; /* flags related to event processing */
135
136 struct xarray part_tbl;
137 struct block_device *part0;
138
139 const struct block_device_operations *fops;
140 struct request_queue *queue;
141 void *private_data;
142
143 int flags;
144 unsigned long state;
145 #define GD_NEED_PART_SCAN 0
146 #define GD_READ_ONLY 1
147 #define GD_DEAD 2
148 #define GD_NATIVE_CAPACITY 3
149 #define GD_ADDED 4
150 #define GD_SUPPRESS_PART_SCAN 5
151
152 struct mutex open_mutex; /* open/close mutex */
153 unsigned open_partitions; /* number of open partitions */
154
155 struct backing_dev_info *bdi;
156 struct kobject *slave_dir;
157 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
158 struct list_head slave_bdevs;
159 #endif
160 struct timer_rand_state *random;
161 atomic_t sync_io; /* RAID */
162 struct disk_events *ev;
163 #ifdef CONFIG_BLK_DEV_INTEGRITY
164 struct kobject integrity_kobj;
165 #endif /* CONFIG_BLK_DEV_INTEGRITY */
166 #if IS_ENABLED(CONFIG_CDROM)
167 struct cdrom_device_info *cdi;
168 #endif
169 int node_id;
170 struct badblocks *bb;
171 struct lockdep_map lockdep_map;
172 u64 diskseq;
173 };
174
disk_live(struct gendisk * disk)175 static inline bool disk_live(struct gendisk *disk)
176 {
177 return !inode_unhashed(disk->part0->bd_inode);
178 }
179
180 /**
181 * disk_openers - returns how many openers are there for a disk
182 * @disk: disk to check
183 *
184 * This returns the number of openers for a disk. Note that this value is only
185 * stable if disk->open_mutex is held.
186 *
187 * Note: Due to a quirk in the block layer open code, each open partition is
188 * only counted once even if there are multiple openers.
189 */
disk_openers(struct gendisk * disk)190 static inline unsigned int disk_openers(struct gendisk *disk)
191 {
192 return atomic_read(&disk->part0->bd_openers);
193 }
194
195 /*
196 * The gendisk is refcounted by the part0 block_device, and the bd_device
197 * therein is also used for device model presentation in sysfs.
198 */
199 #define dev_to_disk(device) \
200 (dev_to_bdev(device)->bd_disk)
201 #define disk_to_dev(disk) \
202 (&((disk)->part0->bd_device))
203
204 #if IS_REACHABLE(CONFIG_CDROM)
205 #define disk_to_cdi(disk) ((disk)->cdi)
206 #else
207 #define disk_to_cdi(disk) NULL
208 #endif
209
disk_devt(struct gendisk * disk)210 static inline dev_t disk_devt(struct gendisk *disk)
211 {
212 return MKDEV(disk->major, disk->first_minor);
213 }
214
blk_validate_block_size(unsigned long bsize)215 static inline int blk_validate_block_size(unsigned long bsize)
216 {
217 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
218 return -EINVAL;
219
220 return 0;
221 }
222
blk_op_is_passthrough(unsigned int op)223 static inline bool blk_op_is_passthrough(unsigned int op)
224 {
225 op &= REQ_OP_MASK;
226 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
227 }
228
229 /*
230 * Zoned block device models (zoned limit).
231 *
232 * Note: This needs to be ordered from the least to the most severe
233 * restrictions for the inheritance in blk_stack_limits() to work.
234 */
235 enum blk_zoned_model {
236 BLK_ZONED_NONE = 0, /* Regular block device */
237 BLK_ZONED_HA, /* Host-aware zoned block device */
238 BLK_ZONED_HM, /* Host-managed zoned block device */
239 };
240
241 /*
242 * BLK_BOUNCE_NONE: never bounce (default)
243 * BLK_BOUNCE_HIGH: bounce all highmem pages
244 */
245 enum blk_bounce {
246 BLK_BOUNCE_NONE,
247 BLK_BOUNCE_HIGH,
248 };
249
250 struct queue_limits {
251 enum blk_bounce bounce;
252 unsigned long seg_boundary_mask;
253 unsigned long virt_boundary_mask;
254
255 unsigned int max_hw_sectors;
256 unsigned int max_dev_sectors;
257 unsigned int chunk_sectors;
258 unsigned int max_sectors;
259 unsigned int max_segment_size;
260 unsigned int physical_block_size;
261 unsigned int logical_block_size;
262 unsigned int alignment_offset;
263 unsigned int io_min;
264 unsigned int io_opt;
265 unsigned int max_discard_sectors;
266 unsigned int max_hw_discard_sectors;
267 unsigned int max_secure_erase_sectors;
268 unsigned int max_write_zeroes_sectors;
269 unsigned int max_zone_append_sectors;
270 unsigned int discard_granularity;
271 unsigned int discard_alignment;
272 unsigned int zone_write_granularity;
273
274 unsigned short max_segments;
275 unsigned short max_integrity_segments;
276 unsigned short max_discard_segments;
277
278 unsigned char misaligned;
279 unsigned char discard_misaligned;
280 unsigned char raid_partial_stripes_expensive;
281 enum blk_zoned_model zoned;
282 };
283
284 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
285 void *data);
286
287 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
288
289 #ifdef CONFIG_BLK_DEV_ZONED
290
291 #define BLK_ALL_ZONES ((unsigned int)-1)
292 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
293 unsigned int nr_zones, report_zones_cb cb, void *data);
294 unsigned int blkdev_nr_zones(struct gendisk *disk);
295 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
296 sector_t sectors, sector_t nr_sectors,
297 gfp_t gfp_mask);
298 int blk_revalidate_disk_zones(struct gendisk *disk,
299 void (*update_driver_data)(struct gendisk *disk));
300
301 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
302 unsigned int cmd, unsigned long arg);
303 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
304 unsigned int cmd, unsigned long arg);
305
306 #else /* CONFIG_BLK_DEV_ZONED */
307
blkdev_nr_zones(struct gendisk * disk)308 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
309 {
310 return 0;
311 }
312
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)313 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
314 fmode_t mode, unsigned int cmd,
315 unsigned long arg)
316 {
317 return -ENOTTY;
318 }
319
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)320 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
321 fmode_t mode, unsigned int cmd,
322 unsigned long arg)
323 {
324 return -ENOTTY;
325 }
326
327 #endif /* CONFIG_BLK_DEV_ZONED */
328
329 /*
330 * Independent access ranges: struct blk_independent_access_range describes
331 * a range of contiguous sectors that can be accessed using device command
332 * execution resources that are independent from the resources used for
333 * other access ranges. This is typically found with single-LUN multi-actuator
334 * HDDs where each access range is served by a different set of heads.
