1 /*
2  * Copyright 2004-2009 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  *
6  * Based on: include/asm-m68knommu/uaccess.h
7  */
8 
9 #ifndef __BLACKFIN_UACCESS_H
10 #define __BLACKFIN_UACCESS_H
11 
12 /*
13  * User space memory access functions
14  */
15 #include <linux/sched.h>
16 #include <linux/mm.h>
17 #include <linux/string.h>
18 
19 #include <asm/segment.h>
20 #include <asm/sections.h>
21 
22 #define get_ds()        (KERNEL_DS)
23 #define get_fs()        (current_thread_info()->addr_limit)
24 
set_fs(mm_segment_t fs)25 static inline void set_fs(mm_segment_t fs)
26 {
27 	current_thread_info()->addr_limit = fs;
28 }
29 
30 #define segment_eq(a,b) ((a) == (b))
31 
32 #define VERIFY_READ	0
33 #define VERIFY_WRITE	1
34 
35 #define access_ok(type, addr, size) _access_ok((unsigned long)(addr), (size))
36 
is_in_rom(unsigned long addr)37 static inline int is_in_rom(unsigned long addr)
38 {
39 	/*
40 	 * What we are really trying to do is determine if addr is
41 	 * in an allocated kernel memory region. If not then assume
42 	 * we cannot free it or otherwise de-allocate it. Ideally
43 	 * we could restrict this to really being in a ROM or flash,
44 	 * but that would need to be done on a board by board basis,
45 	 * not globally.
46 	 */
47 	if ((addr < _ramstart) || (addr >= _ramend))
48 		return (1);
49 
50 	/* Default case, not in ROM */
51 	return (0);
52 }
53 
54 /*
55  * The fs value determines whether argument validity checking should be
56  * performed or not.  If get_fs() == USER_DS, checking is performed, with
57  * get_fs() == KERNEL_DS, checking is bypassed.
58  */
59 
60 #ifndef CONFIG_ACCESS_CHECK
_access_ok(unsigned long addr,unsigned long size)61 static inline int _access_ok(unsigned long addr, unsigned long size) { return 1; }
62 #else
63 extern int _access_ok(unsigned long addr, unsigned long size);
64 #endif
65 
66 /*
67  * The exception table consists of pairs of addresses: the first is the
68  * address of an instruction that is allowed to fault, and the second is
69  * the address at which the program should continue.  No registers are
70  * modified, so it is entirely up to the continuation code to figure out
71  * what to do.
72  *
73  * All the routines below use bits of fixup code that are out of line
74  * with the main instruction path.  This means when everything is well,
75  * we don't even have to jump over them.  Further, they do not intrude
76  * on our cache or tlb entries.
77  */
78 
79 struct exception_table_entry {
80 	unsigned long insn, fixup;
81 };
82 
83 /*
84  * These are the main single-value transfer routines.  They automatically
85  * use the right size if we just have the right pointer type.
86  */
87 
88 #define put_user(x,p)						\
89 	({							\
90 		int _err = 0;					\
91 		typeof(*(p)) _x = (x);				\
92 		typeof(*(p)) *_p = (p);				\
93 		if (!access_ok(VERIFY_WRITE, _p, sizeof(*(_p)))) {\
94 			_err = -EFAULT;				\
95 		}						\
96 		else {						\
97 		switch (sizeof (*(_p))) {			\
98 		case 1:						\
99 			__put_user_asm(_x, _p, B);		\
100 			break;					\
101 		case 2:						\
102 			__put_user_asm(_x, _p, W);		\
103 			break;					\
104 		case 4:						\
105 			__put_user_asm(_x, _p,  );		\
106 			break;					\
107 		case 8: {					\
108 			long _xl, _xh;				\
109 			_xl = ((long *)&_x)[0];			\
110 			_xh = ((long *)&_x)[1];			\
111 			__put_user_asm(_xl, ((long *)_p)+0, );	\
112 			__put_user_asm(_xh, ((long *)_p)+1, );	\
113 		} break;					\
114 		default:					\
115 			_err = __put_user_bad();		\
116 			break;					\
117 		}						\
118 		}						\
119 		_err;						\
120 	})
121 
122 #define __put_user(x,p) put_user(x,p)
bad_user_access_length(void)123 static inline int bad_user_access_length(void)
124 {
125 	panic("bad_user_access_length");
126 	return -1;
127 }
128 
129 #define __put_user_bad() (printk(KERN_INFO "put_user_bad %s:%d %s\n",\
130                            __FILE__, __LINE__, __func__),\
131                            bad_user_access_length(), (-EFAULT))
132 
133 /*
134  * Tell gcc we read from memory instead of writing: this is because
135  * we do not write to any memory gcc knows about, so there are no
136  * aliasing issues.
