1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
31 {
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 (sbi)->segs_per_sec) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 (sbi)->segs_per_sec) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 (sbi)->segs_per_sec) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 (sbi)->segs_per_sec) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 (sbi)->segs_per_sec) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 (sbi)->segs_per_sec) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 (sbi)->segs_per_sec) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
65 (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi) ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi) \
103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi) \
105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \
106 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi) \
108 ((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 (sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno) \
111 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno) \
113 ((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno) \
115 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno) \
117 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118
119 #define GET_SUM_BLOCK(sbi, segno) \
120 ((sbi)->sm_info->ssa_blkaddr + (segno))
121
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124
125 #define SIT_ENTRY_OFFSET(sit_i, segno) \
126 ((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno) \
128 ((segno) / SIT_ENTRY_PER_BLOCK)
129 #define START_SEGNO(segno) \
130 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi) \
132 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr) \
134 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
135
136 #define SECTOR_FROM_BLOCK(blk_addr) \
137 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors) \
139 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140
141 /*
142 * indicate a block allocation direction: RIGHT and LEFT.
143 * RIGHT means allocating new sections towards the end of volume.
144 * LEFT means the opposite direction.
145 */
146 enum {
147 ALLOC_RIGHT = 0,
148 ALLOC_LEFT
149 };
150
151 /*
152 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
153 * LFS writes data sequentially with cleaning operations.
154 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156 * fragmented segment which has similar aging degree.
157 */
158 enum {
159 LFS = 0,
160 SSR,
161 AT_SSR,
162 };
163
164 /*
165 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
166 * GC_CB is based on cost-benefit algorithm.
167 * GC_GREEDY is based on greedy algorithm.
168 * GC_AT is based on age-threshold algorithm.
169 */
170 enum {
171 GC_CB = 0,
172 GC_GREEDY,
173 GC_AT,
174 ALLOC_NEXT,
175 FLUSH_DEVICE,
176 MAX_GC_POLICY,
177 };
178
179 /*
180 * BG_GC means the background cleaning job.
181 * FG_GC means the on-demand cleaning job.
182 */
183 enum {
184 BG_GC = 0,
185 FG_GC,
186 };
187
188 /* for a function parameter to select a victim segment */
189 struct victim_sel_policy {
190 int alloc_mode; /* LFS or SSR */
191 int gc_mode; /* GC_CB or GC_GREEDY */
192 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
193 unsigned int max_search; /*
194 * maximum # of segments/sections
195 * to search
196 */
197 unsigned int offset; /* last scanned bitmap offset */
198 unsigned int ofs_unit; /* bitmap search unit */
199 unsigned int min_cost; /* minimum cost */
200 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
201 unsigned int min_segno; /* segment # having min. cost */
202 unsigned long long age; /* mtime of GCed section*/
203 unsigned long long age_threshold;/* age threshold */
204 };
205
206 struct seg_entry {
207 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
208 unsigned int valid_blocks:10; /* # of valid blocks */
209 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
210 unsigned int padding:6; /* padding */
211 unsigned char *cur_valid_map; /* validity bitmap of blocks */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
214 #endif
215 /*
216 * # of valid blocks and the validity bitmap stored in the last
217 * checkpoint pack. This information is used by the SSR mode.
