/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #include #include "sd-bus.h" #include "af-list.h" #include "alloc-util.h" #include "bus-container.h" #include "bus-control.h" #include "bus-internal.h" #include "bus-kernel.h" #include "bus-label.h" #include "bus-message.h" #include "bus-objects.h" #include "bus-protocol.h" #include "bus-slot.h" #include "bus-socket.h" #include "bus-track.h" #include "bus-type.h" #include "cgroup-util.h" #include "def.h" #include "errno-util.h" #include "fd-util.h" #include "hexdecoct.h" #include "hostname-util.h" #include "io-util.h" #include "macro.h" #include "memory-util.h" #include "missing_syscall.h" #include "parse-util.h" #include "path-util.h" #include "process-util.h" #include "stdio-util.h" #include "string-util.h" #include "strv.h" #include "user-util.h" #define log_debug_bus_message(m) \ do { \ sd_bus_message *_mm = (m); \ log_debug("Got message type=%s sender=%s destination=%s path=%s interface=%s member=%s cookie=%" PRIu64 " reply_cookie=%" PRIu64 " signature=%s error-name=%s error-message=%s", \ bus_message_type_to_string(_mm->header->type), \ strna(sd_bus_message_get_sender(_mm)), \ strna(sd_bus_message_get_destination(_mm)), \ strna(sd_bus_message_get_path(_mm)), \ strna(sd_bus_message_get_interface(_mm)), \ strna(sd_bus_message_get_member(_mm)), \ BUS_MESSAGE_COOKIE(_mm), \ _mm->reply_cookie, \ strna(_mm->root_container.signature), \ strna(_mm->error.name), \ strna(_mm->error.message)); \ } while (false) static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec); static void bus_detach_io_events(sd_bus *b); static thread_local sd_bus *default_system_bus = NULL; static thread_local sd_bus *default_user_bus = NULL; static thread_local sd_bus *default_starter_bus = NULL; static sd_bus **bus_choose_default(int (**bus_open)(sd_bus **)) { const char *e; /* Let's try our best to reuse another cached connection. If * the starter bus type is set, connect via our normal * connection logic, ignoring $DBUS_STARTER_ADDRESS, so that * we can share the connection with the user/system default * bus. */ e = secure_getenv("DBUS_STARTER_BUS_TYPE"); if (e) { if (streq(e, "system")) { if (bus_open) *bus_open = sd_bus_open_system; return &default_system_bus; } else if (STR_IN_SET(e, "user", "session")) { if (bus_open) *bus_open = sd_bus_open_user; return &default_user_bus; } } /* No type is specified, so we have not other option than to * use the starter address if it is set. */ e = secure_getenv("DBUS_STARTER_ADDRESS"); if (e) { if (bus_open) *bus_open = sd_bus_open; return &default_starter_bus; } /* Finally, if nothing is set use the cached connection for * the right scope */ if (cg_pid_get_owner_uid(0, NULL) >= 0) { if (bus_open) *bus_open = sd_bus_open_user; return &default_user_bus; } else { if (bus_open) *bus_open = sd_bus_open_system; return &default_system_bus; } } sd_bus *bus_resolve(sd_bus *bus) { switch ((uintptr_t) bus) { case (uintptr_t) SD_BUS_DEFAULT: return *(bus_choose_default(NULL)); case (uintptr_t) SD_BUS_DEFAULT_USER: return default_user_bus; case (uintptr_t) SD_BUS_DEFAULT_SYSTEM: return default_system_bus; default: return bus; } } void bus_close_io_fds(sd_bus *b) { assert(b); bus_detach_io_events(b); if (b->input_fd != b->output_fd) safe_close(b->output_fd); b->output_fd = b->input_fd = safe_close(b->input_fd); } void bus_close_inotify_fd(sd_bus *b) { assert(b); b->inotify_event_source = sd_event_source_disable_unref(b->inotify_event_source); b->inotify_fd = safe_close(b->inotify_fd); b->inotify_watches = mfree(b->inotify_watches); b->n_inotify_watches = 0; } static void bus_reset_queues(sd_bus *b) { assert(b); while (b->rqueue_size > 0) bus_message_unref_queued(b->rqueue[--b->rqueue_size], b); b->rqueue = mfree(b->rqueue); while (b->wqueue_size > 0) bus_message_unref_queued(b->wqueue[--b->wqueue_size], b); b->wqueue = mfree(b->wqueue); } static sd_bus* bus_free(sd_bus *b) { sd_bus_slot *s; assert(b); assert(!b->track_queue); assert(!b->tracks); b->state = BUS_CLOSED; sd_bus_detach_event(b); while ((s = b->slots)) { /* At this point only floating slots can still be * around, because the non-floating ones keep a * reference to the bus, and we thus couldn't be * destructing right now... We forcibly disconnect the * slots here, so that they still can be referenced by * apps, but are dead. */ assert(s->floating); bus_slot_disconnect(s, true); } if (b->default_bus_ptr) *b->default_bus_ptr = NULL; bus_close_io_fds(b); bus_close_inotify_fd(b); free(b->label); free(b->groups); free(b->rbuffer); free(b->unique_name); free(b->auth_buffer); free(b->address); free(b->machine); free(b->description); free(b->patch_sender); free(b->exec_path); strv_free(b->exec_argv); close_many(b->fds, b->n_fds); free(b->fds); bus_reset_queues(b); ordered_hashmap_free_free(b->reply_callbacks); prioq_free(b->reply_callbacks_prioq); assert(b->match_callbacks.type == BUS_MATCH_ROOT); bus_match_free(&b->match_callbacks); hashmap_free_free(b->vtable_methods); hashmap_free_free(b->vtable_properties); assert(hashmap_isempty(b->nodes)); hashmap_free(b->nodes); bus_flush_memfd(b); assert_se(pthread_mutex_destroy(&b->memfd_cache_mutex) == 0); return mfree(b); } DEFINE_TRIVIAL_CLEANUP_FUNC(sd_bus*, bus_free); _public_ int sd_bus_new(sd_bus **ret) { _cleanup_free_ sd_bus *b = NULL; assert_return(ret, -EINVAL); b = new(sd_bus, 1); if (!b) return -ENOMEM; *b = (sd_bus) { .n_ref = 1, .input_fd = -1, .output_fd = -1, .inotify_fd = -1, .message_version = 1, .creds_mask = SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME, .accept_fd = true, .original_pid = getpid_cached(), .n_groups = SIZE_MAX, .close_on_exit = true, .ucred = UCRED_INVALID, }; /* We guarantee that wqueue always has space for at least one entry */ if (!GREEDY_REALLOC(b->wqueue, 1)) return -ENOMEM; assert_se(pthread_mutex_init(&b->memfd_cache_mutex, NULL) == 0); *ret = TAKE_PTR(b); return 0; } _public_ int sd_bus_set_address(sd_bus *bus, const char *address) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(address, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); return free_and_strdup(&bus->address, address); } _public_ int sd_bus_set_fd(sd_bus *bus, int input_fd, int output_fd) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(input_fd >= 0, -EBADF); assert_return(output_fd >= 0, -EBADF); assert_return(!bus_pid_changed(bus), -ECHILD); bus->input_fd = input_fd; bus->output_fd = output_fd; return 0; } _public_ int sd_bus_set_exec(sd_bus *bus, const char *path, char *const *argv) { _cleanup_strv_free_ char **a = NULL; int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(path, -EINVAL); assert_return(!strv_isempty(argv), -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); a = strv_copy(argv); if (!a) return -ENOMEM; r = free_and_strdup(&bus->exec_path, path); if (r < 0) return r; return strv_free_and_replace(bus->exec_argv, a); } _public_ int sd_bus_set_bus_client(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus->patch_sender, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->bus_client = !!b; return 0; } _public_ int sd_bus_set_monitor(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->is_monitor = !!b; return 0; } _public_ int sd_bus_negotiate_fds(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->accept_fd = !!b; return 0; } _public_ int sd_bus_negotiate_timestamp(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!IN_SET(bus->state, BUS_CLOSING, BUS_CLOSED), -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); /* This