1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO PCI config space virtualization
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 */
12
13 /*
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28
29 #include "vfio_pci_priv.h"
30
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC 0
33
34 #define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37
38 /*
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
41 * FF: Variable length
42 */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
62 [PCI_CAP_ID_SATA] = 0xFF,
63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
64 };
65
66 /*
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
69 * FF: Variable length
70 */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
73 [PCI_EXT_CAP_ID_VC] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
99 };
100
101 /*
102 * Read/Write Permission Bits - one bit for each bit in capability
103 * Any field can be read if it exists, but what is read depends on
104 * whether the field is 'virtualized', or just pass through to the
105 * hardware. Any virtualized field is also virtualized for writes.
106 * Writes are only permitted if they have a 1 bit here.
107 */
108 struct perm_bits {
109 u8 *virt; /* read/write virtual data, not hw */
110 u8 *write; /* writeable bits */
111 int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
112 struct perm_bits *perm, int offset, __le32 *val);
113 int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
114 struct perm_bits *perm, int offset, __le32 val);
115 };
116
117 #define NO_VIRT 0
118 #define ALL_VIRT 0xFFFFFFFFU
119 #define NO_WRITE 0
120 #define ALL_WRITE 0xFFFFFFFFU
121
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)122 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
123 __le32 *val, int count)
124 {
125 int ret = -EINVAL;
126 u32 tmp_val = 0;
127
128 switch (count) {
129 case 1:
130 {
131 u8 tmp;
132 ret = pci_user_read_config_byte(pdev, offset, &tmp);
133 tmp_val = tmp;
134 break;
135 }
136 case 2:
137 {
138 u16 tmp;
139 ret = pci_user_read_config_word(pdev, offset, &tmp);
140 tmp_val = tmp;
141 break;
142 }
143 case 4:
144 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
145 break;
146 }
147
148 *val = cpu_to_le32(tmp_val);
149
150 return ret;
151 }
152
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)153 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
154 __le32 val, int count)
155 {
156 int ret = -EINVAL;
157 u32 tmp_val = le32_to_cpu(val);
158
159 switch (count) {
160 case 1:
161 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
162 break;
163 case 2:
164 ret = pci_user_write_config_word(pdev, offset, tmp_val);
165 break;
166 case 4:
167 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
168 break;
169 }
170
171 return ret;
172 }
173
vfio_default_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)174 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
175 int count, struct perm_bits *perm,
176 int offset, __le32 *val)
177 {
178 __le32 virt = 0;
179
180 memcpy(val, vdev->vconfig + pos, count);
181
182 memcpy(&virt, perm->virt + offset, count);
183
184 /* Any non-virtualized bits? */
185 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
186 struct pci_dev *pdev = vdev->pdev;
187 __le32 phys_val = 0;
188 int ret;
189
190 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
191 if (ret)
192 return ret;
193
194 *val = (phys_val & ~virt) | (*val & virt);
195 }
196
197 return count;
198 }
199
vfio_default_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)200 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
201 int count, struct perm_bits *perm,
202 int offset, __le32 val)
203 {
204 __le32 virt = 0, write = 0;
205
206 memcpy(&write, perm->write + offset, count);
207
208 if (!write)
209 return count; /* drop, no writable bits */
210
211 memcpy(&virt, perm->virt + offset, count);
212
213 /* Virtualized and writable bits go to vconfig */
214 if (write & virt) {
215 __le32 virt_val = 0;
216
217 memcpy(&virt_val, vdev->vconfig + pos, count);
218
219 virt_val &= ~(write & virt);
220 virt_val |= (val & (write & virt));
221
222 memcpy(vdev->vconfig + pos, &virt_val, count);
223 }
224
225 /* Non-virtualized and writable bits go to hardware */
226 if (write & ~virt) {
227 struct pci_dev *pdev = vdev->pdev;
228 __le32 phys_val = 0;
229 int ret;
230
231 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
232 if (ret)
233 return ret;
234
235 phys_val &= ~(write & ~virt);
236 phys_val |= (val & (write & ~virt));
237
238 ret = vfio_user_config_write(pdev, pos, phys_val, count);
239 if (ret)
240 return ret;
241 }
242
243 return count;
244 }
245
246 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)247 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
248 int count, struct perm_bits *perm,
249 int offset, __le32 *val)
250 {
251 int ret;
252
253 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
254 if (ret)
255 return ret;
256
257 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
258 if (offset < 4)
259 memcpy(val, vdev->vconfig + pos, count);
260 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
261 if (offset == PCI_CAP_LIST_ID && count > 1)
262 memcpy(val, vdev->vconfig + pos,
263 min(PCI_CAP_FLAGS, count));
264 else if (offset == PCI_CAP_LIST_NEXT)
265 memcpy(val, vdev->vconfig + pos, 1);
266 }
267
268 return count;
269 }
270
271 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)272 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
273 int count, struct perm_bits *perm,
274 int offset, __le32 val)
275 {
276 int ret;
277
278 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
279 if (ret)
280 return ret;
281
282 return count;
283 }
284
vfio_raw_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)285 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
286 int count, struct perm_bits *perm,
287 int offset, __le32 *val)
288 {
289 int ret;
290
291 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
292 if (ret)
293 return ret;
294
295 return count;
296 }
297
298 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)299 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
300 int count, struct perm_bits *perm,
301 int offset, __le32 val)
302 {
303 memcpy(vdev->vconfig + pos, &val, count);
304 return count;
305 }
306
vfio_virt_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)307 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
308 int count, struct perm_bits *perm,
309 int offset, __le32 *val)
310 {
311 memcpy(val, vdev->vconfig + pos, count);
312 return count;
313 }
314
315 /* Default capability regions to read-only, no-virtualization */
316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
317 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
318 };
319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
320 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
321 };
322 /*
323 * Default unassigned regions to raw read-write access. Some devices
324 * require this to function as they hide registers between the gaps in
325 * config space (be2net). Like MMIO and I/O port registers, we have
326 * to trust the hardware isolation.
