/* SPDX-License-Identifier: LGPL-2.1-or-later */ #if HAVE_VALGRIND_MEMCHECK_H #include #endif #include #include #include #include #include #include #include #include "sd-device.h" #include "sd-id128.h" #include "alloc-util.h" #include "blkid-util.h" #include "blockdev-util.h" #include "btrfs-util.h" #include "chase-symlinks.h" #include "conf-files.h" #include "conf-parser.h" #include "cryptsetup-util.h" #include "def.h" #include "devnum-util.h" #include "dirent-util.h" #include "efivars.h" #include "errno-util.h" #include "fd-util.h" #include "fdisk-util.h" #include "fileio.h" #include "format-table.h" #include "format-util.h" #include "fs-util.h" #include "glyph-util.h" #include "gpt.h" #include "hexdecoct.h" #include "hmac.h" #include "id128-util.h" #include "json.h" #include "list.h" #include "loop-util.h" #include "main-func.h" #include "mkdir.h" #include "mkfs-util.h" #include "mount-util.h" #include "mountpoint-util.h" #include "parse-argument.h" #include "parse-helpers.h" #include "pretty-print.h" #include "proc-cmdline.h" #include "process-util.h" #include "random-util.h" #include "resize-fs.h" #include "sort-util.h" #include "specifier.h" #include "stdio-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "sync-util.h" #include "terminal-util.h" #include "tpm2-util.h" #include "user-util.h" #include "utf8.h" /* If not configured otherwise use a minimal partition size of 10M */ #define DEFAULT_MIN_SIZE (10*1024*1024) /* Hard lower limit for new partition sizes */ #define HARD_MIN_SIZE 4096 /* libfdisk takes off slightly more than 1M of the disk size when creating a GPT disk label */ #define GPT_METADATA_SIZE (1044*1024) /* LUKS2 takes off 16M of the partition size with its metadata by default */ #define LUKS2_METADATA_SIZE (16*1024*1024) /* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll * waste 3K per partition, which is probably fine. */ static enum { EMPTY_REFUSE, /* refuse empty disks, never create a partition table */ EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */ EMPTY_REQUIRE, /* require an empty disk, create a partition table */ EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */ EMPTY_CREATE, /* create disk as loopback file, create a partition table always */ } arg_empty = EMPTY_REFUSE; static bool arg_dry_run = true; static const char *arg_node = NULL; static char *arg_root = NULL; static char *arg_image = NULL; static char *arg_definitions = NULL; static bool arg_discard = true; static bool arg_can_factory_reset = false; static int arg_factory_reset = -1; static sd_id128_t arg_seed = SD_ID128_NULL; static bool arg_randomize = false; static int arg_pretty = -1; static uint64_t arg_size = UINT64_MAX; static bool arg_size_auto = false; static JsonFormatFlags arg_json_format_flags = JSON_FORMAT_OFF; static PagerFlags arg_pager_flags = 0; static bool arg_legend = true; static void *arg_key = NULL; static size_t arg_key_size = 0; static char *arg_tpm2_device = NULL; static uint32_t arg_tpm2_pcr_mask = UINT32_MAX; STATIC_DESTRUCTOR_REGISTER(arg_root, freep); STATIC_DESTRUCTOR_REGISTER(arg_image, freep); STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep); STATIC_DESTRUCTOR_REGISTER(arg_key, erase_and_freep); STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device, freep); typedef struct Partition Partition; typedef struct FreeArea FreeArea; typedef struct Context Context; typedef enum EncryptMode { ENCRYPT_OFF, ENCRYPT_KEY_FILE, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2, _ENCRYPT_MODE_MAX, _ENCRYPT_MODE_INVALID = -EINVAL, } EncryptMode; struct Partition { char *definition_path; sd_id128_t type_uuid; sd_id128_t current_uuid, new_uuid; char *current_label, *new_label; bool dropped; bool factory_reset; int32_t priority; uint32_t weight, padding_weight; uint64_t current_size, new_size; uint64_t size_min, size_max; uint64_t current_padding, new_padding; uint64_t padding_min, padding_max; uint64_t partno; uint64_t offset; struct fdisk_partition *current_partition; struct fdisk_partition *new_partition; FreeArea *padding_area; FreeArea *allocated_to_area; char *copy_blocks_path; bool copy_blocks_auto; int copy_blocks_fd; uint64_t copy_blocks_size; char *format; char **copy_files; char **make_directories; EncryptMode encrypt; uint64_t gpt_flags; int no_auto; int read_only; int growfs; LIST_FIELDS(Partition, partitions); }; #define PARTITION_IS_FOREIGN(p) (!(p)->definition_path) #define PARTITION_EXISTS(p) (!!(p)->current_partition) struct FreeArea { Partition *after; uint64_t size; uint64_t allocated; }; struct Context { LIST_HEAD(Partition, partitions); size_t n_partitions; FreeArea **free_areas; size_t n_free_areas; uint64_t start, end, total; struct fdisk_context *fdisk_context; uint64_t sector_size; uint64_t grain_size; sd_id128_t seed; }; static const char *encrypt_mode_table[_ENCRYPT_MODE_MAX] = { [ENCRYPT_OFF] = "off", [ENCRYPT_KEY_FILE] = "key-file", [ENCRYPT_TPM2] = "tpm2", [ENCRYPT_KEY_FILE_TPM2] = "key-file+tpm2", }; #if HAVE_LIBCRYPTSETUP DEFINE_PRIVATE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE); #else DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE); #endif static uint64_t round_down_size(uint64_t v, uint64_t p) { return (v / p) * p; } static uint64_t round_up_size(uint64_t v, uint64_t p) { v = DIV_ROUND_UP(v, p); if (v > UINT64_MAX / p) return UINT64_MAX; /* overflow */ return v * p; } static Partition *partition_new(void) { Partition *p; p = new(Partition, 1); if (!p) return NULL; *p = (Partition) { .weight = 1000, .padding_weight = 0, .current_size = UINT64_MAX, .new_size = UINT64_MAX, .size_min = UINT64_MAX, .size_max = UINT64_MAX, .current_padding = UINT64_MAX, .new_padding = UINT64_MAX, .padding_min = UINT64_MAX, .padding_max = UINT64_MAX, .partno = UINT64_MAX, .offset = UINT64_MAX, .copy_blocks_fd = -1, .copy_blocks_size = UINT64_MAX, .no_auto = -1, .read_only = -1, .growfs = -1, }; return p; } static Partition* partition_free(Partition *p) { if (!p) return NULL; free(p->current_label); free(p->new_label); free(p->definition_path); if (p->current_partition) fdisk_unref_partition(p->current_partition); if (p->new_partition) fdisk_unref_partition(p->new_partition); free(p->copy_blocks_path); safe_close(p->copy_blocks_fd); free(p->format); strv_free(p->copy_files); strv_free(p->make_directories); return mfree(p); } static Partition* partition_unlink_and_free(Context *context, Partition *p) { if (!p) return NULL; LIST_REMOVE(partitions, context->partitions, p); assert(context->n_partitions > 0); context->n_partitions--; return partition_free(p); } DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free); static Context *context_new(sd_id128_t seed) { Context *context; context = new(Context, 1); if (!context) return NULL; *context = (Context) { .start = UINT64_MAX, .end = UINT64_MAX, .total = UINT64_MAX, .seed = seed, }; return context; } static void context_free_free_areas(Context *context) { assert(context); for (size_t i = 0; i < context->n_free_areas; i++) free(context->free_areas[i]); context->free_areas = mfree(context->free_areas); context->n_free_areas = 0; } static Context *context_free(Context *context) { if (!context) return NULL; while (context->partitions) partition_unlink_and_free(context, context->partitions); assert(context->n_partitions == 0); context_free_free_areas(context); if (context->fdisk_context) fdisk_unref_context(context->fdisk_context); return mfree(context); } DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free); static int context_add_free_area( Context *context, uint64_t size, Partition *after) { FreeArea *a; assert(context); assert(!after || !after->padding_area); if (!GREEDY_REALLOC(context->free_areas, context->n_free_areas + 1)) return -ENOMEM; a = new(FreeArea, 1); if (!a) return -ENOMEM; *a = (FreeArea) { .size = size, .after = after, }; context->free_areas[context->n_free_areas++] = a; if (after) after->padding_area = a; return 0; } static bool context_drop_one_priority(Context *context) { int32_t priority = 0; bool exists = false; LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (p->priority < priority) continue; if (p->priority == priority) { exists = exists || PARTITION_EXISTS(p); continue; } priority = p->priority; exists = PARTITION_EXISTS(p); } /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at * least one existing priority */ if (priority <= 0 || exists) return false; LIST_FOREACH(partitions, p, context->partitions) { if (p->priority < priority) continue; if (p->dropped) continue; p->dropped = true; log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority); } return true; } static uint64_t partition_min_size(Context *context, const Partition *p) { uint64_t sz; assert(context); assert(p); /* Calculate the disk space we really need at minimum for this partition. If the partition already * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less * than 4K. * * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */ if (PARTITION_IS_FOREIGN(p)) { /* Don't allow changing size of partitions not managed by us */ assert(p->current_size != UINT64_MAX); return p->current_size; } sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE; if (!PARTITION_EXISTS(p)) { uint64_t d = 0; if (p->encrypt != ENCRYPT_OFF) d += round_up_size(LUKS2_METADATA_SIZE, context->grain_size); if (p->copy_blocks_size != UINT64_MAX) d += round_up_size(p->copy_blocks_size, context->grain_size); else if (p->format || p->encrypt != ENCRYPT_OFF) { uint64_t f; /* If we shall synthesize a file system, take minimal fs size into account (assumed to be 4K if not known) */ f = p->format ? round_up_size(minimal_size_by_fs_name(p->format), context->grain_size) : UINT64_MAX; d += f == UINT64_MAX ? context->grain_size : f; } if (d > sz) sz = d; } return MAX(round_up_size(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, context->grain_size), sz); } static uint64_t partition_max_size(const Context *context, const Partition *p) { uint64_t sm; /* Calculate how large the partition may become at max. This is generally the configured maximum * size, except when it already exists and is larger than that. In that case it's the existing size, * since we never want to shrink partitions. */ assert(context); assert(p); if (PARTITION_IS_FOREIGN(p)) { /* Don't allow changing size of partitions not managed by us */ assert(p->current_size != UINT64_MAX); return p->current_size; } sm = round_down_size(p->size_max, context->grain_size); if (p->current_size != UINT64_MAX) return MAX(p->current_size, sm); return sm; } static uint64_t partition_min_size_with_padding(Context *context, const Partition *p) { uint64_t sz; /* Calculate the disk space we need for this partition plus any free space coming after it. This * takes user configured padding into account as well as any additional whitespace needed to align * the next partition to 4K again. */ assert(context); assert(p); sz = partition_min_size(context, p); if (p->padding_min != UINT64_MAX) sz += p->padding_min; if (PARTITION_EXISTS(p)) { /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */ assert(p->offset != UINT64_MAX); return round_up_size(p->offset + sz, context->grain_size) - p->offset; } /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */ return round_up_size(sz, context->grain_size); } static uint64_t free_area_available(const FreeArea *a) { assert(a); /* Determines how much of this free area is not allocated yet */ assert(a->size >= a->allocated); return a->size - a->allocated; } static uint64_t free_area_available_for_new_partitions(Context *context, const FreeArea *a) { uint64_t avail; assert(context); assert(a); /* Similar to free_area_available(), but takes into account that the required size and padding of the * preceding partition is honoured. */ avail = free_area_available(a); if (a->after) { uint64_t need, space_end, new_end; need = partition_min_size_with_padding(context, a->after); assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); /* Calculate where the free area ends, based on the offset of the partition preceding it */ space_end = round_up_size(a->after->offset + a->after->current_size, context->grain_size) + avail; /* Calculate where the partition would end when we give it as much as it needs */ new_end = round_up_size(a->after->offset + need, context->grain_size); /* Calculate saturated difference of the two: that's how much we have free for other partitions */ return LESS_BY(space_end, new_end); } return avail; } static int free_area_compare(FreeArea *const *a, FreeArea *const*b, Context *context) { assert(context); return CMP(free_area_available_for_new_partitions(context, *a), free_area_available_for_new_partitions(context, *b)); } static uint64_t charge_size(Context *context, uint64_t total, uint64_t amount) { assert(context); /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */ assert(amount <= total); return LESS_BY(total, round_up_size(amount, context->grain_size)); } static uint64_t charge_weight(uint64_t total, uint64_t amount) { assert(amount <= total); return total - amount; } static bool context_allocate_partitions(Context *context, uint64_t *ret_largest_free_area) { assert(context); /* Sort free areas by size, putting smallest first */ typesafe_qsort_r(context->free_areas, context->n_free_areas, free_area_compare, context); /* In any case return size of the largest free area (i.e. not the size of all free areas * combined!) */ if (ret_largest_free_area) *ret_largest_free_area = context->n_free_areas == 0 ? 