218 */
219 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
220 unsigned char *discard_map;
221 unsigned long long mtime; /* modification time of the segment */
222 };
223
224 struct sec_entry {
225 unsigned int valid_blocks; /* # of valid blocks in a section */
226 };
227
228 #define MAX_SKIP_GC_COUNT 16
229
230 struct revoke_entry {
231 struct list_head list;
232 block_t old_addr; /* for revoking when fail to commit */
233 pgoff_t index;
234 };
235
236 struct sit_info {
237 block_t sit_base_addr; /* start block address of SIT area */
238 block_t sit_blocks; /* # of blocks used by SIT area */
239 block_t written_valid_blocks; /* # of valid blocks in main area */
240 char *bitmap; /* all bitmaps pointer */
241 char *sit_bitmap; /* SIT bitmap pointer */
242 #ifdef CONFIG_F2FS_CHECK_FS
243 char *sit_bitmap_mir; /* SIT bitmap mirror */
244
245 /* bitmap of segments to be ignored by GC in case of errors */
246 unsigned long *invalid_segmap;
247 #endif
248 unsigned int bitmap_size; /* SIT bitmap size */
249
250 unsigned long *tmp_map; /* bitmap for temporal use */
251 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
252 unsigned int dirty_sentries; /* # of dirty sentries */
253 unsigned int sents_per_block; /* # of SIT entries per block */
254 struct rw_semaphore sentry_lock; /* to protect SIT cache */
255 struct seg_entry *sentries; /* SIT segment-level cache */
256 struct sec_entry *sec_entries; /* SIT section-level cache */
257
258 /* for cost-benefit algorithm in cleaning procedure */
259 unsigned long long elapsed_time; /* elapsed time after mount */
260 unsigned long long mounted_time; /* mount time */
261 unsigned long long min_mtime; /* min. modification time */
262 unsigned long long max_mtime; /* max. modification time */
263 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
264 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
265
266 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
267 };
268
269 struct free_segmap_info {
270 unsigned int start_segno; /* start segment number logically */
271 unsigned int free_segments; /* # of free segments */
272 unsigned int free_sections; /* # of free sections */
273 spinlock_t segmap_lock; /* free segmap lock */
274 unsigned long *free_segmap; /* free segment bitmap */
275 unsigned long *free_secmap; /* free section bitmap */
276 };
277
278 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
279 enum dirty_type {
280 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
281 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
282 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
283 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
284 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
285 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
286 DIRTY, /* to count # of dirty segments */
287 PRE, /* to count # of entirely obsolete segments */
288 NR_DIRTY_TYPE
289 };
290
291 struct dirty_seglist_info {
292 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293 unsigned long *dirty_secmap;
294 struct mutex seglist_lock; /* lock for segment bitmaps */
295 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
296 unsigned long *victim_secmap; /* background GC victims */
297 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
298 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
299 bool enable_pin_section; /* enable pinning section */
300 };
301
302 /* for active log information */
303 struct curseg_info {
304 struct mutex curseg_mutex; /* lock for consistency */
305 struct f2fs_summary_block *sum_blk; /* cached summary block */
306 struct rw_semaphore journal_rwsem; /* protect journal area */
307 struct f2fs_journal *journal; /* cached journal info */
308 unsigned char alloc_type; /* current allocation type */
309 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
310 unsigned int segno; /* current segment number */
311 unsigned short next_blkoff; /* next block offset to write */
312 unsigned int zone; /* current zone number */
313 unsigned int next_segno; /* preallocated segment */
314 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
315 bool inited; /* indicate inmem log is inited */
316 };
317
318 struct sit_entry_set {
319 struct list_head set_list; /* link with all sit sets */
320 unsigned int start_segno; /* start segno of sits in set */
321 unsigned int entry_cnt; /* the # of sit entries in set */
322 };
323
324 /*
325 * inline functions
326 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)327 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
328 {
329 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
330 }
331
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)332 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
333 unsigned int segno)
334 {
335 struct sit_info *sit_i = SIT_I(sbi);
336 return &sit_i->sentries[segno];
337 }
338
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)339 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
340 unsigned int segno)
341 {
342 struct sit_info *sit_i = SIT_I(sbi);
343 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
344 }
345
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)346 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
347 unsigned int segno, bool use_section)
348 {
349 /*
350 * In order to get # of valid blocks in a section instantly from many
351 * segments, f2fs manages two counting structures separately.