327 */
328 static struct perm_bits unassigned_perms = {
329 .readfn = vfio_raw_config_read,
330 .writefn = vfio_raw_config_write
331 };
332
333 static struct perm_bits virt_perms = {
334 .readfn = vfio_virt_config_read,
335 .writefn = vfio_virt_config_write
336 };
337
free_perm_bits(struct perm_bits * perm)338 static void free_perm_bits(struct perm_bits *perm)
339 {
340 kfree(perm->virt);
341 kfree(perm->write);
342 perm->virt = NULL;
343 perm->write = NULL;
344 }
345
alloc_perm_bits(struct perm_bits * perm,int size)346 static int alloc_perm_bits(struct perm_bits *perm, int size)
347 {
348 /*
349 * Round up all permission bits to the next dword, this lets us
350 * ignore whether a read/write exceeds the defined capability
351 * structure. We can do this because:
352 * - Standard config space is already dword aligned
353 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
354 * - Express capabilities defined as dword aligned
355 */
356 size = round_up(size, 4);
357
358 /*
359 * Zero state is
360 * - All Readable, None Writeable, None Virtualized
361 */
362 perm->virt = kzalloc(size, GFP_KERNEL);
363 perm->write = kzalloc(size, GFP_KERNEL);
364 if (!perm->virt || !perm->write) {
365 free_perm_bits(perm);
366 return -ENOMEM;
367 }
368
369 perm->readfn = vfio_default_config_read;
370 perm->writefn = vfio_default_config_write;
371
372 return 0;
373 }
374
375 /*
376 * Helper functions for filling in permission tables
377 */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
379 {
380 p->virt[off] = virt;
381 p->write[off] = write;
382 }
383
384 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
386 {
387 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
388 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
389 }
390
391 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
393 {
394 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
395 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
396 }
397
398 /* Caller should hold memory_lock semaphore */
__vfio_pci_memory_enabled(struct vfio_pci_core_device * vdev)399 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
400 {
401 struct pci_dev *pdev = vdev->pdev;
402 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
403
404 /*
405 * Memory region cannot be accessed if device power state is D3.
406 *
407 * SR-IOV VF memory enable is handled by the MSE bit in the
408 * PF SR-IOV capability, there's therefore no need to trigger
409 * faults based on the virtual value.
410 */
411 return pdev->current_state < PCI_D3hot &&
412 (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
413 }
414
415 /*
416 * Restore the *real* BARs after we detect a FLR or backdoor reset.
417 * (backdoor = some device specific technique that we didn't catch)
418 */
vfio_bar_restore(struct vfio_pci_core_device * vdev)419 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
420 {
421 struct pci_dev *pdev = vdev->pdev;
422 u32 *rbar = vdev->rbar;
423 u16 cmd;
424 int i;
425
426 if (pdev->is_virtfn)
427 return;
428
429 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
430
431 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
432 pci_user_write_config_dword(pdev, i, *rbar);
433
434 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
435
436 if (vdev->nointx) {
437 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
438 cmd |= PCI_COMMAND_INTX_DISABLE;
439 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
440 }
441 }
442
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)443 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
444 {
445 unsigned long flags = pci_resource_flags(pdev, bar);
446 u32 val;
447
448 if (flags & IORESOURCE_IO)
449 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
450
451 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
452
453 if (flags & IORESOURCE_PREFETCH)
454 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
455
456 if (flags & IORESOURCE_MEM_64)
457 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
458
459 return cpu_to_le32(val);
460 }
461
462 /*
463 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
464 * to reflect the hardware capabilities. This implements BAR sizing.
465 */
vfio_bar_fixup(struct vfio_pci_core_device * vdev)466 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
467 {
468 struct pci_dev *pdev = vdev->pdev;
469 int i;
470 __le32 *vbar;
471 u64 mask;
472
473 if (!vdev->bardirty)
474 return;
475
476 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
477
478 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
479 int bar = i + PCI_STD_RESOURCES;
480
481 if (!pci_resource_start(pdev, bar)) {
482 *vbar = 0; /* Unmapped by host = unimplemented to user */
483 continue;
484 }
485
486 mask = ~(pci_resource_len(pdev, bar) - 1);
487
488 *vbar &= cpu_to_le32((u32)mask);
489 *vbar |= vfio_generate_bar_flags(pdev, bar);
490
491 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
492 vbar++;
493 *vbar &= cpu_to_le32((u32)(mask >> 32));
494 i++;
495 }
496 }
497
498 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
499
500 /*
501 * NB. REGION_INFO will have reported zero size if we weren't able
502 * to read the ROM, but we still return the actual BAR size here if
503 * it exists (or the shadow ROM space).
504 */
505 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
506 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
507 mask |= PCI_ROM_ADDRESS_ENABLE;
508 *vbar &= cpu_to_le32((u32)mask);
509 } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
510 IORESOURCE_ROM_SHADOW) {
511 mask = ~(0x20000 - 1);
512 mask |= PCI_ROM_ADDRESS_ENABLE;
513 *vbar &= cpu_to_le32((u32)mask);
514 } else
515 *vbar = 0;
516
517 vdev->bardirty = false;
518 }
519
vfio_basic_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)520 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
521 int count, struct perm_bits *perm,
522 int offset, __le32 *val)
523 {
524 if (is_bar(offset)) /* pos == offset for basic config */
525 vfio_bar_fixup(vdev);
526
527 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
528
529 /* Mask in virtual memory enable */
530 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
531 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
532 u32 tmp_val = le32_to_cpu(*val);
533
534 tmp_val |= cmd & PCI_COMMAND_MEMORY;
535 *val = cpu_to_le32(tmp_val);
536 }
537
538 return count;
539 }
540
541 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_core_device * vdev)542 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
543 {
544 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
545 u32 bar;
546
547 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
548 if (vdev->rbar[i]) {
549 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
550 if (ret || vdev->rbar[i] != bar)
551 return true;
552 }
553 }
554
555 return false;
556 }
557
vfio_basic_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)558 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
559 int count, struct perm_bits *perm,
560 int offset, __le32 val)
561 {
562 struct pci_dev *pdev = vdev->pdev;
563 __le16 *virt_cmd;
564 u16 new_cmd = 0;
565 int ret;
566
567 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
568
569 if (offset == PCI_COMMAND) {
570 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
571 u16 phys_cmd;
572
573 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
574 if (ret)
575 return ret;
576
577 new_cmd = le32_to_cpu(val);
578
579 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
580 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
581 new_io = !!(new_cmd & PCI_COMMAND_IO);
582
583 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
584 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
585 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
586
587 if (!new_mem)
588 vfio_pci_zap_and_down_write_memory_lock(vdev);
589 else
590 down_write(&vdev->memory_lock);
591
592 /*
593 * If the user is writing mem/io enable (new_mem/io) and we
594 * think it's already enabled (virt_mem/io), but the hardware
595 * shows it disabled (phys_mem/io, then the device has
596 * undergone some kind of backdoor reset and needs to be
597 * restored before we allow it to enable the bars.
