/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #include #include #include "sd-event.h" #include "alloc-util.h" #include "chattr-util.h" #include "compress.h" #include "env-util.h" #include "fd-util.h" #include "format-util.h" #include "fs-util.h" #include "journal-authenticate.h" #include "journal-def.h" #include "journal-file.h" #include "lookup3.h" #include "memory-util.h" #include "path-util.h" #include "random-util.h" #include "set.h" #include "sort-util.h" #include "stat-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "sync-util.h" #include "xattr-util.h" #define DEFAULT_DATA_HASH_TABLE_SIZE (2047ULL*sizeof(HashItem)) #define DEFAULT_FIELD_HASH_TABLE_SIZE (333ULL*sizeof(HashItem)) #define DEFAULT_COMPRESS_THRESHOLD (512ULL) #define MIN_COMPRESS_THRESHOLD (8ULL) /* This is the minimum journal file size */ #define JOURNAL_FILE_SIZE_MIN (512 * 1024ULL) /* 512 KiB */ /* These are the lower and upper bounds if we deduce the max_use value * from the file system size */ #define MAX_USE_LOWER (1 * 1024 * 1024ULL) /* 1 MiB */ #define MAX_USE_UPPER (4 * 1024 * 1024 * 1024ULL) /* 4 GiB */ /* Those are the lower and upper bounds for the minimal use limit, * i.e. how much we'll use even if keep_free suggests otherwise. */ #define MIN_USE_LOW (1 * 1024 * 1024ULL) /* 1 MiB */ #define MIN_USE_HIGH (16 * 1024 * 1024ULL) /* 16 MiB */ /* This is the upper bound if we deduce max_size from max_use */ #define MAX_SIZE_UPPER (128 * 1024 * 1024ULL) /* 128 MiB */ /* This is the upper bound if we deduce the keep_free value from the * file system size */ #define KEEP_FREE_UPPER (4 * 1024 * 1024 * 1024ULL) /* 4 GiB */ /* This is the keep_free value when we can't determine the system * size */ #define DEFAULT_KEEP_FREE (1024 * 1024ULL) /* 1 MB */ /* This is the default maximum number of journal files to keep around. */ #define DEFAULT_N_MAX_FILES 100 /* n_data was the first entry we added after the initial file format design */ #define HEADER_SIZE_MIN ALIGN64(offsetof(Header, n_data)) /* How many entries to keep in the entry array chain cache at max */ #define CHAIN_CACHE_MAX 20 /* How much to increase the journal file size at once each time we allocate something new. */ #define FILE_SIZE_INCREASE (8 * 1024 * 1024ULL) /* 8MB */ /* Reread fstat() of the file for detecting deletions at least this often */ #define LAST_STAT_REFRESH_USEC (5*USEC_PER_SEC) /* The mmap context to use for the header we pick as one above the last defined typed */ #define CONTEXT_HEADER _OBJECT_TYPE_MAX /* Longest hash chain to rotate after */ #define HASH_CHAIN_DEPTH_MAX 100 #ifdef __clang__ # pragma GCC diagnostic ignored "-Waddress-of-packed-member" #endif int journal_file_tail_end_by_pread(JournalFile *f, uint64_t *ret_offset) { uint64_t p; int r; assert(f); assert(f->header); assert(ret_offset); /* Same as journal_file_tail_end_by_mmap() below, but operates with pread() to avoid the mmap cache * (and thus is thread safe) */ p = le64toh(f->header->tail_object_offset); if (p == 0) p = le64toh(f->header->header_size); else { Object tail; uint64_t sz; r = journal_file_read_object_header(f, OBJECT_UNUSED, p, &tail); if (r < 0) return r; sz = le64toh(tail.object.size); if (sz > UINT64_MAX - sizeof(uint64_t) + 1) return -EBADMSG; sz = ALIGN64(sz); if (p > UINT64_MAX - sz) return -EBADMSG; p += sz; } *ret_offset = p; return 0; } int journal_file_tail_end_by_mmap(JournalFile *f, uint64_t *ret_offset) { uint64_t p; int r; assert(f); assert(f->header); assert(ret_offset); /* Same as journal_file_tail_end_by_pread() above, but operates with the usual mmap logic */ p = le64toh(f->header->tail_object_offset); if (p == 0) p = le64toh(f->header->header_size); else { Object *tail; uint64_t sz; r = journal_file_move_to_object(f, OBJECT_UNUSED, p, &tail); if (r < 0) return r; sz = le64toh(READ_NOW(tail->object.size)); if (sz > UINT64_MAX - sizeof(uint64_t) + 1) return -EBADMSG; sz = ALIGN64(sz); if (p > UINT64_MAX - sz) return -EBADMSG; p += sz; } *ret_offset = p; return 0; } int journal_file_set_offline_thread_join(JournalFile *f) { int r; assert(f); if (f->offline_state == OFFLINE_JOINED) return 0; r = pthread_join(f->offline_thread, NULL); if (r) return -r; f->offline_state = OFFLINE_JOINED; if (mmap_cache_fd_got_sigbus(f->cache_fd)) return -EIO; return 0; } static int journal_file_set_online(JournalFile *f) { bool wait = true; assert(f); if (!journal_file_writable(f)) return -EPERM; if (f->fd < 0 || !f->header) return -EINVAL; while (wait) { switch (f->offline_state) { case OFFLINE_JOINED: /* No offline thread, no need to wait. */ wait = false; break; case OFFLINE_SYNCING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_SYNCING, OFFLINE_CANCEL)) continue; /* Canceled syncing prior to offlining, no need to wait. */ wait = false; break; case OFFLINE_AGAIN_FROM_SYNCING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_AGAIN_FROM_SYNCING, OFFLINE_CANCEL)) continue; /* Canceled restart from syncing, no need to wait. */ wait = false; break; case OFFLINE_AGAIN_FROM_OFFLINING: if (!__sync_bool_compare_and_swap(&f->offline_state, OFFLINE_AGAIN_FROM_OFFLINING, OFFLINE_CANCEL)) continue; /* Canceled restart from offlining, must wait for offlining to complete however. */ _fallthrough_; default: { int r; r = journal_file_set_offline_thread_join(f); if (r < 0) return r; wait = false; break; } } } if (mmap_cache_fd_got_sigbus(f->cache_fd)) return -EIO; switch (f->header->state) { case STATE_ONLINE: return 0; case STATE_OFFLINE: f->header->state = STATE_ONLINE; (void) fsync(f->fd); return 0; default: return -EINVAL; } } JournalFile* journal_file_close(JournalFile *f) { if (!f) return NULL; if (f->cache_fd) mmap_cache_fd_free(f->cache_fd); if (f->close_fd) safe_close(f->fd); free(f->path); ordered_hashmap_free_free(f->chain_cache); #if HAVE_COMPRESSION free(f->compress_buffer); #endif #if HAVE_GCRYPT if (f->fss_file) munmap(f->fss_file, PAGE_ALIGN(f->fss_file_size)); else free(f->fsprg_state); free(f->fsprg_seed); if (f->hmac) gcry_md_close(f->hmac); #endif return mfree(f); } static int journal_file_init_header(JournalFile *f, JournalFileFlags file_flags, JournalFile *template) { Header h = {}; ssize_t k; bool keyed_hash, seal = false; int r; assert(f); /* We turn on keyed hashes by default, but provide an environment variable to turn them off, if * people really want that */ r = getenv_bool("SYSTEMD_JOURNAL_KEYED_HASH"); if (r < 0) { if (r != -ENXIO) log_debug_errno(r, "Failed to parse $SYSTEMD_JOURNAL_KEYED_HASH environment variable, ignoring: %m"); keyed_hash = true; } else keyed_hash = r; #if HAVE_GCRYPT /* Try to load the FSPRG state, and if we can't, then just don't do sealing */ seal = FLAGS_SET(file_flags, JOURNAL_SEAL) && journal_file_fss_load(f) >= 0; #endif memcpy(h.signature, HEADER_SIGNATURE, 8); h.header_size = htole64(ALIGN64(sizeof(h))); h.incompatible_flags |= htole32( FLAGS_SET(file_flags, JOURNAL_COMPRESS) * COMPRESSION_TO_HEADER_INCOMPATIBLE_FLAG(DEFAULT_COMPRESSION) | keyed_hash * HEADER_INCOMPATIBLE_KEYED_HASH); h.compatible_flags = htole32(seal * HEADER_COMPATIBLE_SEALED); r = sd_id128_randomize(&h.file_id); if (r < 0) return r; if (template) { h.seqnum_id = template->header->seqnum_id; h.tail_entry_seqnum = template->header->tail_entry_seqnum; } else h.seqnum_id = h.file_id; k = pwrite(f->fd, &h, sizeof(h), 0); if (k < 0) return -errno; if (k != sizeof(h)) return -EIO; return 0; } static int journal_file_refresh_header(JournalFile *f) { int r; assert(f); assert(f->header); r = sd_id128_get_machine(&f->header->machine_id); if (IN_SET(r, -ENOENT, -ENOMEDIUM)) /* We don't have a machine-id, let's continue without */ zero(f->header->machine_id); else if (r < 0) return r; r = sd_id128_get_boot(&f->header->boot_id); if (r < 0) return r; r = journal_file_set_online(f); /* Sync the online state to disk; likely just created a new file, also sync the directory this file * is located in. */ (void) fsync_full(f->fd); return r; } static bool warn_wrong_flags(const JournalFile *f, bool compatible) { const uint32_t any = compatible ? HEADER_COMPATIBLE_ANY : HEADER_INCOMPATIBLE_ANY, supported = compatible ? HEADER_COMPATIBLE_SUPPORTED : HEADER_INCOMPATIBLE_SUPPORTED; const char *type = compatible ? "compatible" : "incompatible"; uint32_t flags; flags = le32toh(compatible ? f->header->compatible_flags : f->header->incompatible_flags); if (flags & ~supported) { if (flags & ~any) log_debug("Journal file %s has unknown %s flags 0x%"PRIx32, f->path, type, flags & ~any); flags = (flags & any) & ~supported; if (flags) { const char* strv[5]; size_t n = 0; _cleanup_free_ char *t = NULL; if (compatible) { if (flags & HEADER_COMPATIBLE_SEALED) strv[n++] = "sealed"; } else { if (flags & HEADER_INCOMPATIBLE_COMPRESSED_XZ) strv[n++] = "xz-compressed"; if (flags & HEADER_INCOMPATIBLE_COMPRESSED_LZ4) strv[n++] = "lz4-compressed"; if (flags & HEADER_INCOMPATIBLE_COMPRESSED_ZSTD) strv[n++] = "zstd-compressed"; if (flags & HEADER_INCOMPATIBLE_KEYED_HASH) strv[n++] = "keyed-hash"; } strv[n] = NULL; assert(n < ELEMENTSOF(strv)); t = strv_join((char**) strv, ", "); log_debug("Journal file %s uses %s %s %s disabled at compilation time.", f->path, type, n > 1 ? "flags" : "flag", strnull(t)); } return true; } return false; } static int journal_file_verify_header(JournalFile *f) { uint64_t arena_size, header_size; assert(f); assert(f->header); if (memcmp(f->header->signature, HEADER_SIGNATURE, 8)) return -EBADMSG; /* In both read and write mode we refuse to open files with incompatible * flags we don't know. */ if (warn_wrong_flags(f, false)) return -EPROTONOSUPPORT; /* When open for writing we refuse to open files with compatible flags, too. */ if (journal_file_writable(f) && warn_wrong_flags(f, true)) return -EPROTONOSUPPORT; if (f->header->state >= _STATE_MAX) return -EBADMSG; header_size = le64toh(READ_NOW(f->header->header_size)); /* The first addition was n_data, so check that we are at least this large */ if (header_size < HEADER_SIZE_MIN) return -EBADMSG; if (JOURNAL_HEADER_SEALED(f->header) && !JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) return -EBADMSG; arena_size = le64toh(READ_NOW(f->header->arena_size)); if (UINT64_MAX - header_size < arena_size || header_size + arena_size > (uint64_t) f->last_stat.st_size) return -ENODATA; if (le64toh(f->header->tail_object_offset) > header_size + arena_size) return -ENODATA; if (!VALID64(le64toh(f->header->data_hash_table_offset)) || !VALID64(le64toh(f->header->field_hash_table_offset)) || !VALID64(le64toh(f->header->tail_object_offset)) || !VALID64(le64toh(f->header->entry_array_offset))) return -ENODATA; if (journal_file_writable(f)) { sd_id128_t machine_id; uint8_t state; int r; r = sd_id128_get_machine(&machine_id); if (r < 0) return r; if (!sd_id128_equal(machine_id, f->header->machine_id)) return -EHOSTDOWN; state = f->header->state; if (state == STATE_ARCHIVED) return -ESHUTDOWN; /* Already archived */ else if (state == STATE_ONLINE) return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "Journal file %s is already online. Assuming unclean closing.", f->path); else if (state != STATE_OFFLINE) return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "Journal file %s has unknown state %i.", f->path, state); if (f->header->field_hash_table_size == 0 || f->header->data_hash_table_size == 0) return -EBADMSG; /* Don't permit appending to files from the future. Because otherwise the realtime timestamps wouldn't * be strictly ordered in the entries in the file anymore, and we can't have that since it breaks * bisection. */ if (le64toh(f->header->tail_entry_realtime) > now(CLOCK_REALTIME)) return log_debug_errno(SYNTHETIC_ERRNO(ETXTBSY), "Journal file %s is from the future, refusing to append new data to it that'd be older.", f->path); } return 0; } int journal_file_fstat(JournalFile *f) { int r; assert(f); assert(f->fd >= 0); if (fstat(f->fd, &f->last_stat) < 0) return -errno; f->last_stat_usec = now(CLOCK_MONOTONIC); /* Refuse dealing with files that aren't regular */ r = stat_verify_regular(&f->last_stat); if (r < 0) return r; /* Refuse appending to files that are already deleted */ if (f->last_stat.st_nlink <= 0) return -EIDRM; return 0; } static int journal_file_allocate(JournalFile *f, uint64_t offset, uint64_t size) { uint64_t old_size, new_size, old_header_size, old_arena_size; int r; assert(f); assert(f->header); /* We assume that this file is not sparse, and we know that for sure, since we always call * posix_fallocate() ourselves */ if (size > PAGE_ALIGN_DOWN(UINT64_MAX) - offset) return -EINVAL; if (mmap_cache_fd_got_sigbus(f->cache_fd)) return -EIO; old_header_size = le64toh(READ_NOW(f->header->header_size)); old_arena_size = le64toh(READ_NOW(f->header->arena_size)); if (old_arena_size > PAGE_ALIGN_DOWN(UINT64_MAX) - old_header_size) return -EBADMSG; old_size = old_header_size + old_arena_size; new_size = MAX(PAGE_ALIGN(offset + size), old_header_size); if (new_size <= old_size) { /* We already pre-allocated enough space, but before * we write to it, let's check with fstat() if the * file got deleted, in order make sure we don't throw * away the data immediately. Don't check fstat() for * all writes though, but only once ever 10s. */ if (f->last_stat_usec + LAST_STAT_REFRESH_USEC > now(CLOCK_MONOTONIC)) return 0; return journal_file_fstat(f); } /* Allocate more space. */ if (f->metrics.max_size > 0 && new_size > f->metrics.max_size) return -E2BIG; if (new_size > f->metrics.min_size && f->metrics.keep_free > 0) { struct statvfs svfs; if (fstatvfs(f->fd, &svfs) >= 0) { uint64_t available; available = LESS_BY((uint64_t) svfs.f_bfree * (uint64_t) svfs.f_bsize, f->metrics.keep_free); if (new_size - old_size > available) return -E2BIG; } } /* Increase by larger blocks at once */ new_size = DIV_ROUND_UP(new_size, FILE_SIZE_INCREASE) * FILE_SIZE_INCREASE; if (f->metrics.max_size > 0 && new_size > f->metrics.max_size) new_size = f->metrics.max_size; /* Note that the glibc fallocate() fallback is very inefficient, hence we try to minimize the allocation area as we can. */ r = posix_fallocate_loop(f->fd, old_size, new_size - old_size); if (r < 0) return r; f->header->arena_size = htole64(new_size - old_header_size); return journal_file_fstat(f); } static unsigned type_to_context(ObjectType type) { /* One context for each type, plus one catch-all for the rest */ assert_cc(_OBJECT_TYPE_MAX <= MMAP_CACHE_MAX_CONTEXTS); assert_cc(CONTEXT_HEADER < MMAP_CACHE_MAX_CONTEXTS); return type > OBJECT_UNUSED && type < _OBJECT_TYPE_MAX ? type : 0; } static int journal_file_move_to( JournalFile *f, ObjectType type, bool keep_always, uint64_t offset, uint64_t size, void **ret) { int r; assert(f); assert(ret); if (size <= 0) return -EINVAL; if (size > UINT64_MAX - offset) return -EBADMSG; /* Avoid SIGBUS on invalid accesses */ if (offset + size > (uint64_t) f->last_stat.st_size) { /* Hmm, out of range? Let's refresh the fstat() data * first, before we trust that check. */ r = journal_file_fstat(f); if (r < 0) return r; if (offset + size > (uint64_t) f->last_stat.st_size) return -EADDRNOTAVAIL; } return mmap_cache_fd_get(f->cache_fd, type_to_context(type), keep_always, offset, size, &f->last_stat, ret); } static uint64_t minimum_header_size(Object *o) { static const uint64_t table[] = { [OBJECT_DATA] = sizeof(DataObject), [OBJECT_FIELD] = sizeof(FieldObject), [OBJECT_ENTRY] = sizeof(EntryObject), [OBJECT_DATA_HASH_TABLE] = sizeof(HashTableObject), [OBJECT_FIELD_HASH_TABLE] = sizeof(HashTableObject), [OBJECT_ENTRY_ARRAY] = sizeof(EntryArrayObject), [OBJECT_TAG] = sizeof(TagObject), }; if (o->object.type >= ELEMENTSOF(table) || table[o->object.type] <= 0) return sizeof(ObjectHeader); return table[o->object.type]; } /* Lightweight object checks. We want this to be fast, so that we won't * slowdown every journal_file_move_to_object() call too much. */ static int journal_file_check_object(JournalFile *f, uint64_t offset, Object *o) { assert(f); assert(o); switch (o->object.type) { case OBJECT_DATA: if ((le64toh(o->data.entry_offset) == 0) ^ (le64toh(o->data.n_entries) == 0)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad n_entries: %" PRIu64 ": %" PRIu64, le64toh(o->data.n_entries), offset); if (le64toh(o->object.size) <= offsetof(Object, data.payload)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad object size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(Object, data.payload), le64toh(o->object.size), offset); if (!VALID64(le64toh(o->data.next_hash_offset)) || !VALID64(le64toh(o->data.next_field_offset)) || !VALID64(le64toh(o->data.entry_offset)) || !VALID64(le64toh(o->data.entry_array_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid offset, next_hash_offset=" OFSfmt ", next_field_offset=" OFSfmt ", entry_offset=" OFSfmt ", entry_array_offset=" OFSfmt ": %" PRIu64, le64toh(o->data.next_hash_offset), le64toh(o->data.next_field_offset), le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), offset); break; case OBJECT_FIELD: if (le64toh(o->object.size) <= offsetof(Object, field.payload)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad field size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(Object, field.payload), le64toh(o->object.size), offset); if (!VALID64(le64toh(o->field.next_hash_offset)) || !VALID64(le64toh(o->field.head_data_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid offset, next_hash_offset=" OFSfmt ", head_data_offset=" OFSfmt ": %" PRIu64, le64toh(o->field.next_hash_offset), le64toh(o->field.head_data_offset), offset); break; case OBJECT_ENTRY: { uint64_t sz; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry.items) || (sz - offsetof(Object, entry.items)) % sizeof(EntryItem) != 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Bad entry size (<= %zu): %" PRIu64 ": %" PRIu64, offsetof(Object, entry.items), sz, offset); if ((sz - offsetof(Object, entry.items)) / sizeof(EntryItem) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid number items in entry: %" PRIu64 ": %" PRIu64, (sz - offsetof(Object, entry.items)) / sizeof(EntryItem), offset); if (le64toh(o->entry.seqnum) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry seqnum: %" PRIx64 ": %" PRIu64, le64toh(o->entry.seqnum), offset); if (!VALID_REALTIME(le64toh(o->entry.realtime))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry realtime timestamp: %" PRIu64 ": %" PRIu64, le64toh(o->entry.realtime), offset); if (!VALID_MONOTONIC(le64toh(o->entry.monotonic))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid entry monotonic timestamp: %" PRIu64 ": %" PRIu64, le64toh(o->entry.monotonic), offset); break; } case OBJECT_DATA_HASH_TABLE: case OBJECT_FIELD_HASH_TABLE: { uint64_t sz; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, hash_table.items) || (sz - offsetof(Object, hash_table.items)) % sizeof(HashItem) != 0 || (sz - offsetof(Object, hash_table.items)) / sizeof(HashItem) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid %s hash table size: %" PRIu64 ": %" PRIu64, o->object.type == OBJECT_DATA_HASH_TABLE ? "data" : "field", sz, offset); break; } case OBJECT_ENTRY_ARRAY: { uint64_t sz; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry_array.items) || (sz - offsetof(Object, entry_array.items)) % sizeof(le64_t) != 0 || (sz - offsetof(Object, entry_array.items)) / sizeof(le64_t) <= 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry array size: %" PRIu64 ": %" PRIu64, sz, offset); if (!VALID64(le64toh(o->entry_array.next_entry_array_offset))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object entry array next_entry_array_offset: " OFSfmt ": %" PRIu64, le64toh(o->entry_array.next_entry_array_offset), offset); break; } case OBJECT_TAG: if (le64toh(o->object.size) != sizeof(TagObject)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object tag size: %" PRIu64 ": %" PRIu64, le64toh(o->object.size), offset); if (!VALID_EPOCH(le64toh(o->tag.epoch))) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid object tag epoch: %" PRIu64 ": %" PRIu64, le64toh(o->tag.epoch), offset); break; } return 0; } int journal_file_move_to_object(JournalFile *f, ObjectType type, uint64_t offset, Object **ret) { int r; void *t; Object *o; uint64_t s; assert(f); /* Objects may only be located at multiple of 64 bit */ if (!VALID64(offset)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object at non-64bit boundary: %" PRIu64, offset); /* Object may not be located in the file header */ if (offset < le64toh(f->header->header_size)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object located in file header: %" PRIu64, offset); r = journal_file_move_to(f, type, false, offset, sizeof(ObjectHeader), &t); if (r < 0) return r; o = (Object*) t; s = le64toh(READ_NOW(o->object.size)); if (s == 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to uninitialized object: %" PRIu64, offset); if (s < sizeof(ObjectHeader)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to overly short object: %" PRIu64, offset); if (o->object.type <= OBJECT_UNUSED) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object with invalid type: %" PRIu64, offset); if (s < minimum_header_size(o)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to truncated object: %" PRIu64, offset); if (type > OBJECT_UNUSED && o->object.type != type) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to move to object of unexpected type: %" PRIu64, offset); r = journal_file_move_to(f, type, false, offset, s, &t); if (r < 0) return r; o = (Object*) t; r = journal_file_check_object(f, offset, o); if (r < 0) return r; if (ret) *ret = o; return 0; } int journal_file_read_object_header(JournalFile *f, ObjectType type, uint64_t offset, Object *ret) { uint64_t s; ssize_t n; Object o; int r; assert(f); /* Objects may only be located at multiple of 64 bit */ if (!VALID64(offset)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read object at non-64bit boundary: %" PRIu64, offset); /* Object may not be located in the file header */ if (offset < le64toh(f->header->header_size)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read object located in file header: %" PRIu64, offset); /* This will likely read too much data but it avoids having to call pread() twice. */ n = pread(f->fd, &o, sizeof(o), offset); if (n < 0) return log_debug_errno(errno, "Failed to read journal file at offset: %" PRIu64, offset); if ((size_t) n < sizeof(o.object)) return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to read short object at offset: %" PRIu64, offset); s = le64toh(o.object.size); if (s == 0) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read uninitialized object: %" PRIu64, offset); if (s < sizeof(o.object)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read overly short object: %" PRIu64, offset); if (o.object.type <= OBJECT_UNUSED) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read object with invalid type: %" PRIu64, offset); if (s < minimum_header_size(&o)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read truncated object: %" PRIu64, offset); if ((size_t) n < minimum_header_size(&o)) return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Short read while reading object: %" PRIu64, offset); if (type > OBJECT_UNUSED && o.object.type != type) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Attempt to read object of unexpected type: %" PRIu64, offset); r = journal_file_check_object(f, offset, &o); if (r < 0) return r; if (ret) *ret = o; return 0; } static uint64_t journal_file_entry_seqnum( JournalFile *f, uint64_t *seqnum) { uint64_t ret; assert(f); assert(f->header); /* Picks a new sequence number for the entry we are about to add and returns it. */ ret = le64toh(f->header->tail_entry_seqnum) + 1; if (seqnum) { /* If an external seqnum counter was passed, we update both the local and the external one, * and set it to the maximum of both */ if (*seqnum + 1 > ret) ret = *seqnum + 1; *seqnum = ret; } f->header->tail_entry_seqnum = htole64(ret); if (f->header->head_entry_seqnum == 0) f->header->head_entry_seqnum = htole64(ret); return ret; } int journal_file_append_object( JournalFile *f, ObjectType type, uint64_t size, Object **ret, uint64_t *ret_offset) { int r; uint64_t p; Object *o; void *t; assert(f); assert(f->header); assert(type > OBJECT_UNUSED && type < _OBJECT_TYPE_MAX); assert(size >= sizeof(ObjectHeader)); r = journal_file_set_online(f); if (r < 0) return r; r = journal_file_tail_end_by_mmap(f, &p); if (r < 0) return r; r = journal_file_allocate(f, p, size); if (r < 0) return r; r = journal_file_move_to(f, type, false, p, size, &t); if (r < 0) return r; o = (Object*) t; o->object = (ObjectHeader) { .type = type, .size = htole64(size), }; f->header->tail_object_offset = htole64(p); f->header->n_objects = htole64(le64toh(f->header->n_objects) + 1); if (ret) *ret = o; if (ret_offset) *ret_offset = p; return 0; } static int journal_file_setup_data_hash_table(JournalFile *f) { uint64_t s, p; Object *o; int r; assert(f); assert(f->header); /* We estimate that we need 1 hash table entry per 768 bytes of journal file and we want to make sure we never get beyond 75% fill level. Calculate the hash table size for the maximum file size based on these metrics. */ s = (f->metrics.max_size * 4 / 768 / 3) * sizeof(HashItem); if (s < DEFAULT_DATA_HASH_TABLE_SIZE) s = DEFAULT_DATA_HASH_TABLE_SIZE; log_debug("Reserving %"PRIu64" entries in data hash table.", s / sizeof(HashItem)); r = journal_file_append_object(f, OBJECT_DATA_HASH_TABLE, offsetof(Object, hash_table.items) + s, &o, &p); if (r < 0) return r; memzero(o->hash_table.items, s); f->header->data_hash_table_offset = htole64(p + offsetof(Object, hash_table.items)); f->header->data_hash_table_size = htole64(s); return 0; } static int journal_file_setup_field_hash_table(JournalFile *f) { uint64_t s, p; Object *o; int r; assert(f); assert(f->header); /* We use a fixed size hash table for the fields as this * number should grow very slowly only */ s = DEFAULT_FIELD_HASH_TABLE_SIZE; log_debug("Reserving %"PRIu64" entries in field hash table.", s / sizeof(HashItem)); r = journal_file_append_object(f, OBJECT_FIELD_HASH_TABLE, offsetof(Object, hash_table.items) + s, &o, &p); if (r < 0) return r; memzero(o->hash_table.items, s); f->header->field_hash_table_offset = htole64(p + offsetof(Object, hash_table.items)); f->header->field_hash_table_size = htole64(s); return 0; } int journal_file_map_data_hash_table(JournalFile *f) { uint64_t s, p; void *t; int r; assert(f); assert(f->header); if (f->data_hash_table) return 0; p = le64toh(f->header->data_hash_table_offset); s = le64toh(f->header->data_hash_table_size); r = journal_file_move_to(f, OBJECT_DATA_HASH_TABLE, true, p, s, &t); if (r < 0) return r; f->data_hash_table = t; return 0; } int journal_file_map_field_hash_table(JournalFile *f) { uint64_t s, p; void *t; int r; assert(f); assert(f->header); if (f->field_hash_table) return 0; p = le64toh(f->header->field_hash_table_offset); s = le64toh(f->header->field_hash_table_size); r = journal_file_move_to(f, OBJECT_FIELD_HASH_TABLE, true, p, s, &t); if (r < 0) return r; f->field_hash_table = t; return 0; } static int journal_file_link_field( JournalFile *f, Object *o, uint64_t offset, uint64_t hash) { uint64_t p, h, m; int r; assert(f); assert(f->header); assert(f->field_hash_table); assert(o); assert(offset > 0); if (o->object.type != OBJECT_FIELD) return -EINVAL; m = le64toh(READ_NOW(f->header->field_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; /* This might alter the window we are looking at */ o->field.next_hash_offset = o->field.head_data_offset = 0; h = hash % m; p = le64toh(f->field_hash_table[h].tail_hash_offset); if (p == 0) f->field_hash_table[h].head_hash_offset = htole64(offset); else { r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; o->field.next_hash_offset = htole64(offset); } f->field_hash_table[h].tail_hash_offset = htole64(offset); if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) f->header->n_fields = htole64(le64toh(f->header->n_fields) + 1); return 0; } static int journal_file_link_data( JournalFile *f, Object *o, uint64_t offset, uint64_t hash) { uint64_t p, h, m; int r; assert(f); assert(f->header); assert(f->data_hash_table); assert(o); assert(offset > 0); if (o->object.type != OBJECT_DATA) return -EINVAL; m = le64toh(READ_NOW(f->header->data_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; /* This might alter the window we are looking at */ o->data.next_hash_offset = o->data.next_field_offset = 0; o->data.entry_offset = o->data.entry_array_offset = 0; o->data.n_entries = 0; h = hash % m; p = le64toh(f->data_hash_table[h].tail_hash_offset); if (p == 0) /* Only entry in the hash table is easy */ f->data_hash_table[h].head_hash_offset = htole64(offset); else { /* Move back to the previous data object, to patch in * pointer */ r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; o->data.next_hash_offset = htole64(offset); } f->data_hash_table[h].tail_hash_offset = htole64(offset); if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) f->header->n_data = htole64(le64toh(f->header->n_data) + 1); return 0; } static int next_hash_offset( JournalFile *f, uint64_t *p, le64_t *next_hash_offset, uint64_t *depth, le64_t *header_max_depth) { uint64_t nextp; nextp = le64toh(READ_NOW(*next_hash_offset)); if (nextp > 0) { if (nextp <= *p) /* Refuse going in loops */ return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Detected hash item loop in %s, refusing.", f->path); (*depth)++; /* If the depth of this hash chain is larger than all others we have seen so far, record it */ if (header_max_depth && journal_file_writable(f)) *header_max_depth = htole64(MAX(*depth, le64toh(*header_max_depth))); } *p = nextp; return 0; } int journal_file_find_field_object_with_hash( JournalFile *f, const void *field, uint64_t size, uint64_t hash, Object **ret, uint64_t *ret_offset) { uint64_t p, osize, h, m, depth = 0; int r; assert(f); assert(f->header); assert(field && size > 0); /* If the field hash table is empty, we can't find anything */ if (le64toh(f->header->field_hash_table_size) <= 0) return 0; /* Map the field hash table, if it isn't mapped yet. */ r = journal_file_map_field_hash_table(f); if (r < 0) return r; osize = offsetof(Object, field.payload) + size; m = le64toh(READ_NOW(f->header->field_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; h = hash % m; p = le64toh(f->field_hash_table[h].head_hash_offset); while (p > 0) { Object *o; r = journal_file_move_to_object(f, OBJECT_FIELD, p, &o); if (r < 0) return r; if (le64toh(o->field.hash) == hash && le64toh(o->object.size) == osize && memcmp(o->field.payload, field, size) == 0) { if (ret) *ret = o; if (ret_offset) *ret_offset = p; return 1; } r = next_hash_offset( f, &p, &o->field.next_hash_offset, &depth, JOURNAL_HEADER_CONTAINS(f->header, field_hash_chain_depth) ? &f->header->field_hash_chain_depth : NULL); if (r < 0) return r; } return 0; } uint64_t journal_file_hash_data( JournalFile *f, const void *data, size_t sz) { assert(f); assert(data || sz == 0); /* We try to unify our codebase on siphash, hence new-styled journal files utilizing the keyed hash * function use siphash. Old journal files use the Jenkins hash. */ if (JOURNAL_HEADER_KEYED_HASH(f->header)) return siphash24(data, sz, f->header->file_id.bytes); return jenkins_hash64(data, sz); } int journal_file_find_field_object( JournalFile *f, const void *field, uint64_t size, Object **ret, uint64_t *ret_offset) { assert(f); assert(field && size > 0); return journal_file_find_field_object_with_hash( f, field, size, journal_file_hash_data(f, field, size), ret, ret_offset); } int journal_file_find_data_object_with_hash( JournalFile *f, const void *data, uint64_t size, uint64_t hash, Object **ret, uint64_t *ret_offset) { uint64_t p, osize, h, m, depth = 0; int r; assert(f); assert(f->header); assert(data || size == 0); /* If there's no data hash table, then there's no entry. */ if (le64toh(f->header->data_hash_table_size) <= 0) return 0; /* Map the data hash table, if it isn't mapped yet. */ r = journal_file_map_data_hash_table(f); if (r < 0) return r; osize = offsetof(Object, data.payload) + size; m = le64toh(READ_NOW(f->header->data_hash_table_size)) / sizeof(HashItem); if (m <= 0) return -EBADMSG; h = hash % m; p = le64toh(f->data_hash_table[h].head_hash_offset); while (p > 0) { Compression c; Object *o; r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; if (le64toh(o->data.hash) != hash) goto next; c = COMPRESSION_FROM_OBJECT(o); if (c < 0) return -EPROTONOSUPPORT; if (c != COMPRESSION_NONE) { #if HAVE_COMPRESSION uint64_t l; size_t rsize = 0; l = le64toh(READ_NOW(o->object.size)); if (l <= offsetof(Object, data.payload)) return -EBADMSG; l -= offsetof(Object, data.payload); r = decompress_blob(c, o->data.payload, l, &f->compress_buffer, &rsize, 0); if (r < 0) return r; if (rsize == size && memcmp(f->compress_buffer, data, size) == 0) { if (ret) *ret = o; if (ret_offset) *ret_offset = p; return 1; } #else return -EPROTONOSUPPORT; #endif } else if (le64toh(o->object.size) == osize && memcmp(o->data.payload, data, size) == 0) { if (ret) *ret = o; if (ret_offset) *ret_offset = p; return 1; } next: r = next_hash_offset( f, &p, &o->data.next_hash_offset, &depth, JOURNAL_HEADER_CONTAINS(f->header, data_hash_chain_depth) ? &f->header->data_hash_chain_depth : NULL); if (r < 0) return r; } return 0; } int journal_file_find_data_object( JournalFile *f, const void *data, uint64_t size, Object **ret, uint64_t *ret_offset) { assert(f); assert(data || size == 0); return journal_file_find_data_object_with_hash( f, data, size, journal_file_hash_data(f, data, size), ret, ret_offset); } bool journal_field_valid(const char *p, size_t l, bool allow_protected) { /* We kinda enforce POSIX syntax recommendations for environment variables here, but make a couple of additional requirements. http://pubs.