352 */
353 if (use_section && __is_large_section(sbi))
354 return get_sec_entry(sbi, segno)->valid_blocks;
355 else
356 return get_seg_entry(sbi, segno)->valid_blocks;
357 }
358
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)359 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
360 unsigned int segno, bool use_section)
361 {
362 if (use_section && __is_large_section(sbi)) {
363 unsigned int start_segno = START_SEGNO(segno);
364 unsigned int blocks = 0;
365 int i;
366
367 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
368 struct seg_entry *se = get_seg_entry(sbi, start_segno);
369
370 blocks += se->ckpt_valid_blocks;
371 }
372 return blocks;
373 }
374 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
375 }
376
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)377 static inline void seg_info_from_raw_sit(struct seg_entry *se,
378 struct f2fs_sit_entry *rs)
379 {
380 se->valid_blocks = GET_SIT_VBLOCKS(rs);
381 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
382 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
383 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
384 #ifdef CONFIG_F2FS_CHECK_FS
385 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386 #endif
387 se->type = GET_SIT_TYPE(rs);
388 se->mtime = le64_to_cpu(rs->mtime);
389 }
390
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)391 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
392 struct f2fs_sit_entry *rs)
393 {
394 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
395 se->valid_blocks;
396 rs->vblocks = cpu_to_le16(raw_vblocks);
397 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
398 rs->mtime = cpu_to_le64(se->mtime);
399 }
400
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)401 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
402 struct page *page, unsigned int start)
403 {
404 struct f2fs_sit_block *raw_sit;
405 struct seg_entry *se;
406 struct f2fs_sit_entry *rs;
407 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
408 (unsigned long)MAIN_SEGS(sbi));
409 int i;
410
411 raw_sit = (struct f2fs_sit_block *)page_address(page);
412 memset(raw_sit, 0, PAGE_SIZE);
413 for (i = 0; i < end - start; i++) {
414 rs = &raw_sit->entries[i];
415 se = get_seg_entry(sbi, start + i);
416 __seg_info_to_raw_sit(se, rs);
417 }
418 }
419
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)420 static inline void seg_info_to_raw_sit(struct seg_entry *se,
421 struct f2fs_sit_entry *rs)
422 {
423 __seg_info_to_raw_sit(se, rs);
424
425 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
426 se->ckpt_valid_blocks = se->valid_blocks;
427 }
428
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)429 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
430 unsigned int max, unsigned int segno)
431 {
432 unsigned int ret;
433 spin_lock(&free_i->segmap_lock);
434 ret = find_next_bit(free_i->free_segmap, max, segno);
435 spin_unlock(&free_i->segmap_lock);
436 return ret;
437 }
438
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)439 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
440 {
441 struct free_segmap_info *free_i = FREE_I(sbi);
442 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
443 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
444 unsigned int next;
445 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
446
447 spin_lock(&free_i->segmap_lock);
448 clear_bit(segno, free_i->free_segmap);
449 free_i->free_segments++;
450
451 next = find_next_bit(free_i->free_segmap,
452 start_segno + sbi->segs_per_sec, start_segno);
453 if (next >= start_segno + usable_segs) {
454 clear_bit(secno, free_i->free_secmap);
455 free_i->free_sections++;
456 }
457 spin_unlock(&free_i->segmap_lock);
458 }
459
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)460 static inline void __set_inuse(struct f2fs_sb_info *sbi,
461 unsigned int segno)
462 {
463 struct free_segmap_info *free_i = FREE_I(sbi);
464 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
465
466 set_bit(segno, free_i->free_segmap);
467 free_i->free_segments--;
468 if (!test_and_set_bit(secno, free_i->free_secmap))
469 free_i->free_sections--;
470 }
471
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)472 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
473 unsigned int segno, bool inmem)
474 {
475 struct free_segmap_info *free_i = FREE_I(sbi);
476 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
477 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
478 unsigned int next;
479 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
480
481 spin_lock(&free_i->segmap_lock);
482 if (test_and_clear_bit(segno, free_i->free_segmap)) {
483 free_i->free_segments++;
484
485 if (!inmem && IS_CURSEC(sbi, secno))
486 goto skip_free;
487 next = find_next_bit(free_i->free_segmap,
488 start_segno + sbi->segs_per_sec, start_segno);
489 if (next >= start_segno + usable_segs) {
490 if (test_and_clear_bit(secno, free_i->free_secmap))
491 free_i->free_sections++;
492 }
493 }
494 skip_free:
495 spin_unlock(&free_i->segmap_lock);
496 }
497
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)498 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
499 unsigned int segno)
500 {
501 struct free_segmap_info *free_i = FREE_I(sbi);
502 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
503
504 spin_lock(&free_i->segmap_lock);
505 if (!test_and_set_bit(segno, free_i->free_segmap)) {
506 free_i->free_segments--;
507 if (!test_and_set_bit(secno, free_i->free_secmap))
508 free_i->free_sections--;