598 * SR-IOV devices will trigger this - for mem enable let's
599 * catch this now and for io enable it will be caught later
600 */
601 if ((new_mem && virt_mem && !phys_mem &&
602 !pdev->no_command_memory) ||
603 (new_io && virt_io && !phys_io) ||
604 vfio_need_bar_restore(vdev))
605 vfio_bar_restore(vdev);
606 }
607
608 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
609 if (count < 0) {
610 if (offset == PCI_COMMAND)
611 up_write(&vdev->memory_lock);
612 return count;
613 }
614
615 /*
616 * Save current memory/io enable bits in vconfig to allow for
617 * the test above next time.
618 */
619 if (offset == PCI_COMMAND) {
620 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
621
622 *virt_cmd &= cpu_to_le16(~mask);
623 *virt_cmd |= cpu_to_le16(new_cmd & mask);
624
625 up_write(&vdev->memory_lock);
626 }
627
628 /* Emulate INTx disable */
629 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
630 bool virt_intx_disable;
631
632 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
633 PCI_COMMAND_INTX_DISABLE);
634
635 if (virt_intx_disable && !vdev->virq_disabled) {
636 vdev->virq_disabled = true;
637 vfio_pci_intx_mask(vdev);
638 } else if (!virt_intx_disable && vdev->virq_disabled) {
639 vdev->virq_disabled = false;
640 vfio_pci_intx_unmask(vdev);
641 }
642 }
643
644 if (is_bar(offset))
645 vdev->bardirty = true;
646
647 return count;
648 }
649
650 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)651 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
652 {
653 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
654 return -ENOMEM;
655
656 perm->readfn = vfio_basic_config_read;
657 perm->writefn = vfio_basic_config_write;
658
659 /* Virtualized for SR-IOV functions, which just have FFFF */
660 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
661 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
662
663 /*
664 * Virtualize INTx disable, we use it internally for interrupt
665 * control and can emulate it for non-PCI 2.3 devices.
666 */
667 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
668
669 /* Virtualize capability list, we might want to skip/disable */
670 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
671
672 /* No harm to write */
673 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
674 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
675 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
676
677 /* Virtualize all bars, can't touch the real ones */
678 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
679 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
680 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
681 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
682 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
683 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
684 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
685
686 /* Allow us to adjust capability chain */
687 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
688
689 /* Sometimes used by sw, just virtualize */
690 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
691
692 /* Virtualize interrupt pin to allow hiding INTx */
693 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
694
695 return 0;
696 }
697
698 /*
699 * It takes all the required locks to protect the access of power related
700 * variables and then invokes vfio_pci_set_power_state().
701 */
vfio_lock_and_set_power_state(struct vfio_pci_core_device * vdev,pci_power_t state)702 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
703 pci_power_t state)
704 {
705 if (state >= PCI_D3hot)
706 vfio_pci_zap_and_down_write_memory_lock(vdev);
707 else
708 down_write(&vdev->memory_lock);
709
710 vfio_pci_set_power_state(vdev, state);
711 up_write(&vdev->memory_lock);
712 }
713
vfio_pm_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)714 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
715 int count, struct perm_bits *perm,
716 int offset, __le32 val)
717 {
718 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
719 if (count < 0)
720 return count;
721
722 if (offset == PCI_PM_CTRL) {
723 pci_power_t state;
724
725 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
726 case 0:
727 state = PCI_D0;
728 break;
729 case 1:
730 state = PCI_D1;
731 break;
732 case 2:
733 state = PCI_D2;
734 break;
735 case 3:
736 state = PCI_D3hot;
737 break;
738 }
739
740 vfio_lock_and_set_power_state(vdev, state);
741 }
742
743 return count;
744 }
745
746 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)747 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
748 {
749 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
750 return -ENOMEM;
751
752 perm->writefn = vfio_pm_config_write;
753
754 /*
755 * We always virtualize the next field so we can remove
756 * capabilities from the chain if we want to.
757 */
758 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
759
760 /*
761 * The guests can't process PME events. If any PME event will be
762 * generated, then it will be mostly handled in the host and the
763 * host will clear the PME_STATUS. So virtualize PME_Support bits.
764 * The vconfig bits will be cleared during device capability
765 * initialization.
766 */
767 p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
768
769 /*
770 * Power management is defined *per function*, so we can let
771 * the user change power state, but we trap and initiate the
772 * change ourselves, so the state bits are read-only.
773 *
774 * The guest can't process PME from D3cold so virtualize PME_Status
775 * and PME_En bits. The vconfig bits will be cleared during device
776 * capability initialization.
777 */
778 p_setd(perm, PCI_PM_CTRL,
779 PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
780 ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
781 PCI_PM_CTRL_STATE_MASK));
782
783 return 0;
784 }
785
vfio_vpd_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)786 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
787 int count, struct perm_bits *perm,
788 int offset, __le32 val)
789 {
790 struct pci_dev *pdev = vdev->pdev;
791 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
792 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
793 u16 addr;
794 u32 data;
795
796 /*
797 * Write through to emulation. If the write includes the upper byte
798 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
799 * have work to do.
800 */
801 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
802 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
803 offset + count <= PCI_VPD_ADDR + 1)
804 return count;
805
806 addr = le16_to_cpu(*paddr);
807
808 if (addr & PCI_VPD_ADDR_F) {
809 data = le32_to_cpu(*pdata);
810 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
811 return count;
812 } else {
813 data = 0;
814 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
815 return count;
816 *pdata = cpu_to_le32(data);
817 }
818
819 /*
820 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
821 * signal completion. If an error occurs above, we assume that not
822 * toggling this bit will induce a driver timeout.
