1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SLUB_DEF_H
3 #define _LINUX_SLUB_DEF_H
4 
5 /*
6  * SLUB : A Slab allocator without object queues.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 #include <linux/kfence.h>
11 #include <linux/kobject.h>
12 #include <linux/reciprocal_div.h>
13 #include <linux/local_lock.h>
14 
15 enum stat_item {
16 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
17 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
18 	FREE_FASTPATH,		/* Free to cpu slab */
19 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
20 	FREE_FROZEN,		/* Freeing to frozen slab */
21 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
22 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
23 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
24 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
25 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
26 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
27 	FREE_SLAB,		/* Slab freed to the page allocator */
28 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
29 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
30 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
31 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
32 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
33 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
35 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
36 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
37 	CMPXCHG_DOUBLE_FAIL,	/* Number of times that cmpxchg double did not match */
38 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
39 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
40 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
41 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
42 	NR_SLUB_STAT_ITEMS };
43 
44 /*
45  * When changing the layout, make sure freelist and tid are still compatible
46  * with this_cpu_cmpxchg_double() alignment requirements.
47  */
48 struct kmem_cache_cpu {
49 	void **freelist;	/* Pointer to next available object */
50 	unsigned long tid;	/* Globally unique transaction id */
51 	struct slab *slab;	/* The slab from which we are allocating */
52 #ifdef CONFIG_SLUB_CPU_PARTIAL
53 	struct slab *partial;	/* Partially allocated frozen slabs */
54 #endif
55 	local_lock_t lock;	/* Protects the fields above */
56 #ifdef CONFIG_SLUB_STATS
57 	unsigned stat[NR_SLUB_STAT_ITEMS];
58 #endif
59 };
60 
61 #ifdef CONFIG_SLUB_CPU_PARTIAL
62 #define slub_percpu_partial(c)		((c)->partial)
63 
64 #define slub_set_percpu_partial(c, p)		\
65 ({						\
66 	slub_percpu_partial(c) = (p)->next;	\
67 })
68 
69 #define slub_percpu_partial_read_once(c)     READ_ONCE(slub_percpu_partial(c))
70 #else
71 #define slub_percpu_partial(c)			NULL
72 
73 #define slub_set_percpu_partial(c, p)
74 
75 #define slub_percpu_partial_read_once(c)	NULL
76 #endif // CONFIG_SLUB_CPU_PARTIAL
77 
78 /*
79  * Word size structure that can be atomically updated or read and that
80  * contains both the order and the number of objects that a slab of the
81  * given order would contain.
82  */
83 struct kmem_cache_order_objects {
84 	unsigned int x;
85 };
86 
87 /*
88  * Slab cache management.
89  */
90 struct kmem_cache {
91 	struct kmem_cache_cpu __percpu *cpu_slab;
92 	/* Used for retrieving partial slabs, etc. */
93 	slab_flags_t flags;
94 	unsigned long min_partial;
95 	unsigned int size;	/* The size of an object including metadata */
96 	unsigned int object_size;/* The size of an object without metadata */
97 	struct reciprocal_value reciprocal_size;
98 	unsigned int offset;	/* Free pointer offset */
99 #ifdef CONFIG_SLUB_CPU_PARTIAL
100 	/* Number of per cpu partial objects to keep around */
101 	unsigned int cpu_partial;
102 	/* Number of per cpu partial slabs to keep around */
103 	unsigned int cpu_partial_slabs;
104 #endif
105 	struct kmem_cache_order_objects oo;
106 
107 	/* Allocation and freeing of slabs */
108 	struct kmem_cache_order_objects min;
109 	gfp_t allocflags;	/* gfp flags to use on each alloc */
110 	int refcount;		/* Refcount for slab cache destroy */
111 	void (*ctor)(void *);
112 	unsigned int inuse;		/* Offset to metadata */
113 	unsigned int align;		/* Alignment */
114 	unsigned int red_left_pad;	/* Left redzone padding size */
115 	const char *name;	/* Name (only for display!) */
116 	struct list_head list;	/* List of slab caches */
117 #ifdef CONFIG_SYSFS
118 	struct kobject kobj;	/* For sysfs */
119 #endif
120 #ifdef CONFIG_SLAB_FREELIST_HARDENED
121 	unsigned long random;
122 #endif
123 
124 #ifdef CONFIG_NUMA
125 	/*
126 	 * Defragmentation by allocating from a remote node.
127 	 */
128 	unsigned int remote_node_defrag_ratio;
129 #endif
130 
131 #ifdef CONFIG_SLAB_FREELIST_RANDOM
132 	unsigned int *random_seq;
133 #endif
134 
135 #ifdef CONFIG_KASAN
136 	struct kasan_cache kasan_info;
137 #endif
138 
139 	unsigned int useroffset;	/* Usercopy region offset */
140 	unsigned int usersize;		/* Usercopy region size */
141 
142 	struct kmem_cache_node *node[MAX_NUMNODES];
143 };
144 
145 #ifdef CONFIG_SYSFS
146 #define SLAB_SUPPORTS_SYSFS
147 void sysfs_slab_unlink(struct kmem_cache *);
148 void sysfs_slab_release(struct kmem_cache *);
149 #else
sysfs_slab_unlink(struct kmem_cache * s)150 static inline void sysfs_slab_unlink(struct kmem_cache *s)
151 {
152 }
sysfs_slab_release(struct kmem_cache * s)153 static inline void sysfs_slab_release(struct kmem_cache *s)
154 {
155 }
156 #endif
157 
158 void *fixup_red_left(struct kmem_cache *s, void *p);
159 
nearest_obj(struct kmem_cache * cache,const struct slab * slab,void * x)160 static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
161 				void *x) {
162 	void *object = x - (x - slab_address(slab)) % cache->size;
163 	void *last_object = slab_address(slab) +
164 		(slab->objects - 1) * cache->size;
165 	void *result = (unlikely(object > last_object)) ? last_object : object;
166 
167 	result = fixup_red_left(cache, result);
168 	return result;
169 }
170 
171 /* Determine object index from a given position */
__obj_to_index(const struct kmem_cache * cache,void * addr,void * obj)172 static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
173 					  void *addr, void *obj)
174 {
175 	return reciprocal_divide(kasan_reset_tag(obj) - addr,
176 				 cache->reciprocal_size);
177 }
178 
obj_to_index(const struct kmem_cache * cache,const struct slab * slab,void * obj)179 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
180 					const struct slab *slab, void *obj)
181 {
182 	if (is_kfence_address(obj))
183 		return 0;
184 	return __obj_to_index(cache, slab_address(slab), obj);
185 }
186 
objs_per_slab(const struct kmem_cache * cache,const struct slab * slab)187 static inline int objs_per_slab(const struct kmem_cache *cache,
188 				     const struct slab *slab)
189 {
190 	return slab->objects;
191 }
192 #endif /* _LINUX_SLUB_DEF_H */
193