509 }
510 spin_unlock(&free_i->segmap_lock);
511 }
512
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)513 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
514 void *dst_addr)
515 {
516 struct sit_info *sit_i = SIT_I(sbi);
517
518 #ifdef CONFIG_F2FS_CHECK_FS
519 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
520 sit_i->bitmap_size))
521 f2fs_bug_on(sbi, 1);
522 #endif
523 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
524 }
525
written_block_count(struct f2fs_sb_info * sbi)526 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
527 {
528 return SIT_I(sbi)->written_valid_blocks;
529 }
530
free_segments(struct f2fs_sb_info * sbi)531 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
532 {
533 return FREE_I(sbi)->free_segments;
534 }
535
reserved_segments(struct f2fs_sb_info * sbi)536 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
537 {
538 return SM_I(sbi)->reserved_segments +
539 SM_I(sbi)->additional_reserved_segments;
540 }
541
free_sections(struct f2fs_sb_info * sbi)542 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
543 {
544 return FREE_I(sbi)->free_sections;
545 }
546
prefree_segments(struct f2fs_sb_info * sbi)547 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
548 {
549 return DIRTY_I(sbi)->nr_dirty[PRE];
550 }
551
dirty_segments(struct f2fs_sb_info * sbi)552 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
553 {
554 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
555 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
556 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
557 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
558 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
559 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
560 }
561
overprovision_segments(struct f2fs_sb_info * sbi)562 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
563 {
564 return SM_I(sbi)->ovp_segments;
565 }
566
reserved_sections(struct f2fs_sb_info * sbi)567 static inline int reserved_sections(struct f2fs_sb_info *sbi)
568 {
569 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
570 }
571
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)572 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
573 unsigned int node_blocks, unsigned int dent_blocks)
574 {
575
576 unsigned int segno, left_blocks;
577 int i;
578
579 /* check current node segment */
580 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
581 segno = CURSEG_I(sbi, i)->segno;
582 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
583 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
584
585 if (node_blocks > left_blocks)
586 return false;
587 }
588
589 /* check current data segment */
590 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
591 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
592 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
593 if (dent_blocks > left_blocks)
594 return false;
595 return true;
596 }
597
598 /*
599 * calculate needed sections for dirty node/dentry
600 * and call has_curseg_enough_space
601 */
__get_secs_required(struct f2fs_sb_info * sbi,unsigned int * lower_p,unsigned int * upper_p,bool * curseg_p)602 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
603 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
604 {
605 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606 get_pages(sbi, F2FS_DIRTY_DENTS) +
607 get_pages(sbi, F2FS_DIRTY_IMETA);
608 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613
614 if (lower_p)
615 *lower_p = node_secs + dent_secs;
616 if (upper_p)
617 *upper_p = node_secs + dent_secs +
618 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
619 if (curseg_p)
620 *curseg_p = has_curseg_enough_space(sbi,
621 node_blocks, dent_blocks);
622 }
623
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)624 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
625 int freed, int needed)
626 {
627 unsigned int free_secs, lower_secs, upper_secs;
628 bool curseg_space;
629
630 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
631 return false;
632
633 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
634
635 free_secs = free_sections(sbi) + freed;
636 lower_secs += needed + reserved_sections(sbi);
637 upper_secs += needed + reserved_sections(sbi);
638
639 if (free_secs > upper_secs)
640 return false;
641 else if (free_secs <= lower_secs)
642 return true;
643 return !curseg_space;
644 }
645
has_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)646 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
647 int freed, int needed)
648 {
649 return !has_not_enough_free_secs(sbi, freed, needed);
650 }
651
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)652 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
653 {
654 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
655 return true;
656 if (likely(has_enough_free_secs(sbi, 0, 0)))
657 return true;
658 return false;
659 }
660
excess_prefree_segs(struct f2fs_sb_info * sbi)661 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
662 {
663 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
664 }
665
utilization(struct f2fs_sb_info * sbi)666 static inline int utilization(struct f2fs_sb_info *sbi)
667 {
668 return div_u64((u64)valid_user_blocks(sbi) * 100,
669 sbi->user_block_count);
670 }
671
672 /*
673 * Sometimes f2fs may be better to drop out-of-place update policy.
674 * And, users can control the policy through sysfs entries.
675 * There are five policies with triggering conditions as follows.