823 */
824 addr ^= PCI_VPD_ADDR_F;
825 *paddr = cpu_to_le16(addr);
826
827 return count;
828 }
829
830 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)831 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
832 {
833 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
834 return -ENOMEM;
835
836 perm->writefn = vfio_vpd_config_write;
837
838 /*
839 * We always virtualize the next field so we can remove
840 * capabilities from the chain if we want to.
841 */
842 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
843
844 /*
845 * Both the address and data registers are virtualized to
846 * enable access through the pci_vpd_read/write functions
847 */
848 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
849 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
850
851 return 0;
852 }
853
854 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)855 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
856 {
857 /* Alloc 24, but only 8 are used in v0 */
858 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
859 return -ENOMEM;
860
861 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
862
863 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
864 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
865 return 0;
866 }
867
vfio_exp_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)868 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
869 int count, struct perm_bits *perm,
870 int offset, __le32 val)
871 {
872 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
873 offset + PCI_EXP_DEVCTL);
874 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
875
876 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
877 if (count < 0)
878 return count;
879
880 /*
881 * The FLR bit is virtualized, if set and the device supports PCIe
882 * FLR, issue a reset_function. Regardless, clear the bit, the spec
883 * requires it to be always read as zero. NB, reset_function might
884 * not use a PCIe FLR, we don't have that level of granularity.
885 */
886 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
887 u32 cap;
888 int ret;
889
890 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
891
892 ret = pci_user_read_config_dword(vdev->pdev,
893 pos - offset + PCI_EXP_DEVCAP,
894 &cap);
895
896 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
897 vfio_pci_zap_and_down_write_memory_lock(vdev);
898 pci_try_reset_function(vdev->pdev);
899 up_write(&vdev->memory_lock);
900 }
901 }
902
903 /*
904 * MPS is virtualized to the user, writes do not change the physical
905 * register since determining a proper MPS value requires a system wide
906 * device view. The MRRS is largely independent of MPS, but since the
907 * user does not have that system-wide view, they might set a safe, but
908 * inefficiently low value. Here we allow writes through to hardware,
909 * but we set the floor to the physical device MPS setting, so that
910 * we can at least use full TLPs, as defined by the MPS value.
911 *
912 * NB, if any devices actually depend on an artificially low MRRS
913 * setting, this will need to be revisited, perhaps with a quirk
914 * though pcie_set_readrq().
915 */
916 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
917 readrq = 128 <<
918 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
919 readrq = max(readrq, pcie_get_mps(vdev->pdev));
920
921 pcie_set_readrq(vdev->pdev, readrq);
922 }
923
924 return count;
925 }
926
927 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)928 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
929 {
930 /* Alloc largest of possible sizes */
931 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
932 return -ENOMEM;
933
934 perm->writefn = vfio_exp_config_write;
935
936 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
937
938 /*
939 * Allow writes to device control fields, except devctl_phantom,
940 * which could confuse IOMMU, MPS, which can break communication
941 * with other physical devices, and the ARI bit in devctl2, which
942 * is set at probe time. FLR and MRRS get virtualized via our
943 * writefn.
944 */
945 p_setw(perm, PCI_EXP_DEVCTL,
946 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
947 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
948 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
949 return 0;
950 }
951
vfio_af_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)952 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
953 int count, struct perm_bits *perm,
954 int offset, __le32 val)
955 {
956 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
957
958 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
959 if (count < 0)
960 return count;
961
962 /*
963 * The FLR bit is virtualized, if set and the device supports AF
964 * FLR, issue a reset_function. Regardless, clear the bit, the spec
965 * requires it to be always read as zero. NB, reset_function might
966 * not use an AF FLR, we don't have that level of granularity.
967 */
968 if (*ctrl & PCI_AF_CTRL_FLR) {
969 u8 cap;
970 int ret;
971
972 *ctrl &= ~PCI_AF_CTRL_FLR;
973
974 ret = pci_user_read_config_byte(vdev->pdev,
975 pos - offset + PCI_AF_CAP,
976 &cap);
977
978 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
979 vfio_pci_zap_and_down_write_memory_lock(vdev);
980 pci_try_reset_function(vdev->pdev);
981 up_write(&vdev->memory_lock);
982 }
983 }
984
985 return count;
986 }
987
988 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)989 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
990 {
991 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
992 return -ENOMEM;
993
994 perm->writefn = vfio_af_config_write;
995
996 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
997 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
998 return 0;
999 }
1000
1001 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)1002 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1003 {
1004 u32 mask;
1005
1006 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1007 return -ENOMEM;
1008
1009 /*
1010 * Virtualize the first dword of all express capabilities
1011 * because it includes the next pointer. This lets us later
1012 * remove capabilities from the chain if we need to.