335 * The set of independent ranges supported by the device is defined using
336 * struct blk_independent_access_ranges. The independent ranges must not overlap
337 * and must include all sectors within the disk capacity (no sector holes
338 * allowed).
339 * For a device with multiple ranges, requests targeting sectors in different
340 * ranges can be executed in parallel. A request can straddle an access range
341 * boundary.
342 */
343 struct blk_independent_access_range {
344 struct kobject kobj;
345 sector_t sector;
346 sector_t nr_sectors;
347 };
348
349 struct blk_independent_access_ranges {
350 struct kobject kobj;
351 bool sysfs_registered;
352 unsigned int nr_ia_ranges;
353 struct blk_independent_access_range ia_range[];
354 };
355
356 struct request_queue {
357 struct request *last_merge;
358 struct elevator_queue *elevator;
359
360 struct percpu_ref q_usage_counter;
361
362 struct blk_queue_stats *stats;
363 struct rq_qos *rq_qos;
364
365 const struct blk_mq_ops *mq_ops;
366
367 /* sw queues */
368 struct blk_mq_ctx __percpu *queue_ctx;
369
370 unsigned int queue_depth;
371
372 /* hw dispatch queues */
373 struct xarray hctx_table;
374 unsigned int nr_hw_queues;
375
376 /*
377 * The queue owner gets to use this for whatever they like.
378 * ll_rw_blk doesn't touch it.
379 */
380 void *queuedata;
381
382 /*
383 * various queue flags, see QUEUE_* below
384 */
385 unsigned long queue_flags;
386 /*
387 * Number of contexts that have called blk_set_pm_only(). If this
388 * counter is above zero then only RQF_PM requests are processed.
389 */
390 atomic_t pm_only;
391
392 /*
393 * ida allocated id for this queue. Used to index queues from
394 * ioctx.
395 */
396 int id;
397
398 spinlock_t queue_lock;
399
400 struct gendisk *disk;
401
402 /*
403 * queue kobject
404 */
405 struct kobject kobj;
406
407 /*
408 * mq queue kobject
409 */
410 struct kobject *mq_kobj;
411
412 #ifdef CONFIG_BLK_DEV_INTEGRITY
413 struct blk_integrity integrity;
414 #endif /* CONFIG_BLK_DEV_INTEGRITY */
415
416 #ifdef CONFIG_PM
417 struct device *dev;
418 enum rpm_status rpm_status;
419 #endif
420
421 /*
422 * queue settings
423 */
424 unsigned long nr_requests; /* Max # of requests */
425
426 unsigned int dma_pad_mask;
427 unsigned int dma_alignment;
428
429 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
430 struct blk_crypto_profile *crypto_profile;
431 struct kobject *crypto_kobject;
432 #endif
433
434 unsigned int rq_timeout;
435 int poll_nsec;
436
437 struct blk_stat_callback *poll_cb;
438 struct blk_rq_stat *poll_stat;
439
440 struct timer_list timeout;
441 struct work_struct timeout_work;
442
443 atomic_t nr_active_requests_shared_tags;
444
445 struct blk_mq_tags *sched_shared_tags;
446
447 struct list_head icq_list;
448 #ifdef CONFIG_BLK_CGROUP
449 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
450 struct blkcg_gq *root_blkg;
451 struct list_head blkg_list;
452 #endif
453
454 struct queue_limits limits;
455
456 unsigned int required_elevator_features;
457
458 #ifdef CONFIG_BLK_DEV_ZONED
459 /*
460 * Zoned block device information for request dispatch control.
461 * nr_zones is the total number of zones of the device. This is always
462 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
463 * bits which indicates if a zone is conventional (bit set) or
464 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
465 * bits which indicates if a zone is write locked, that is, if a write
466 * request targeting the zone was dispatched. All three fields are
467 * initialized by the low level device driver (e.g. scsi/sd.c).
468 * Stacking drivers (device mappers) may or may not initialize
469 * these fields.
470 *
471 * Reads of this information must be protected with blk_queue_enter() /
472 * blk_queue_exit(). Modifying this information is only allowed while
473 * no requests are being processed. See also blk_mq_freeze_queue() and
474 * blk_mq_unfreeze_queue().