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap08.html */ if (l == SIZE_MAX) l = strlen(p); /* No empty field names */ if (l <= 0) return false; /* Don't allow names longer than 64 chars */ if (l > 64) return false; /* Variables starting with an underscore are protected */ if (!allow_protected && p[0] == '_') return false; /* Don't allow digits as first character */ if (p[0] >= '0' && p[0] <= '9') return false; /* Only allow A-Z0-9 and '_' */ for (const char *a = p; a < p + l; a++) if ((*a < 'A' || *a > 'Z') && (*a < '0' || *a > '9') && *a != '_') return false; return true; } static int journal_file_append_field( JournalFile *f, const void *field, uint64_t size, Object **ret, uint64_t *ret_offset) { uint64_t hash, p; uint64_t osize; Object *o; int r; assert(f); assert(field && size > 0); if (!journal_field_valid(field, size, true)) return -EBADMSG; hash = journal_file_hash_data(f, field, size); r = journal_file_find_field_object_with_hash(f, field, size, hash, ret, ret_offset); if (r < 0) return r; if (r > 0) return 0; osize = offsetof(Object, field.payload) + size; r = journal_file_append_object(f, OBJECT_FIELD, osize, &o, &p); if (r < 0) return r; o->field.hash = htole64(hash); memcpy(o->field.payload, field, size); r = journal_file_link_field(f, o, p, hash); if (r < 0) return r; /* The linking might have altered the window, so let's only pass the offset to hmac which will * move to the object again if needed. */ #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_FIELD, NULL, p); if (r < 0) return r; #endif if (ret) { r = journal_file_move_to_object(f, OBJECT_FIELD, p, ret); if (r < 0) return r; } if (ret_offset) *ret_offset = p; return 0; } static int journal_file_append_data( JournalFile *f, const void *data, uint64_t size, Object **ret, uint64_t *ret_offset) { uint64_t hash, p, fp, osize; Object *o, *fo; int r, compression = 0; const void *eq; assert(f); if (!data || size == 0) return -EINVAL; hash = journal_file_hash_data(f, data, size); r = journal_file_find_data_object_with_hash(f, data, size, hash, ret, ret_offset); if (r < 0) return r; if (r > 0) return 0; eq = memchr(data, '=', size); if (!eq) return -EINVAL; osize = offsetof(Object, data.payload) + size; r = journal_file_append_object(f, OBJECT_DATA, osize, &o, &p); if (r < 0) return r; o->data.hash = htole64(hash); #if HAVE_COMPRESSION if (JOURNAL_FILE_COMPRESS(f) && size >= f->compress_threshold_bytes) { size_t rsize = 0; compression = compress_blob(data, size, o->data.payload, size - 1, &rsize); if (compression > COMPRESSION_NONE) { o->object.size = htole64(offsetof(Object, data.payload) + rsize); o->object.flags |= COMPRESSION_TO_OBJECT_FLAG(compression); log_debug("Compressed data object %"PRIu64" -> %zu using %s", size, rsize, compression_to_string(compression)); } else /* Compression didn't work, we don't really care why, let's continue without compression */ compression = COMPRESSION_NONE; } #endif if (compression == 0) memcpy_safe(o->data.payload, data, size); r = journal_file_link_data(f, o, p, hash); if (r < 0) return r; /* The linking might have altered the window, so let's refresh our pointer. */ r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_DATA, o, p); if (r < 0) return r; #endif /* Create field object ... */ r = journal_file_append_field(f, data, (uint8_t*) eq - (uint8_t*) data, &fo, &fp); if (r < 0) return r; /* ... and link it in. */ o->data.next_field_offset = fo->field.head_data_offset; fo->field.head_data_offset = le64toh(p); if (ret) *ret = o; if (ret_offset) *ret_offset = p; return 0; } uint64_t journal_file_entry_n_items(Object *o) { uint64_t sz; assert(o); if (o->object.type != OBJECT_ENTRY) return 0; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry.items)) return 0; return (sz - offsetof(Object, entry.items)) / sizeof(EntryItem); } uint64_t journal_file_entry_array_n_items(Object *o) { uint64_t sz; assert(o); if (o->object.type != OBJECT_ENTRY_ARRAY) return 0; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, entry_array.items)) return 0; return (sz - offsetof(Object, entry_array.items)) / sizeof(uint64_t); } uint64_t journal_file_hash_table_n_items(Object *o) { uint64_t sz; assert(o); if (!IN_SET(o->object.type, OBJECT_DATA_HASH_TABLE, OBJECT_FIELD_HASH_TABLE)) return 0; sz = le64toh(READ_NOW(o->object.size)); if (sz < offsetof(Object, hash_table.items)) return 0; return (sz - offsetof(Object, hash_table.items)) / sizeof(HashItem); } static int link_entry_into_array(JournalFile *f, le64_t *first, le64_t *idx, uint64_t p) { int r; uint64_t n = 0, ap = 0, q, i, a, hidx; Object *o; assert(f); assert(f->header); assert(first); assert(idx); assert(p > 0); a = le64toh(*first); i = hidx = le64toh(READ_NOW(*idx)); while (a > 0) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (r < 0) return r; n = journal_file_entry_array_n_items(o); if (i < n) { o->entry_array.items[i] = htole64(p); *idx = htole64(hidx + 1); return 0; } i -= n; ap = a; a = le64toh(o->entry_array.next_entry_array_offset); } if (hidx > n) n = (hidx+1) * 2; else n = n * 2; if (n < 4) n = 4; r = journal_file_append_object(f, OBJECT_ENTRY_ARRAY, offsetof(Object, entry_array.items) + n * sizeof(uint64_t), &o, &q); if (r < 0) return r; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_ENTRY_ARRAY, o, q); if (r < 0) return r; #endif o->entry_array.items[i] = htole64(p); if (ap == 0) *first = htole64(q); else { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, ap, &o); if (r < 0) return r; o->entry_array.next_entry_array_offset = htole64(q); } if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) f->header->n_entry_arrays = htole64(le64toh(f->header->n_entry_arrays) + 1); *idx = htole64(hidx + 1); return 0; } static int link_entry_into_array_plus_one(JournalFile *f, le64_t *extra, le64_t *first, le64_t *idx, uint64_t p) { uint64_t hidx; int r; assert(f); assert(extra); assert(first); assert(idx); assert(p > 0); hidx = le64toh(READ_NOW(*idx)); if (hidx == UINT64_MAX) return -EBADMSG; if (hidx == 0) *extra = htole64(p); else { le64_t i; i = htole64(hidx - 1); r = link_entry_into_array(f, first, &i, p); if (r < 0) return r; } *idx = htole64(hidx + 1); return 0; } static int journal_file_link_entry_item(JournalFile *f, Object *o, uint64_t offset, uint64_t i) { uint64_t p; int r; assert(f); assert(o); assert(offset > 0); p = le64toh(o->entry.items[i].object_offset); r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; return link_entry_into_array_plus_one(f, &o->data.entry_offset, &o->data.entry_array_offset, &o->data.n_entries, offset); } static int journal_file_link_entry(JournalFile *f, Object *o, uint64_t offset) { uint64_t n; int r; assert(f); assert(f->header); assert(o); assert(offset > 0); if (o->object.type != OBJECT_ENTRY) return -EINVAL; __sync_synchronize(); /* Link up the entry itself */ r = link_entry_into_array(f, &f->header->entry_array_offset, &f->header->n_entries, offset); if (r < 0) return r; /* log_debug("=> %s seqnr=%"PRIu64" n_entries=%"PRIu64, f->path, o->entry.seqnum, f->header->n_entries); */ if (f->header->head_entry_realtime == 0) f->header->head_entry_realtime = o->entry.realtime; f->header->tail_entry_realtime = o->entry.realtime; f->header->tail_entry_monotonic = o->entry.monotonic; /* Link up the items */ n = journal_file_entry_n_items(o); for (uint64_t i = 0; i < n; i++) { int k; /* If we fail to link an entry item because we can't allocate a new entry array, don't fail * immediately but try to link the other entry items since it might still be possible to link * those if they don't require a new entry array to be allocated. */ k = journal_file_link_entry_item(f, o, offset, i); if (k == -E2BIG) r = k; else if (k < 0) return k; } return r; } static int journal_file_append_entry_internal( JournalFile *f, const dual_timestamp *ts, const sd_id128_t *boot_id, uint64_t xor_hash, const EntryItem items[], unsigned n_items, uint64_t *seqnum, Object **ret, uint64_t *ret_offset) { uint64_t np; uint64_t osize; Object *o; int r; assert(f); assert(f->header); assert(items || n_items == 0); assert(ts); osize = offsetof(Object, entry.items) + (n_items * sizeof(EntryItem)); r = journal_file_append_object(f, OBJECT_ENTRY, osize, &o, &np); if (r < 0) return r; o->entry.seqnum = htole64(journal_file_entry_seqnum(f, seqnum)); memcpy_safe(o->entry.items, items, n_items * sizeof(EntryItem)); o->entry.realtime = htole64(ts->realtime); o->entry.monotonic = htole64(ts->monotonic); o->entry.xor_hash = htole64(xor_hash); if (boot_id) f->header->boot_id = *boot_id; o->entry.boot_id = f->header->boot_id; #if HAVE_GCRYPT r = journal_file_hmac_put_object(f, OBJECT_ENTRY, o, np); if (r < 0) return r; #endif r = journal_file_link_entry(f, o, np); if (r < 0) return r; if (ret) *ret = o; if (ret_offset) *ret_offset = np; return r; } void journal_file_post_change(JournalFile *f) { assert(f); if (f->fd < 0) return; /* inotify() does not receive IN_MODIFY events from file * accesses done via mmap(). After each access we hence * trigger IN_MODIFY by truncating the journal file to its * current size which triggers IN_MODIFY. */ __sync_synchronize(); if (ftruncate(f->fd, f->last_stat.st_size) < 0) log_debug_errno(errno, "Failed to truncate file to its own size: %m"); } static int post_change_thunk(sd_event_source *timer, uint64_t usec, void *userdata) { assert(userdata); journal_file_post_change(userdata); return 1; } static void schedule_post_change(JournalFile *f) { sd_event *e; int r; assert(f); assert(f->post_change_timer); assert_se(e = sd_event_source_get_event(f->post_change_timer)); /* If we are already going down, post the change immediately. */ if (IN_SET(sd_event_get_state(e), SD_EVENT_EXITING, SD_EVENT_FINISHED)) goto fail; r = sd_event_source_get_enabled(f->post_change_timer, NULL); if (r < 0) { log_debug_errno(r, "Failed to get ftruncate timer state: %m"); goto fail; } if (r > 0) return; r = sd_event_source_set_time_relative(f->post_change_timer, f->post_change_timer_period); if (r < 0) { log_debug_errno(r, "Failed to set time for scheduling ftruncate: %m"); goto fail; } r = sd_event_source_set_enabled(f->post_change_timer, SD_EVENT_ONESHOT); if (r < 0) { log_debug_errno(r, "Failed to enable scheduled ftruncate: %m"); goto fail; } return; fail: /* On failure, let's simply post the change immediately. */ journal_file_post_change(f); } /* Enable coalesced change posting in a timer on the provided sd_event instance */ int journal_file_enable_post_change_timer(JournalFile *f, sd_event *e, usec_t t) { _cleanup_(sd_event_source_unrefp) sd_event_source *timer = NULL; int r; assert(f); assert_return(!f->post_change_timer, -EINVAL); assert(e); assert(t); r = sd_event_add_time(e, &timer, CLOCK_MONOTONIC, 0, 0, post_change_thunk, f); if (r < 0) return r; r = sd_event_source_set_enabled(timer, SD_EVENT_OFF); if (r < 0) return r; f->post_change_timer = TAKE_PTR(timer); f->post_change_timer_period = t; return r; } static int entry_item_cmp(const EntryItem *a, const EntryItem *b) { return CMP(le64toh(a->object_offset), le64toh(b->object_offset)); } static size_t remove_duplicate_entry_items(EntryItem items[], size_t n) { /* This function relies on the items array being sorted. */ size_t j = 1; if (n <= 1) return n; for (size_t i = 1; i < n; i++) if (items[i].object_offset != items[j - 1].object_offset) items[j++] = items[i]; return