1013 */
1014 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1015
1016 /* Writable bits mask */
1017 mask = PCI_ERR_UNC_UND | /* Undefined */
1018 PCI_ERR_UNC_DLP | /* Data Link Protocol */
1019 PCI_ERR_UNC_SURPDN | /* Surprise Down */
1020 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
1021 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
1022 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
1023 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
1024 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
1025 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
1026 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
1027 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
1028 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
1029 PCI_ERR_UNC_ACSV | /* ACS Violation */
1030 PCI_ERR_UNC_INTN | /* internal error */
1031 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
1032 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
1033 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
1034 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1035 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1036 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1037
1038 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
1039 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
1040 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
1041 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
1042 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
1043 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
1044 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
1045 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
1046 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1047 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1048
1049 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
1050 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
1051 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1052 return 0;
1053 }
1054
1055 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)1056 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1057 {
1058 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1059 return -ENOMEM;
1060
1061 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1062
1063 /* Writing the data selector is OK, the info is still read-only */
1064 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1065 return 0;
1066 }
1067
1068 /*
1069 * Initialize the shared permission tables
1070 */
vfio_pci_uninit_perm_bits(void)1071 void vfio_pci_uninit_perm_bits(void)
1072 {
1073 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1074
1075 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1076 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1077 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1078 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1079 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1080
1081 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1082 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1083 }
1084
vfio_pci_init_perm_bits(void)1085 int __init vfio_pci_init_perm_bits(void)
1086 {
1087 int ret;
1088
1089 /* Basic config space */
1090 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1091
1092 /* Capabilities */
1093 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1094 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1095 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1096 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1097 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1098 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1099
1100 /* Extended capabilities */
1101 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1102 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1103 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1104
1105 if (ret)
1106 vfio_pci_uninit_perm_bits();
1107
1108 return ret;
1109 }
1110
vfio_find_cap_start(struct vfio_pci_core_device * vdev,int pos)1111 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1112 {
1113 u8 cap;
1114 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1115 PCI_STD_HEADER_SIZEOF;
1116 cap = vdev->pci_config_map[pos];
1117
1118 if (cap == PCI_CAP_ID_BASIC)
1119 return 0;
1120
1121 /* XXX Can we have to abutting capabilities of the same type? */
1122 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1123 pos--;
1124
1125 return pos;
1126 }
1127
vfio_msi_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1128 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1129 int count, struct perm_bits *perm,
1130 int offset, __le32 *val)
1131 {
1132 /* Update max available queue size from msi_qmax */
1133 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1134 __le16 *flags;
1135 int start;
1136
1137 start = vfio_find_cap_start(vdev, pos);
1138
1139 flags = (__le16 *)&vdev->vconfig[start];
1140
1141 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1142 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1143 }
1144
1145 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1146 }
1147
vfio_msi_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1148 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1149 int count, struct perm_bits *perm,
1150 int offset, __le32 val)
1151 {
1152 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1153 if (count < 0)
1154 return count;
1155
1156 /* Fixup and write configured queue size and enable to hardware */
1157 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1158 __le16 *pflags;
1159 u16 flags;
1160 int start, ret;
1161
1162 start = vfio_find_cap_start(vdev, pos);
1163
1164 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1165
1166 flags = le16_to_cpu(*pflags);
1167
1168 /* MSI is enabled via ioctl */
1169 if (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1170 flags &= ~PCI_MSI_FLAGS_ENABLE;
1171
1172 /* Check queue size */
1173 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1174 flags &= ~PCI_MSI_FLAGS_QSIZE;
1175 flags |= vdev->msi_qmax << 4;
1176 }
1177
1178 /* Write back to virt and to hardware */
1179 *pflags = cpu_to_le16(flags);
1180 ret = pci_user_write_config_word(vdev->pdev,
1181 start + PCI_MSI_FLAGS,
1182 flags);
1183 if (ret)
1184 return ret;
1185 }
1186
1187 return count;
1188 }
1189
1190 /*
1191 * MSI determination is per-device, so this routine gets used beyond
1192 * initialization time. Don't add __init
1193 */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1194 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1195 {
1196 if (alloc_perm_bits(perm, len))
1197 return -ENOMEM;
1198
1199 perm->readfn = vfio_msi_config_read;
1200 perm->writefn = vfio_msi_config_write;
1201
1202 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1203
1204 /*
1205 * The upper byte of the control register is reserved,
1206 * just setup the lower byte.
1207 */
1208 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1209 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1210 if (flags & PCI_MSI_FLAGS_64BIT) {
1211 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1212 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1213 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1214 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1215 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1216 }
1217 } else {
1218 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1219 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1220 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1221 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1222 }
1223 }
1224 return 0;
1225 }
1226
1227 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_core_device * vdev,u8 pos)1228 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1229 {
1230 struct pci_dev *pdev = vdev->pdev;
1231 int len, ret;
1232 u16 flags;
1233
1234 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1235 if (ret)
1236 return pcibios_err_to_errno(ret);
1237
1238 len = 10; /* Minimum size */
1239 if (flags & PCI_MSI_FLAGS_64BIT)
1240 len += 4;
1241 if (flags & PCI_MSI_FLAGS_MASKBIT)
1242 len += 10;
1243
1244 if (vdev->msi_perm)
1245 return len;
1246
1247 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1248 if (!vdev->msi_perm)
1249 return -ENOMEM;
1250
1251 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1252 if (ret) {
1253 kfree(vdev->msi_perm);
1254 return ret;
1255 }
1256
1257 return len;
1258 }
1259
1260 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_core_device * vdev,u16 pos)1261 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1262 {
1263 struct pci_dev *pdev = vdev->pdev;
1264 u32 tmp;
1265 int ret, evcc, phases, vc_arb;
1266 int len = PCI_CAP_VC_BASE_SIZEOF;
1267
1268 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1269 if (ret)
1270 return pcibios_err_to_errno(ret);
1271
1272 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1273 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1274 if (ret)
1275 return pcibios_err_to_errno(ret);
1276
1277 if (tmp & PCI_VC_CAP2_128_PHASE)
1278 phases = 128;
1279 else if (tmp & PCI_VC_CAP2_64_PHASE)
1280 phases = 64;
1281 else if (tmp & PCI_VC_CAP2_32_PHASE)
1282 phases = 32;
1283 else
1284 phases = 0;
1285
1286 vc_arb = phases * 4;
1287
1288 /*
1289 * Port arbitration tables are root & switch only;
1290 * function arbitration tables are function 0 only.