475 */
476 unsigned int nr_zones;
477 unsigned long *conv_zones_bitmap;
478 unsigned long *seq_zones_wlock;
479 unsigned int max_open_zones;
480 unsigned int max_active_zones;
481 #endif /* CONFIG_BLK_DEV_ZONED */
482
483 int node;
484 #ifdef CONFIG_BLK_DEV_IO_TRACE
485 struct blk_trace __rcu *blk_trace;
486 #endif
487 /*
488 * for flush operations
489 */
490 struct blk_flush_queue *fq;
491
492 struct list_head requeue_list;
493 spinlock_t requeue_lock;
494 struct delayed_work requeue_work;
495
496 struct mutex sysfs_lock;
497 struct mutex sysfs_dir_lock;
498
499 /*
500 * for reusing dead hctx instance in case of updating
501 * nr_hw_queues
502 */
503 struct list_head unused_hctx_list;
504 spinlock_t unused_hctx_lock;
505
506 int mq_freeze_depth;
507
508 #ifdef CONFIG_BLK_DEV_THROTTLING
509 /* Throttle data */
510 struct throtl_data *td;
511 #endif
512 struct rcu_head rcu_head;
513 wait_queue_head_t mq_freeze_wq;
514 /*
515 * Protect concurrent access to q_usage_counter by
516 * percpu_ref_kill() and percpu_ref_reinit().
517 */
518 struct mutex mq_freeze_lock;
519
520 int quiesce_depth;
521
522 struct blk_mq_tag_set *tag_set;
523 struct list_head tag_set_list;
524 struct bio_set bio_split;
525
526 struct dentry *debugfs_dir;
527 struct dentry *sched_debugfs_dir;
528 struct dentry *rqos_debugfs_dir;
529 /*
530 * Serializes all debugfs metadata operations using the above dentries.
531 */
532 struct mutex debugfs_mutex;
533
534 bool mq_sysfs_init_done;
535
536 /*
537 * Independent sector access ranges. This is always NULL for
538 * devices that do not have multiple independent access ranges.
539 */
540 struct blk_independent_access_ranges *ia_ranges;
541
542 /**
543 * @srcu: Sleepable RCU. Use as lock when type of the request queue
544 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member
545 */
546 struct srcu_struct srcu[];
547 };
548
549 /* Keep blk_queue_flag_name[] in sync with the definitions below */
550 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
551 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
552 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */
553 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
554 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
555 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
556 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
557 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
558 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
559 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
560 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
561 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
562 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
563 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
564 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
565 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
566 #define QUEUE_FLAG_WC 17 /* Write back caching */
567 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
568 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
569 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
570 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
571 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
572 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
573 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
574 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
575 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
576 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
577 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */
578
579 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
580 (1 << QUEUE_FLAG_SAME_COMP) | \
581 (1 << QUEUE_FLAG_NOWAIT))
582
583 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
584 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
585 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
586
587 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
588 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
589 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags)
590 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
591 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
592 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
593 #define blk_queue_noxmerges(q) \
594 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
595 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
596 #define blk_queue_stable_writes(q) \
597 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
598 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
599 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
600 #define blk_queue_zone_resetall(q) \
601 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
602 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
603 #define blk_queue_pci_p2pdma(q) \
604 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
605 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
606 #define blk_queue_rq_alloc_time(q) \
607 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
608 #else
609 #define blk_queue_rq_alloc_time(q) false
610 #endif
611
612 #define blk_noretry_request(rq) \
613 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
614 REQ_FAILFAST_DRIVER))
615 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
616 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
617 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
618 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
619 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
620
621 extern void blk_set_pm_only(struct request_queue *q);
622 extern void blk_clear_pm_only(struct request_queue *q);
623
624 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
625
626 #define dma_map_bvec(dev, bv, dir, attrs) \
627 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
628 (dir), (attrs))
629
queue_is_mq(struct request_queue * q)630 static inline bool queue_is_mq(struct request_queue *q)
631 {
632 return q->mq_ops;
633 }
634
635 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)636 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
637 {
638 return q->rpm_status;
639 }
640 #else
queue_rpm_status(struct request_queue * q)641 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
642 {
643 return RPM_ACTIVE;
644 }
645 #endif
646
647 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)648 blk_queue_zoned_model(struct request_queue *q)
649 {
650 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
651 return q->limits.zoned;
652 return BLK_ZONED_NONE;
653 }
654
blk_queue_is_zoned(struct request_queue * q)655 static inline bool blk_queue_is_zoned(struct request_queue *q)
656 {
657 switch (blk_queue_zoned_model(q)) {
658 case BLK_ZONED_HA:
659 case BLK_ZONED_HM:
660 return true;
661 default:
662 return false;
663 }
664 }
665
blk_queue_zone_sectors(struct request_queue * q)666 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
667 {
668 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
669 }
670
671 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)672 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
673 {
674 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
675 }
676
blk_queue_zone_no(struct request_queue * q,sector_t sector)677 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
678 sector_t sector)
679 {
680 if (!blk_queue_is_zoned(q))
681 return 0;
682 return sector >> ilog2(q->limits.chunk_sectors);
683 }
684
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)685 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
686 sector_t sector)
687 {
688 if (!blk_queue_is_zoned(q))
689 return false;
690 if (!q->conv_zones_bitmap)
691 return true;
692 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
693 }
694
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)695 static inline void blk_queue_max_open_zones(struct request_queue *q,
696 unsigned int max_open_zones)
697 {
698 q->max_open_zones = max_open_zones;
699 }
700
queue_max_open_zones(const struct request_queue * q)701 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
702 {
703 return q->max_open_zones;