137  */
138 
139 #define __ptr(x) ((unsigned long *)(x))
140 
141 #define __put_user_asm(x,p,bhw)				\
142 	__asm__ (#bhw"[%1] = %0;\n\t"			\
143 		 : /* no outputs */			\
144 		 :"d" (x),"a" (__ptr(p)) : "memory")
145 
146 #define get_user(x, ptr)					\
147 ({								\
148 	int _err = 0;						\
149 	unsigned long _val = 0;					\
150 	const typeof(*(ptr)) __user *_p = (ptr);		\
151 	const size_t ptr_size = sizeof(*(_p));			\
152 	if (likely(access_ok(VERIFY_READ, _p, ptr_size))) {	\
153 		BUILD_BUG_ON(ptr_size >= 8);			\
154 		switch (ptr_size) {				\
155 		case 1:						\
156 			__get_user_asm(_val, _p, B,(Z));	\
157 			break;					\
158 		case 2:						\
159 			__get_user_asm(_val, _p, W,(Z));	\
160 			break;					\
161 		case 4:						\
162 			__get_user_asm(_val, _p,  , );		\
163 			break;					\
164 		}						\
165 	} else							\
166 		_err = -EFAULT;					\
167 	x = (typeof(*(ptr)))_val;				\
168 	_err;							\
169 })
170 
171 #define __get_user(x,p) get_user(x,p)
172 
173 #define __get_user_bad() (bad_user_access_length(), (-EFAULT))
174 
175 #define __get_user_asm(x, ptr, bhw, option)	\
176 ({						\
177 	__asm__ __volatile__ (			\
178 		"%0 =" #bhw "[%1]" #option ";"	\
179 		: "=d" (x)			\
180 		: "a" (__ptr(ptr)));		\
181 })
182 
183 #define __copy_from_user(to, from, n) copy_from_user(to, from, n)
184 #define __copy_to_user(to, from, n) copy_to_user(to, from, n)
185 #define __copy_to_user_inatomic __copy_to_user
186 #define __copy_from_user_inatomic __copy_from_user
187 
188 #define copy_to_user_ret(to,from,n,retval) ({ if (copy_to_user(to,from,n))\
189 				                 return retval; })
190 
191 #define copy_from_user_ret(to,from,n,retval) ({ if (copy_from_user(to,from,n))\
192                                                    return retval; })
193 
194 static inline unsigned long __must_check
copy_from_user(void * to,const void __user * from,unsigned long n)195 copy_from_user(void *to, const void __user *from, unsigned long n)
196 {
197 	if (access_ok(VERIFY_READ, from, n))
198 		memcpy(to, from, n);
199 	else
200 		return n;
201 	return 0;
202 }
203 
204 static inline unsigned long __must_check
copy_to_user(void * to,const void __user * from,unsigned long n)205 copy_to_user(void *to, const void __user *from, unsigned long n)
206 {
207 	if (access_ok(VERIFY_WRITE, to, n))
208 		memcpy(to, from, n);
209 	else
210 		return n;
211 	return 0;
212 }
213 
214 /*
215  * Copy a null terminated string from userspace.
216  */
217 
218 static inline long __must_check
strncpy_from_user(char * dst,const char * src,long count)219 strncpy_from_user(char *dst, const char *src, long count)
220 {
221 	char *tmp;
222 	if (!access_ok(VERIFY_READ, src, 1))
223 		return -EFAULT;
224 	strncpy(dst, src, count);
225 	for (tmp = dst; *tmp && count > 0; tmp++, count--) ;
226 	return (tmp - dst);
227 }
228 
229 /*
230  * Get the size of a string in user space.
231  *   src: The string to measure
232  *     n: The maximum valid length
233  *
234  * Get the size of a NUL-terminated string in user space.
235  *
236  * Returns the size of the string INCLUDING the terminating NUL.
237  * On exception, returns 0.
238  * If the string is too long, returns a value greater than n.
239  */
strnlen_user(const char * src,long n)240 static inline long __must_check strnlen_user(const char *src, long n)
241 {
242 	if (!access_ok(VERIFY_READ, src, 1))
243 		return 0;
244 	return strnlen(src, n) + 1;
245 }
246 
strlen_user(const char * src)247 static inline long __must_check strlen_user(const char *src)
248 {
249 	if (!access_ok(VERIFY_READ, src, 1))
250 		return 0;
251 	return strlen(src) + 1;
252 }
253 
254 /*
255  * Zero Userspace
256  */
257 
258 static inline unsigned long __must_check
__clear_user(void * to,unsigned long n)259 __clear_user(void *to, unsigned long n)
260 {
261 	if (!access_ok(VERIFY_WRITE, to, n))
262 		return n;
263 	memset(to, 0, n);
264 	return 0;
265 }
266 
267 #define clear_user(to, n) __clear_user(to, n)
268 
269 /* How to interpret these return values:
270  *	CORE:      can be accessed by core load or dma memcpy
271  *	CORE_ONLY: can only be accessed by core load
272  *	DMA:       can only be accessed by dma memcpy
273  *	IDMA:      can only be accessed by interprocessor dma memcpy (BF561)
274  *	ITEST:     can be accessed by isram memcpy or dma memcpy
275  */
276 enum {
277 	BFIN_MEM_ACCESS_CORE = 0,
278 	BFIN_MEM_ACCESS_CORE_ONLY,
279 	BFIN_MEM_ACCESS_DMA,
280 	BFIN_MEM_ACCESS_IDMA,
281 	BFIN_MEM_ACCESS_ITEST,
282 };
283 /**
284  *	bfin_mem_access_type() - what kind of memory access is required
285  *	@addr:   the address to check
286  *	@size:   number of bytes needed
287  *	@return: <0 is error, >=0 is BFIN_MEM_ACCESS_xxx enum (see above)
288  */
289 int bfin_mem_access_type(unsigned long addr, unsigned long size);
290 
291 #endif				/* _BLACKFIN_UACCESS_H */
292