1291 * In either case, we'll never let user write them so
1292 * we don't care how big they are
1293 */
1294 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1295 if (vc_arb) {
1296 len = round_up(len, 16);
1297 len += vc_arb / 8;
1298 }
1299 return len;
1300 }
1301
vfio_cap_len(struct vfio_pci_core_device * vdev,u8 cap,u8 pos)1302 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1303 {
1304 struct pci_dev *pdev = vdev->pdev;
1305 u32 dword;
1306 u16 word;
1307 u8 byte;
1308 int ret;
1309
1310 switch (cap) {
1311 case PCI_CAP_ID_MSI:
1312 return vfio_msi_cap_len(vdev, pos);
1313 case PCI_CAP_ID_PCIX:
1314 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1315 if (ret)
1316 return pcibios_err_to_errno(ret);
1317
1318 if (PCI_X_CMD_VERSION(word)) {
1319 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1320 /* Test for extended capabilities */
1321 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1322 &dword);
1323 vdev->extended_caps = (dword != 0);
1324 }
1325 return PCI_CAP_PCIX_SIZEOF_V2;
1326 } else
1327 return PCI_CAP_PCIX_SIZEOF_V0;
1328 case PCI_CAP_ID_VNDR:
1329 /* length follows next field */
1330 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1331 if (ret)
1332 return pcibios_err_to_errno(ret);
1333
1334 return byte;
1335 case PCI_CAP_ID_EXP:
1336 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1337 /* Test for extended capabilities */
1338 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1339 vdev->extended_caps = (dword != 0);
1340 }
1341
1342 /* length based on version and type */
1343 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1344 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1345 return 0xc; /* "All Devices" only, no link */
1346 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1347 } else {
1348 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1349 return 0x2c; /* No link */
1350 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1351 }
1352 case PCI_CAP_ID_HT:
1353 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1354 if (ret)
1355 return pcibios_err_to_errno(ret);
1356
1357 return (byte & HT_3BIT_CAP_MASK) ?
1358 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1359 case PCI_CAP_ID_SATA:
1360 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1361 if (ret)
1362 return pcibios_err_to_errno(ret);
1363
1364 byte &= PCI_SATA_REGS_MASK;
1365 if (byte == PCI_SATA_REGS_INLINE)
1366 return PCI_SATA_SIZEOF_LONG;
1367 else
1368 return PCI_SATA_SIZEOF_SHORT;
1369 default:
1370 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1371 __func__, cap, pos);
1372 }
1373
1374 return 0;
1375 }
1376
vfio_ext_cap_len(struct vfio_pci_core_device * vdev,u16 ecap,u16 epos)1377 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1378 {
1379 struct pci_dev *pdev = vdev->pdev;
1380 u8 byte;
1381 u32 dword;
1382 int ret;
1383
1384 switch (ecap) {
1385 case PCI_EXT_CAP_ID_VNDR:
1386 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1387 if (ret)
1388 return pcibios_err_to_errno(ret);
1389
1390 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1391 case PCI_EXT_CAP_ID_VC:
1392 case PCI_EXT_CAP_ID_VC9:
1393 case PCI_EXT_CAP_ID_MFVC:
1394 return vfio_vc_cap_len(vdev, epos);
1395 case PCI_EXT_CAP_ID_ACS:
1396 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1397 if (ret)
1398 return pcibios_err_to_errno(ret);
1399
1400 if (byte & PCI_ACS_EC) {
1401 int bits;
1402
1403 ret = pci_read_config_byte(pdev,
1404 epos + PCI_ACS_EGRESS_BITS,
1405 &byte);
1406 if (ret)
1407 return pcibios_err_to_errno(ret);
1408
1409 bits = byte ? round_up(byte, 32) : 256;
1410 return 8 + (bits / 8);
1411 }
1412 return 8;
1413
1414 case PCI_EXT_CAP_ID_REBAR:
1415 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1416 if (ret)
1417 return pcibios_err_to_errno(ret);
1418
1419 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1420 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1421
1422 return 4 + (byte * 8);
1423 case PCI_EXT_CAP_ID_DPA:
1424 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1425 if (ret)
1426 return pcibios_err_to_errno(ret);
1427
1428 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1429 return PCI_DPA_BASE_SIZEOF + byte + 1;
1430 case PCI_EXT_CAP_ID_TPH:
1431 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1432 if (ret)
1433 return pcibios_err_to_errno(ret);
1434
1435 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1436 int sts;
1437
1438 sts = dword & PCI_TPH_CAP_ST_MASK;
1439 sts >>= PCI_TPH_CAP_ST_SHIFT;
1440 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1441 }
1442 return PCI_TPH_BASE_SIZEOF;
1443 default:
1444 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1445 __func__, ecap, epos);
1446 }
1447
1448 return 0;
1449 }
1450
vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset)1451 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1452 int offset)
1453 {
1454 __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1455 __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1456
1457 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1458 *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1459 *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1460 }
1461
vfio_fill_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset,int size)1462 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1463 int offset, int size)
1464 {
1465 struct pci_dev *pdev = vdev->pdev;
1466 int ret = 0;
1467
1468 /*
1469 * We try to read physical config space in the largest chunks
1470 * we can, assuming that all of the fields support dword access.
1471 * pci_save_state() makes this same assumption and seems to do ok.
1472 */
1473 while (size) {
1474 int filled;
1475
1476 if (size >= 4 && !(offset % 4)) {
1477 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1478 u32 dword;
1479
1480 ret = pci_read_config_dword(pdev, offset, &dword);
1481 if (ret)
1482 return ret;
1483 *dwordp = cpu_to_le32(dword);
1484 filled = 4;
1485 } else if (size >= 2 && !(offset % 2)) {
1486 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1487 u16 word;
1488
1489 ret = pci_read_config_word(pdev, offset, &word);
1490 if (ret)
1491 return ret;
1492 *wordp = cpu_to_le16(word);
1493 filled = 2;
1494 } else {
1495 u8 *byte = &vdev->vconfig[offset];
1496 ret = pci_read_config_byte(pdev, offset, byte);
1497 if (ret)
1498 return ret;
1499 filled = 1;
1500 }
1501
1502 offset += filled;
1503 size -= filled;
1504 }
1505
1506 return ret;
1507 }
1508
vfio_cap_init(struct vfio_pci_core_device * vdev)1509 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1510 {
1511 struct pci_dev *pdev = vdev->pdev;
1512 u8 *map = vdev->pci_config_map;
1513 u16 status;
1514 u8 pos, *prev, cap;
1515 int loops, ret, caps = 0;
1516
1517 /* Any capabilities? */
1518 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1519 if (ret)
1520 return ret;
1521
1522 if (!(status & PCI_STATUS_CAP_LIST))
1523 return 0; /* Done */
1524
1525 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1526 if (ret)
1527 return ret;
1528
1529 /* Mark the previous position in case we want to skip a capability */
1530 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1531
1532 /* We can bound our loop, capabilities are dword aligned */
1533 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1534 while (pos && loops--) {
1535 u8 next;
1536 int i, len = 0;
1537
1538 ret = pci_read_config_byte(pdev, pos, &cap);
1539 if (ret)
1540 return ret;
1541
1542 ret = pci_read_config_byte(pdev,
1543 pos + PCI_CAP_LIST_NEXT, &next);
1544 if (ret)
1545 return ret;
1546
1547 /*
1548 * ID 0 is a NULL capability, conflicting with our fake
1549 * PCI_CAP_ID_BASIC. As it has no content, consider it
1550 * hidden for now.