0 : free_area_available_for_new_partitions(context, context->free_areas[context->n_free_areas-1]); /* A simple first-fit algorithm. We return true if we can fit the partitions in, otherwise false. */ LIST_FOREACH(partitions, p, context->partitions) { bool fits = false; uint64_t required; FreeArea *a = NULL; /* Skip partitions we already dropped or that already exist */ if (p->dropped || PARTITION_EXISTS(p)) continue; /* How much do we need to fit? */ required = partition_min_size_with_padding(context, p); assert(required % context->grain_size == 0); for (size_t i = 0; i < context->n_free_areas; i++) { a = context->free_areas[i]; if (free_area_available_for_new_partitions(context, a) >= required) { fits = true; break; } } if (!fits) return false; /* 😢 Oh no! We can't fit this partition into any free area! */ /* Assign the partition to this free area */ p->allocated_to_area = a; /* Budget the minimal partition size */ a->allocated += required; } return true; } static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) { uint64_t weight_sum = 0; assert(context); assert(a); assert(ret); /* Determine the sum of the weights of all partitions placed in or before the specified free area */ LIST_FOREACH(partitions, p, context->partitions) { if (p->padding_area != a && p->allocated_to_area != a) continue; if (p->weight > UINT64_MAX - weight_sum) goto overflow_sum; weight_sum += p->weight; if (p->padding_weight > UINT64_MAX - weight_sum) goto overflow_sum; weight_sum += p->padding_weight; } *ret = weight_sum; return 0; overflow_sum: return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing."); } static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) { assert(weight_sum >= weight); assert(ret); if (weight == 0) { *ret = 0; return 0; } if (value > UINT64_MAX / weight) return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing."); *ret = value * weight / weight_sum; return 0; } typedef enum GrowPartitionPhase { /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */ PHASE_OVERCHARGE, /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */ PHASE_UNDERCHARGE, /* The third phase: we distribute what remains among the remaining partitions, according to the weights */ PHASE_DISTRIBUTE, _GROW_PARTITION_PHASE_MAX, } GrowPartitionPhase; static int context_grow_partitions_phase( Context *context, FreeArea *a, GrowPartitionPhase phase, uint64_t *span, uint64_t *weight_sum) { int r; assert(context); assert(a); /* Now let's look at the intended weights and adjust them taking the minimum space assignments into * account. i.e. if a partition has a small weight but a high minimum space value set it should not * get any additional room from the left-overs. Similar, if two partitions have the same weight they * should get the same space if possible, even if one has a smaller minimum size than the other. */ LIST_FOREACH(partitions, p, context->partitions) { /* Look only at partitions associated with this free area, i.e. immediately * preceding it, or allocated into it */ if (p->allocated_to_area != a && p->padding_area != a) continue; if (p->new_size == UINT64_MAX) { bool charge = false, try_again = false; uint64_t share, rsz, xsz; /* Calculate how much this space this partition needs if everyone would get * the weight based share */ r = scale_by_weight(*span, p->weight, *weight_sum, &share); if (r < 0) return r; rsz = partition_min_size(context, p); xsz = partition_max_size(context, p); if (phase == PHASE_OVERCHARGE && rsz > share) { /* This partition needs more than its calculated share. Let's assign * it that, and take this partition out of all calculations and start * again. */ p->new_size = rsz; charge = try_again = true; } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) { /* This partition accepts less than its calculated * share. Let's assign it that, and take this partition out * of all calculations and start again. */ p->new_size = xsz; charge = try_again = true; } else if (phase == PHASE_DISTRIBUTE) { /* This partition can accept its calculated share. Let's * assign it. There's no need to restart things here since * assigning this shouldn't impact the shares of the other * partitions. */ if (PARTITION_IS_FOREIGN(p)) /* Never change of foreign partitions (i.e. those we don't manage) */ p->new_size = p->current_size; else p->new_size = MAX(round_down_size(share, context->grain_size), rsz); charge = true; } if (charge) { *span = charge_size(context, *span, p->new_size); *weight_sum = charge_weight(*weight_sum, p->weight); } if (try_again) return 0; /* try again */ } if (p->new_padding == UINT64_MAX) { bool charge = false, try_again = false; uint64_t share; r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share); if (r < 0) return r; if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) { p->new_padding = p->padding_min; charge = try_again = true; } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) { p->new_padding = p->padding_max; charge = try_again = true; } else if (phase == PHASE_DISTRIBUTE) { p->new_padding = round_down_size(share, context->grain_size); if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min) p->new_padding = p->padding_min; charge = true; } if (charge) { *span = charge_size(context, *span, p->new_padding); *weight_sum = charge_weight(*weight_sum, p->padding_weight); } if (try_again) return 0; /* try again */ } } return 1; /* done */ } static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) { uint64_t weight_sum = 0, span; int r; assert(context); assert(a); r = context_sum_weights(context, a, &weight_sum); if (r < 0) return r; /* Let's calculate the total area covered by this free area and the partition before it */ span = a->size; if (a->after) { assert(a->after->offset != UINT64_MAX); assert(a->after->current_size != UINT64_MAX); span += round_up_size(a->after->offset + a->after->current_size, context->grain_size) - a->after->offset; } for (GrowPartitionPhase phase = 0; phase < _GROW_PARTITION_PHASE_MAX;) { r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum); if (r < 0) return r; if (r == 0) /* not done yet, re-run this phase */ continue; phase++; /* got to next phase */ } /* We still have space left over? Donate to preceding partition if we have one */ if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) { uint64_t m, xsz; assert(a->after->new_size != UINT64_MAX); /* Calculate new size and align (but ensure this doesn't shrink the size) */ m = MAX(a->after->new_size, round_down_size(a->after->new_size + span, context->grain_size)); xsz = partition_max_size(context, a->after); if (xsz != UINT64_MAX && m > xsz) m = xsz; span = charge_size(context, span, m - a->after->new_size); a->after->new_size = m; } /* What? Even still some space left (maybe because there was no preceding partition, or it had a * size limit), then let's donate it to whoever wants it. */ if (span > 0) LIST_FOREACH(partitions, p, context->partitions) { uint64_t m, xsz; if (p->allocated_to_area != a) continue; if (PARTITION_IS_FOREIGN(p)) continue; assert(p->new_size != UINT64_MAX); m = MAX(p->new_size, round_down_size(p->new_size + span, context->grain_size)); xsz = partition_max_size(context, p); if (xsz != UINT64_MAX && m > xsz) m = xsz; span = charge_size(context, span, m - p->new_size); p->new_size = m; if (span == 0) break; } /* Yuck, still no one? Then make it padding */ if (span > 0 && a->after) { assert(a->after->new_padding != UINT64_MAX); a->after->new_padding += span; } return 0; } static int context_grow_partitions(Context *context) { int r; assert(context); for (size_t i = 0; i < context->n_free_areas; i++) { r = context_grow_partitions_on_free_area(context, context->free_areas[i]); if (r < 0) return r; } /* All existing partitions that have no free space after them can't change size */ LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (!PARTITION_EXISTS(p) || p->padding_area) { /* The algorithm above must have initialized this already */ assert(p->new_size != UINT64_MAX); continue; } assert(p->new_size == UINT64_MAX); p->new_size = p->current_size; assert(p->new_padding == UINT64_MAX); p->new_padding = p->current_padding; } return 0; } static void context_place_partitions(Context *context) { uint64_t partno = 0; assert(context); /* Determine next partition number to assign */ LIST_FOREACH(partitions, p, context->partitions) { if (!PARTITION_EXISTS(p)) continue; assert(p->partno != UINT64_MAX); if (p->partno >= partno) partno = p->partno + 1; } for (size_t i = 0; i < context->n_free_areas; i++) { FreeArea *a = context->free_areas[i]; _unused_ uint64_t left; uint64_t start; if (a->after) { assert(a->after->offset != UINT64_MAX); assert(a->after->new_size != UINT64_MAX); assert(a->after->new_padding != UINT64_MAX); start = a->after->offset + a->after->new_size + a->after->new_padding; } else start = context->start; start = round_up_size(start, context->grain_size); left = a->size; LIST_FOREACH(partitions, p, context->partitions) { if (p->allocated_to_area != a) continue; p->offset = start; p->partno = partno++; assert(left >= p->new_size); start += p->new_size; left -= p->new_size; assert(left >= p->new_padding); start += p->new_padding; left -= p->new_padding; } } } static int config_parse_type( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { sd_id128_t *type_uuid = data; int r; assert(rvalue); assert(type_uuid); r = gpt_partition_type_uuid_from_string(rvalue, type_uuid); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue); return 0; } static int config_parse_label( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *resolved = NULL; char **label = data; int r; assert(rvalue); assert(label); /* Nota bene: the empty label is a totally valid one. Let's hence not follow our usual rule of * assigning the empty string to reset to default here, but really accept it as label to set. */ r = specifier_printf(rvalue, GPT_LABEL_MAX, system_and_tmp_specifier_table, arg_root, NULL, &resolved); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in Label=, ignoring: %s", rvalue); return 0; } if (!utf8_is_valid(resolved)) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Partition label not valid UTF-8, ignoring: %s", rvalue); return 0; } r = gpt_partition_label_valid(resolved); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to check if string is valid as GPT partition label, ignoring: \"%s\" (from \"%s\")", resolved, rvalue); return 0; } if (!r) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")", resolved, rvalue); return 0; } free_and_replace(*label, resolved); return 0; } static int config_parse_weight( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint32_t *priority = data, v; int r; assert(rvalue); assert(priority); r = safe_atou32(rvalue, &v); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse weight value, ignoring: %s", rvalue); return 0; } if (v > 1000U*1000U) { log_syntax(unit, LOG_WARNING, filename, line, 0, "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v); return 0; } *priority = v; return 0; } static int config_parse_size4096( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint64_t *sz = data, parsed; int r; assert(rvalue); assert(data); r = parse_size(rvalue, 1024, &parsed); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse size value: %s", rvalue); if (ltype > 0) *sz = round_up_size(parsed, 4096); else if (ltype < 0) *sz = round_down_size(parsed, 4096); else *sz = parsed; if (*sz != parsed) log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz); return 0; } static int config_parse_fstype( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { char **fstype = data; assert(rvalue); assert(data); if (!filename_is_valid(rvalue)) return log_syntax(unit, LOG_ERR, filename, line, 0, "File system type is not valid, refusing: %s", rvalue); return free_and_strdup_warn(fstype, rvalue); } static int config_parse_copy_files( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *source = NULL, *buffer = NULL, *resolved_source = NULL, *resolved_target = NULL; const char *p = rvalue, *target; Partition *partition = data; int r; assert(rvalue); assert(partition); r = extract_first_word(&p, &source, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract source path: %s", rvalue); if (r == 0) { log_syntax(unit, LOG_WARNING, filename, line, 0, "No argument specified: %s", rvalue); return 0; } r = extract_first_word(&p, &buffer, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); if (r < 0) return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract target path: %s", rvalue); if (r == 0) target = source; /* No target, then it's the same as the source */ else target = buffer; if (!isempty(p)) return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Too many arguments: %s", rvalue); r = specifier_printf(source, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_source); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in CopyFiles= source, ignoring: %s", rvalue); return 0; } r = path_simplify_and_warn(resolved_source, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) return 0; r = specifier_printf(target, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_target); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in CopyFiles= target, ignoring: %s", resolved_target); return 0; } r = path_simplify_and_warn(resolved_target, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) return 0; r = strv_consume_pair(&partition->copy_files, TAKE_PTR(resolved_source), TAKE_PTR(resolved_target)); if (r < 0) return log_oom(); return 0; } static int config_parse_copy_blocks( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { _cleanup_free_ char *d = NULL; Partition *partition = data; int r; assert(rvalue); assert(partition); if (isempty(rvalue)) { partition->copy_blocks_path = mfree(partition->copy_blocks_path); partition->copy_blocks_auto = false; return 0; } if (streq(rvalue, "auto")) { partition->copy_blocks_path = mfree(partition->copy_blocks_path); partition->copy_blocks_auto = true; return 0; } r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in CopyBlocks= source path, ignoring: %s", rvalue); return 0; } r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) return 0; free_and_replace(partition->copy_blocks_path, d); partition->copy_blocks_auto = false; return 0; } static int config_parse_make_dirs( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { Partition *partition = data; const char *p = rvalue; int r; assert(rvalue); assert(partition); for (;;) { _cleanup_free_ char *word = NULL, *d = NULL; r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE); if (r == -ENOMEM) return log_oom(); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Invalid syntax, ignoring: %s", rvalue); return 0; } if (r == 0) return 0; r = specifier_printf(word, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to expand specifiers in MakeDirectories= parameter, ignoring: %s", word); continue; } r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue); if (r < 0) continue; r = strv_consume(&partition->make_directories, TAKE_PTR(d)); if (r < 0) return log_oom(); } } static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_encrypt, encrypt_mode, EncryptMode, ENCRYPT_OFF, "Invalid encryption mode"); static int config_parse_gpt_flags( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { uint64_t *gpt_flags = data; int r; assert(rvalue); assert(gpt_flags); r = safe_atou64(rvalue, gpt_flags); if (r < 0) { log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse Flags= value, ignoring: %s", rvalue); return 0; } return 0; } static int partition_read_definition(Partition *p, const char *path) { ConfigTableItem table[] = { { "Partition", "Type", config_parse_type, 0, &p->type_uuid }, { "Partition", "Label", config_parse_label, 0, &p->new_label }, { "Partition", "UUID", config_parse_id128, 0, &p->new_uuid }, { "Partition", "Priority", config_parse_int32, 0, &p->priority }, { "Partition", "Weight", config_parse_weight, 0, &p->weight }, { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight }, { "Partition", "SizeMinBytes", config_parse_size4096, 1, &p->size_min }, { "Partition", "SizeMaxBytes", config_parse_size4096, -1, &p->size_max }, { "Partition", "PaddingMinBytes", config_parse_size4096, 1, &p->padding_min }, { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max }, { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset }, { "Partition", "CopyBlocks", config_parse_copy_blocks, 0, p }, { "Partition", "Format", config_parse_fstype, 0, &p->format }, { "Partition", "CopyFiles", config_parse_copy_files, 0, p }, { "Partition", "MakeDirectories", config_parse_make_dirs, 0, p }, { "Partition", "Encrypt", config_parse_encrypt, 0, &p->encrypt }, { "Partition", "Flags", config_parse_gpt_flags, 0, &p->gpt_flags }, { "Partition", "ReadOnly", config_parse_tristate, 0, &p->read_only }, { "Partition", "NoAuto", config_parse_tristate, 0, &p->no_auto }, { "Partition", "GrowFileSystem", config_parse_tristate, 0, &p->growfs }, {} }; int r; r = config_parse(NULL, path, NULL, "Partition\0", config_item_table_lookup, table, CONFIG_PARSE_WARN, p, NULL); if (r < 0) return r; if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "SizeMinBytes= larger than SizeMaxBytes=, refusing."); if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "PaddingMinBytes= larger than PaddingMaxBytes=, refusing."); if (sd_id128_is_null(p->type_uuid)) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Type= not defined, refusing."); if ((p->copy_blocks_path || p->copy_blocks_auto) && (p->format || !