j; } int journal_file_append_entry( JournalFile *f, const dual_timestamp *ts, const sd_id128_t *boot_id, const struct iovec iovec[], unsigned n_iovec, uint64_t *seqnum, Object **ret, uint64_t *ret_offset) { EntryItem *items; int r; uint64_t xor_hash = 0; struct dual_timestamp _ts; assert(f); assert(f->header); assert(iovec && n_iovec > 0); if (ts) { if (!VALID_REALTIME(ts->realtime)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid realtime timestamp %" PRIu64 ", refusing entry.", ts->realtime); if (!VALID_MONOTONIC(ts->monotonic)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "Invalid monotomic timestamp %" PRIu64 ", refusing entry.", ts->monotonic); } else { dual_timestamp_get(&_ts); ts = &_ts; } #if HAVE_GCRYPT r = journal_file_maybe_append_tag(f, ts->realtime); if (r < 0) return r; #endif items = newa(EntryItem, n_iovec); for (size_t i = 0; i < n_iovec; i++) { uint64_t p; Object *o; r = journal_file_append_data(f, iovec[i].iov_base, iovec[i].iov_len, &o, &p); if (r < 0) return r; /* When calculating the XOR hash field, we need to take special care if the "keyed-hash" * journal file flag is on. We use the XOR hash field to quickly determine the identity of a * specific record, and give records with otherwise identical position (i.e. match in seqno, * timestamp, …) a stable ordering. But for that we can't have it that the hash of the * objects in each file is different since they are keyed. Hence let's calculate the Jenkins * hash here for that. This also has the benefit that cursors for old and new journal files * are completely identical (they include the XOR hash after all). For classic Jenkins-hash * files things are easier, we can just take the value from the stored record directly. */ if (JOURNAL_HEADER_KEYED_HASH(f->header)) xor_hash ^= jenkins_hash64(iovec[i].iov_base, iovec[i].iov_len); else xor_hash ^= le64toh(o->data.hash); items[i] = (EntryItem) { .object_offset = htole64(p), .hash = o->data.hash, }; } /* Order by the position on disk, in order to improve seek * times for rotating media. */ typesafe_qsort(items, n_iovec, entry_item_cmp); n_iovec = remove_duplicate_entry_items(items, n_iovec); r = journal_file_append_entry_internal(f, ts, boot_id, xor_hash, items, n_iovec, seqnum, ret, ret_offset); /* If the memory mapping triggered a SIGBUS then we return an * IO error and ignore the error code passed down to us, since * it is very likely just an effect of a nullified replacement * mapping page */ if (mmap_cache_fd_got_sigbus(f->cache_fd)) r = -EIO; if (f->post_change_timer) schedule_post_change(f); else journal_file_post_change(f); return r; } typedef struct ChainCacheItem { uint64_t first; /* the array at the beginning of the chain */ uint64_t array; /* the cached array */ uint64_t begin; /* the first item in the cached array */ uint64_t total; /* the total number of items in all arrays before this one in the chain */ uint64_t last_index; /* the last index we looked at, to optimize locality when bisecting */ } ChainCacheItem; static void chain_cache_put( OrderedHashmap *h, ChainCacheItem *ci, uint64_t first, uint64_t array, uint64_t begin, uint64_t total, uint64_t last_index) { if (!ci) { /* If the chain item to cache for this chain is the * first one it's not worth caching anything */ if (array == first) return; if (ordered_hashmap_size(h) >= CHAIN_CACHE_MAX) { ci = ordered_hashmap_steal_first(h); assert(ci); } else { ci = new(ChainCacheItem, 1); if (!ci) return; } ci->first = first; if (ordered_hashmap_put(h, &ci->first, ci) < 0) { free(ci); return; } } else assert(ci->first == first); ci->array = array; ci->begin = begin; ci->total = total; ci->last_index = last_index; } static int bump_array_index(uint64_t *i, direction_t direction, uint64_t n) { assert(i); /* Increase or decrease the specified index, in the right direction. */ if (direction == DIRECTION_DOWN) { if (*i >= n - 1) return 0; (*i)++; } else { if (*i <= 0) return 0; (*i)--; } return 1; } static int bump_entry_array(JournalFile *f, Object *o, uint64_t offset, uint64_t first, direction_t direction, uint64_t *ret) { uint64_t p, q = 0; int r; assert(f); assert(offset); assert(ret); if (direction == DIRECTION_DOWN) return le64toh(o->entry_array.next_entry_array_offset); /* Entry array chains are a singly linked list, so to find the previous array in the chain, we have * to start iterating from the top. */ p = first; while (p > 0 && p != offset) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, p, &o); if (r < 0) return r; q = p; p = le64toh(o->entry_array.next_entry_array_offset); } /* If we can't find the previous entry array in the entry array chain, we're likely dealing with a * corrupted journal file. */ if (p == 0) return -EBADMSG; *ret = q; return 0; } static int generic_array_get( JournalFile *f, uint64_t first, uint64_t i, direction_t direction, Object **ret, uint64_t *ret_offset) { Object *o; uint64_t p = 0, a, t = 0, k; int r; ChainCacheItem *ci; assert(f); a = first; /* Try the chain cache first */ ci = ordered_hashmap_get(f->chain_cache, &first); if (ci && i > ci->total) { a = ci->array; i -= ci->total; t = ci->total; } while (a > 0) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (IN_SET(r, -EBADMSG, -EADDRNOTAVAIL)) { /* If there's corruption and we're going downwards, let's pretend we reached the * final entry in the entry array chain. */ if (direction == DIRECTION_DOWN) return 0; /* If there's corruption and we're going upwards, move back to the previous entry * array and start iterating entries from there. */ r = bump_entry_array(f, NULL, a, first, DIRECTION_UP, &a); if (r < 0) return r; i = UINT64_MAX; break; } if (r < 0) return r; k = journal_file_entry_array_n_items(o); if (i < k) break; i -= k; t += k; a = le64toh(o->entry_array.next_entry_array_offset); } /* If we've found the right location, now look for the first non-corrupt entry object (in the right * direction). */ while (a > 0) { /* In the first iteration of the while loop, we reuse i, k and o from the previous while * loop. */ if (i == UINT64_MAX) { r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &o); if (r < 0) return r; k = journal_file_entry_array_n_items(o); if (k == 0) break; i = direction == DIRECTION_DOWN ? 0 : k - 1; } do { p = le64toh(o->entry_array.items[i]); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, ret); if (r >= 0) { /* Let's cache this item for the next invocation */ chain_cache_put(f->chain_cache, ci, first, a, le64toh(o->entry_array.items[0]), t, i); if (ret_offset) *ret_offset = p; return 1; } if (!IN_SET(r, -EADDRNOTAVAIL, -EBADMSG)) return r; /* OK, so this entry is borked. Most likely some entry didn't get synced to * disk properly, let's see if the next one might work for us instead. */ log_debug_errno(r, "Entry item %" PRIu64 " is bad, skipping over it.", i); } while (bump_array_index(&i, direction, k) > 0); r = bump_entry_array(f, o, a, first, direction, &a); if (r < 0) return r; t += k; i = UINT64_MAX; } return 0; } static int generic_array_get_plus_one( JournalFile *f, uint64_t extra, uint64_t first, uint64_t i, direction_t direction, Object **ret, uint64_t *ret_offset) { int r; assert(f); if (i == 0) { r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, ret); if (IN_SET(r, -EADDRNOTAVAIL, -EBADMSG)) return generic_array_get(f, first, 0, direction, ret, ret_offset); if (r < 0) return r; if (ret_offset) *ret_offset = extra; return 1; } return generic_array_get(f, first, i - 1, direction, ret, ret_offset); } enum { TEST_FOUND, TEST_LEFT, TEST_RIGHT }; static int generic_array_bisect( JournalFile *f, uint64_t first, uint64_t n, uint64_t needle, int (*test_object)(JournalFile *f, uint64_t p, uint64_t needle), direction_t direction, Object **ret, uint64_t *ret_offset, uint64_t *ret_idx) { /* Given an entry array chain, this function finds the object "closest" to the given needle in the * chain, taking into account the provided direction. A function can be provided to determine how * an object is matched against the given needle. * * Given a journal file, the offset of an object and the needle, the test_object() function should * return TEST_LEFT if the needle is located earlier in the entry array chain, TEST_RIGHT if the * needle is located later in the entry array chain and TEST_FOUND if the object matches the needle. * If test_object() returns TEST_FOUND for a specific object, that object's information will be used * to populate the return values of this function. If test_object() never returns TEST_FOUND, the * return values are populated with the details of one of the objects closest to the needle. If the * direction is DIRECTION_UP, the earlier object is used. Otherwise, the later object is used. */ uint64_t a, p, t = 0, i = 0, last_p = 0, last_index = UINT64_MAX; bool subtract_one = false; Object *array = NULL; int r; ChainCacheItem *ci; assert(f); assert(test_object); /* Start with the first array in the chain */ a = first; ci = ordered_hashmap_get(f->chain_cache, &first); if (ci && n > ci->total && ci->begin != 0) { /* Ah, we have iterated this bisection array chain * previously! Let's see if we can skip ahead in the * chain, as far as the last time. But we can't jump * backwards in the chain, so let's check that * first. */ r = test_object(f, ci->begin, needle); if (r < 0) return r; if (r == TEST_LEFT) { /* OK, what we are looking for is right of the * begin of this EntryArray, so let's jump * straight to previously cached array in the * chain */ a = ci->array; n -= ci->total; t = ci->total; last_index = ci->last_index; } } while (a > 0) { uint64_t left, right, k, lp; r = journal_file_move_to_object(f, OBJECT_ENTRY_ARRAY, a, &array); if (r < 0) return r; k = journal_file_entry_array_n_items(array); right = MIN(k, n); if (right <= 0) return 0; i = right - 1; lp = p = le64toh(array->entry_array.items[i]); if (p <= 0) r = -EBADMSG; else r = test_object(f, p, needle); if (r == -EBADMSG) { log_debug_errno(r, "Encountered invalid entry while bisecting, cutting algorithm short. (1)"); n = i; continue; } if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) { left = 0; right -= 1; if (last_index != UINT64_MAX) { assert(last_index <= right); /* If we cached the last index we * looked at, let's try to not to jump * too wildly around and see if we can * limit the range to look at early to * the immediate neighbors of the last * index we looked at. */ if (last_index > 0) { uint64_t x = last_index - 1; p = le64toh(array->entry_array.items[x]); if (p <= 0) return -EBADMSG; r = test_object(f, p, needle); if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) right = x; else left = x + 1; } if (last_index < right) { uint64_t y = last_index + 1; p = le64toh(array->entry_array.items[y]); if (p <= 0) return -EBADMSG; r = test_object(f, p, needle); if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) right = y; else left = y + 1; } } for (;;) { if (left == right) { if (direction == DIRECTION_UP) subtract_one = true; i = left; goto found; } assert(left < right); i = (left + right) / 2; p = le64toh(array->entry_array.items[i]); if (p <= 0) r = -EBADMSG; else r = test_object(f, p, needle); if (r == -EBADMSG) { log_debug_errno(r, "Encountered invalid entry while bisecting, cutting algorithm short. (2)"); right = n = i; continue; } if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; if (r == TEST_RIGHT) right = i; else left = i + 1; } } if (k >= n) { if (direction == DIRECTION_UP) { i = n; subtract_one = true; goto found; } return 0; } last_p = lp; n -= k; t += k; last_index = UINT64_MAX; a = le64toh(array->entry_array.next_entry_array_offset); } return 0; found: if (subtract_one && t == 0 && i == 0) return 0; /* Let's cache this item for the next invocation */ chain_cache_put(f->chain_cache, ci, first, a, le64toh(array->entry_array.items[0]), t, subtract_one ? (i > 0 ? i-1 : UINT64_MAX) : i); if (subtract_one && i == 0) p = last_p; else if (subtract_one) p = le64toh(array->entry_array.items[i-1]); else p = le64toh(array->entry_array.items[i]); if (ret) { r = journal_file_move_to_object(f, OBJECT_ENTRY, p, ret); if (r < 0) return r; } if (ret_offset) *ret_offset = p; if (ret_idx) *ret_idx = t + i + (subtract_one ? -1 : 0); return 1; } static int generic_array_bisect_plus_one( JournalFile *f, uint64_t extra, uint64_t first, uint64_t n, uint64_t needle, int (*test_object)(JournalFile *f, uint64_t p, uint64_t needle), direction_t direction, Object **ret, uint64_t *ret_offset, uint64_t *ret_idx) { int r; bool step_back = false; assert(f); assert(test_object); if (n <= 0) return 0; /* This bisects the array in object 'first', but first checks * an extra */ r = test_object(f, extra, needle); if (r < 0) return r; if (r == TEST_FOUND) r = direction == DIRECTION_DOWN ? TEST_RIGHT : TEST_LEFT; /* if we are looking with DIRECTION_UP then we need to first see if in the actual array there is a matching entry, and return the last one of that. But if there isn't any we need to return this one. Hence remember this, and return it below. */ if (r == TEST_LEFT) step_back = direction == DIRECTION_UP; if (r == TEST_RIGHT) { if (direction == DIRECTION_DOWN) goto found; else return 0; } r = generic_array_bisect(f, first, n-1, needle, test_object, direction, ret, ret_offset, ret_idx); if (r == 0 && step_back) goto found; if (r > 0 && ret_idx) (*ret_idx)++; return r; found: if (ret) { r = journal_file_move_to_object(f, OBJECT_ENTRY, extra, ret); if (r < 0) return r; } if (ret_offset) *ret_offset = extra; if (ret_idx) *ret_idx = 0; return 1; } _pure_ static int test_object_offset(JournalFile *f, uint64_t p, uint64_t needle) { assert(f); assert(p > 0); if (p == needle) return TEST_FOUND; else if (p < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_offset( JournalFile *f, uint64_t p, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(f->header); return generic_array_bisect( f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), p, test_object_offset, direction, ret, ret_offset, NULL); } static int test_object_seqnum(JournalFile *f, uint64_t p, uint64_t needle) { uint64_t sq; Object *o; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; sq = le64toh(READ_NOW(o->entry.seqnum)); if (sq == needle) return TEST_FOUND; else if (sq < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_seqnum( JournalFile *f, uint64_t seqnum, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(f->header); return generic_array_bisect( f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), seqnum, test_object_seqnum, direction, ret, ret_offset, NULL); } static int test_object_realtime(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; uint64_t rt; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; rt = le64toh(READ_NOW(o->entry.realtime)); if (rt == needle) return TEST_FOUND; else if (rt < needle) return TEST_LEFT; else return TEST_RIGHT; } int journal_file_move_to_entry_by_realtime( JournalFile *f, uint64_t realtime, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(f->header); return generic_array_bisect( f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), realtime, test_object_realtime, direction, ret, ret_offset, NULL); } static int test_object_monotonic(JournalFile *f, uint64_t p, uint64_t needle) { Object *o; uint64_t m; int r; assert(f); assert(p > 0); r = journal_file_move_to_object(f, OBJECT_ENTRY, p, &o); if (r < 0) return r; m = le64toh(READ_NOW(o->entry.monotonic)); if (m == needle) return TEST_FOUND; else if (m < needle) return TEST_LEFT; else return TEST_RIGHT; } static int find_data_object_by_boot_id( JournalFile *f, sd_id128_t boot_id, Object **o, uint64_t *b) { char t[STRLEN("_BOOT_ID=") + 32 + 1] = "_BOOT_ID="; sd_id128_to_string(boot_id, t + 9); return journal_file_find_data_object(f, t, sizeof(t) - 1, o, b); } int journal_file_move_to_entry_by_monotonic( JournalFile *f, sd_id128_t boot_id, uint64_t monotonic, direction_t direction, Object **ret, uint64_t *ret_offset) { Object *o; int r; assert(f); r = find_data_object_by_boot_id(f, boot_id, &o, NULL); if (r < 0) return r; if (r == 0) return -ENOENT; return generic_array_bisect_plus_one( f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries), monotonic, test_object_monotonic, direction, ret, ret_offset, NULL); } void journal_file_reset_location(JournalFile *f) { f->location_type = LOCATION_HEAD; f->current_offset = 0; f->current_seqnum = 0; f->current_realtime = 0; f->current_monotonic = 0; zero(f->current_boot_id); f->current_xor_hash = 0; } void journal_file_save_location(JournalFile *f, Object *o, uint64_t offset) { f->location_type = LOCATION_SEEK; f->current_offset = offset; f->current_seqnum = le64toh(o->entry.seqnum); f->current_realtime = le64toh(o->entry.realtime); f->current_monotonic = le64toh(o->entry.monotonic); f->current_boot_id = o->entry.boot_id; f->current_xor_hash = le64toh(o->entry.xor_hash); } int journal_file_compare_locations(JournalFile *af, JournalFile *bf) { int r; assert(af); assert(af->header); assert(bf); assert(bf->header); assert(af->location_type == LOCATION_SEEK); assert(bf->location_type == LOCATION_SEEK); /* If contents, timestamps and seqnum match, these entries are * identical. */ if (sd_id128_equal(af->current_boot_id, bf->current_boot_id) && af->current_monotonic == bf->current_monotonic && af->current_realtime == bf->current_realtime && af->current_xor_hash == bf->current_xor_hash && sd_id128_equal(af->header->seqnum_id, bf->header->seqnum_id) && af->current_seqnum == bf->current_seqnum) return 0; if (sd_id128_equal(af->header->seqnum_id, bf->header->seqnum_id)) { /* If this is from the same seqnum source, compare * seqnums */ r = CMP(af->current_seqnum, bf->current_seqnum); if (r != 0) return r; /* Wow! This is weird, different data but the same * seqnums? Something is borked, but let's make the * best of it and compare by time. */ } if (sd_id128_equal(af->current_boot_id, bf->current_boot_id)) { /* If the boot id matches, compare monotonic time */ r = CMP(af->current_monotonic, bf->current_monotonic); if (r != 0) return r; } /* Otherwise, compare UTC time */ r = CMP(af->current_realtime, bf->current_realtime); if (r != 0) return r; /* Finally, compare by contents */ return CMP(af->current_xor_hash, bf->current_xor_hash); } static bool check_properly_ordered(uint64_t new_offset, uint64_t old_offset, direction_t direction) { /* Consider it an error if any of the two offsets is uninitialized */ if (old_offset == 0 || new_offset == 0) return false; /* If we go down, the new offset must be larger than the old one. */ return direction == DIRECTION_DOWN ? new_offset > old_offset : new_offset < old_offset; } int journal_file_next_entry( JournalFile *f, uint64_t p, direction_t direction, Object **ret, uint64_t *ret_offset) { uint64_t i, n, ofs; int r; assert(f); assert(f->header); n = le64toh(READ_NOW(f->header->n_entries)); if (n <= 0) return 0; if (p == 0) i = direction == DIRECTION_DOWN ? 0 : n - 1; else { r = generic_array_bisect(f, le64toh(f->header->entry_array_offset), le64toh(f->header->n_entries), p, test_object_offset, DIRECTION_DOWN, NULL, NULL, &i); if (r <= 0) return r; r = bump_array_index(&i, direction, n); if (r <= 0) return r; } /* And jump to it */ r = generic_array_get(f, le64toh(f->header->entry_array_offset), i, direction, ret, &ofs); if (r <= 0) return r; /* Ensure our array is properly ordered. */ if (p > 0 && !check_properly_ordered(ofs, p, direction)) return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "%s: entry array not properly ordered at entry %" PRIu64, f->path, i); if (ret_offset) *ret_offset = ofs; return 1; } int journal_file_next_entry_for_data( JournalFile *f, Object *d, direction_t direction, Object **ret, uint64_t *ret_offset) { uint64_t i, n, ofs; int r; assert(f); assert(d); assert(d->object.type == OBJECT_DATA); n = le64toh(READ_NOW(d->data.n_entries)); if (n <= 0) return n; i = direction == DIRECTION_DOWN ? 0 : n - 1; r = generic_array_get_plus_one(f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), i, direction, ret, &ofs); if (r <= 0) return r; if (ret_offset) *ret_offset = ofs; return 1; } int journal_file_move_to_entry_by_offset_for_data( JournalFile *f, Object *d, uint64_t p, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(d); assert(d->object.type == OBJECT_DATA); return generic_array_bisect_plus_one( f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), p, test_object_offset, direction, ret, ret_offset, NULL); } int journal_file_move_to_entry_by_monotonic_for_data( JournalFile *f, Object *d, sd_id128_t boot_id, uint64_t monotonic, direction_t direction, Object **ret, uint64_t *ret_offset) { Object *o; int r; uint64_t b, z, entry_offset, entry_array_offset, n_entries; assert(f); assert(d); assert(d->object.type == OBJECT_DATA); /* Save all the required data before the data object gets invalidated. */ entry_offset = le64toh(READ_NOW(d->data.entry_offset)); entry_array_offset = le64toh(READ_NOW(d->data.entry_array_offset)); n_entries = le64toh(READ_NOW(d->data.n_entries)); /* First, seek by time */ r = find_data_object_by_boot_id(f, boot_id, &o, &b); if (r < 0) return r; if (r == 0) return -ENOENT; r = generic_array_bisect_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries), monotonic, test_object_monotonic, direction, NULL, &z, NULL); if (r <= 0) return r; /* And now, continue seeking until we find an entry that * exists in both bisection arrays */ r = journal_file_move_to_object(f, OBJECT_DATA, b, &o); if (r < 0) return r; for (;;) { uint64_t p, q; r = generic_array_bisect_plus_one(f, entry_offset, entry_array_offset, n_entries, z, test_object_offset, direction, NULL, &p, NULL); if (r <= 0) return r; r = generic_array_bisect_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries), p, test_object_offset, direction, NULL, &q, NULL); if (r <= 0) return r; if (p == q) { if (ret) { r = journal_file_move_to_object(f, OBJECT_ENTRY, q, ret); if (r < 0) return r; } if (ret_offset) *ret_offset = q; return 1; } z = q; } } int journal_file_move_to_entry_by_seqnum_for_data( JournalFile *f, Object *d, uint64_t seqnum, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(d); assert(d->object.type == OBJECT_DATA); return generic_array_bisect_plus_one( f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), seqnum, test_object_seqnum, direction, ret, ret_offset, NULL); } int journal_file_move_to_entry_by_realtime_for_data( JournalFile *f, Object *d, uint64_t realtime, direction_t direction, Object **ret, uint64_t *ret_offset) { assert(f); assert(d); assert(d->object.type == OBJECT_DATA); return