1551 */
1552 if (cap && cap <= PCI_CAP_ID_MAX) {
1553 len = pci_cap_length[cap];
1554 if (len == 0xFF) { /* Variable length */
1555 len = vfio_cap_len(vdev, cap, pos);
1556 if (len < 0)
1557 return len;
1558 }
1559 }
1560
1561 if (!len) {
1562 pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1563 cap, pos);
1564 *prev = next;
1565 pos = next;
1566 continue;
1567 }
1568
1569 /* Sanity check, do we overlap other capabilities? */
1570 for (i = 0; i < len; i++) {
1571 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1572 continue;
1573
1574 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1575 __func__, pos + i, map[pos + i], cap);
1576 }
1577
1578 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1579
1580 memset(map + pos, cap, len);
1581 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1582 if (ret)
1583 return ret;
1584
1585 if (cap == PCI_CAP_ID_PM)
1586 vfio_update_pm_vconfig_bytes(vdev, pos);
1587
1588 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1589 pos = next;
1590 caps++;
1591 }
1592
1593 /* If we didn't fill any capabilities, clear the status flag */
1594 if (!caps) {
1595 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1596 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1597 }
1598
1599 return 0;
1600 }
1601
vfio_ecap_init(struct vfio_pci_core_device * vdev)1602 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1603 {
1604 struct pci_dev *pdev = vdev->pdev;
1605 u8 *map = vdev->pci_config_map;
1606 u16 epos;
1607 __le32 *prev = NULL;
1608 int loops, ret, ecaps = 0;
1609
1610 if (!vdev->extended_caps)
1611 return 0;
1612
1613 epos = PCI_CFG_SPACE_SIZE;
1614
1615 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1616
1617 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1618 u32 header;
1619 u16 ecap;
1620 int i, len = 0;
1621 bool hidden = false;
1622
1623 ret = pci_read_config_dword(pdev, epos, &header);
1624 if (ret)
1625 return ret;
1626
1627 ecap = PCI_EXT_CAP_ID(header);
1628
1629 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1630 len = pci_ext_cap_length[ecap];
1631 if (len == 0xFF) {
1632 len = vfio_ext_cap_len(vdev, ecap, epos);
1633 if (len < 0)
1634 return len;
1635 }
1636 }
1637
1638 if (!len) {
1639 pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1640 __func__, ecap, epos);
1641
1642 /* If not the first in the chain, we can skip over it */
1643 if (prev) {
1644 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1645 *prev &= cpu_to_le32(~(0xffcU << 20));
1646 *prev |= cpu_to_le32(val << 20);
1647 continue;
1648 }
1649
1650 /*
1651 * Otherwise, fill in a placeholder, the direct
1652 * readfn will virtualize this automatically
1653 */
1654 len = PCI_CAP_SIZEOF;
1655 hidden = true;
1656 }
1657
1658 for (i = 0; i < len; i++) {
1659 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1660 continue;
1661
1662 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1663 __func__, epos + i, map[epos + i], ecap);
1664 }
1665
1666 /*
1667 * Even though ecap is 2 bytes, we're currently a long way
1668 * from exceeding 1 byte capabilities. If we ever make it
1669 * up to 0xFE we'll need to up this to a two-byte, byte map.
1670 */
1671 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1672
1673 memset(map + epos, ecap, len);
1674 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1675 if (ret)
1676 return ret;
1677
1678 /*
1679 * If we're just using this capability to anchor the list,
1680 * hide the real ID. Only count real ecaps. XXX PCI spec
1681 * indicates to use cap id = 0, version = 0, next = 0 if
1682 * ecaps are absent, hope users check all the way to next.
1683 */
1684 if (hidden)
1685 *(__le32 *)&vdev->vconfig[epos] &=
1686 cpu_to_le32((0xffcU << 20));
1687 else
1688 ecaps++;
1689
1690 prev = (__le32 *)&vdev->vconfig[epos];
1691 epos = PCI_EXT_CAP_NEXT(header);
1692 }
1693
1694 if (!ecaps)
1695 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1696
1697 return 0;
1698 }
1699
1700 /*
1701 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1702 * to collect a list of dependencies for the VF INTx pin quirk below.
1703 */
1704 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1705 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1706 {}
1707 };
1708
1709 /*
1710 * For each device we allocate a pci_config_map that indicates the
1711 * capability occupying each dword and thus the struct perm_bits we
1712 * use for read and write. We also allocate a virtualized config
1713 * space which tracks reads and writes to bits that we emulate for
1714 * the user. Initial values filled from device.
1715 *
1716 * Using shared struct perm_bits between all vfio-pci devices saves
1717 * us from allocating cfg_size buffers for virt and write for every
1718 * device. We could remove vconfig and allocate individual buffers
1719 * for each area requiring emulated bits, but the array of pointers
1720 * would be comparable in size (at least for standard config space).
1721 */
vfio_config_init(struct vfio_pci_core_device * vdev)1722 int vfio_config_init(struct vfio_pci_core_device *vdev)
1723 {
1724 struct pci_dev *pdev = vdev->pdev;
1725 u8 *map, *vconfig;
1726 int ret;
1727
1728 /*
1729 * Config space, caps and ecaps are all dword aligned, so we could
1730 * use one byte per dword to record the type. However, there are
1731 * no requirements on the length of a capability, so the gap between
1732 * capabilities needs byte granularity.
1733 */
1734 map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1735 if (!map)
1736 return -ENOMEM;
1737
1738 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1739 if (!vconfig) {
1740 kfree(map);
1741 return -ENOMEM;
1742 }
1743
1744 vdev->pci_config_map = map;
1745 vdev->vconfig = vconfig;
1746
1747 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1748 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1749 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1750
1751 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1752 if (ret)
1753 goto out;
1754
1755 vdev->bardirty = true;
1756
1757 /*
1758 * XXX can we just pci_load_saved_state/pci_restore_state?