676 * F2FS_IPU_FORCE - all the time,
677 * F2FS_IPU_SSR - if SSR mode is activated,
678 * F2FS_IPU_UTIL - if FS utilization is over threashold,
679 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
680 * threashold,
681 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
682 * storages. IPU will be triggered only if the # of dirty
683 * pages over min_fsync_blocks. (=default option)
684 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
685 * F2FS_IPU_NOCACHE - disable IPU bio cache.
686 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
687 * FI_OPU_WRITE flag.
688 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
689 */
690 #define DEF_MIN_IPU_UTIL 70
691 #define DEF_MIN_FSYNC_BLOCKS 8
692 #define DEF_MIN_HOT_BLOCKS 16
693
694 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
695
696 #define F2FS_IPU_DISABLE 0
697
698 /* Modification on enum should be synchronized with ipu_mode_names array */
699 enum {
700 F2FS_IPU_FORCE,
701 F2FS_IPU_SSR,
702 F2FS_IPU_UTIL,
703 F2FS_IPU_SSR_UTIL,
704 F2FS_IPU_FSYNC,
705 F2FS_IPU_ASYNC,
706 F2FS_IPU_NOCACHE,
707 F2FS_IPU_HONOR_OPU_WRITE,
708 F2FS_IPU_MAX,
709 };
710
IS_F2FS_IPU_DISABLE(struct f2fs_sb_info * sbi)711 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
712 {
713 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
714 }
715
716 #define F2FS_IPU_POLICY(name) \
717 static inline bool IS_##name(struct f2fs_sb_info *sbi) \
718 { \
719 return SM_I(sbi)->ipu_policy & BIT(name); \
720 }
721
722 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
723 F2FS_IPU_POLICY(F2FS_IPU_SSR);
724 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
725 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
726 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
727 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
728 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
729 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
730
curseg_segno(struct f2fs_sb_info * sbi,int type)731 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
732 int type)
733 {
734 struct curseg_info *curseg = CURSEG_I(sbi, type);
735 return curseg->segno;
736 }
737
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)738 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
739 int type)
740 {
741 struct curseg_info *curseg = CURSEG_I(sbi, type);
742 return curseg->alloc_type;
743 }
744
valid_main_segno(struct f2fs_sb_info * sbi,unsigned int segno)745 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
746 unsigned int segno)
747 {
748 return segno <= (MAIN_SEGS(sbi) - 1);
749 }
750
verify_fio_blkaddr(struct f2fs_io_info * fio)751 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
752 {
753 struct f2fs_sb_info *sbi = fio->sbi;
754
755 if (__is_valid_data_blkaddr(fio->old_blkaddr))
756 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
757 META_GENERIC : DATA_GENERIC);
758 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
759 META_GENERIC : DATA_GENERIC_ENHANCE);
760 }
761
762 /*
763 * Summary block is always treated as an invalid block
764 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)765 static inline int check_block_count(struct f2fs_sb_info *sbi,
766 int segno, struct f2fs_sit_entry *raw_sit)
767 {
768 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
769 int valid_blocks = 0;
770 int cur_pos = 0, next_pos;
771 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
772
773 /* check bitmap with valid block count */
774 do {
775 if (is_valid) {
776 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
777 usable_blks_per_seg,
778 cur_pos);
779 valid_blocks += next_pos - cur_pos;
780 } else
781 next_pos = find_next_bit_le(&raw_sit->valid_map,
782 usable_blks_per_seg,
783 cur_pos);
784 cur_pos = next_pos;
785 is_valid = !is_valid;
786 } while (cur_pos < usable_blks_per_seg);
787
788 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
789 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
790 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
791 set_sbi_flag(sbi, SBI_NEED_FSCK);
792 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
793 return -EFSCORRUPTED;
794 }
795
796 if (usable_blks_per_seg < sbi->blocks_per_seg)
797 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
798 sbi->blocks_per_seg,
799 usable_blks_per_seg) != sbi->blocks_per_seg);
800
801 /* check segment usage, and check boundary of a given segment number */
802 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
803 || !valid_main_segno(sbi, segno))) {
804 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
805 GET_SIT_VBLOCKS(raw_sit), segno);
806 set_sbi_flag(sbi, SBI_NEED_FSCK);
807 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
808 return -EFSCORRUPTED;
809 }
810 return 0;
811 }
812
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)813 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