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories))) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Format=/CopyFiles=/MakeDirectories= and CopyBlocks= cannot be combined, refusing."); if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && streq_ptr(p->format, "swap")) return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), "Format=swap and CopyFiles= cannot be combined, refusing."); if (!p->format && (!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories) || (p->encrypt != ENCRYPT_OFF && !(p->copy_blocks_path || p->copy_blocks_auto)))) { /* Pick "ext4" as file system if we are configured to copy files or encrypt the device */ p->format = strdup("ext4"); if (!p->format) return log_oom(); } /* Verity partitions are read only, let's imply the RO flag hence, unless explicitly configured otherwise. */ if ((gpt_partition_type_is_root_verity(p->type_uuid) || gpt_partition_type_is_usr_verity(p->type_uuid)) && p->read_only < 0) p->read_only = true; /* Default to "growfs" on, unless read-only */ if (gpt_partition_type_knows_growfs(p->type_uuid) && p->read_only <= 0) p->growfs = true; return 0; } static int context_read_definitions( Context *context, const char *directory, const char *root) { _cleanup_strv_free_ char **files = NULL; Partition *last = NULL; int r; assert(context); if (directory) r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory)); else r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d")); if (r < 0) return log_error_errno(r, "Failed to enumerate *.conf files: %m"); STRV_FOREACH(f, files) { _cleanup_(partition_freep) Partition *p = NULL; p = partition_new(); if (!p) return log_oom(); p->definition_path = strdup(*f); if (!p->definition_path) return log_oom(); r = partition_read_definition(p, *f); if (r < 0) return r; LIST_INSERT_AFTER(partitions, context->partitions, last, p); last = TAKE_PTR(p); context->n_partitions++; } return 0; } static int determine_current_padding( struct fdisk_context *c, struct fdisk_table *t, struct fdisk_partition *p, uint64_t secsz, uint64_t grainsz, uint64_t *ret) { size_t n_partitions; uint64_t offset, next = UINT64_MAX; assert(c); assert(t); assert(p); if (!fdisk_partition_has_end(p)) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!"); offset = fdisk_partition_get_end(p); assert(offset < UINT64_MAX / secsz); offset *= secsz; n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { struct fdisk_partition *q; uint64_t start; q = fdisk_table_get_partition(t, i); if (!q) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(q) <= 0) continue; if (!fdisk_partition_has_start(q)) continue; start = fdisk_partition_get_start(q); assert(start < UINT64_MAX / secsz); start *= secsz; if (start >= offset && (next == UINT64_MAX || next > start)) next = start; } if (next == UINT64_MAX) { /* No later partition? In that case check the end of the usable area */ next = fdisk_get_last_lba(c); assert(next < UINT64_MAX); next++; /* The last LBA is one sector before the end */ assert(next < UINT64_MAX / secsz); next *= secsz; if (offset > next) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); } assert(next >= offset); offset = round_up_size(offset, grainsz); next = round_down_size(next, grainsz); *ret = LESS_BY(next, offset); /* Saturated subtraction, rounding might have fucked things up */ return 0; } static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) { _cleanup_free_ char *ids = NULL; int r; if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING) return -EINVAL; ids = new(char, SD_ID128_UUID_STRING_MAX); if (!ids) return -ENOMEM; r = fdisk_ask_string_set_result(ask, sd_id128_to_uuid_string(*(sd_id128_t*) data, ids)); if (r < 0) return r; TAKE_PTR(ids); return 0; } static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) { int r; r = fdisk_set_ask(c, fdisk_ask_cb, &id); if (r < 0) return r; r = fdisk_set_disklabel_id(c); if (r < 0) return r; return fdisk_set_ask(c, NULL, NULL); } static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) { union { uint8_t md[SHA256_DIGEST_SIZE]; sd_id128_t id; } result; assert(token); assert(ret); /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's * the machine ID we don't want to leak. */ hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), result.md); /* Take the first half, mark it as v4 UUID */ assert_cc(sizeof(result.md) == sizeof(result.id) * 2); *ret = id128_make_v4_uuid(result.id); return 0; } static int context_load_partition_table( Context *context, const char *node, int *backing_fd) { _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors; _cleanup_free_ char *disk_uuid_string = NULL; bool from_scratch = false; sd_id128_t disk_uuid; size_t n_partitions; unsigned long secsz; uint64_t grainsz; int r; assert(context); assert(node); assert(backing_fd); assert(!context->fdisk_context); assert(!context->free_areas); assert(context->start == UINT64_MAX); assert(context->end == UINT64_MAX); assert(context->total == UINT64_MAX); c = fdisk_new_context(); if (!c) return log_oom(); /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */ if (*backing_fd < 0) r = fdisk_assign_device(c, node, arg_dry_run); else r = fdisk_assign_device(c, FORMAT_PROC_FD_PATH(*backing_fd), arg_dry_run); if (r == -EINVAL && arg_size_auto) { struct stat st; /* libfdisk returns EINVAL if opening a file of size zero. Let's check for that, and accept * it if automatic sizing is requested. */ if (*backing_fd < 0) r = stat(node, &st); else r = fstat(*backing_fd, &st); if (r < 0) return log_error_errno(errno, "Failed to stat block device '%s': %m", node); if (S_ISREG(st.st_mode) && st.st_size == 0) { /* User the fallback values if we have no better idea */ context->sector_size = 512; context->grain_size = 4096; return /* from_scratch = */ true; } r = -EINVAL; } if (r < 0) return log_error_errno(r, "Failed to open device '%s': %m", node); if (*backing_fd < 0) { /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */ *backing_fd = fcntl(fdisk_get_devfd(c), F_DUPFD_CLOEXEC, 3); if (*backing_fd < 0) return log_error_errno(errno, "Failed to duplicate fdisk fd: %m"); } /* Tell udev not to interfere while we are processing the device */ if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0) return log_error_errno(errno, "Failed to lock block device: %m"); /* The offsets/sizes libfdisk returns to us will be in multiple of the sector size of the * device. This is typically 512, and sometimes 4096. Let's query libfdisk once for it, and then use * it for all our needs. Note that the values we use ourselves always are in bytes though, thus mean * the same thing universally. Also note that regardless what kind of sector size is in use we'll * place partitions at multiples of 4K. */ secsz = fdisk_get_sector_size(c); /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */ if (secsz < 512 || secsz != 1UL << log2u64(secsz)) return log_error_errno(errno, "Sector size %lu is not a power of two larger than 512? Refusing.", secsz); /* Use at least 4K, and ensure it's a multiple of the sector size, regardless if that is smaller or * larger */ grainsz = secsz < 4096 ? 4096 : secsz; log_debug("Sector size of device is %lu bytes. Using grain size of %" PRIu64 ".", secsz, grainsz); switch (arg_empty) { case EMPTY_REFUSE: /* Refuse empty disks, insist on an existing GPT partition table */ if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node); break; case EMPTY_REQUIRE: /* Require an empty disk, refuse any existing partition table */ r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); if (r > 0) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node); from_scratch = true; break; case EMPTY_ALLOW: /* Allow both an empty disk and an existing partition table, but only GPT */ r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); if (r > 0) { if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node); } else from_scratch = true; break; case EMPTY_FORCE: case EMPTY_CREATE: /* Always reinitiaize the disk, don't consider what there was on the disk before */ from_scratch = true; break; } if (from_scratch) { r = fdisk_create_disklabel(c, "gpt"); if (r < 0) return log_error_errno(r, "Failed to create GPT disk label: %m"); r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid); if (r < 0) return log_error_errno(r, "Failed to set GPT disk label: %m"); goto add_initial_free_area; } r = fdisk_get_disklabel_id(c, &disk_uuid_string); if (r < 0) return log_error_errno(r, "Failed to get current GPT disk label UUID: %m"); r = sd_id128_from_string(disk_uuid_string, &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m"); if (sd_id128_is_null(disk_uuid)) { r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); if (r < 0) return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); r = fdisk_set_disklabel_id(c); if (r < 0) return log_error_errno(r, "Failed to set GPT disk label: %m"); } r = fdisk_get_partitions(c, &t); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); n_partitions = fdisk_table_get_nents(t); for (size_t i = 0; i < n_partitions; i++) { _cleanup_free_ char *label_copy = NULL; Partition *last = NULL; struct fdisk_partition *p; struct fdisk_parttype *pt; const char *pts, *ids, *label; uint64_t sz, start; bool found = false; sd_id128_t ptid, id; size_t partno; p = fdisk_table_get_partition(t, i); if (!p) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); if (fdisk_partition_is_used(p) <= 0) continue; if (fdisk_partition_has_start(p) <= 0 || fdisk_partition_has_size(p) <= 0 || fdisk_partition_has_partno(p) <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); pt = fdisk_partition_get_type(p); if (!pt) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m"); pts = fdisk_parttype_get_string(pt); if (!pts) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m"); r = sd_id128_from_string(pts, &ptid); if (r < 0) return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts); ids = fdisk_partition_get_uuid(p); if (!ids) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID."); r = sd_id128_from_string(ids, &id); if (r < 0) return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids); label = fdisk_partition_get_name(p); if (!isempty(label)) { label_copy = strdup(label); if (!label_copy) return log_oom(); } sz = fdisk_partition_get_size(p); assert(sz <= UINT64_MAX/secsz); sz *= secsz; start = fdisk_partition_get_start(p); assert(start <= UINT64_MAX/secsz); start *= secsz; partno = fdisk_partition_get_partno(p); if (left_boundary == UINT64_MAX || left_boundary > start) left_boundary = start; /* Assign this existing partition to the first partition of the right type that doesn't have * an existing one assigned yet. */ LIST_FOREACH(partitions, pp, context->partitions) { last = pp; if (!sd_id128_equal(pp->type_uuid, ptid)) continue; if (!pp->current_partition) { pp->current_uuid = id; pp->current_size = sz; pp->offset = start; pp->partno = partno; pp->current_label = TAKE_PTR(label_copy); pp->current_partition = p; fdisk_ref_partition(p); r = determine_current_padding(c, t, p, secsz, grainsz, &pp->current_padding); if (r < 0) return r; if (pp->current_padding > 0) { r = context_add_free_area(context, pp->current_padding, pp); if (r < 0) return r; } found = true; break; } } /* If we have no matching definition, create a new one. */ if (!found) { _cleanup_(partition_freep) Partition *np = NULL; np = partition_new(); if (!np) return log_oom(); np->current_uuid = id; np->type_uuid = ptid; np->current_size = sz; np->offset = start; np->partno = partno; np->current_label = TAKE_PTR(label_copy); np->current_partition = p; fdisk_ref_partition(p); r = determine_current_padding(c, t, p, secsz, grainsz, &np->current_padding); if (r < 0) return r; if (np->current_padding > 0) { r = context_add_free_area(context, np->current_padding, np); if (r < 0) return r; } LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np)); context->n_partitions++; } } add_initial_free_area: nsectors = fdisk_get_nsectors(c); assert(nsectors <= UINT64_MAX/secsz); nsectors *= secsz; first_lba = fdisk_get_first_lba(c); assert(first_lba <= UINT64_MAX/secsz); first_lba *= secsz; last_lba = fdisk_get_last_lba(c); assert(last_lba < UINT64_MAX); last_lba++; assert(last_lba <= UINT64_MAX/secsz); last_lba *= secsz; assert(last_lba >= first_lba); if (left_boundary == UINT64_MAX) { /* No partitions at all? Then the whole disk is up for grabs. */ first_lba = round_up_size(first_lba, grainsz); last_lba = round_down_size(last_lba, grainsz); if (last_lba > first_lba) { r = context_add_free_area(context, last_lba - first_lba, NULL); if (r < 0) return r; } } else { /* Add space left of first partition */ assert(left_boundary >= first_lba); first_lba = round_up_size(first_lba, grainsz); left_boundary = round_down_size(left_boundary, grainsz); last_lba = round_down_size(last_lba, grainsz); if (left_boundary > first_lba) { r = context_add_free_area(context, left_boundary - first_lba, NULL); if (r < 0) return r; } } context->start = first_lba; context->end = last_lba; context->total = nsectors; context->sector_size = secsz; context->grain_size = grainsz; context->fdisk_context = TAKE_PTR(c); return from_scratch; } static void context_unload_partition_table(Context *context) { assert(context); LIST_FOREACH(partitions, p, context->partitions) { /* Entirely remove partitions that have no configuration */ if (PARTITION_IS_FOREIGN(p)) { partition_unlink_and_free(context, p); continue; } /* Otherwise drop all data we read off the block device and everything we might have * calculated based on it */ p->dropped = false; p->current_size = UINT64_MAX; p->new_size = UINT64_MAX; p->current_padding = UINT64_MAX; p->new_padding = UINT64_MAX; p->partno = UINT64_MAX; p->offset = UINT64_MAX; if (p->current_partition) { fdisk_unref_partition(p->current_partition); p->current_partition = NULL; } if (p->new_partition) { fdisk_unref_partition(p->new_partition); p->new_partition = NULL; } p->padding_area = NULL; p->allocated_to_area = NULL; p->current_uuid = SD_ID128_NULL; p->current_label = mfree(p->current_label); } context->start = UINT64_MAX; context->end = UINT64_MAX; context->total = UINT64_MAX; if (context->fdisk_context) { fdisk_unref_context(context->fdisk_context); context->fdisk_context = NULL; } context_free_free_areas(context); } static int format_size_change(uint64_t from, uint64_t to, char **ret) { char *t; if (from != UINT64_MAX) { if (from == to || to == UINT64_MAX) t = strdup(FORMAT_BYTES(from)); else t = strjoin(FORMAT_BYTES(from), " ", special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to)); } else if (to != UINT64_MAX) t = strjoin(special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to)); else { *ret = NULL; return 0; } if (!t) return log_oom(); *ret = t; return 1; } static const char *partition_label(const Partition *p) { assert(p); if (p->new_label) return p->new_label; if (p->current_label) return p->current_label; return gpt_partition_type_uuid_to_string(p->type_uuid); } static int context_dump_partitions(Context *context, const char *node) { _cleanup_(table_unrefp) Table *t = NULL; uint64_t sum_padding = 0, sum_size = 0; int r; if ((arg_json_format_flags & JSON_FORMAT_OFF) && context->n_partitions == 0) { log_info("Empty partition table."); return 0; } t = table_new("type", "label", "uuid", "file", "node", "offset", "old size", "raw size", "size", "old padding", "raw padding", "padding", "activity"); if (!t) return log_oom(); if (!DEBUG_LOGGING) { if (arg_json_format_flags & JSON_FORMAT_OFF) (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 8, (size_t) 11); else (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 9, (size_t) 10, (size_t) 12); } (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 6), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 7), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 8), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 9), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 10), 100); (void) table_set_align_percent(t, table_get_cell(t, 0, 11), 100); LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL; char uuid_buffer[SD_ID128_UUID_STRING_MAX]; const char *label, *activity = NULL; if (p->dropped) continue; if (p->current_size == UINT64_MAX) activity = "create"; else if (p->current_size != p->new_size) activity = "resize"; label = partition_label(p); partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL; r = format_size_change(p->current_size, p->new_size, &size_change); if (r < 0) return r; r = format_size_change(p->current_padding, p->new_padding, &padding_change); if (r < 0) return r; if (p->new_size != UINT64_MAX) sum_size += p->new_size; if (p->new_padding != UINT64_MAX) sum_padding += p->new_padding; r = table_add_many( t, TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer), TABLE_STRING, empty_to_null(label) ?: "-", TABLE_SET_COLOR, empty_to_null(label) ? NULL : ansi_grey(), TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid, TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(), TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(), TABLE_UINT64, p->offset, TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size, TABLE_UINT64, p->new_size, TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL, TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding, TABLE_UINT64, p->new_padding, TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL, TABLE_STRING, activity ?: "unchanged"); if (r < 0) return table_log_add_error(r); } if ((arg_json_format_flags & JSON_FORMAT_OFF) && (sum_padding > 0 || sum_size > 0)) { const char *a, *b; a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_size)); b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_padding)); r = table_add_many( t, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_EMPTY, TABLE_STRING, a, TABLE_EMPTY, TABLE_EMPTY, TABLE_STRING, b, TABLE_EMPTY); if (r < 0) return table_log_add_error(r); } return table_print_with_pager(t, arg_json_format_flags, arg_pager_flags, arg_legend); } static void context_bar_char_process_partition( Context *context, Partition *bar[], size_t n, Partition *p, size_t *ret_start) { uint64_t from, to, total; size_t x, y; assert(context); assert(bar); assert(n > 0); assert(p); if (p->dropped) return; assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); from = p->offset; to = from + p->new_size; assert(context->total > 0); total = context->total; assert(from <= total); x = from * n / total; assert(to <= total); y = to * n / total; assert(x <= y); assert(y <= n); for (size_t i = x; i < y; i++) bar[i] = p; *ret_start = x; } static int partition_hint(const Partition *p, const char *node, char **ret) { _cleanup_free_ char *buf = NULL; const char *label; sd_id128_t id; /* Tries really hard to find a suitable description for this partition */ if (p->definition_path) { buf = strdup(basename(p->definition_path)); goto done; } label = partition_label(p); if (!isempty(label)) { buf = strdup(label); goto done; } if (p->partno != UINT64_MAX) { buf = fdisk_partname(node, p->partno+1); goto done; } if (!sd_id128_is_null(p->new_uuid)) id = p->new_uuid; else if (!sd_id128_is_null(p->current_uuid)) id = p->current_uuid; else id = p->type_uuid; buf = strdup(SD_ID128_TO_UUID_STRING(id)); done: if (!buf) return -ENOMEM; *ret = TAKE_PTR(buf); return 0; } static int context_dump_partition_bar(Context *context, const char *node) { _cleanup_free_ Partition **bar = NULL; _cleanup_free_ size_t *start_array = NULL; Partition *last = NULL; bool z = false; size_t c, j = 0; assert_se((c = columns()) >= 2); c -= 2; /* We do not use the leftmost and rightmost character cell */ bar = new0(Partition*, c); if (!bar) return log_oom(); start_array = new(size_t, context->n_partitions); if (!start_array) return log_oom(); LIST_FOREACH(partitions, p, context->partitions) context_bar_char_process_partition(context, bar, c, p, start_array + j++); putc(' ', stdout); for (size_t i = 0; i < c; i++) { if (bar[i]) { if (last != bar[i]) z = !z; fputs(z ? ansi_green() : ansi_yellow(), stdout); fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout); } else { fputs(ansi_normal(), stdout); fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout); } last = bar[i]; } fputs(ansi_normal(), stdout); putc('\n', stdout); for (size_t i = 0; i < context->n_partitions; i++) { _cleanup_free_ char **line = NULL; line = new0(char*, c); if (!line) return log_oom(); j = 0; LIST_FOREACH(partitions, p, context->partitions) { _cleanup_free_ char *d = NULL; j++; if (i < context->n_partitions - j) { if (line[start_array[j-1]]) { const char *e; /* Upgrade final corner to the right with a branch to the right */ e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT)); if (e) { d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e); if (!d) return log_oom(); } } if (!d) { d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)); if (!d) return log_oom(); } } else if (i == context->n_partitions - j) { _cleanup_free_ char *hint = NULL; (void) partition_hint(p, node, &hint); if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL))) d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint)); else d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint)); if (!d) return log_oom(); } if (d) free_and_replace(line[start_array[j-1]], d); } putc(' ', stdout); j = 0; while (j < c) { if (line[j]) { fputs(line[j], stdout); j += utf8_console_width(line[j]); } else { putc(' ', stdout); j++; } } putc('\n', stdout); for (j = 0; j < c; j++) free(line[j]); } return 0; } static bool context_changed(const Context *context) { assert(context); LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; if (p->allocated_to_area) return true; if (p->new_size != p->current_size) return true; } return false; } static int context_wipe_range(Context *context, uint64_t offset, uint64_t size) { _cleanup_(blkid_free_probep) blkid_probe probe = NULL; int r; assert(context); assert(offset != UINT64_MAX); assert(size != UINT64_MAX); probe = blkid_new_probe(); if (!probe) return log_oom(); errno = 0; r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), offset, size); if (r < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for wiping."); errno = 0; if (blkid_probe_enable_superblocks(probe, true) < 0 || blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 || blkid_probe_enable_partitions(probe, true) < 0 || blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing."); for (;;) { errno = 0; r = blkid_do_probe(probe); if (r < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems."); if (r > 0) break; errno = 0; if (blkid_do_wipe(probe, false) < 0) return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature."); } return 0; } static int context_wipe_partition(Context *context, Partition *p) { int r; assert(context); assert(p); assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */ assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); r = context_wipe_range(context, p->offset, p->new_size); if (r < 0) return r; log_info("Successfully wiped file system signatures from future partition %" PRIu64 ".", p->partno); return 0; } static int context_discard_range( Context *context, uint64_t offset, uint64_t size) { struct stat st; int fd; assert(context); assert(offset != UINT64_MAX); assert(size != UINT64_MAX); if (size <= 0) return 0; assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); if (fstat(fd, &st) < 0) return -errno; if (S_ISREG(st.st_mode)) { if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) return -EOPNOTSUPP; return -errno; } return 1; } if (S_ISBLK(st.st_mode)) { uint64_t range[2], end; range[0] = round_up_size(offset, context->sector_size); if (offset > UINT64_MAX - size) return -ERANGE; end = offset + size; if (end <= range[0]) return 0; range[1] = round_down_size(end - range[0], context->sector_size); if (range[1] <= 0) return 0; if (ioctl(fd, BLKDISCARD, range) < 0) { if (ERRNO_IS_NOT_SUPPORTED(errno)) return -EOPNOTSUPP; return -errno; } return 1; } return -EOPNOTSUPP; } static int context_discard_partition(Context *context, Partition *p) { int r; assert(context); assert(p); assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */ if (!arg_discard) return 0; r = context_discard_range(context, p->offset, p->new_size); if (r == -EOPNOTSUPP) { log_info("Storage does not support discard, not discarding data in future partition %" PRIu64 ".", p->partno); return 0; } if (r == -EBUSY) { /* Let's handle this gracefully: https://bugzilla.kernel.org/show_bug.cgi?id=211167 */ log_info("Block device is busy, not discarding partition %" PRIu64 " because it probably is mounted.", p->partno); return 0; } if (r == 0) { log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno); return 0; } if (r < 0) return log_error_errno(r, "Failed to discard data for future partition %" PRIu64 ".", p->partno); log_info("Successfully discarded data from future partition %" PRIu64 ".", p->partno); return 1; } static int context_discard_gap_after(Context *context, Partition *p) { uint64_t gap, next = UINT64_MAX; int r; assert(context); assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX)); if (p) gap = p->offset + p->new_size; else gap = context->start; LIST_FOREACH(partitions, q, context->partitions) { if (q->dropped) continue; assert(q->offset != UINT64_MAX); assert(q->new_size != UINT64_MAX); if (q->offset < gap) continue; if (next == UINT64_MAX || q->offset < next) next = q->offset; } if (next == UINT64_MAX) { next = context->end; if (gap > next) return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); } assert(next >= gap); r = context_discard_range(context, gap, next - gap); if (r == -EOPNOTSUPP) { if (p) log_info("Storage does not support discard, not discarding gap after partition %" PRIu64 ".", p->partno); else log_info("Storage does not support discard, not discarding gap at beginning of disk."); return 0; } if (r == 0) /* Too short */ return 0; if (r < 0) { if (p) return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno); else return log_error_errno(r, "Failed to discard gap at beginning of disk."); } if (p) log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno); else log_info("Successfully discarded gap at beginning of disk."); return 0; } static int context_wipe_and_discard(Context *context, bool from_scratch) { int r; assert(context); /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if * we were supposed to start from scratch anyway, as in that case we just discard the whole block * device in one go early on. */ LIST_FOREACH(partitions, p, context->partitions) { if (!p->allocated_to_area) continue; r = context_wipe_partition(context, p); if (r < 0) return r; if (!from_scratch) { r = context_discard_partition(context, p); if (r < 0) return r; r = context_discard_gap_after(context, p); if (r < 0) return r; } } if (!from_scratch) { r = context_discard_gap_after(context, NULL); if (r < 0) return r; } return 0; } static int partition_encrypt( Context *context, Partition *p, const char *node, struct crypt_device **ret_cd, char **ret_volume, int *ret_fd) { #if HAVE_LIBCRYPTSETUP _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; _cleanup_(erase_and_freep) void *volume_key = NULL; _cleanup_free_ char *dm_name = NULL, *vol = NULL; size_t volume_key_size = 256 / 8; sd_id128_t uuid; int r; assert(context); assert(p); assert(p->encrypt != ENCRYPT_OFF); log_debug("Encryption mode for partition %" PRIu64 ": %s", p->partno, encrypt_mode_to_string(p->encrypt)); r = dlopen_cryptsetup(); if (r < 0) return log_error_errno(r, "libcryptsetup not found, cannot encrypt: %m"); if (asprintf(&dm_name, "luks-repart-%08" PRIx64, random_u64()) < 0) return log_oom(); if (ret_volume) { vol = path_join("/dev/mapper/", dm_name); if (!vol) return log_oom(); } r = derive_uuid(p->new_uuid, "luks-uuid", &uuid); if (r < 0) return r; log_info("Encrypting future partition %" PRIu64 "...", p->partno); volume_key = malloc(volume_key_size); if (!volume_key) return log_oom(); r = genuine_random_bytes(volume_key, volume_key_size, RANDOM_BLOCK); if (r < 0) return log_error_errno(r, "Failed to generate volume key: %m"); r = sym_crypt_init(&cd, node); if (r < 0) return log_error_errno(r, "Failed to allocate libcryptsetup context: %m"); cryptsetup_enable_logging(cd); r = sym_crypt_format(cd, CRYPT_LUKS2, "aes", "xts-plain64", SD_ID128_TO_UUID_STRING(uuid), volume_key, volume_key_size, &(struct crypt_params_luks2) { .label = strempty(p->new_label), .sector_size = context->sector_size, }); if (r < 0) return log_error_errno(r, "Failed to LUKS2 format future partition: %m"); if (IN_SET(p->encrypt, ENCRYPT_KEY_FILE, ENCRYPT_KEY_FILE_TPM2)) { r = sym_crypt_keyslot_add_by_volume_key( cd, CRYPT_ANY_SLOT, volume_key, volume_key_size, strempty(arg_key), arg_key_size); if (r < 0) return log_error_errno(r, "Failed to add LUKS2 key: %m"); } if (IN_SET(p->encrypt, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2)) { #if HAVE_TPM2 _cleanup_(erase_and_freep) char *base64_encoded = NULL; _cleanup_(json_variant_unrefp) JsonVariant *v = NULL; _cleanup_(erase_and_freep) void *secret = NULL; _cleanup_free_ void *blob = NULL, *hash = NULL; size_t secret_size, blob_size, hash_size; uint16_t pcr_bank, primary_alg; int keyslot; r = tpm2_seal(arg_tpm2_device, arg_tpm2_pcr_mask, NULL, &secret, &secret_size, &blob, &blob_size, &hash, &hash_size, &pcr_bank, &primary_alg); if (r < 0) return log_error_errno(r, "Failed to seal to TPM2: %m"); r = base64mem(secret, secret_size, &base64_encoded); if (r < 0) return log_error_errno(r, "Failed to base64 encode secret key: %m"); r = cryptsetup_set_minimal_pbkdf(cd); if (r < 0) return log_error_errno(r, "Failed to set minimal PBKDF: %m"); keyslot = sym_crypt_keyslot_add_by_volume_key( cd, CRYPT_ANY_SLOT, volume_key, volume_key_size, base64_encoded, strlen(base64_encoded)); if (keyslot < 0) return log_error_errno(keyslot, "Failed to add new TPM2 key to %s: %m", node); r = tpm2_make_luks2_json(keyslot, arg_tpm2_pcr_mask, pcr_bank, primary_alg, blob, blob_size, hash, hash_size, 0, &v); if (r < 0) return log_error_errno(r, "Failed to prepare TPM2 JSON token object: %m"); r = cryptsetup_add_token_json(cd, v); if (r < 0) return