704 }
705
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)706 static inline void blk_queue_max_active_zones(struct request_queue *q,
707 unsigned int max_active_zones)
708 {
709 q->max_active_zones = max_active_zones;
710 }
711
queue_max_active_zones(const struct request_queue * q)712 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
713 {
714 return q->max_active_zones;
715 }
716 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)717 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
718 {
719 return 0;
720 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)721 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
722 sector_t sector)
723 {
724 return false;
725 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)726 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
727 sector_t sector)
728 {
729 return 0;
730 }
queue_max_open_zones(const struct request_queue * q)731 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
732 {
733 return 0;
734 }
queue_max_active_zones(const struct request_queue * q)735 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
736 {
737 return 0;
738 }
739 #endif /* CONFIG_BLK_DEV_ZONED */
740
blk_queue_depth(struct request_queue * q)741 static inline unsigned int blk_queue_depth(struct request_queue *q)
742 {
743 if (q->queue_depth)
744 return q->queue_depth;
745
746 return q->nr_requests;
747 }
748
749 /*
750 * default timeout for SG_IO if none specified
751 */
752 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
753 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
754
755 /* This should not be used directly - use rq_for_each_segment */
756 #define for_each_bio(_bio) \
757 for (; _bio; _bio = _bio->bi_next)
758
759 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
760 const struct attribute_group **groups);
add_disk(struct gendisk * disk)761 static inline int __must_check add_disk(struct gendisk *disk)
762 {
763 return device_add_disk(NULL, disk, NULL);
764 }
765 void del_gendisk(struct gendisk *gp);
766 void invalidate_disk(struct gendisk *disk);
767 void set_disk_ro(struct gendisk *disk, bool read_only);
768 void disk_uevent(struct gendisk *disk, enum kobject_action action);
769
get_disk_ro(struct gendisk * disk)770 static inline int get_disk_ro(struct gendisk *disk)
771 {
772 return disk->part0->bd_read_only ||
773 test_bit(GD_READ_ONLY, &disk->state);
774 }
775
bdev_read_only(struct block_device * bdev)776 static inline int bdev_read_only(struct block_device *bdev)
777 {
778 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
779 }
780
781 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
782 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
783
784 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
785 void rand_initialize_disk(struct gendisk *disk);
786
get_start_sect(struct block_device * bdev)787 static inline sector_t get_start_sect(struct block_device *bdev)
788 {
789 return bdev->bd_start_sect;
790 }
791
bdev_nr_sectors(struct block_device * bdev)792 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
793 {
794 return bdev->bd_nr_sectors;
795 }
796
bdev_nr_bytes(struct block_device * bdev)797 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
798 {
799 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
800 }
801
get_capacity(struct gendisk * disk)802 static inline sector_t get_capacity(struct gendisk *disk)
803 {
804 return bdev_nr_sectors(disk->part0);
805 }
806
sb_bdev_nr_blocks(struct super_block * sb)807 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
808 {
809 return bdev_nr_sectors(sb->s_bdev) >>
810 (sb->s_blocksize_bits - SECTOR_SHIFT);
811 }
812
813 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
814
815 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
816 struct lock_class_key *lkclass);
817 void put_disk(struct gendisk *disk);
818 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
819
820 /**
821 * blk_alloc_disk - allocate a gendisk structure
822 * @node_id: numa node to allocate on
823 *
824 * Allocate and pre-initialize a gendisk structure for use with BIO based
825 * drivers.
826 *
827 * Context: can sleep
828 */
829 #define blk_alloc_disk(node_id) \
830 ({ \
831 static struct lock_class_key __key; \
832 \
833 __blk_alloc_disk(node_id, &__key); \
834 })
835 void blk_cleanup_disk(struct gendisk *disk);
836
837 int __register_blkdev(unsigned int major, const char *name,
838 void (*probe)(dev_t devt));
839 #define register_blkdev(major, name) \
840 __register_blkdev(major, name, NULL)
841 void unregister_blkdev(unsigned int major, const char *name);
842
843 bool bdev_check_media_change(struct block_device *bdev);
844 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
845 void set_capacity(struct gendisk *disk, sector_t size);
846
847 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
848 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
849 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
850 int bd_register_pending_holders(struct gendisk *disk);
851 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)852 static inline int bd_link_disk_holder(struct block_device *bdev,
853 struct gendisk *disk)
854 {
855 return 0;
856 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)857 static inline void bd_unlink_disk_holder(struct block_device *bdev,
858 struct gendisk *disk)
859 {
860 }
bd_register_pending_holders(struct gendisk * disk)861 static inline int bd_register_pending_holders(struct gendisk *disk)
862 {
863 return 0;
864 }
865 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
866
867 dev_t part_devt(struct gendisk *disk, u8 partno);
868 void inc_diskseq(struct gendisk *disk);
869 dev_t blk_lookup_devt(const char *name, int partno);
870 void blk_request_module(dev_t devt);
871
872 extern int blk_register_queue(struct gendisk *disk);
873 extern void blk_unregister_queue(struct gendisk *disk);
874 void submit_bio_noacct(struct bio *bio);
875
876 extern int blk_lld_busy(struct request_queue *q);
877 extern void blk_queue_split(struct bio **);
878 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
879 extern void blk_queue_exit(struct request_queue *q);
880 extern void blk_sync_queue(struct request_queue *q);
881
882 /* Helper to convert REQ_OP_XXX to its string format XXX */
883 extern const char *blk_op_str(unsigned int op);
884
885 int blk_status_to_errno(blk_status_t status);
886 blk_status_t errno_to_blk_status(int errno);
887
888 /* only poll the hardware once, don't continue until a completion was found */
889 #define BLK_POLL_ONESHOT (1 << 0)
890 /* do not sleep to wait for the expected completion time */
891 #define BLK_POLL_NOSLEEP (1 << 1)
892 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
893 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
894 unsigned int flags);
895
bdev_get_queue(struct block_device * bdev)896 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
897 {
898 return bdev->bd_queue; /* this is never NULL */
899 }
900
901 #ifdef CONFIG_BLK_DEV_ZONED
902
903 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
904 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
905
bio_zone_no(struct bio * bio)906 static inline unsigned int bio_zone_no(struct bio *bio)
907 {
908 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev),
909 bio->bi_iter.bi_sector);
910 }
911
bio_zone_is_seq(struct bio * bio)912 static inline unsigned int bio_zone_is_seq(struct bio *bio)
913 {
914 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev),
915 bio->bi_iter.bi_sector);
916 }
917 #endif /* CONFIG_BLK_DEV_ZONED */
918
blk_queue_get_max_sectors(struct request_queue * q,int op)919 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
920 int op)
921 {
922 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
923 return min(q->limits.max_discard_sectors,
924 UINT_MAX >> SECTOR_SHIFT);
925
926 if (unlikely(op == REQ_OP_WRITE_ZEROES))
927 return q->limits.max_write_zeroes_sectors;
928
929 return q->limits.max_sectors;
930 }
931
932 /*
933 * Return maximum size of a request at given offset. Only valid for
934 * file system requests.