814 unsigned int start)
815 {
816 struct sit_info *sit_i = SIT_I(sbi);
817 unsigned int offset = SIT_BLOCK_OFFSET(start);
818 block_t blk_addr = sit_i->sit_base_addr + offset;
819
820 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
821
822 #ifdef CONFIG_F2FS_CHECK_FS
823 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
824 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
825 f2fs_bug_on(sbi, 1);
826 #endif
827
828 /* calculate sit block address */
829 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
830 blk_addr += sit_i->sit_blocks;
831
832 return blk_addr;
833 }
834
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)835 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
836 pgoff_t block_addr)
837 {
838 struct sit_info *sit_i = SIT_I(sbi);
839 block_addr -= sit_i->sit_base_addr;
840 if (block_addr < sit_i->sit_blocks)
841 block_addr += sit_i->sit_blocks;
842 else
843 block_addr -= sit_i->sit_blocks;
844
845 return block_addr + sit_i->sit_base_addr;
846 }
847
set_to_next_sit(struct sit_info * sit_i,unsigned int start)848 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
849 {
850 unsigned int block_off = SIT_BLOCK_OFFSET(start);
851
852 f2fs_change_bit(block_off, sit_i->sit_bitmap);
853 #ifdef CONFIG_F2FS_CHECK_FS
854 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
855 #endif
856 }
857
get_mtime(struct f2fs_sb_info * sbi,bool base_time)858 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
859 bool base_time)
860 {
861 struct sit_info *sit_i = SIT_I(sbi);
862 time64_t diff, now = ktime_get_boottime_seconds();
863
864 if (now >= sit_i->mounted_time)
865 return sit_i->elapsed_time + now - sit_i->mounted_time;
866
867 /* system time is set to the past */
868 if (!base_time) {
869 diff = sit_i->mounted_time - now;
870 if (sit_i->elapsed_time >= diff)
871 return sit_i->elapsed_time - diff;
872 return 0;
873 }
874 return sit_i->elapsed_time;
875 }
876
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)877 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
878 unsigned int ofs_in_node, unsigned char version)
879 {
880 sum->nid = cpu_to_le32(nid);
881 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
882 sum->version = version;
883 }
884
start_sum_block(struct f2fs_sb_info * sbi)885 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
886 {
887 return __start_cp_addr(sbi) +
888 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
889 }
890
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)891 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
892 {
893 return __start_cp_addr(sbi) +
894 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
895 - (base + 1) + type;
896 }
897
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)898 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
899 {
900 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
901 return true;
902 return false;
903 }
904
905 /*
906 * It is very important to gather dirty pages and write at once, so that we can
907 * submit a big bio without interfering other data writes.
908 * By default, 512 pages for directory data,
909 * 512 pages (2MB) * 8 for nodes, and
910 * 256 pages * 8 for meta are set.
911 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)912 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
913 {
914 if (sbi->sb->s_bdi->wb.dirty_exceeded)
915 return 0;
916
917 if (type == DATA)
918 return sbi->blocks_per_seg;
919 else if (type == NODE)
920 return 8 * sbi->blocks_per_seg;
921 else if (type == META)
922 return 8 * BIO_MAX_VECS;
923 else
924 return 0;
925 }
926
927 /*
928 * When writing pages, it'd better align nr_to_write for segment size.
929 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)930 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
931 struct writeback_control *wbc)
932 {
933 long nr_to_write, desired;
934
935 if (wbc->sync_mode != WB_SYNC_NONE)
936 return 0;
937
938 nr_to_write = wbc->nr_to_write;
939 desired = BIO_MAX_VECS;
940 if (type == NODE)
941 desired <<= 1;
942
943 wbc->nr_to_write = desired;
944 return desired - nr_to_write;
945 }
946
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)947 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
948 {
949 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
950 bool wakeup = false;
951 int i;
952
953 if (force)
954 goto wake_up;
955
956 mutex_lock(&dcc->cmd_lock);
957 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
958 if (i + 1 < dcc->discard_granularity)
959 break;
960 if (!list_empty(&dcc->pend_list[i])) {
961 wakeup = true;
962 break;
963 }
964 }
965 mutex_unlock(&dcc->cmd_lock);
966 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
967 return;
968 wake_up:
969 dcc->discard_wake = true;
970 wake_up_interruptible_all(&dcc->discard_wait_queue);
971 }
972