log_error_errno(r, "Failed to add TPM2 JSON token to LUKS2 header: %m"); #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Support for TPM2 enrollment not enabled."); #endif } r = sym_crypt_activate_by_volume_key( cd, dm_name, volume_key, volume_key_size, arg_discard ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0); if (r < 0) return log_error_errno(r, "Failed to activate LUKS superblock: %m"); log_info("Successfully encrypted future partition %" PRIu64 ".", p->partno); if (ret_fd) { _cleanup_close_ int dev_fd = -1; dev_fd = open(vol, O_RDWR|O_CLOEXEC|O_NOCTTY); if (dev_fd < 0) return log_error_errno(errno, "Failed to open LUKS volume '%s': %m", vol); *ret_fd = TAKE_FD(dev_fd); } if (ret_cd) *ret_cd = TAKE_PTR(cd); if (ret_volume) *ret_volume = TAKE_PTR(vol); return 0; #else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot encrypt: %m"); #endif } static int deactivate_luks(struct crypt_device *cd, const char *node) { #if HAVE_LIBCRYPTSETUP int r; if (!cd) return 0; assert(node); /* udev or so might access out block device in the background while we are done. Let's hence force * detach the volume. We sync'ed before, hence this should be safe. */ r = sym_crypt_deactivate_by_name(cd, basename(node), CRYPT_DEACTIVATE_FORCE); if (r < 0) return log_error_errno(r, "Failed to deactivate LUKS device: %m"); return 1; #else return 0; #endif } static int context_copy_blocks(Context *context) { int whole_fd = -1, r; assert(context); /* Copy in file systems on the block level */ LIST_FOREACH(partitions, p, context->partitions) { _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; _cleanup_free_ char *encrypted = NULL; _cleanup_close_ int encrypted_dev_fd = -1; int target_fd; if (p->copy_blocks_fd < 0) continue; if (p->dropped) continue; if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */ continue; assert(p->new_size != UINT64_MAX); assert(p->copy_blocks_size != UINT64_MAX); assert(p->new_size >= p->copy_blocks_size); if (whole_fd < 0) assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); if (p->encrypt != ENCRYPT_OFF) { r = loop_device_make(whole_fd, O_RDWR, p->offset, p->new_size, 0, &d); if (r < 0) return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno); r = loop_device_flock(d, LOCK_EX); if (r < 0) return log_error_errno(r, "Failed to lock loopback device: %m"); r = partition_encrypt(context, p, d->node, &cd, &encrypted, &encrypted_dev_fd); if (r < 0) return log_error_errno(r, "Failed to encrypt device: %m"); if (flock(encrypted_dev_fd, LOCK_EX) < 0) return log_error_errno(errno, "Failed to lock LUKS device: %m"); target_fd = encrypted_dev_fd; } else { if (lseek(whole_fd, p->offset, SEEK_SET) == (off_t) -1) return log_error_errno(errno, "Failed to seek to partition offset: %m"); target_fd = whole_fd; } log_info("Copying in '%s' (%s) on block level into future partition %" PRIu64 ".", p->copy_blocks_path, FORMAT_BYTES(p->copy_blocks_size), p->partno); r = copy_bytes_full(p->copy_blocks_fd, target_fd, p->copy_blocks_size, 0, NULL, NULL, NULL, NULL); if (r < 0) return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path); if (fsync(target_fd) < 0) return log_error_errno(errno, "Failed to synchronize copied data blocks: %m"); if (p->encrypt != ENCRYPT_OFF) { encrypted_dev_fd = safe_close(encrypted_dev_fd); r = deactivate_luks(cd, encrypted); if (r < 0) return r; sym_crypt_free(cd); cd = NULL; r = loop_device_sync(d); if (r < 0) return log_error_errno(r, "Failed to sync loopback device: %m"); } log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path); } return 0; } static int do_copy_files(Partition *p, const char *fs) { int r; assert(p); assert(fs); STRV_FOREACH_PAIR(source, target, p->copy_files) { _cleanup_close_ int sfd = -1, pfd = -1, tfd = -1; sfd = chase_symlinks_and_open(*source, arg_root, CHASE_PREFIX_ROOT|CHASE_WARN, O_CLOEXEC|O_NOCTTY, NULL); if (sfd < 0) return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_root), *source); r = fd_verify_regular(sfd); if (r < 0) { if (r != -EISDIR) return log_error_errno(r, "Failed to check type of source file '%s': %m", *source); /* We are looking at a directory */ tfd = chase_symlinks_and_open(*target, fs, CHASE_PREFIX_ROOT|CHASE_WARN, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); if (tfd < 0) { _cleanup_free_ char *dn = NULL, *fn = NULL; if (tfd != -ENOENT) return log_error_errno(tfd, "Failed to open target directory '%s': %m", *target); r = path_extract_filename(*target, &fn); if (r < 0) return log_error_errno(r, "Failed to extract filename from '%s': %m", *target); r = path_extract_directory(*target, &dn); if (r < 0) return log_error_errno(r, "Failed to extract directory from '%s': %m", *target); r = mkdir_p_root(fs, dn, UID_INVALID, GID_INVALID, 0755); if (r < 0) return log_error_errno(r, "Failed to create parent directory '%s': %m", dn); pfd = chase_symlinks_and_open(dn, fs, CHASE_PREFIX_ROOT|CHASE_WARN, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); if (pfd < 0) return log_error_errno(pfd, "Failed to open parent directory of target: %m"); r = copy_tree_at( sfd, ".", pfd, fn, UID_INVALID, GID_INVALID, COPY_REFLINK|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS); } else r = copy_tree_at( sfd, ".", tfd, ".", UID_INVALID, GID_INVALID, COPY_REFLINK|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS); if (r < 0) return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_root), *target); } else { _cleanup_free_ char *dn = NULL, *fn = NULL; /* We are looking at a regular file */ r = path_extract_filename(*target, &fn); if (r == -EADDRNOTAVAIL || r == O_DIRECTORY) return log_error_errno(SYNTHETIC_ERRNO(EISDIR), "Target path '%s' refers to a directory, but source path '%s' refers to regular file, can't copy.", *target, *source); if (r < 0) return log_error_errno(r, "Failed to extract filename from '%s': %m", *target); r = path_extract_directory(*target, &dn); if (r < 0) return log_error_errno(r, "Failed to extract directory from '%s': %m", *target); r = mkdir_p_root(fs, dn, UID_INVALID, GID_INVALID, 0755); if (r < 0) return log_error_errno(r, "Failed to create parent directory: %m"); pfd = chase_symlinks_and_open(dn, fs, CHASE_PREFIX_ROOT|CHASE_WARN, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); if (pfd < 0) return log_error_errno(pfd, "Failed to open parent directory of target: %m"); tfd = openat(pfd, fn, O_CREAT|O_EXCL|O_WRONLY|O_CLOEXEC, 0700); if (tfd < 0) return log_error_errno(errno, "Failed to create target file '%s': %m", *target); r = copy_bytes(sfd, tfd, UINT64_MAX, COPY_REFLINK|COPY_SIGINT); if (r < 0) return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_root), *target); (void) copy_xattr(sfd, tfd, COPY_ALL_XATTRS); (void) copy_access(sfd, tfd); (void) copy_times(sfd, tfd, 0); } } return 0; } static int do_make_directories(Partition *p, const char *fs) { int r; assert(p); assert(fs); STRV_FOREACH(d, p->make_directories) { r = mkdir_p_root(fs, *d, UID_INVALID, GID_INVALID, 0755); if (r < 0) return log_error_errno(r, "Failed to create directory '%s' in file system: %m", *d); } return 0; } static int partition_populate(Partition *p, const char *node) { int r; assert(p); assert(node); if (strv_isempty(p->copy_files) && strv_isempty(p->make_directories)) return 0; log_info("Populating partition %" PRIu64 " with files.", p->partno); /* We copy in a child process, since we have to mount the fs for that, and we don't want that fs to * appear in the host namespace. Hence we fork a child that has its own file system namespace and * detached mount propagation. */ r = safe_fork("(sd-copy)", FORK_DEATHSIG|FORK_LOG|FORK_WAIT|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, NULL); if (r < 0) return r; if (r == 0) { static const char fs[] = "/run/systemd/mount-root"; /* This is a child process with its own mount namespace and propagation to host turned off */ r = mkdir_p(fs, 0700); if (r < 0) { log_error_errno(r, "Failed to create mount point: %m"); _exit(EXIT_FAILURE); } if (mount_nofollow_verbose(LOG_ERR, node, fs, p->format, MS_NOATIME|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL) < 0) _exit(EXIT_FAILURE); if (do_copy_files(p, fs) < 0) _exit(EXIT_FAILURE); if (do_make_directories(p, fs) < 0) _exit(EXIT_FAILURE); r = syncfs_path(AT_FDCWD, fs); if (r < 0) { log_error_errno(r, "Failed to synchronize written files: %m"); _exit(EXIT_FAILURE); } _exit(EXIT_SUCCESS); } log_info("Successfully populated partition %" PRIu64 " with files.", p->partno); return 0; } static int context_mkfs(Context *context) { int fd = -1, r; assert(context); /* Make a file system */ LIST_FOREACH(partitions, p, context->partitions) { _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; _cleanup_free_ char *encrypted = NULL; _cleanup_close_ int encrypted_dev_fd = -1; const char *fsdev; sd_id128_t fs_uuid; if (p->dropped) continue; if (PARTITION_EXISTS(p)) /* Never format existing partitions */ continue; if (!p->format) continue; assert(p->offset != UINT64_MAX); assert(p->new_size != UINT64_MAX); if (fd < 0) assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); /* Loopback block devices are not only useful to turn regular files into block devices, but * also to cut out sections of block devices into new block devices. */ r = loop_device_make(fd, O_RDWR, p->offset, p->new_size, 0, &d); if (r < 0) return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno); r = loop_device_flock(d, LOCK_EX); if (r < 0) return log_error_errno(r, "Failed to lock loopback device: %m"); if (p->encrypt != ENCRYPT_OFF) { r = partition_encrypt(context, p, d->node, &cd, &encrypted, &encrypted_dev_fd); if (r < 0) return log_error_errno(r, "Failed to encrypt device: %m"); if (flock(encrypted_dev_fd, LOCK_EX) < 0) return log_error_errno(errno, "Failed to lock LUKS device: %m"); fsdev = encrypted; } else fsdev = d->node; log_info("Formatting future partition %" PRIu64 ".", p->partno); /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid", * keyed off the partition UUID. */ r = derive_uuid(p->new_uuid, "file-system-uuid", &fs_uuid); if (r < 0) return r; r = make_filesystem(fsdev, p->format, strempty(p->new_label), fs_uuid, arg_discard); if (r < 0) { encrypted_dev_fd = safe_close(encrypted_dev_fd); (void) deactivate_luks(cd, encrypted); return r; } log_info("Successfully formatted future partition %" PRIu64 ".", p->partno); /* The file system is now created, no need to delay udev further */ if (p->encrypt != ENCRYPT_OFF) if (flock(encrypted_dev_fd, LOCK_UN) < 0) return log_error_errno(errno, "Failed to unlock LUKS device: %m"); r = partition_populate(p, fsdev); if (r < 0) { encrypted_dev_fd = safe_close(encrypted_dev_fd); (void) deactivate_luks(cd, encrypted); return r; } /* Note that we always sync explicitly here, since mkfs.fat doesn't do that on its own, and * if we don't sync before detaching a block device the in-flight sectors possibly won't hit * the disk. */ if (p->encrypt != ENCRYPT_OFF) { if (fsync(encrypted_dev_fd) < 0) return log_error_errno(errno, "Failed to synchronize LUKS volume: %m"); encrypted_dev_fd = safe_close(encrypted_dev_fd); r = deactivate_luks(cd, encrypted); if (r < 0) return r; sym_crypt_free(cd); cd = NULL; } r = loop_device_sync(d); if (r < 0) return log_error_errno(r, "Failed to sync loopback device: %m"); } return 0; } static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) { struct { sd_id128_t type_uuid; uint64_t counter; } _packed_ plaintext = {}; union { uint8_t md[SHA256_DIGEST_SIZE]; sd_id128_t id; } result; uint64_t k = 0; int r; assert(context); assert(p); assert(ret); /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility, * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely: * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the * installation we are processing, but if random behaviour is desired can be random, too. We use the * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak) * and the partition type as plaintext. The partition type is suffixed with a counter (only for the * second and later partition of the same type) if we have more than one partition of the same * time. Or in other words: * * With: * SEED := /etc/machine-id * * If first partition instance of type TYPE_UUID: * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID) * * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number: * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE) */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) break; if (!sd_id128_equal(p->type_uuid, q->type_uuid)) continue; k++; } plaintext.type_uuid = p->type_uuid; plaintext.counter = htole64(k); hmac_sha256(context->seed.bytes, sizeof(context->seed.bytes), &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext), result.md); /* Take the first half, mark it as v4 UUID */ assert_cc(sizeof(result.md) == sizeof(result.id) * 2); result.id = id128_make_v4_uuid(result.id); /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */ LIST_FOREACH(partitions, q, context->partitions) { if (p == q) continue; if (sd_id128_in_set(result.id, q->current_uuid, q->new_uuid)) { log_warning("Partition UUID calculated from seed for partition %" PRIu64 " already used, reverting to randomized UUID.", p->partno); r = sd_id128_randomize(&result.id); if (r < 0) return log_error_errno(r, "Failed to generate randomized UUID: %m"); break; } } *ret = result.id; return 0; } static int partition_acquire_label(Context *context, Partition *p, char **ret) { _cleanup_free_ char *label = NULL; const char *prefix; unsigned k = 1; assert(context); assert(p); assert(ret); prefix = gpt_partition_type_uuid_to_string(p->type_uuid); if (!prefix) prefix = "linux"; for (;;) { const char *ll = label ?: prefix; bool retry = false; LIST_FOREACH(partitions, q, context->partitions) { if (p == q) break; if (streq_ptr(ll, q->current_label) || streq_ptr(ll, q->new_label)) { retry = true; break; } } if (!retry) break; label = mfree(label); if (asprintf(&label, "%s-%u", prefix, ++k) < 0) return log_oom(); } if (!label) { label = strdup(prefix); if (!label) return log_oom(); } *ret = TAKE_PTR(label); return 0; } static int context_acquire_partition_uuids_and_labels(Context *context) { int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { /* Never touch foreign partitions */ if (PARTITION_IS_FOREIGN(p)) { p->new_uuid = p->current_uuid; if (p->current_label) { r = free_and_strdup_warn(&p->new_label, strempty(p->current_label)); if (r < 0) return r; } continue; } if (!sd_id128_is_null(p->current_uuid)) p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */ else if (sd_id128_is_null(p->new_uuid)) { /* Not explicitly set by user! */ r = partition_acquire_uuid(context, p, &p->new_uuid); if (r < 0) return r; } if (!isempty(p->current_label)) { /* never change initialized labels */ r = free_and_strdup_warn(&p->new_label, p->current_label); if (r < 0) return r; } else if (!p->new_label) { /* Not explicitly set by user! */ r = partition_acquire_label(context, p, &p->new_label); if (r < 0) return r; } } return 0; } static int set_gpt_flags(struct fdisk_partition *q, uint64_t flags) { _cleanup_free_ char *a = NULL; for (unsigned i = 0; i < sizeof(flags) * 8; i++) { uint64_t bit = UINT64_C(1) << i; char buf[DECIMAL_STR_MAX(unsigned)+1]; if (!FLAGS_SET(flags, bit)) continue; xsprintf(buf, "%u", i); if (!strextend_with_separator(&a, ",", buf)) return -ENOMEM; } return fdisk_partition_set_attrs(q, a); } static uint64_t partition_merge_flags(Partition *p) { uint64_t f; assert(p); f = p->gpt_flags; if (p->no_auto >= 0) { if (gpt_partition_type_knows_no_auto(p->type_uuid)) SET_FLAG(f, GPT_FLAG_NO_AUTO, p->no_auto); else { char buffer[SD_ID128_UUID_STRING_MAX]; log_warning("Configured NoAuto=%s for partition type '%s' that doesn't support it, ignoring.", yes_no(p->no_auto), gpt_partition_type_uuid_to_string_harder(p->type_uuid, buffer)); } } if (p->read_only >= 0) { if (gpt_partition_type_knows_read_only(p->type_uuid)) SET_FLAG(f, GPT_FLAG_READ_ONLY, p->read_only); else { char buffer[SD_ID128_UUID_STRING_MAX]; log_warning("Configured ReadOnly=%s for partition type '%s' that doesn't support it, ignoring.", yes_no(p->read_only), gpt_partition_type_uuid_to_string_harder(p->type_uuid, buffer)); } } if (p->growfs >= 0) { if (gpt_partition_type_knows_growfs(p->type_uuid)) SET_FLAG(f, GPT_FLAG_GROWFS, p->growfs); else { char buffer[SD_ID128_UUID_STRING_MAX]; log_warning("Configured GrowFileSystem=%s for partition type '%s' that doesn't support it, ignoring.", yes_no(p->growfs), gpt_partition_type_uuid_to_string_harder(p->type_uuid, buffer)); } } return f; } static int context_mangle_partitions(Context *context) { int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { if (p->dropped) continue; assert(p->new_size != UINT64_MAX); assert(p->offset != UINT64_MAX); assert(p->partno != UINT64_MAX); if (PARTITION_EXISTS(p)) { bool changed = false; assert(p->current_partition); if (p->new_size != p->current_size) { assert(p->new_size >= p->current_size); assert(p->new_size % context->sector_size == 0); r = fdisk_partition_size_explicit(p->current_partition, true); if (r < 0) return log_error_errno(r, "Failed to enable explicit sizing: %m"); r = fdisk_partition_set_size(p->current_partition, p->new_size / context->sector_size); if (r < 0) return log_error_errno(r, "Failed to grow partition: %m"); log_info("Growing existing partition %" PRIu64 ".", p->partno); changed = true; } if (!sd_id128_equal(p->new_uuid, p->current_uuid)) { assert(!sd_id128_is_null(p->new_uuid)); r = fdisk_partition_set_uuid(p->current_partition, SD_ID128_TO_UUID_STRING(p->new_uuid)); if (r < 0) return log_error_errno(r, "Failed to set partition UUID: %m"); log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno); changed = true; } if (!streq_ptr(p->new_label, p->current_label)) { r = fdisk_partition_set_name(p->current_partition, strempty(p->new_label)); if (r < 0) return log_error_errno(r, "Failed to set partition label: %m"); log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno); changed = true; } if (changed) { assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */ r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition); if (r < 0) return log_error_errno(r, "Failed to update partition: %m"); } } else { _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL; _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL; assert(!p->new_partition); assert(p->offset % context->sector_size == 0); assert(p->new_size % context->sector_size == 0); assert(!sd_id128_is_null(p->new_uuid)); assert(p->new_label); t = fdisk_new_parttype(); if (!t) return log_oom(); r = fdisk_parttype_set_typestr(t, SD_ID128_TO_UUID_STRING(p->type_uuid)); if (r < 0) return log_error_errno(r, "Failed to initialize partition type: %m"); q = fdisk_new_partition(); if (!q) return log_oom(); r = fdisk_partition_set_type(q, t); if (r < 0) return log_error_errno(r, "Failed to set partition type: %m"); r = fdisk_partition_size_explicit(q, true); if (r < 0) return log_error_errno(r, "Failed to enable explicit sizing: %m"); r = fdisk_partition_set_start(q, p->offset / context->sector_size); if (r < 0) return log_error_errno(r, "Failed to position partition: %m"); r = fdisk_partition_set_size(q, p->new_size / context->sector_size); if (r < 0) return log_error_errno(r, "Failed to grow partition: %m"); r = fdisk_partition_set_partno(q, p->partno); if (r < 0) return log_error_errno(r, "Failed to set partition number: %m"); r = fdisk_partition_set_uuid(q, SD_ID128_TO_UUID_STRING(p->new_uuid)); if (r < 0) return log_error_errno(r, "Failed to set partition UUID: %m"); r = fdisk_partition_set_name(q, strempty(p->new_label)); if (r < 0) return log_error_errno(r, "Failed to set partition label: %m"); /* Merge the no auto + read only + growfs setting with the literal flags, and set them for the partition */ r = set_gpt_flags(q, partition_merge_flags(p)); if (r < 0) return log_error_errno(r, "Failed to set GPT partition flags: %m"); log_info("Adding new partition %" PRIu64 " to partition table.", p->partno); r = fdisk_add_partition(context->fdisk_context, q, NULL); if (r < 0) return log_error_errno(r, "Failed to add partition: %m"); assert(!p->new_partition); p->new_partition = TAKE_PTR(q); } } return 0; } static int context_write_partition_table( Context *context, const char *node, bool from_scratch) { _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL; int capable, r; assert(context); if (arg_pretty > 0 || (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0) || !FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF)) { (void) context_dump_partitions(context, node); putc('\n', stdout); if (arg_json_format_flags & JSON_FORMAT_OFF) (void) context_dump_partition_bar(context, node); putc('\n', stdout); fflush(stdout); } if (!from_scratch && !context_changed(context)) { log_info("No changes."); return 0; } if (arg_dry_run) { log_notice("Refusing to repartition, please re-run with --dry-run=no."); return 0; } log_info("Applying changes."); if (from_scratch) { r = context_wipe_range(context, 0, context->total); if (r < 0) return r; log_info("Wiped block device."); r = context_discard_range(context, 0, context->total); if (r == -EOPNOTSUPP) log_info("Storage does not support discard, not discarding entire block device data."); else if (r < 0) return log_error_errno(r, "Failed to discard entire block device: %m"); else if (r > 0) log_info("Discarded entire block device."); } r = fdisk_get_partitions(context->fdisk_context, &original_table); if (r < 0) return log_error_errno(r, "Failed to acquire partition table: %m"); /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the * gaps between partitions, just to be sure. */ r = context_wipe_and_discard(context, from_scratch); if (r < 0) return r; r = context_copy_blocks(context); if (r < 0) return r; r = context_mkfs(context); if (r < 0) return r; r = context_mangle_partitions(context); if (r < 0) return r; log_info("Writing new partition table."); r = fdisk_write_disklabel(context->fdisk_context); if (r < 0) return log_error_errno(r, "Failed to write partition table: %m"); capable = blockdev_partscan_enabled(fdisk_get_devfd(context->fdisk_context)); if (capable == -ENOTBLK) log_debug("Not telling kernel to reread partition table, since we are not operating on a block device."); else if (capable < 0) return log_error_errno(capable, "Failed to check if block device supports partition scanning: %m"); else if (capable > 0) { log_info("Telling kernel to reread partition table."); if (from_scratch) r = fdisk_reread_partition_table(context->fdisk_context); else r = fdisk_reread_changes(context->fdisk_context, original_table); if (r < 0) return log_error_errno(r, "Failed to reread partition table: %m"); } else log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices."); log_info("All done."); return 0; } static int context_read_seed(Context *context, const char *root) { int r; assert(context); if (!sd_id128_is_null(context->seed)) return 0; if (!arg_randomize) { _cleanup_close_ int fd = -1; fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL); if (fd == -ENOENT) log_info("No machine ID set, using randomized partition UUIDs."); else if (fd < 0) return log_error_errno(fd, "Failed to determine machine ID of image: %m"); else { r = id128_read_fd(fd, ID128_PLAIN_OR_UNINIT, &context->seed); if (r == -ENOMEDIUM) log_info("No machine ID set, using randomized partition UUIDs."); else if (r < 0) return log_error_errno(r, "Failed to parse machine ID of image: %m"); return 0; } } r = sd_id128_randomize(&context->seed); if (r < 0) return log_error_errno(r, "Failed to generate randomized seed: %m"); return 0; } static int context_factory_reset(Context *context, bool from_scratch) { size_t n = 0; int r; assert(context); if (arg_factory_reset <= 0) return 0; if (from_scratch) /* Nothing to reset if we start from scratch */ return 0; if (arg_dry_run) { log_notice("Refusing to factory reset, please re-run with --dry-run=no."); return 0; } log_info("Applying factory reset."); LIST_FOREACH(partitions, p, context->partitions) { if (!p->factory_reset || !PARTITION_EXISTS(p)) continue; assert(p->partno != UINT64_MAX); log_info("Removing partition %" PRIu64 " for factory reset.", p->partno); r = fdisk_delete_partition(context->fdisk_context, p->partno); if (r < 0) return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno); n++; } if (n == 0) { log_info("Factory reset requested, but no partitions to delete found."); return 0; } r = fdisk_write_disklabel(context->fdisk_context); if (r < 0) return log_error_errno(r, "Failed to write disk label: %m"); log_info("Successfully deleted %zu partitions.", n); return 1; } static int context_can_factory_reset(Context *context) { assert(context); LIST_FOREACH(partitions, p, context->partitions) if (p->factory_reset && PARTITION_EXISTS(p)) return true; return false; } static int resolve_copy_blocks_auto_candidate( dev_t partition_devno, sd_id128_t partition_type_uuid, dev_t restrict_devno, sd_id128_t *ret_uuid) { _cleanup_(blkid_free_probep) blkid_probe b = NULL; _cleanup_(sd_device_unrefp) sd_device *dev = NULL; _cleanup_close_ int fd = -1; const char *pttype, *t, *p; sd_id128_t pt_parsed, u; blkid_partition pp; dev_t whole_devno; blkid_partlist pl; int r; /* Checks if the specified partition has the specified GPT type UUID, and is located on the specified * 'restrict_devno' device. The type check is particularly relevant if we have Verity volume which is * backed by two separate partitions: the data and the hash partitions, and we need to find the right * one of the two. */ r = block_get_whole_disk(partition_devno, &whole_devno); if (r < 0) return log_error_errno( r, "Unable to determine containing block device of partition %u:%u: %m", major(partition_devno), minor(partition_devno)); if (restrict_devno != (dev_t) -1 && restrict_devno != whole_devno) return log_error_errno( SYNTHETIC_ERRNO(EPERM), "Partition %u:%u is located outside of block device %u:%u, refusing.", major(partition_devno), minor(partition_devno), major(restrict_devno), minor(restrict_devno)); r = sd_device_new_from_devnum(&dev, 'b', whole_devno); if (r < 0) return log_error_errno(r, "Failed to create sd-device for block device %u:%u: %m", major(whole_devno), minor(whole_devno)); r = sd_device_get_devname(dev, &p); if (r < 0) return log_error_errno(r, "Failed to get name of block device %u:%u: %m", major(whole_devno), minor(whole_devno)); fd = sd_device_open(dev, O_RDONLY|O_CLOEXEC|O_NONBLOCK); if (fd < 0) return log_error_errno(fd, "Failed to open block device %s: %m", p); b = blkid_new_probe(); if (!b) return log_oom(); errno = 0; r = blkid_probe_set_device(b, fd, 0, 0); if (r != 0) return log_error_errno(errno_or_else(ENOMEM), "Failed to open block device '%s': %m", p); (void) blkid_probe_enable_partitions(b, 1); (void) blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS); errno = 0; r = blkid_do_safeprobe(b); if (IN_SET(r, -2, 1)) { /* nothing found or ambiguous result */ log_debug("Didn't find partition table on block device '%s'.", p); return false; } if (r != 0) return log_error_errno(errno_or_else(EIO), "Unable to probe for partition table of '%s': %m", p); (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL); if (!streq_ptr(pttype, "gpt")) { log_debug("Didn't find a GPT partition table on '%s'.", p); return false; } errno = 0; pl = blkid_probe_get_partitions(b); if (!pl) return log_error_errno(errno_or_else(EIO), "Unable read partition table of '%s': %m", p); errno = 0; pp = blkid_partlist_devno_to_partition(pl, partition_devno); if (!pp) { log_debug("Partition %u:%u has no matching partition table entry on '%s'.", major(partition_devno), minor(partition_devno), p); return false; } t = blkid_partition_get_type_string(pp); if (isempty(t)) { log_debug("Partition %u:%u has no type on '%s'.", major(partition_devno), minor(partition_devno), p); return false; } r = sd_id128_from_string(t, &pt_parsed); if (r < 0) { log_debug_errno(r, "Failed to parse partition type \"%s\": %m", t); return false; } if (!sd_id128_equal(pt_parsed, partition_type_uuid)) { log_debug("Partition %u:%u has non-matching partition type " SD_ID128_FORMAT_STR " (needed: " SD_ID128_FORMAT_STR "), ignoring.", major(partition_devno), minor(partition_devno), SD_ID128_FORMAT_VAL(pt_parsed), SD_ID128_FORMAT_VAL(partition_type_uuid)); return false; } t = blkid_partition_get_uuid(pp); if (isempty(t)) { log_debug("Partition %u:%u has no UUID.", major(partition_devno), minor(partition_devno)); return false; } r = sd_id128_from_string(t, &u); if (r < 0) { log_debug_errno(r, "Failed to parse partition UUID \"%s\": %m", t); return false; } log_debug("Automatically found partition %u:%u of right type " SD_ID128_FORMAT_STR ".", major(partition_devno), minor(partition_devno), SD_ID128_FORMAT_VAL(pt_parsed)); if (ret_uuid) *ret_uuid = u; return true; } static int find_backing_devno( const char *path, const char *root, dev_t *ret) { _cleanup_free_ char *resolved = NULL; int r; assert(path); r = chase_symlinks(path, root, CHASE_PREFIX_ROOT, &resolved, NULL); if (r < 0) return r; r = path_is_mount_point(resolved, NULL, 0); if (r < 0) return r; if (r == 0) /* Not a mount point, then it's not a partition of its own, let's not automatically use it. */ return -ENOENT; r = get_block_device(resolved, ret); if (r < 0) return r; if (r == 0) /* Not backed by physical file system, we can't use this */ return -ENOENT; return 0; } static int resolve_copy_blocks_auto( sd_id128_t type_uuid, const char *root, dev_t restrict_devno, dev_t *ret_devno, sd_id128_t *ret_uuid) { const char *try1 = NULL, *try2 = NULL; char p[SYS_BLOCK_PATH_MAX("/slaves")]; _cleanup_(closedirp) DIR *d = NULL; sd_id128_t found_uuid = SD_ID128_NULL; dev_t devno, found = 0; int r; /* Enforce some security restrictions: CopyBlocks=auto should not be an avenue to get outside of the * --root=/--image= confinement. Specifically, refuse CopyBlocks= in combination with --root= at all, * and restrict block device references in the --image= case to loopback block device we set up. * * restrict_devno contain the dev_t of the loop back device we operate on in case of --image=, and * thus declares which device (and its partition subdevices) we shall limit access to. If * restrict_devno is zero no device probing access shall be allowed at all (used for --root=) and if * it is (dev_t) -1 then free access shall be allowed (if neither switch is used). */ if (restrict_devno == 0) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Automatic discovery of backing block devices not permitted in --root= mode, refusing."); /* Handles