935 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)936 static inline unsigned int blk_max_size_offset(struct request_queue *q,
937 sector_t offset,
938 unsigned int chunk_sectors)
939 {
940 if (!chunk_sectors) {
941 if (q->limits.chunk_sectors)
942 chunk_sectors = q->limits.chunk_sectors;
943 else
944 return q->limits.max_sectors;
945 }
946
947 if (likely(is_power_of_2(chunk_sectors)))
948 chunk_sectors -= offset & (chunk_sectors - 1);
949 else
950 chunk_sectors -= sector_div(offset, chunk_sectors);
951
952 return min(q->limits.max_sectors, chunk_sectors);
953 }
954
955 /*
956 * Access functions for manipulating queue properties
957 */
958 extern void blk_cleanup_queue(struct request_queue *);
959 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
960 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
961 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
962 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
963 extern void blk_queue_max_discard_segments(struct request_queue *,
964 unsigned short);
965 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
966 unsigned int max_sectors);
967 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
968 extern void blk_queue_max_discard_sectors(struct request_queue *q,
969 unsigned int max_discard_sectors);
970 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
971 unsigned int max_write_same_sectors);
972 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
973 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
974 unsigned int max_zone_append_sectors);
975 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
976 void blk_queue_zone_write_granularity(struct request_queue *q,
977 unsigned int size);
978 extern void blk_queue_alignment_offset(struct request_queue *q,
979 unsigned int alignment);
980 void disk_update_readahead(struct gendisk *disk);
981 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
982 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
983 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
984 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
985 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
986 extern void blk_set_default_limits(struct queue_limits *lim);
987 extern void blk_set_stacking_limits(struct queue_limits *lim);
988 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
989 sector_t offset);
990 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
991 sector_t offset);
992 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
993 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
994 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
995 extern void blk_queue_dma_alignment(struct request_queue *, int);
996 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
997 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
998 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
999
1000 struct blk_independent_access_ranges *
1001 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1002 void disk_set_independent_access_ranges(struct gendisk *disk,
1003 struct blk_independent_access_ranges *iars);
1004
1005 /*
1006 * Elevator features for blk_queue_required_elevator_features:
1007 */
1008 /* Supports zoned block devices sequential write constraint */
1009 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0)
1010
1011 extern void blk_queue_required_elevator_features(struct request_queue *q,
1012 unsigned int features);
1013 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1014 struct device *dev);
1015
1016 bool __must_check blk_get_queue(struct request_queue *);
1017 extern void blk_put_queue(struct request_queue *);
1018
1019 void blk_mark_disk_dead(struct gendisk *disk);
1020
1021 #ifdef CONFIG_BLOCK
1022 /*
1023 * blk_plug permits building a queue of related requests by holding the I/O
1024 * fragments for a short period. This allows merging of sequential requests
1025 * into single larger request. As the requests are moved from a per-task list to
1026 * the device's request_queue in a batch, this results in improved scalability
1027 * as the lock contention for request_queue lock is reduced.
1028 *
1029 * It is ok not to disable preemption when adding the request to the plug list
1030 * or when attempting a merge. For details, please see schedule() where
1031 * blk_flush_plug() is called.