1759 * may need to rebuild vconfig after that
1760 */
1761
1762 /* For restore after reset */
1763 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1764 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1765 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1766 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1767 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1768 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1769 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1770
1771 if (pdev->is_virtfn) {
1772 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1773 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1774
1775 /*
1776 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1777 * does not apply to VFs and VFs must implement this register
1778 * as read-only with value zero. Userspace is not readily able
1779 * to identify whether a device is a VF and thus that the pin
1780 * definition on the device is bogus should it violate this
1781 * requirement. We already virtualize the pin register for
1782 * other purposes, so we simply need to replace the bogus value
1783 * and consider VFs when we determine INTx IRQ count.
1784 */
1785 if (vconfig[PCI_INTERRUPT_PIN] &&
1786 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1787 pci_warn(pdev,
1788 "Hardware bug: VF reports bogus INTx pin %d\n",
1789 vconfig[PCI_INTERRUPT_PIN]);
1790
1791 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1792 }
1793 if (pdev->no_command_memory) {
1794 /*
1795 * VFs and devices that set pdev->no_command_memory do not
1796 * implement the memory enable bit of the COMMAND register
1797 * therefore we'll not have it set in our initial copy of
1798 * config space after pci_enable_device(). For consistency
1799 * with PFs, set the virtual enable bit here.
1800 */
1801 *(__le16 *)&vconfig[PCI_COMMAND] |=
1802 cpu_to_le16(PCI_COMMAND_MEMORY);
1803 }
1804
1805 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1806 vconfig[PCI_INTERRUPT_PIN] = 0;
1807
1808 ret = vfio_cap_init(vdev);
1809 if (ret)
1810 goto out;
1811
1812 ret = vfio_ecap_init(vdev);
1813 if (ret)
1814 goto out;
1815
1816 return 0;
1817
1818 out:
1819 kfree(map);
1820 vdev->pci_config_map = NULL;
1821 kfree(vconfig);
1822 vdev->vconfig = NULL;
1823 return pcibios_err_to_errno(ret);
1824 }
1825
vfio_config_free(struct vfio_pci_core_device * vdev)1826 void vfio_config_free(struct vfio_pci_core_device *vdev)
1827 {
1828 kfree(vdev->vconfig);
1829 vdev->vconfig = NULL;
1830 kfree(vdev->pci_config_map);
1831 vdev->pci_config_map = NULL;
1832 if (vdev->msi_perm) {
1833 free_perm_bits(vdev->msi_perm);
1834 kfree(vdev->msi_perm);
1835 vdev->msi_perm = NULL;
1836 }
1837 }
1838
1839 /*
1840 * Find the remaining number of bytes in a dword that match the given
1841 * position. Stop at either the end of the capability or the dword boundary.
1842 */
vfio_pci_cap_remaining_dword(struct vfio_pci_core_device * vdev,loff_t pos)1843 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1844 loff_t pos)
1845 {
1846 u8 cap = vdev->pci_config_map[pos];
1847 size_t i;
1848
1849 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1850 /* nop */;
1851
1852 return i;
1853 }
1854
vfio_config_do_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1855 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1856 size_t count, loff_t *ppos, bool iswrite)
1857 {
1858 struct pci_dev *pdev = vdev->pdev;
1859 struct perm_bits *perm;
1860 __le32 val = 0;
1861 int cap_start = 0, offset;
1862 u8 cap_id;
1863 ssize_t ret;
1864
1865 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1866 *ppos + count > pdev->cfg_size)
1867 return -EFAULT;
1868
1869 /*
1870 * Chop accesses into aligned chunks containing no more than a
1871 * single capability. Caller increments to the next chunk.
1872 */
1873 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1874 if (count >= 4 && !(*ppos % 4))
1875 count = 4;
1876 else if (count >= 2 && !(*ppos % 2))
1877 count = 2;
1878 else
1879 count = 1;
1880
1881 ret = count;
1882
1883 cap_id = vdev->pci_config_map[*ppos];
1884
1885 if (cap_id == PCI_CAP_ID_INVALID) {
1886 perm = &unassigned_perms;
1887 cap_start = *ppos;
1888 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1889 perm = &virt_perms;
1890 cap_start = *ppos;
1891 } else {
1892 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1893 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1894
1895 perm = &ecap_perms[cap_id];
1896 cap_start = vfio_find_cap_start(vdev, *ppos);
1897 } else {
1898 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1899
1900 perm = &cap_perms[cap_id];
1901
1902 if (cap_id == PCI_CAP_ID_MSI)
1903 perm = vdev->msi_perm;
1904
1905 if (cap_id > PCI_CAP_ID_BASIC)
1906 cap_start = vfio_find_cap_start(vdev, *ppos);
1907 }
1908 }
1909
1910 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1911 WARN_ON(cap_start > *ppos);
1912
1913 offset = *ppos - cap_start;
1914
1915 if (iswrite) {
1916 if (!perm->writefn)
1917 return ret;
1918
1919 if (copy_from_user(&val, buf, count))
1920 return -EFAULT;
1921
1922 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1923 } else {
1924 if (perm->readfn) {
1925 ret = perm->readfn(vdev, *ppos, count,
1926 perm, offset, &val);
1927 if (ret < 0)
1928 return ret;
1929 }
1930
1931 if (copy_to_user(buf, &val, count))
1932 return -EFAULT;
1933 }
1934
1935 return ret;
1936 }
1937
vfio_pci_config_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1938 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1939 size_t count, loff_t *ppos, bool iswrite)
1940 {
1941 size_t done = 0;
1942 int ret = 0;
1943 loff_t pos = *ppos;
1944
1945 pos &= VFIO_PCI_OFFSET_MASK;
1946
1947 while (count) {
1948 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1949 if (ret < 0)
1950 return ret;
1951
1952 count -= ret;
1953 done += ret;
1954 buf += ret;
1955 pos += ret;
1956 }
1957
1958 *ppos += done;
1959
1960 return done;
1961 }
1962