CopyBlocks=auto, and finds the right source partition to copy from. We look for matching * partitions in the host, using the appropriate directory as key and ensuring that the partition * type matches. */ if (gpt_partition_type_is_root(type_uuid)) try1 = "/"; else if (gpt_partition_type_is_usr(type_uuid)) try1 = "/usr/"; else if (gpt_partition_type_is_root_verity(type_uuid)) try1 = "/"; else if (gpt_partition_type_is_usr_verity(type_uuid)) try1 = "/usr/"; else if (sd_id128_equal(type_uuid, GPT_ESP)) { try1 = "/efi/"; try2 = "/boot/"; } else if (sd_id128_equal(type_uuid, GPT_XBOOTLDR)) try1 = "/boot/"; else return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Partition type " SD_ID128_FORMAT_STR " not supported from automatic source block device discovery.", SD_ID128_FORMAT_VAL(type_uuid)); r = find_backing_devno(try1, root, &devno); if (r == -ENOENT && try2) r = find_backing_devno(try2, root, &devno); if (r < 0) return log_error_errno(r, "Failed to resolve automatic CopyBlocks= path for partition type " SD_ID128_FORMAT_STR ", sorry: %m", SD_ID128_FORMAT_VAL(type_uuid)); xsprintf_sys_block_path(p, "/slaves", devno); d = opendir(p); if (d) { struct dirent *de; for (;;) { _cleanup_free_ char *q = NULL, *t = NULL; sd_id128_t u; dev_t sl; errno = 0; de = readdir_no_dot(d); if (!de) { if (errno != 0) return log_error_errno(errno, "Failed to read directory '%s': %m", p); break; } if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN)) continue; q = path_join(p, de->d_name, "/dev"); if (!q) return log_oom(); r = read_one_line_file(q, &t); if (r < 0) return log_error_errno(r, "Failed to read %s: %m", q); r = parse_devnum(t, &sl); if (r < 0) { log_debug_errno(r, "Failed to parse %s, ignoring: %m", q); continue; } if (major(sl) == 0) { log_debug_errno(r, "Device backing %s is special, ignoring: %m", q); continue; } r = resolve_copy_blocks_auto_candidate(sl, type_uuid, restrict_devno, &u); if (r < 0) return r; if (r > 0) { /* We found a matching one! */ if (found != 0) return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ), "Multiple matching partitions found, refusing."); found = sl; found_uuid = u; } } } else if (errno != ENOENT) return log_error_errno(errno, "Failed open %s: %m", p); else { r = resolve_copy_blocks_auto_candidate(devno, type_uuid, restrict_devno, &found_uuid); if (r < 0) return r; if (r > 0) found = devno; } if (found == 0) return log_error_errno(SYNTHETIC_ERRNO(ENXIO), "Unable to automatically discover suitable partition to copy blocks from."); if (ret_devno) *ret_devno = found; if (ret_uuid) *ret_uuid = found_uuid; return 0; } static int context_open_copy_block_paths( Context *context, const char *root, dev_t restrict_devno) { int r; assert(context); LIST_FOREACH(partitions, p, context->partitions) { _cleanup_close_ int source_fd = -1; _cleanup_free_ char *opened = NULL; sd_id128_t uuid = SD_ID128_NULL; uint64_t size; struct stat st; assert(p->copy_blocks_fd < 0); assert(p->copy_blocks_size == UINT64_MAX); if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */ continue; if (p->copy_blocks_path) { source_fd = chase_symlinks_and_open(p->copy_blocks_path, root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened); if (source_fd < 0) return log_error_errno(source_fd, "Failed to open '%s': %m", p->copy_blocks_path); if (fstat(source_fd, &st) < 0) return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened); if (!S_ISREG(st.st_mode) && restrict_devno != (dev_t) -1) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Copying from block device node is not permitted in --image=/--root= mode, refusing."); } else if (p->copy_blocks_auto) { _cleanup_(sd_device_unrefp) sd_device *dev = NULL; const char *devname; dev_t devno; r = resolve_copy_blocks_auto(p->type_uuid, root, restrict_devno, &devno, &uuid); if (r < 0) return r; r = sd_device_new_from_devnum(&dev, 'b', devno); if (r < 0) return log_error_errno(r, "Failed to create sd-device object for device %u:%u: %m", major(devno), minor(devno)); r = sd_device_get_devname(dev, &devname); if (r < 0) return log_error_errno(r, "Failed to get device name of %u:%u: %m", major(devno), minor(devno)); opened = strdup(devname); if (!opened) return log_oom(); source_fd = sd_device_open(dev, O_RDONLY|O_CLOEXEC|O_NONBLOCK); if (source_fd < 0) return log_error_errno(source_fd, "Failed to open automatically determined source block copy device '%s': %m", opened); if (fstat(source_fd, &st) < 0) return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened); } else continue; if (S_ISDIR(st.st_mode)) { _cleanup_(sd_device_unrefp) sd_device *dev = NULL; const char *bdev; /* If the file is a directory, automatically find the backing block device */ if (major(st.st_dev) != 0) r = sd_device_new_from_devnum(&dev, 'b', st.st_dev); else { dev_t devt; /* Special support for btrfs */ r = btrfs_get_block_device_fd(source_fd, &devt); if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, opened); if (r < 0) return log_error_errno(r, "Unable to determine backing block device of '%s': %m", opened); r = sd_device_new_from_devnum(&dev, 'b', devt); } if (r < 0) return log_error_errno(r, "Failed to create sd-device object for block device backing '%s': %m", opened); r = sd_device_get_devpath(dev, &bdev); if (r < 0) return log_error_errno(r, "Failed to get device name for block device backing '%s': %m", opened); safe_close(source_fd); source_fd = sd_device_open(dev, O_RDONLY|O_CLOEXEC|O_NONBLOCK); if (source_fd < 0) return log_error_errno(source_fd, "Failed to open block device '%s': %m", bdev); if (fstat(source_fd, &st) < 0) return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev); } if (S_ISREG(st.st_mode)) size = st.st_size; else if (S_ISBLK(st.st_mode)) { if (ioctl(source_fd, BLKGETSIZE64, &size) != 0) return log_error_errno(errno, "Failed to determine size of block device to copy from: %m"); } else return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", opened); if (size <= 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", opened); if (size % 512 != 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", opened); p->copy_blocks_fd = TAKE_FD(source_fd); p->copy_blocks_size = size; free_and_replace(p->copy_blocks_path, opened); /* When copying from an existing partition copy that partitions UUID if none is configured explicitly */ if (sd_id128_is_null(p->new_uuid) && !sd_id128_is_null(uuid)) p->new_uuid = uuid; } return 0; } static int help(void) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("systemd-repart", "1", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...] [DEVICE]\n" "\n%sGrow and add partitions to partition table.%s\n\n" " -h --help Show this help\n" " --version Show package version\n" " --no-pager Do not pipe output into a pager\n" " --no-legend Do not show the headers and footers\n" " --dry-run=BOOL Whether to run dry-run operation\n" " --empty=MODE One of refuse, allow, require, force, create; controls\n" " how to handle empty disks lacking partition tables\n" " --discard=BOOL Whether to discard backing blocks for new partitions\n" " --pretty=BOOL Whether to show pretty summary before doing changes\n" " --factory-reset=BOOL Whether to remove data partitions before recreating\n" " them\n" " --can-factory-reset Test whether factory reset is defined\n" " --root=PATH Operate relative to root path\n" " --image=PATH Operate relative to image file\n" " --definitions=DIR Find partition definitions in specified directory\n" " --key-file=PATH Key to use when encrypting partitions\n" " --tpm2-device=PATH Path to TPM2 device node to use\n" " --tpm2-pcrs=PCR1+PCR2+PCR3+…\n" " TPM2 PCR indexes to use for TPM2 enrollment\n" " --seed=UUID 128bit seed UUID to derive all UUIDs from\n" " --size=BYTES Grow loopback file to specified size\n" " --json=pretty|short|off\n" " Generate JSON output\n" "\nSee the %s for details.\n", program_invocation_short_name, ansi_highlight(), ansi_normal(), link); return 0; } static int parse_argv(int argc, char *argv[]) { enum { ARG_VERSION = 0x100, ARG_NO_PAGER, ARG_NO_LEGEND, ARG_DRY_RUN, ARG_EMPTY, ARG_DISCARD, ARG_FACTORY_RESET, ARG_CAN_FACTORY_RESET, ARG_ROOT, ARG_IMAGE, ARG_SEED, ARG_PRETTY, ARG_DEFINITIONS, ARG_SIZE, ARG_JSON, ARG_KEY_FILE, ARG_TPM2_DEVICE, ARG_TPM2_PCRS, }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "no-pager", no_argument, NULL, ARG_NO_PAGER }, { "no-legend", no_argument, NULL, ARG_NO_LEGEND }, { "dry-run", required_argument, NULL, ARG_DRY_RUN }, { "empty", required_argument, NULL, ARG_EMPTY }, { "discard", required_argument, NULL, ARG_DISCARD }, { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET }, { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET }, { "root", required_argument, NULL, ARG_ROOT }, { "image", required_argument, NULL, ARG_IMAGE }, { "seed", required_argument, NULL, ARG_SEED }, { "pretty", required_argument, NULL, ARG_PRETTY }, { "definitions", required_argument, NULL, ARG_DEFINITIONS }, { "size", required_argument, NULL, ARG_SIZE }, { "json", required_argument, NULL, ARG_JSON }, { "key-file", required_argument, NULL, ARG_KEY_FILE }, { "tpm2-device", required_argument, NULL, ARG_TPM2_DEVICE }, { "tpm2-pcrs", required_argument, NULL, ARG_TPM2_PCRS }, {} }; int c, r, dry_run = -1; assert(argc >= 0); assert(argv); while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0) switch (c) { case 'h': return help(); case ARG_VERSION: return version(); case ARG_NO_PAGER: arg_pager_flags |= PAGER_DISABLE; break; case ARG_NO_LEGEND: arg_legend = false; break; case ARG_DRY_RUN: r = parse_boolean_argument("--dry-run=", optarg, &arg_dry_run); if (r < 0) return r; break; case ARG_EMPTY: if (isempty(optarg) || streq(optarg, "refuse")) arg_empty = EMPTY_REFUSE; else if (streq(optarg, "allow")) arg_empty = EMPTY_ALLOW; else if (streq(optarg, "require")) arg_empty = EMPTY_REQUIRE; else if (streq(optarg, "force")) arg_empty = EMPTY_FORCE; else if (streq(optarg, "create")) { arg_empty = EMPTY_CREATE; if (dry_run < 0) dry_run = false; /* Imply --dry-run=no if we create the loopback file * anew. After all we cannot really break anyone's * partition tables that way. */ } else return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse --empty= parameter: %s", optarg); break; case ARG_DISCARD: r = parse_boolean_argument("--discard=", optarg, &arg_discard); if (r < 0) return r; break; case ARG_FACTORY_RESET: r = parse_boolean_argument("--factory-reset=", optarg, NULL); if (r < 0) return r; arg_factory_reset = r; break; case ARG_CAN_FACTORY_RESET: arg_can_factory_reset = true; break; case ARG_ROOT: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_root); if (r < 0) return r; break; case ARG_IMAGE: r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_image); if (r < 0) return r; break; case ARG_SEED: if (isempty(optarg)) { arg_seed = SD_ID128_NULL; arg_randomize = false; } else if (streq(optarg, "random")) arg_randomize = true; else { r = sd_id128_from_string(optarg, &arg_seed); if (r < 0) return log_error_errno(r, "Failed to parse seed: %s", optarg); arg_randomize = false; } break; case ARG_PRETTY: r = parse_boolean_argument("--pretty=", optarg, NULL); if (r < 0) return r; arg_pretty = r; break; case ARG_DEFINITIONS: r = parse_path_argument(optarg, false, &arg_definitions); if (r < 0) return r; break; case ARG_SIZE: { uint64_t parsed, rounded; if (streq(optarg, "auto")) { arg_size = UINT64_MAX; arg_size_auto = true; break; } r = parse_size(optarg, 1024, &parsed); if (r < 0) return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg); rounded = round_up_size(parsed, 4096); if (rounded == 0) return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing."); if (rounded == UINT64_MAX) return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing."); if (rounded != parsed) log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " → %" PRIu64 ")", parsed, rounded); arg_size = rounded; arg_size_auto = false; break; } case ARG_JSON: r = parse_json_argument(optarg, &arg_json_format_flags); if (r <= 0) return r; break; case ARG_KEY_FILE: { _cleanup_(erase_and_freep) char *k = NULL; size_t n = 0; r = read_full_file_full( AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX, READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET, NULL, &k, &n); if (r < 0) return log_error_errno(r, "Failed to read key file '%s': %m", optarg); erase_and_free(arg_key); arg_key = TAKE_PTR(k); arg_key_size = n; break; } case ARG_TPM2_DEVICE: { _cleanup_free_ char *device = NULL; if (streq(optarg, "list")) return tpm2_list_devices(); if (!streq(optarg, "auto")) { device = strdup(optarg); if (!device) return log_oom(); } free(arg_tpm2_device); arg_tpm2_device = TAKE_PTR(device); break; } case ARG_TPM2_PCRS: { uint32_t mask; if (isempty(optarg)) { arg_tpm2_pcr_mask = 0; break; } r = tpm2_parse_pcrs(optarg, &mask); if (r < 0) return r; if (arg_tpm2_pcr_mask == UINT32_MAX) arg_tpm2_pcr_mask = mask; else arg_tpm2_pcr_mask |= mask; break; } case '?': return -EINVAL; default: assert_not_reached(); } if (argc - optind > 1) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Expected at most one argument, the path to the block device."); if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid."); if (arg_can_factory_reset) arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence * non-dry-run mode makes no sense. Thus, imply dry run mode so that we * open things strictly read-only. */ else if (dry_run >= 0) arg_dry_run = dry_run; if (arg_empty == EMPTY_CREATE && (arg_size == UINT64_MAX && !arg_size_auto)) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "If --empty=create is specified, --size= must be specified, too."); if (arg_image && arg_root) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Please specify either --root= or --image=, the combination of both is not supported."); else if (!arg_image && !arg_root && in_initrd()) { /* By default operate on /sysusr/ or /sysroot/ when invoked in the initrd. We prefer the * former, if it is mounted, so that we have deterministic behaviour on systems where /usr/ * is vendor-supplied but the root fs formatted on first boot. */ r = path_is_mount_point("/sysusr/usr", NULL, 0); if (r <= 0) { if (r < 0 && r != -ENOENT) log_debug_errno(r, "Unable to determine whether /sysusr/usr is a mount point, assuming it is not: %m"); arg_root = strdup("/sysroot"); } else arg_root = strdup("/sysusr"); if (!arg_root) return log_oom(); } arg_node = argc > optind ? argv[optind] : NULL; if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node && !arg_image) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "A path to a device node or loopback file must be specified when --empty=force, --empty=require or --empty=create are used."); if (arg_tpm2_pcr_mask == UINT32_MAX) arg_tpm2_pcr_mask = TPM2_PCR_MASK_DEFAULT; return 1; } static int parse_proc_cmdline_factory_reset(void) { bool b; int r; if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ return 0; if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */ return 0; r = proc_cmdline_get_bool("systemd.factory_reset", &b); if (r < 0) return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m"); if (r > 0) { arg_factory_reset = b; if (b) log_notice("Honouring factory reset requested via kernel command line."); } return 0; } static int