1032 */
1033 struct blk_plug {
1034 struct request *mq_list; /* blk-mq requests */
1035
1036 /* if ios_left is > 1, we can batch tag/rq allocations */
1037 struct request *cached_rq;
1038 unsigned short nr_ios;
1039
1040 unsigned short rq_count;
1041
1042 bool multiple_queues;
1043 bool has_elevator;
1044 bool nowait;
1045
1046 struct list_head cb_list; /* md requires an unplug callback */
1047 };
1048
1049 struct blk_plug_cb;
1050 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1051 struct blk_plug_cb {
1052 struct list_head list;
1053 blk_plug_cb_fn callback;
1054 void *data;
1055 };
1056 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1057 void *data, int size);
1058 extern void blk_start_plug(struct blk_plug *);
1059 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1060 extern void blk_finish_plug(struct blk_plug *);
1061
1062 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1063 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1064 {
1065 if (plug)
1066 __blk_flush_plug(plug, async);
1067 }
1068
1069 int blkdev_issue_flush(struct block_device *bdev);
1070 long nr_blockdev_pages(void);
1071 #else /* CONFIG_BLOCK */
1072 struct blk_plug {
1073 };
1074
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1075 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1076 unsigned short nr_ios)
1077 {
1078 }
1079
blk_start_plug(struct blk_plug * plug)1080 static inline void blk_start_plug(struct blk_plug *plug)
1081 {
1082 }
1083
blk_finish_plug(struct blk_plug * plug)1084 static inline void blk_finish_plug(struct blk_plug *plug)
1085 {
1086 }
1087
blk_flush_plug(struct blk_plug * plug,bool async)1088 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1089 {
1090 }
1091
blkdev_issue_flush(struct block_device * bdev)1092 static inline int blkdev_issue_flush(struct block_device *bdev)
1093 {
1094 return 0;
1095 }
1096
nr_blockdev_pages(void)1097 static inline long nr_blockdev_pages(void)
1098 {
1099 return 0;
1100 }
1101 #endif /* CONFIG_BLOCK */
1102
1103 extern void blk_io_schedule(void);
1104
1105 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1106 sector_t nr_sects, gfp_t gfp_mask);
1107 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1108 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1109 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1110 sector_t nr_sects, gfp_t gfp);
1111
1112 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1113 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1114
1115 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1116 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1117 unsigned flags);
1118 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1119 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1120
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1121 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1122 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1123 {
1124 return blkdev_issue_discard(sb->s_bdev,
1125 block << (sb->s_blocksize_bits -
1126 SECTOR_SHIFT),
1127 nr_blocks << (sb->s_blocksize_bits -
1128 SECTOR_SHIFT),
1129 gfp_mask);
1130 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1131 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1132 sector_t nr_blocks, gfp_t gfp_mask)
1133 {
1134 return blkdev_issue_zeroout(sb->s_bdev,
1135 block << (sb->s_blocksize_bits -
1136 SECTOR_SHIFT),
1137 nr_blocks << (sb->s_blocksize_bits -
1138 SECTOR_SHIFT),
1139 gfp_mask, 0);
1140 }
1141
bdev_is_partition(struct block_device * bdev)1142 static inline bool bdev_is_partition(struct block_device *bdev)
1143 {
1144 return bdev->bd_partno;
1145 }
1146
1147 enum blk_default_limits {
1148 BLK_MAX_SEGMENTS = 128,
1149 BLK_SAFE_MAX_SECTORS = 255,
1150 BLK_DEF_MAX_SECTORS = 2560,
1151 BLK_MAX_SEGMENT_SIZE = 65536,
1152 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1153 };
1154
queue_segment_boundary(const struct request_queue * q)1155 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1156 {
1157 return q->limits.seg_boundary_mask;
1158 }
1159
queue_virt_boundary(const struct request_queue * q)1160 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1161 {
1162 return q->limits.virt_boundary_mask;
1163 }
1164
queue_max_sectors(const struct request_queue * q)1165 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1166 {
1167 return q->limits.max_sectors;
1168 }
1169
queue_max_bytes(struct request_queue * q)1170 static inline unsigned int queue_max_bytes(struct request_queue *q)
1171 {
1172 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1173 }
1174
queue_max_hw_sectors(const struct request_queue * q)1175 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1176 {
1177 return q->limits.max_hw_sectors;
1178 }
1179
queue_max_segments(const struct request_queue * q)1180 static inline unsigned short queue_max_segments(const struct request_queue *q)
1181 {
1182 return q->limits.max_segments;
1183 }
1184
queue_max_discard_segments(const struct request_queue * q)1185 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1186 {
1187 return q->limits.max_discard_segments;
1188 }
1189
queue_max_segment_size(const struct request_queue * q)1190 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1191 {
1192 return q->limits.max_segment_size;
1193 }
1194
queue_max_zone_append_sectors(const struct request_queue * q)1195 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1196 {
1197
1198 const struct queue_limits *l = &q->limits;
1199
1200 return min(l->max_zone_append_sectors, l->max_sectors);
1201 }
1202
1203 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1204 bdev_max_zone_append_sectors(struct block_device *bdev)
1205 {
1206 return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1207 }
1208
bdev_max_segments(struct block_device * bdev)1209 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1210 {
1211 return queue_max_segments(bdev_get_queue(bdev));
1212 }
1213
queue_logical_block_size(const struct request_queue * q)1214 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1215 {
1216 int retval = 512;
1217
1218 if (q && q->limits.logical_block_size)
1219 retval = q->limits.logical_block_size;
1220
1221 return retval;
1222 }
1223
bdev_logical_block_size(struct block_device * bdev)1224 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1225 {
1226 return queue_logical_block_size(bdev_get_queue(bdev));
1227 }
1228
queue_physical_block_size(const struct request_queue * q)1229 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1230 {
1231 return q->limits.physical_block_size;
1232 }
1233
bdev_physical_block_size(struct block_device * bdev)1234 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1235 {
1236 return queue_physical_block_size(bdev_get_queue(bdev));
1237 }
1238
queue_io_min(const struct request_queue * q)1239 static inline unsigned int queue_io_min(const struct request_queue *q)
1240 {
1241 return q->limits.io_min;
1242 }
1243
bdev_io_min(struct block_device * bdev)1244 static inline int bdev_io_min(struct block_device *bdev)
1245 {
1246 return queue_io_min(bdev_get_queue(bdev));