generic_array_bisect_plus_one( f, le64toh(d->data.entry_offset), le64toh(d->data.entry_array_offset), le64toh(d->data.n_entries), realtime, test_object_realtime, direction, ret, ret_offset, NULL); } void journal_file_dump(JournalFile *f) { Object *o; int r; uint64_t p; assert(f); assert(f->header); journal_file_print_header(f); p = le64toh(READ_NOW(f->header->header_size)); while (p != 0) { const char *s; Compression c; r = journal_file_move_to_object(f, OBJECT_UNUSED, p, &o); if (r < 0) goto fail; s = journal_object_type_to_string(o->object.type); switch (o->object.type) { case OBJECT_ENTRY: assert(s); printf("Type: %s seqnum=%"PRIu64" monotonic=%"PRIu64" realtime=%"PRIu64"\n", s, le64toh(o->entry.seqnum), le64toh(o->entry.monotonic), le64toh(o->entry.realtime)); break; case OBJECT_TAG: assert(s); printf("Type: %s seqnum=%"PRIu64" epoch=%"PRIu64"\n", s, le64toh(o->tag.seqnum), le64toh(o->tag.epoch)); break; default: if (s) printf("Type: %s \n", s); else printf("Type: unknown (%i)", o->object.type); break; } c = COMPRESSION_FROM_OBJECT(o); if (c > COMPRESSION_NONE) printf("Flags: %s\n", compression_to_string(c)); if (p == le64toh(f->header->tail_object_offset)) p = 0; else p += ALIGN64(le64toh(o->object.size)); } return; fail: log_error("File corrupt"); } /* Note: the lifetime of the compound literal is the immediately surrounding block. */ #define FORMAT_TIMESTAMP_SAFE(t) (FORMAT_TIMESTAMP(t) ?: " --- ") void journal_file_print_header(JournalFile *f) { struct stat st; assert(f); assert(f->header); printf("File path: %s\n" "File ID: %s\n" "Machine ID: %s\n" "Boot ID: %s\n" "Sequential number ID: %s\n" "State: %s\n" "Compatible flags:%s%s\n" "Incompatible flags:%s%s%s%s%s\n" "Header size: %"PRIu64"\n" "Arena size: %"PRIu64"\n" "Data hash table size: %"PRIu64"\n" "Field hash table size: %"PRIu64"\n" "Rotate suggested: %s\n" "Head sequential number: %"PRIu64" (%"PRIx64")\n" "Tail sequential number: %"PRIu64" (%"PRIx64")\n" "Head realtime timestamp: %s (%"PRIx64")\n" "Tail realtime timestamp: %s (%"PRIx64")\n" "Tail monotonic timestamp: %s (%"PRIx64")\n" "Objects: %"PRIu64"\n" "Entry objects: %"PRIu64"\n", f->path, SD_ID128_TO_STRING(f->header->file_id), SD_ID128_TO_STRING(f->header->machine_id), SD_ID128_TO_STRING(f->header->boot_id), SD_ID128_TO_STRING(f->header->seqnum_id), f->header->state == STATE_OFFLINE ? "OFFLINE" : f->header->state == STATE_ONLINE ? "ONLINE" : f->header->state == STATE_ARCHIVED ? "ARCHIVED" : "UNKNOWN", JOURNAL_HEADER_SEALED(f->header) ? " SEALED" : "", (le32toh(f->header->compatible_flags) & ~HEADER_COMPATIBLE_ANY) ? " ???" : "", JOURNAL_HEADER_COMPRESSED_XZ(f->header) ? " COMPRESSED-XZ" : "", JOURNAL_HEADER_COMPRESSED_LZ4(f->header) ? " COMPRESSED-LZ4" : "", JOURNAL_HEADER_COMPRESSED_ZSTD(f->header) ? " COMPRESSED-ZSTD" : "", JOURNAL_HEADER_KEYED_HASH(f->header) ? " KEYED-HASH" : "", (le32toh(f->header->incompatible_flags) & ~HEADER_INCOMPATIBLE_ANY) ? " ???" : "", le64toh(f->header->header_size), le64toh(f->header->arena_size), le64toh(f->header->data_hash_table_size) / sizeof(HashItem), le64toh(f->header->field_hash_table_size) / sizeof(HashItem), yes_no(journal_file_rotate_suggested(f, 0, LOG_DEBUG)), le64toh(f->header->head_entry_seqnum), le64toh(f->header->head_entry_seqnum), le64toh(f->header->tail_entry_seqnum), le64toh(f->header->tail_entry_seqnum), FORMAT_TIMESTAMP_SAFE(le64toh(f->header->head_entry_realtime)), le64toh(f->header->head_entry_realtime), FORMAT_TIMESTAMP_SAFE(le64toh(f->header->tail_entry_realtime)), le64toh(f->header->tail_entry_realtime), FORMAT_TIMESPAN(le64toh(f->header->tail_entry_monotonic), USEC_PER_MSEC), le64toh(f->header->tail_entry_monotonic), le64toh(f->header->n_objects), le64toh(f->header->n_entries)); if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) printf("Data objects: %"PRIu64"\n" "Data hash table fill: %.1f%%\n", le64toh(f->header->n_data), 100.0 * (double) le64toh(f->header->n_data) / ((double) (le64toh(f->header->data_hash_table_size) / sizeof(HashItem)))); if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) printf("Field objects: %"PRIu64"\n" "Field hash table fill: %.1f%%\n", le64toh(f->header->n_fields), 100.0 * (double) le64toh(f->header->n_fields) / ((double) (le64toh(f->header->field_hash_table_size) / sizeof(HashItem)))); if (JOURNAL_HEADER_CONTAINS(f->header, n_tags)) printf("Tag objects: %"PRIu64"\n", le64toh(f->header->n_tags)); if (JOURNAL_HEADER_CONTAINS(f->header, n_entry_arrays)) printf("Entry array objects: %"PRIu64"\n", le64toh(f->header->n_entry_arrays)); if (JOURNAL_HEADER_CONTAINS(f->header, field_hash_chain_depth)) printf("Deepest field hash chain: %" PRIu64"\n", f->header->field_hash_chain_depth); if (JOURNAL_HEADER_CONTAINS(f->header, data_hash_chain_depth)) printf("Deepest data hash chain: %" PRIu64"\n", f->header->data_hash_chain_depth); if (fstat(f->fd, &st) >= 0) printf("Disk usage: %s\n", FORMAT_BYTES((uint64_t) st.st_blocks * 512ULL)); } static int journal_file_warn_btrfs(JournalFile *f) { unsigned attrs; int r; assert(f); /* Before we write anything, check if the COW logic is turned * off on btrfs. Given our write pattern that is quite * unfriendly to COW file systems this should greatly improve * performance on COW file systems, such as btrfs, at the * expense of data integrity features (which shouldn't be too * bad, given that we do our own checksumming). */ r = fd_is_fs_type(f->fd, BTRFS_SUPER_MAGIC); if (r < 0) return log_warning_errno(r, "Failed to determine if journal is on btrfs: %m"); if (!r) return 0; r = read_attr_fd(f->fd, &attrs); if (r < 0) return log_warning_errno(r, "Failed to read file attributes: %m"); if (attrs & FS_NOCOW_FL) { log_debug("Detected btrfs file system with copy-on-write disabled, all is good."); return 0; } log_notice("Creating journal file %s on a btrfs file system, and copy-on-write is enabled. " "This is likely to slow down journal access substantially, please consider turning " "off the copy-on-write file attribute on the journal directory, using chattr +C.", f->path); return 1; } static void journal_default_metrics(JournalMetrics *m, int fd) { struct statvfs ss; uint64_t fs_size = 0; assert(m); assert(fd >= 0); if (fstatvfs(fd, &ss) >= 0) fs_size = ss.f_frsize * ss.f_blocks; else log_debug_errno(errno, "Failed to determine disk size: %m"); if (m->max_use == UINT64_MAX) { if (fs_size > 0) m->max_use = CLAMP(PAGE_ALIGN(fs_size / 10), /* 10% of file system size */ MAX_USE_LOWER, MAX_USE_UPPER); else m->max_use = MAX_USE_LOWER; } else { m->max_use = PAGE_ALIGN(m->max_use); if (m->max_use != 0 && m->max_use < JOURNAL_FILE_SIZE_MIN*2) m->max_use = JOURNAL_FILE_SIZE_MIN*2; } if (m->min_use == UINT64_MAX) { if (fs_size > 0) m->min_use = CLAMP(PAGE_ALIGN(fs_size / 50), /* 2% of file system size */ MIN_USE_LOW, MIN_USE_HIGH); else m->min_use = MIN_USE_LOW; } if (m->min_use > m->max_use) m->min_use = m->max_use; if (m->max_size == UINT64_MAX) m->max_size = MIN(PAGE_ALIGN(m->max_use / 8), /* 8 chunks */ MAX_SIZE_UPPER); else m->max_size = PAGE_ALIGN(m->max_size); if (m->max_size != 0) { if (m->max_size < JOURNAL_FILE_SIZE_MIN) m->max_size = JOURNAL_FILE_SIZE_MIN; if (m->max_use != 0 && m->max_size*2 > m->max_use) m->max_use = m->max_size*2; } if (m->min_size == UINT64_MAX) m->min_size = JOURNAL_FILE_SIZE_MIN; else m->min_size = CLAMP(PAGE_ALIGN(m->min_size), JOURNAL_FILE_SIZE_MIN, m->max_size ?: UINT64_MAX); if (m->keep_free == UINT64_MAX) { if (fs_size > 0) m->keep_free = MIN(PAGE_ALIGN(fs_size / 20), /* 5% of file system size */ KEEP_FREE_UPPER); else m->keep_free = DEFAULT_KEEP_FREE; } if (m->n_max_files == UINT64_MAX) m->n_max_files = DEFAULT_N_MAX_FILES; log_debug("Fixed min_use=%s max_use=%s max_size=%s min_size=%s keep_free=%s n_max_files=%" PRIu64, FORMAT_BYTES(m->min_use), FORMAT_BYTES(m->max_use), FORMAT_BYTES(m->max_size), FORMAT_BYTES(m->min_size), FORMAT_BYTES(m->keep_free), m->n_max_files); } int journal_file_open( int fd, const char *fname, int open_flags, JournalFileFlags file_flags, mode_t mode, uint64_t compress_threshold_bytes, JournalMetrics *metrics, MMapCache *mmap_cache, JournalFile *template, JournalFile **ret) { bool newly_created = false; JournalFile *f; void *h; int r; assert(ret); assert(fd >= 0 || fname); assert(mmap_cache); if (!IN_SET((open_flags & O_ACCMODE), O_RDONLY, O_RDWR)) return -EINVAL; if ((open_flags & O_ACCMODE) == O_RDONLY && FLAGS_SET(open_flags, O_CREAT)) return -EINVAL; if (fname && (open_flags & O_CREAT) && !endswith(fname, ".journal")) return -EINVAL; f = new(JournalFile, 1); if (!f) return -ENOMEM; *f = (JournalFile) { .fd = fd, .mode = mode, .open_flags = open_flags, .compress_threshold_bytes = compress_threshold_bytes == UINT64_MAX ? DEFAULT_COMPRESS_THRESHOLD : MAX(MIN_COMPRESS_THRESHOLD, compress_threshold_bytes), }; if (fname) { f->path = strdup(fname); if (!f->path) { r = -ENOMEM; goto fail; } } else { assert(fd >= 0); /* If we don't know the path, fill in something explanatory and vaguely useful */ if (asprintf(&f->path, "/proc/self/%i", fd) < 0) { r = -ENOMEM; goto fail; } } f->chain_cache = ordered_hashmap_new(&uint64_hash_ops); if (!f->chain_cache) { r = -ENOMEM; goto fail; } if (f->fd < 0) { /* We pass O_NONBLOCK here, so that in case somebody pointed us to some character device node or FIFO * or so, we likely fail quickly than block for long. For regular files O_NONBLOCK has no effect, hence * it doesn't hurt in that case. */ f->fd = openat_report_new(AT_FDCWD, f->path, f->open_flags|O_CLOEXEC|O_NONBLOCK, f->mode, &newly_created); if (f->fd < 0) { r = f->fd; goto fail; } /* fds we opened here by us should also be closed by us. */ f->close_fd = true; r = fd_nonblock(f->fd, false); if (r < 0) goto fail; if (!newly_created) { r = journal_file_fstat(f); if (r < 0) goto fail; } } else { r = journal_file_fstat(f); if (r < 0) goto fail; /* If we just got the fd passed in, we don't really know if we created the file anew */ newly_created = f->last_stat.st_size == 0 && journal_file_writable(f); } f->cache_fd = mmap_cache_add_fd(mmap_cache, f->fd, prot_from_flags(open_flags)); if (!f->cache_fd) { r = -ENOMEM; goto fail; } if (newly_created) { (void) journal_file_warn_btrfs(f); /* Let's attach the creation time to the journal file, so that the vacuuming code knows the age of this * file even if the file might end up corrupted one day... Ideally we'd just use the creation time many * file systems maintain for each file, but the API to query this is very new, hence let's emulate this * via extended attributes. If extended attributes are not supported we'll just skip this, and rely * solely on mtime/atime/ctime of the file. */ (void) fd_setcrtime(f->fd, 0); r = journal_file_init_header(f, file_flags, template); if (r < 0) goto fail; r = journal_file_fstat(f); if (r < 0) goto fail; } if (f->last_stat.st_size < (off_t) HEADER_SIZE_MIN) { r = -ENODATA; goto fail; } r = mmap_cache_fd_get(f->cache_fd, CONTEXT_HEADER, true, 0, PAGE_ALIGN(sizeof(Header)), &f->last_stat, &h); if (r == -EINVAL) { /* Some file systems (jffs2 or p9fs) don't support mmap() properly (or only read-only * mmap()), and return EINVAL in that case. Let's propagate that as a more recognizable error * code. */ r = -EAFNOSUPPORT; goto fail; } if (r < 0) goto fail; f->header = h; if (!newly_created) { r = journal_file_verify_header(f); if (r < 0) goto fail; } #if HAVE_GCRYPT if (!newly_created && journal_file_writable(f) && JOURNAL_HEADER_SEALED(f->header)) { r = journal_file_fss_load(f); if (r < 0) goto fail; } #endif if (journal_file_writable(f)) { if (metrics) { journal_default_metrics(metrics, f->fd); f->metrics = *metrics; } else if (template) f->metrics = template->metrics; r = journal_file_refresh_header(f); if (r < 0) goto fail; } #if HAVE_GCRYPT r = journal_file_hmac_setup(f); if (r < 0) goto fail; #endif if (newly_created) { r = journal_file_setup_field_hash_table(f); if (r < 0) goto fail; r = journal_file_setup_data_hash_table(f); if (r < 0) goto fail; #if HAVE_GCRYPT r = journal_file_append_first_tag(f); if (r < 0) goto fail; #endif } if (mmap_cache_fd_got_sigbus(f->cache_fd)) { r = -EIO; goto fail; } if (template && template->post_change_timer) { r = journal_file_enable_post_change_timer( f, sd_event_source_get_event(template->post_change_timer), template->post_change_timer_period); if (r < 0) goto fail; } /* The file is opened now successfully, thus we take possession of any passed in fd. */ f->close_fd = true; if (DEBUG_LOGGING) { static int last_seal = -1, last_compress = -1, last_keyed_hash = -1; static uint64_t last_bytes = UINT64_MAX; if (last_seal != JOURNAL_HEADER_SEALED(f->header) || last_keyed_hash != JOURNAL_HEADER_KEYED_HASH(f->header) || last_compress != JOURNAL_FILE_COMPRESS(f) || last_bytes != f->compress_threshold_bytes) { log_debug("Journal effective settings seal=%s keyed_hash=%s compress=%s compress_threshold_bytes=%s", yes_no(JOURNAL_HEADER_SEALED(f->header)), yes_no(JOURNAL_HEADER_KEYED_HASH(f->header)), yes_no(JOURNAL_FILE_COMPRESS(f)), FORMAT_BYTES(f->compress_threshold_bytes)); last_seal = JOURNAL_HEADER_SEALED(f->header); last_keyed_hash = JOURNAL_HEADER_KEYED_HASH(f->header); last_compress = JOURNAL_FILE_COMPRESS(f); last_bytes = f->compress_threshold_bytes; } } *ret = f; return 0; fail: if (f->cache_fd && mmap_cache_fd_got_sigbus(f->cache_fd)) r = -EIO; (void) journal_file_close(f); if (newly_created && fd < 0) (void) unlink(fname); return r; } int journal_file_archive(JournalFile *f, char **ret_previous_path) { _cleanup_free_ char *p = NULL; assert(f); if (!journal_file_writable(f)) return -EINVAL; /* Is this a journal file that was passed to us as fd? If so, we synthesized a path name for it, and we refuse * rotation, since we don't know the actual path, and couldn't rename the file hence. */ if (path_startswith(f->path, "/proc/self/fd")) return -EINVAL; if (!endswith(f->path, ".journal")) return -EINVAL; if (asprintf(&p, "%.*s@" SD_ID128_FORMAT_STR "-%016"PRIx64"-%016"PRIx64".journal", (int) strlen(f->path) - 8, f->path, SD_ID128_FORMAT_VAL(f->header->seqnum_id), le64toh(f->header->head_entry_seqnum), le64toh(f->header->head_entry_realtime)) < 0) return -ENOMEM; /* Try to rename the file to the archived version. If the file already was deleted, we'll get ENOENT, let's * ignore that case. */ if (rename(f->path, p) < 0 && errno != ENOENT) return -errno; /* Sync the rename to disk */ (void) fsync_directory_of_file(f->fd); if (ret_previous_path) *ret_previous_path = f->path; else free(f->path); f->path = TAKE_PTR(p); /* Set as archive so offlining commits w/state=STATE_ARCHIVED. Previously we would set old_file->header->state * to STATE_ARCHIVED directly here, but journal_file_set_offline() short-circuits when state != STATE_ONLINE, * which would result in the rotated journal never getting fsync() called before closing. Now we simply queue * the archive state by setting an archive bit, leaving the state as STATE_ONLINE so proper offlining * occurs. */ f->archive = true; return 0; } int journal_file_dispose(int dir_fd, const char *fname) { _cleanup_free_ char *p = NULL; assert(fname); /* Renames a journal file to *.journal~, i.e. to mark it as corrupted or otherwise uncleanly shutdown. Note that * this is done without looking into the file or changing any of its contents. The idea is that this is called * whenever something is suspicious and we want to move the file away and make clear that it is not accessed * for writing anymore. */ if (!endswith(fname, ".journal")) return -EINVAL; if (asprintf(&p, "%.*s@%016" PRIx64 "-%016" PRIx64 ".journal~", (int) strlen(fname) - 8, fname, now(CLOCK_REALTIME), random_u64()) < 0) return -ENOMEM; if (renameat(dir_fd, fname, dir_fd, p) < 0) return -errno; return 0; } int journal_file_copy_entry(JournalFile *from, JournalFile *to, Object *o, uint64_t p) { uint64_t q, n, xor_hash = 0; const sd_id128_t *boot_id; dual_timestamp ts; EntryItem *items; int r; assert(from); assert(to); assert(o); assert(p); if (!journal_file_writable(to)) return -EPERM; ts = (dual_timestamp) { .monotonic = le64toh(o->entry.monotonic), .realtime = le64toh(o->entry.realtime), }; boot_id = &o->entry.boot_id; n = journal_file_entry_n_items(o); items = newa(EntryItem, n); for (uint64_t i = 0; i < n; i++) { Compression c; uint64_t l, h; size_t t; void *data; Object *u; q = le64toh(o->entry.items[i].object_offset); r = journal_file_move_to_object(from, OBJECT_DATA, q, &o); if (r < 0) return r; l = le64toh(READ_NOW(o->object.size)); if (l < offsetof(Object, data.payload)) return -EBADMSG; l -= offsetof(Object, data.payload); t = (size_t) l; /* We hit the limit on 32bit machines */ if ((uint64_t) t != l) return -E2BIG; c = COMPRESSION_FROM_OBJECT(o); if (c < 0) return -EPROTONOSUPPORT; if (c != COMPRESSION_NONE) { #if HAVE_COMPRESSION size_t rsize = 0; r = decompress_blob( c, o->data.payload, l, &from->compress_buffer, &rsize, 0); if (r < 0) return r; data = from->compress_buffer; l = rsize; #else return -EPROTONOSUPPORT; #endif } else data = o->data.payload; if (l == 0) return -EBADMSG; r = journal_file_append_data(to, data, l, &u, &h); if (r < 0) return r; if (JOURNAL_HEADER_KEYED_HASH(to->header)) xor_hash ^= jenkins_hash64(data, l); else xor_hash ^= le64toh(u->data.hash); items[i] = (EntryItem) { .object_offset = htole64(h), .hash = u->data.hash, }; r = journal_file_move_to_object(from, OBJECT_ENTRY, p, &o); if (r < 0) return r; } r = journal_file_append_entry_internal(to, &ts, boot_id, xor_hash, items, n, NULL, NULL, NULL); if (mmap_cache_fd_got_sigbus(to->cache_fd)) return -EIO; return r; } void journal_reset_metrics(JournalMetrics *m) { assert(m); /* Set everything to "pick automatic values". */ *m = (JournalMetrics) { .min_use = UINT64_MAX, .max_use = UINT64_MAX, .min_size = UINT64_MAX, .max_size = UINT64_MAX, .keep_free = UINT64_MAX, .n_max_files = UINT64_MAX, }; } int journal_file_get_cutoff_realtime_usec(JournalFile *f, usec_t *from, usec_t *to) { assert(f); assert(f->header); assert(from || to); if (from) { if (f->header->head_entry_realtime == 0) return -ENOENT; *from = le64toh(f->header->head_entry_realtime); } if (to) { if (f->header->tail_entry_realtime == 0) return -ENOENT; *to = le64toh(f->header->tail_entry_realtime); } return 1; } int journal_file_get_cutoff_monotonic_usec(JournalFile *f, sd_id128_t boot_id, usec_t *from, usec_t *to) { Object *o; uint64_t p; int r; assert(f); assert(from || to); r = find_data_object_by_boot_id(f, boot_id, &o, &p); if (r <= 0) return r; if (le64toh(o->data.n_entries) <= 0) return 0; if (from) { r = journal_file_move_to_object(f, OBJECT_ENTRY, le64toh(o->data.entry_offset), &o); if (r < 0) return r; *from = le64toh(o->entry.monotonic); } if (to) { r = journal_file_move_to_object(f, OBJECT_DATA, p, &o); if (r < 0) return r; r = generic_array_get_plus_one(f, le64toh(o->data.entry_offset), le64toh(o->data.entry_array_offset), le64toh(o->data.n_entries) - 1, DIRECTION_UP, &o, NULL); if (r <= 0) return r; *to = le64toh(o->entry.monotonic); } return 1; } bool journal_file_rotate_suggested(JournalFile *f, usec_t max_file_usec, int log_level) { assert(f); assert(f->header); /* If we gained new header fields we gained new features, * hence suggest a rotation */ if (le64toh(f->header->header_size) < sizeof(Header)) { log_full(log_level, "%s uses an outdated header, suggesting rotation.", f->path); return true; } /* Let's check if the hash tables grew over a certain fill level (75%, borrowing this value from * Java's hash table implementation), and if so suggest a rotation. To calculate the fill level we * need the n_data field, which only exists in newer versions. */ if (JOURNAL_HEADER_CONTAINS(f->header, n_data)) if (le64toh(f->header->n_data) * 4ULL > (le64toh(f->header->data_hash_table_size) / sizeof(HashItem)) * 3ULL) { log_full(log_level, "Data hash table of %s has a fill level at %.1f (%"PRIu64" of %"PRIu64" items, %llu file size, %"PRIu64" bytes per hash table item), suggesting rotation.", f->path, 100.0 * (double) le64toh(f->header->n_data) / ((double) (le64toh(f->header->data_hash_table_size) / sizeof(HashItem))), le64toh(f->header->n_data), le64toh(f->header->data_hash_table_size) / sizeof(HashItem), (unsigned long long) f->last_stat.st_size, f->last_stat.st_size / le64toh(f->header->n_data)); return true; } if (JOURNAL_HEADER_CONTAINS(f->header, n_fields)) if (le64toh(f->header->n_fields) * 4ULL > (le64toh(f->header->field_hash_table_size) / sizeof(HashItem)) * 3ULL) { log_full(log_level, "Field hash table of %s has a fill level at %.1f (%"PRIu64" of %"PRIu64" items), suggesting rotation.", f->path, 100.0 * (double) le64toh(f->header->n_fields) / ((double) (le64toh(f->header->field_hash_table_size) / sizeof(HashItem))), le64toh(f->header->n_fields), le64toh(f->header->field_hash_table_size) / sizeof(HashItem)); return true; } /* If there are too many hash collisions somebody is most likely playing games with us. Hence, if our * longest chain is longer than some threshold, let's suggest rotation. */ if (JOURNAL_HEADER_CONTAINS(f->header, data_hash_chain_depth) && le64toh(f->header->data_hash_chain_depth) > HASH_CHAIN_DEPTH_MAX) { log_full(log_level, "Data hash table of %s has deepest hash chain of length %" PRIu64 ", suggesting rotation.", f->path, le64toh(f->header->data_hash_chain_depth)); return true; } if (JOURNAL_HEADER_CONTAINS(f->header, field_hash_chain_depth) && le64toh(f->header->field_hash_chain_depth) > HASH_CHAIN_DEPTH_MAX) { log_full(log_level, "Field hash table of %s has deepest hash chain of length at %" PRIu64 ", suggesting rotation.", f->path, le64toh(f->header->field_hash_chain_depth)); return true; } /* Are the data objects properly indexed by field objects? */ if (JOURNAL_HEADER_CONTAINS(f->header, n_data) && JOURNAL_HEADER_CONTAINS(f->header, n_fields) && le64toh(f->header->n_data) > 0 && le64toh(f->header->n_fields) == 0) { log_full(log_level, "Data objects of %s are not indexed by field objects, suggesting rotation.", f->path); return true; } if (max_file_usec > 0) { usec_t t, h; h = le64toh(f->header->head_entry_realtime); t = now(CLOCK_REALTIME); if (h > 0 && t > h + max_file_usec) { log_full(log_level, "Oldest entry in %s is older than the configured file retention duration (%s), suggesting rotation.", f->path, FORMAT_TIMESPAN(max_file_usec, USEC_PER_SEC)); return true; } } return false; } static const char * const journal_object_type_table[] = { [OBJECT_UNUSED] = "unused", [OBJECT_DATA] = "data", [OBJECT_FIELD] = "field", [OBJECT_ENTRY] = "entry", [OBJECT_DATA_HASH_TABLE] = "data hash table", [OBJECT_FIELD_HASH_TABLE] = "field hash table", [OBJECT_ENTRY_ARRAY] = "entry array", [OBJECT_TAG] = "tag", }; DEFINE_STRING_TABLE_LOOKUP_TO_STRING(journal_object_type, ObjectType);