parse_efi_variable_factory_reset(void) { _cleanup_free_ char *value = NULL; int r; if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ return 0; if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */ return 0; r = efi_get_variable_string(EFI_SYSTEMD_VARIABLE(FactoryReset), &value); if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) return 0; if (r < 0) return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m"); r = parse_boolean(value); if (r < 0) return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m"); arg_factory_reset = r; if (r) log_notice("Factory reset requested via EFI variable FactoryReset."); return 0; } static int remove_efi_variable_factory_reset(void) { int r; r = efi_set_variable(EFI_SYSTEMD_VARIABLE(FactoryReset), NULL, 0); if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) return 0; if (r < 0) return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m"); log_info("Successfully unset EFI variable FactoryReset."); return 0; } static int acquire_root_devno( const char *p, const char *root, int mode, char **ret, int *ret_fd) { _cleanup_free_ char *found_path = NULL; dev_t devno, fd_devno = MODE_INVALID; _cleanup_close_ int fd = -1; struct stat st; int r; assert(p); assert(ret); assert(ret_fd); fd = chase_symlinks_and_open(p, root, CHASE_PREFIX_ROOT, mode, &found_path); if (fd < 0) return fd; if (fstat(fd, &st) < 0) return -errno; if (S_ISREG(st.st_mode)) { *ret = TAKE_PTR(found_path); *ret_fd = TAKE_FD(fd); return 0; } if (S_ISBLK(st.st_mode)) { /* Refuse referencing explicit block devices if a root dir is specified, after all we should * not be able to leave the image the root path constrains us to. */ if (root) return -EPERM; fd_devno = devno = st.st_rdev; } else if (S_ISDIR(st.st_mode)) { devno = st.st_dev; if (major(devno) == 0) { r = btrfs_get_block_device_fd(fd, &devno); if (r == -ENOTTY) /* not btrfs */ return -ENODEV; if (r < 0) return r; } } else return -ENOTBLK; /* From dm-crypt to backing partition */ r = block_get_originating(devno, &devno); if (r == -ENOENT) log_debug_errno(r, "Device '%s' has no dm-crypt/dm-verity device, no need to look for underlying block device.", p); else if (r < 0) log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p); /* From partition to whole disk containing it */ r = block_get_whole_disk(devno, &devno); if (r < 0) log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p); r = device_path_make_canonical(S_IFBLK, devno, ret); if (r < 0) return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p); /* Only if we still look at the same block device we can reuse the fd. Otherwise return an * invalidated fd. */ *ret_fd = fd_devno != MODE_INVALID && fd_devno == devno ? TAKE_FD(fd) : -1; return 0; } static int find_root(char **ret, int *ret_fd) { _cleanup_free_ char *device = NULL; int r; assert(ret); assert(ret_fd); if (arg_node) { if (arg_empty == EMPTY_CREATE) { _cleanup_close_ int fd = -1; _cleanup_free_ char *s = NULL; s = strdup(arg_node); if (!s) return log_oom(); fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0666); if (fd < 0) return log_error_errno(errno, "Failed to create '%s': %m", arg_node); *ret = TAKE_PTR(s); *ret_fd = TAKE_FD(fd); return 0; } /* Note that we don't specify a root argument here: if the user explicitly configured a node * we'll take it relative to the host, not the image */ r = acquire_root_devno(arg_node, NULL, O_RDONLY|O_CLOEXEC, ret, ret_fd); if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, arg_node); if (r < 0) return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node); return 0; } assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW)); /* If the root mount has been replaced by some form of volatile file system (overlayfs), the * original root block device node is symlinked in /run/systemd/volatile-root. Let's read that * here. */ r = readlink_malloc("/run/systemd/volatile-root", &device); if (r == -ENOENT) { /* volatile-root not found */ /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device * (think: volatile setups) */ FOREACH_STRING(p, "/", "/usr") { r = acquire_root_devno(p, arg_root, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret, ret_fd); if (r < 0) { if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, p); if (r != -ENODEV) return log_error_errno(r, "Failed to determine backing device of %s: %m", p); } else return 0; } } else if (r < 0) return log_error_errno(r, "Failed to read symlink /run/systemd/volatile-root: %m"); else { r = acquire_root_devno(device, NULL, O_RDONLY|O_CLOEXEC, ret, ret_fd); if (r == -EUCLEAN) return btrfs_log_dev_root(LOG_ERR, r, device); if (r < 0) return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", device); return 0; } return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device."); } static int resize_pt(int fd) { _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; int r; /* After resizing the backing file we need to resize the partition table itself too, so that it takes * possession of the enlarged backing file. For this it suffices to open the device with libfdisk and * immediately write it again, with no changes. */ c = fdisk_new_context(); if (!c) return log_oom(); r = fdisk_assign_device(c, FORMAT_PROC_FD_PATH(fd), 0); if (r < 0) return log_error_errno(r, "Failed to open device '%s': %m", FORMAT_PROC_FD_PATH(fd)); r = fdisk_has_label(c); if (r < 0) return log_error_errno(r, "Failed to determine whether disk '%s' has a disk label: %m", FORMAT_PROC_FD_PATH(fd)); if (r == 0) { log_debug("Not resizing partition table, as there currently is none."); return 0; } r = fdisk_write_disklabel(c); if (r < 0) return log_error_errno(r, "Failed to write resized partition table: %m"); log_info("Resized partition table."); return 1; } static int resize_backing_fd( const char *node, /* The primary way we access the disk image to operate on */ int *fd, /* An O_RDONLY fd referring to that inode */ const char *backing_file, /* If the above refers to a loopback device, the backing regular file for that, which we can grow */ LoopDevice *loop_device) { _cleanup_close_ int writable_fd = -1; uint64_t current_size; struct stat st; int r; assert(node); assert(fd); if (arg_size == UINT64_MAX) /* Nothing to do */ return 0; if (*fd < 0) { /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to * keep a reference to the file we can pass around. */ *fd = open(node, O_RDONLY|O_CLOEXEC); if (*fd < 0) return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node); } if (fstat(*fd, &st) < 0) return log_error_errno(errno, "Failed to stat '%s': %m", node); if (S_ISBLK(st.st_mode)) { if (!backing_file) return log_error_errno(SYNTHETIC_ERRNO(EBADF), "Cannot resize block device '%s'.", node); assert(loop_device); if (ioctl(*fd, BLKGETSIZE64, ¤t_size) < 0) return log_error_errno(errno, "Failed to determine size of block device %s: %m", node); } else { r = stat_verify_regular(&st); if (r < 0) return log_error_errno(r, "Specified path '%s' is not a regular file or loopback block device, cannot resize: %m", node); assert(!backing_file); assert(!loop_device); current_size = st.st_size; } if (current_size >= arg_size) { log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); return 0; } if (S_ISBLK(st.st_mode)) { assert(backing_file); /* This is a loopback device. We can't really grow those directly, but we can grow the * backing file, hence let's do that. */ writable_fd = open(backing_file, O_WRONLY|O_CLOEXEC|O_NONBLOCK); if (writable_fd < 0) return log_error_errno(errno, "Failed to open backing file '%s': %m", backing_file); if (fstat(writable_fd, &st) < 0) return log_error_errno(errno, "Failed to stat() backing file '%s': %m", backing_file); r = stat_verify_regular(&st); if (r < 0) return log_error_errno(r, "Backing file '%s' of block device is not a regular file: %m", backing_file); if ((uint64_t) st.st_size != current_size) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Size of backing file '%s' of loopback block device '%s' don't match, refusing.", node, backing_file); } else { assert(S_ISREG(st.st_mode)); assert(!backing_file); /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We * reopen the file for that temporarily. We keep the writable fd only open for this operation though, * as fdisk can't accept it anyway. */ writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC); if (writable_fd < 0) return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node); } if (!arg_discard) { if (fallocate(writable_fd, 0, 0, arg_size) < 0) { if (!ERRNO_IS_NOT_SUPPORTED(errno)) return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); /* Fallback to truncation, if fallocate() is not supported. */ log_debug("Backing file system does not support fallocate(), falling back to ftruncate()."); } else { if (current_size == 0) /* Likely regular file just created by us */ log_info("Allocated %s for '%s'.", FORMAT_BYTES(arg_size), node); else log_info("File '%s' grown from %s to %s by allocation.", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); goto done; } } if (ftruncate(writable_fd, arg_size) < 0) return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); if (current_size == 0) /* Likely regular file just created by us */ log_info("Sized '%s' to %s.", node, FORMAT_BYTES(arg_size)); else log_info("File '%s' grown from %s to %s by truncation.", node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size)); done: r = resize_pt(writable_fd); if (r < 0) return r; if (loop_device) { r = loop_device_refresh_size(loop_device, UINT64_MAX, arg_size); if (r < 0) return log_error_errno(r, "Failed to update loop device size: %m"); } return 1; } static int determine_auto_size(Context *c) { uint64_t sum; assert(c); sum = round_up_size(GPT_METADATA_SIZE, 4096); LIST_FOREACH(partitions, p, c->partitions) { uint64_t m; if (p->dropped) continue; m = partition_min_size_with_padding(c, p); if (m > UINT64_MAX - sum) return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Image would grow too large, refusing."); sum += m; } if (c->total != UINT64_MAX) /* Image already allocated? Then show its size. */ log_info("Automatically determined minimal disk image size as %s, current image size is %s.", FORMAT_BYTES(sum), FORMAT_BYTES(c->total)); else /* If the image is being created right now, then it has no previous size, suppress any comment about it hence. */ log_info("Automatically determined minimal disk image size as %s.", FORMAT_BYTES(sum)); arg_size = sum; return 0; } static int run(int argc, char *argv[]) { _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL; _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL; _cleanup_(umount_and_rmdir_and_freep) char *mounted_dir = NULL; _cleanup_(context_freep) Context* context = NULL; _cleanup_free_ char *node = NULL; _cleanup_close_ int backing_fd = -1; bool from_scratch, node_is_our_loop = false; int r; log_show_color(true); log_parse_environment(); log_open(); r = parse_argv(argc, argv); if (r <= 0) return r; r = parse_proc_cmdline_factory_reset(); if (r < 0) return r; r = parse_efi_variable_factory_reset(); if (r < 0) return r; #if HAVE_LIBCRYPTSETUP cryptsetup_enable_logging(NULL); #endif if (arg_image) { assert(!arg_root); /* Mount this strictly read-only: we shall modify the partition table, not the file * systems */ r = mount_image_privately_interactively( arg_image, DISSECT_IMAGE_MOUNT_READ_ONLY | (arg_node ? DISSECT_IMAGE_DEVICE_READ_ONLY : 0) | /* If a different node to make changes to is specified let's open the device in read-only mode) */ DISSECT_IMAGE_GPT_ONLY | DISSECT_IMAGE_RELAX_VAR_CHECK | DISSECT_IMAGE_USR_NO_ROOT | DISSECT_IMAGE_REQUIRE_ROOT, &mounted_dir, &loop_device, &decrypted_image); if (r < 0) return r; arg_root = strdup(mounted_dir); if (!arg_root) return log_oom(); if (!arg_node) { arg_node = strdup(loop_device->node); if (!arg_node) return log_oom(); /* Remember that the device we are about to manipulate is actually the one we * allocated here, and thus to increase its backing file we know what to do */ node_is_our_loop = true; } } context = context_new(arg_seed); if (!context) return log_oom(); r = context_read_definitions(context, arg_definitions, arg_root); if (r < 0) return r; if (context->n_partitions <= 0 && arg_empty == EMPTY_REFUSE) { log_info("Didn't find any partition definition files, nothing to do."); return 0; } r = find_root(&node, &backing_fd); if (r < 0) return r; if (arg_size != UINT64_MAX) { r = resize_backing_fd( node, &backing_fd, node_is_our_loop ? arg_image : NULL, node_is_our_loop ? loop_device : NULL); if (r < 0) return r; } r = context_load_partition_table(context, node, &backing_fd); if (r == -EHWPOISON) return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't * really an error when called at boot. */ if (r < 0) return r; from_scratch = r > 0; /* Starting from scratch */ if (arg_can_factory_reset) { r = context_can_factory_reset(context); if (r < 0) return r; if (r == 0) return EXIT_FAILURE; return 0; } r = context_factory_reset(context, from_scratch); if (r < 0) return r; if (r > 0) { /* We actually did a factory reset! */ r = remove_efi_variable_factory_reset(); if (r < 0) return r; /* Reload the reduced partition table */ context_unload_partition_table(context); r = context_load_partition_table(context, node, &backing_fd); if (r < 0) return r; } #if 0 (void) context_dump_partitions(context, node); putchar('\n'); #endif r = context_read_seed(context, arg_root); if (r < 0) return r; /* Open all files to copy blocks from now, since we want to take their size into consideration */ r = context_open_copy_block_paths( context, arg_root, loop_device ? loop_device->devno : /* if --image= is specified, only allow partitions on the loopback device */ arg_root && !arg_image ? 0 : /* if --root= is specified, don't accept any block device */ (dev_t) -1); /* if neither is specified, make no restrictions */ if (r < 0) return r; if (arg_size_auto) { r = determine_auto_size(context); if (r < 0) return r; /* Flush out everything again, and let's grow the file first, then start fresh */ context_unload_partition_table(context); assert(arg_size != UINT64_MAX); r = resize_backing_fd( node, &backing_fd, node_is_our_loop ? arg_image : NULL, node_is_our_loop ? loop_device : NULL); if (r < 0) return r; r = context_load_partition_table(context, node, &backing_fd); if (r < 0) return r; } /* First try to fit new partitions in, dropping by priority until it fits */ for (;;) { uint64_t largest_free_area; if (context_allocate_partitions(context, &largest_free_area)) break; /* Success! */ if (!context_drop_one_priority(context)) { r = log_error_errno(SYNTHETIC_ERRNO(ENOSPC), "Can't fit requested partitions into available free space (%s), refusing.", FORMAT_BYTES(largest_free_area)); determine_auto_size(context); return r; } } /* Now assign free space according to the weight logic */ r = context_grow_partitions(context); if (r < 0) return r; /* Now calculate where each new partition gets placed */ context_place_partitions(context); /* Make sure each partition has a unique UUID and unique label */ r = context_acquire_partition_uuids_and_labels(context); if (r < 0) return r; r = context_write_partition_table(context, node, from_scratch); if (r < 0) return r; return 0; } DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);