1247 }
1248
queue_io_opt(const struct request_queue * q)1249 static inline unsigned int queue_io_opt(const struct request_queue *q)
1250 {
1251 return q->limits.io_opt;
1252 }
1253
bdev_io_opt(struct block_device * bdev)1254 static inline int bdev_io_opt(struct block_device *bdev)
1255 {
1256 return queue_io_opt(bdev_get_queue(bdev));
1257 }
1258
1259 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1260 queue_zone_write_granularity(const struct request_queue *q)
1261 {
1262 return q->limits.zone_write_granularity;
1263 }
1264
1265 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1266 bdev_zone_write_granularity(struct block_device *bdev)
1267 {
1268 return queue_zone_write_granularity(bdev_get_queue(bdev));
1269 }
1270
1271 int bdev_alignment_offset(struct block_device *bdev);
1272 unsigned int bdev_discard_alignment(struct block_device *bdev);
1273
bdev_max_discard_sectors(struct block_device * bdev)1274 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1275 {
1276 return bdev_get_queue(bdev)->limits.max_discard_sectors;
1277 }
1278
bdev_discard_granularity(struct block_device * bdev)1279 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1280 {
1281 return bdev_get_queue(bdev)->limits.discard_granularity;
1282 }
1283
1284 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1285 bdev_max_secure_erase_sectors(struct block_device *bdev)
1286 {
1287 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1288 }
1289
bdev_write_zeroes_sectors(struct block_device * bdev)1290 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1291 {
1292 struct request_queue *q = bdev_get_queue(bdev);
1293
1294 if (q)
1295 return q->limits.max_write_zeroes_sectors;
1296
1297 return 0;
1298 }
1299
bdev_nonrot(struct block_device * bdev)1300 static inline bool bdev_nonrot(struct block_device *bdev)
1301 {
1302 return blk_queue_nonrot(bdev_get_queue(bdev));
1303 }
1304
bdev_stable_writes(struct block_device * bdev)1305 static inline bool bdev_stable_writes(struct block_device *bdev)
1306 {
1307 return test_bit(QUEUE_FLAG_STABLE_WRITES,
1308 &bdev_get_queue(bdev)->queue_flags);
1309 }
1310
bdev_write_cache(struct block_device * bdev)1311 static inline bool bdev_write_cache(struct block_device *bdev)
1312 {
1313 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1314 }
1315
bdev_fua(struct block_device * bdev)1316 static inline bool bdev_fua(struct block_device *bdev)
1317 {
1318 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1319 }
1320
bdev_zoned_model(struct block_device * bdev)1321 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1322 {
1323 struct request_queue *q = bdev_get_queue(bdev);
1324
1325 if (q)
1326 return blk_queue_zoned_model(q);
1327
1328 return BLK_ZONED_NONE;
1329 }
1330
bdev_is_zoned(struct block_device * bdev)1331 static inline bool bdev_is_zoned(struct block_device *bdev)
1332 {
1333 struct request_queue *q = bdev_get_queue(bdev);
1334
1335 if (q)
1336 return blk_queue_is_zoned(q);
1337
1338 return false;
1339 }
1340
bdev_zone_sectors(struct block_device * bdev)1341 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1342 {
1343 struct request_queue *q = bdev_get_queue(bdev);
1344
1345 if (q)
1346 return blk_queue_zone_sectors(q);
1347 return 0;
1348 }
1349
bdev_max_open_zones(struct block_device * bdev)1350 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1351 {
1352 struct request_queue *q = bdev_get_queue(bdev);
1353
1354 if (q)
1355 return queue_max_open_zones(q);
1356 return 0;
1357 }
1358
bdev_max_active_zones(struct block_device * bdev)1359 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1360 {
1361 struct request_queue *q = bdev_get_queue(bdev);
1362
1363 if (q)
1364 return queue_max_active_zones(q);
1365 return 0;
1366 }
1367
queue_dma_alignment(const struct request_queue * q)1368 static inline int queue_dma_alignment(const struct request_queue *q)
1369 {
1370 return q ? q->dma_alignment : 511;
1371 }
1372
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1373 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1374 unsigned int len)
1375 {
1376 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1377 return !(addr & alignment) && !(len & alignment);
1378 }
1379
1380 /* assumes size > 256 */
blksize_bits(unsigned int size)1381 static inline unsigned int blksize_bits(unsigned int size)
1382 {
1383 unsigned int bits = 8;
1384 do {
1385 bits++;
1386 size >>= 1;
1387 } while (size > 256);
1388 return bits;
1389 }
1390
block_size(struct block_device * bdev)1391 static inline unsigned int block_size(struct block_device *bdev)
1392 {
1393 return 1 << bdev->bd_inode->i_blkbits;
1394 }
1395
1396 int kblockd_schedule_work(struct work_struct *work);
1397 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1398
1399 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1400 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1401 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1402 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1403
1404 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1405
1406 bool blk_crypto_register(struct blk_crypto_profile *profile,
1407 struct request_queue *q);
1408
1409 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1410
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1411 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1412 struct request_queue *q)
1413 {
1414 return true;
1415 }
1416
1417 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1418
1419 enum blk_unique_id {
1420 /* these match the Designator Types specified in SPC */
1421 BLK_UID_T10 = 1,
1422 BLK_UID_EUI64 = 2,
1423 BLK_UID_NAA = 3,
1424 };
1425
1426 #define NFL4_UFLG_MASK 0x0000003F
1427
1428 struct block_device_operations {
1429 void (*submit_bio)(struct bio *bio);
1430 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1431 unsigned int flags);
1432 int (*open) (struct block_device *, fmode_t);
1433 void (*release) (struct gendisk *, fmode_t);
1434 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1435 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1436 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1437 unsigned int (*check_events) (struct gendisk *disk,
1438 unsigned int clearing);
1439 void (*unlock_native_capacity) (struct gendisk *);
1440 int (*getgeo)(struct block_device *, struct hd_geometry *);
1441 int (*set_read_only)(struct block_device *bdev, bool ro);
1442 void (*free_disk)(struct gendisk *disk);
1443 /* this callback is with swap_lock and sometimes page table lock held */
1444 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1445 int (*report_zones)(struct gendisk *, sector_t sector,
1446 unsigned int nr_zones, report_zones_cb cb, void *data);
1447 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1448 /* returns the length of the identifier or a negative errno: */
1449 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1450 enum blk_unique_id id_type);
1451 struct module *owner;
1452 const struct pr_ops *pr_ops;
1453
1454 /*
1455 * Special callback for probing GPT entry at a given sector.
1456 * Needed by Android devices, used by GPT scanner and MMC blk
1457 * driver.
1458 */
1459 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1460 };
1461
1462 #ifdef CONFIG_COMPAT
1463 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1464 unsigned int, unsigned long);
1465 #else
1466 #define blkdev_compat_ptr_ioctl NULL
1467 #endif
1468
1469 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1470 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1471 struct writeback_control *);
1472
blk_wake_io_task(struct task_struct * waiter)1473 static inline void blk_wake_io_task(struct task_struct *waiter)
1474 {
1475 /*
1476 * If we're polling, the task itself is doing the completions. For
1477 * that case, we don't need to signal a wakeup, it's enough to just
1478 * mark us as RUNNING.
1479 */
1480 if (waiter == current)
1481 __set_current_state(TASK_RUNNING);
1482 else
1483 wake_up_process(waiter);
1484 }
1485
1486 unsigned long bdev_start_io_acct(struct block_device *bdev,
1487 unsigned int sectors, unsigned int op,
1488 unsigned long start_time);
1489 void bdev_end_io_acct(struct block_device *bdev, unsigned int op,
1490 unsigned long start_time);
1491
1492 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
1493 unsigned long bio_start_io_acct(struct bio *bio);
1494 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1495 struct block_device *orig_bdev);
1496
1497 /**
1498 * bio_end_io_acct - end I/O accounting for bio based drivers
1499 * @bio: bio to end account for
1500 * @start_time: start time returned by bio_start_io_acct()
1501 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1502 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1503 {
1504 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1505 }
1506
1507 int bdev_read_only(struct block_device *bdev);
1508 int set_blocksize(struct block_device *bdev, int size);
1509
1510 const char *bdevname(struct block_device *bdev, char *buffer);
1511 int lookup_bdev(const char *pathname, dev_t *dev);
1512
1513 void blkdev_show(struct seq_file *seqf, off_t offset);
1514
1515 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1516 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1517 #ifdef CONFIG_BLOCK
1518 #define BLKDEV_MAJOR_MAX 512
1519 #else
1520 #define BLKDEV_MAJOR_MAX 0
1521 #endif
1522
1523 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1524 void *holder);
1525 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1526 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1527 void bd_abort_claiming(struct block_device *bdev, void *holder);
1528 void blkdev_put(struct block_device *bdev, fmode_t mode);
1529
1530 /* just for blk-cgroup, don't use elsewhere */
1531 struct block_device *blkdev_get_no_open(dev_t dev);
1532 void blkdev_put_no_open(struct block_device *bdev);
1533
1534 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1535 void bdev_add(struct block_device *bdev, dev_t dev);
1536 struct block_device *I_BDEV(struct inode *inode);
1537 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1538 loff_t lend);
1539
1540 #ifdef CONFIG_BLOCK
1541 void invalidate_bdev(struct block_device *bdev);
1542 int sync_blockdev(struct block_device *bdev);
1543 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1544 int sync_blockdev_nowait(struct block_device *bdev);
1545 void sync_bdevs(bool wait);
1546 void printk_all_partitions(void);
1547 #else
invalidate_bdev(struct block_device * bdev)1548 static inline void invalidate_bdev(struct block_device *bdev)
1549 {
1550 }
sync_blockdev(struct block_device * bdev)1551 static inline int sync_blockdev(struct block_device *bdev)
1552 {
1553 return 0;
1554 }
sync_blockdev_nowait(struct block_device * bdev)1555 static inline int sync_blockdev_nowait(struct block_device *bdev)
1556 {
1557 return 0;
1558 }
sync_bdevs(bool wait)1559 static inline void sync_bdevs(bool wait)
1560 {
1561 }
printk_all_partitions(void)1562 static inline void printk_all_partitions(void)
1563 {
1564 }
1565 #endif /* CONFIG_BLOCK */
1566
1567 int fsync_bdev(struct block_device *bdev);
1568
1569 int freeze_bdev(struct block_device *bdev);
1570 int thaw_bdev(struct block_device *bdev);
1571
1572 struct io_comp_batch {
1573 struct request *req_list;
1574 bool need_ts;
1575 void (*complete)(struct io_comp_batch *);
1576 };
1577
1578 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1579
1580 #endif /* _LINUX_BLKDEV_H */
1581