is not actually supported by any of our transports these days, but we do honour it for synthetic * replies, and maybe one day classic D-Bus learns this too */ bus->attach_timestamp = !!b; return 0; } _public_ int sd_bus_negotiate_creds(sd_bus *bus, int b, uint64_t mask) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(mask <= _SD_BUS_CREDS_ALL, -EINVAL); assert_return(!IN_SET(bus->state, BUS_CLOSING, BUS_CLOSED), -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); SET_FLAG(bus->creds_mask, mask, b); /* The well knowns we need unconditionally, so that matches can work */ bus->creds_mask |= SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME; return 0; } _public_ int sd_bus_set_server(sd_bus *bus, int b, sd_id128_t server_id) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(b || sd_id128_equal(server_id, SD_ID128_NULL), -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->is_server = !!b; bus->server_id = server_id; return 0; } _public_ int sd_bus_set_anonymous(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->anonymous_auth = !!b; return 0; } _public_ int sd_bus_set_trusted(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->trusted = !!b; return 0; } _public_ int sd_bus_set_description(sd_bus *bus, const char *description) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); return free_and_strdup(&bus->description, description); } _public_ int sd_bus_set_allow_interactive_authorization(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); bus->allow_interactive_authorization = !!b; return 0; } _public_ int sd_bus_get_allow_interactive_authorization(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->allow_interactive_authorization; } _public_ int sd_bus_set_watch_bind(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->watch_bind = !!b; return 0; } _public_ int sd_bus_get_watch_bind(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->watch_bind; } _public_ int sd_bus_set_connected_signal(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->connected_signal = !!b; return 0; } _public_ int sd_bus_get_connected_signal(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->connected_signal; } static int synthesize_connected_signal(sd_bus *bus) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL; int r; assert(bus); /* If enabled, synthesizes a local "Connected" signal mirroring the local "Disconnected" signal. This is called * whenever we fully established a connection, i.e. after the authorization phase, and after receiving the * Hello() reply. Or in other words, whenever we enter BUS_RUNNING state. * * This is useful so that clients can start doing stuff whenever the connection is fully established in a way * that works independently from whether we connected to a full bus or just a direct connection. */ if (!bus->connected_signal) return 0; r = sd_bus_message_new_signal( bus, &m, "/org/freedesktop/DBus/Local", "org.freedesktop.DBus.Local", "Connected"); if (r < 0) return r; bus_message_set_sender_local(bus, m); m->read_counter = ++bus->read_counter; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; r = bus_rqueue_make_room(bus); if (r < 0) return r; /* Insert at the very front */ memmove(bus->rqueue + 1, bus->rqueue, sizeof(sd_bus_message*) * bus->rqueue_size); bus->rqueue[0] = bus_message_ref_queued(m, bus); bus->rqueue_size++; return 0; } void bus_set_state(sd_bus *bus, enum bus_state state) { static const char * const table[_BUS_STATE_MAX] = { [BUS_UNSET] = "UNSET", [BUS_WATCH_BIND] = "WATCH_BIND", [BUS_OPENING] = "OPENING", [BUS_AUTHENTICATING] = "AUTHENTICATING", [BUS_HELLO] = "HELLO", [BUS_RUNNING] = "RUNNING", [BUS_CLOSING] = "CLOSING", [BUS_CLOSED] = "CLOSED", }; assert(bus); assert(state < _BUS_STATE_MAX); if (state == bus->state) return; log_debug("Bus %s: changing state %s → %s", strna(bus->description), table[bus->state], table[state]); bus->state = state; } static int hello_callback(sd_bus_message *reply, void *userdata, sd_bus_error *error) { const char *s; sd_bus *bus; int r; assert(reply); bus = reply->bus; assert(bus); assert(IN_SET(bus->state, BUS_HELLO, BUS_CLOSING)); r = sd_bus_message_get_errno(reply); if (r > 0) { r = -r; goto fail; } r = sd_bus_message_read(reply, "s", &s); if (r < 0) goto fail; if (!service_name_is_valid(s) || s[0] != ':') { r = -EBADMSG; goto fail; } r = free_and_strdup(&bus->unique_name, s); if (r < 0) goto fail; if (bus->state == BUS_HELLO) { bus_set_state(bus, BUS_RUNNING); r = synthesize_connected_signal(bus); if (r < 0) goto fail; } return 1; fail: /* When Hello() failed, let's propagate this in two ways: first we return the error immediately here, * which is the propagated up towards the event loop. Let's also invalidate the connection, so that * if the user then calls back into us again we won't wait any longer. */ bus_set_state(bus, BUS_CLOSING); return r; } static int bus_send_hello(sd_bus *bus) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL; int r; assert(bus); if (!bus->bus_client) return 0; r = sd_bus_message_new_method_call( bus, &m, "org.freedesktop.DBus", "/org/freedesktop/DBus", "org.freedesktop.DBus", "Hello"); if (r < 0) return r; return sd_bus_call_async(bus, NULL, m, hello_callback, NULL, 0); } int bus_start_running(sd_bus *bus) { struct reply_callback *c; usec_t n; int r; assert(bus); assert(bus->state < BUS_HELLO); /* We start all method call timeouts when we enter BUS_HELLO or BUS_RUNNING mode. At this point let's convert * all relative to absolute timestamps. Note that we do not reshuffle the reply callback priority queue since * adding a fixed value to all entries should not alter the internal order. */ n = now(CLOCK_MONOTONIC); ORDERED_HASHMAP_FOREACH(c, bus->reply_callbacks) { if (c->timeout_usec == 0) continue; c->timeout_usec = usec_add(n, c->timeout_usec); } if (bus->bus_client) { bus_set_state(bus, BUS_HELLO); return 1; } bus_set_state(bus, BUS_RUNNING); r = synthesize_connected_signal(bus); if (r < 0) return r; return 1; } static int parse_address_key(const char **p, const char *key, char **value) { _cleanup_free_ char *r = NULL; size_t l, n = 0; const char *a; assert(p); assert(*p); assert(value); if (key) { l = strlen(key); if (strncmp(*p, key, l) != 0) return 0; if ((*p)[l] != '=') return 0; if (*value) return -EINVAL; a = *p + l + 1; } else a = *p; while (!IN_SET(*a, ';', ',', 0)) { char c; if (*a == '%') { int x, y; x = unhexchar(a[1]); if (x < 0) return x; y = unhexchar(a[2]); if (y < 0) return y; c = (char) ((x << 4) | y); a += 3; } else { c = *a; a++; } if (!GREEDY_REALLOC(r, n + 2)) return -ENOMEM; r[n++] = c; } if (!r) { r = strdup(""); if (!r) return -ENOMEM; } else r[n] = 0; if (*a == ',') a++; *p = a; free_and_replace(*value, r); return 1; } static void skip_address_key(const char **p) { assert(p); assert(*p); *p += strcspn(*p, ","); if (**p == ',') (*p)++; } static int parse_unix_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *path = NULL, *abstract = NULL; size_t l; int r; assert(b); assert(p); assert(*p); assert(guid); while (!IN_SET(**p, 0, ';')) { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "path", &path); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "abstract", &abstract); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!path && !abstract) return -EINVAL; if (path && abstract) return -EINVAL; if (path) { l = strlen(path); if (l >= sizeof(b->sockaddr.un.sun_path)) /* We insist on NUL termination */ return -E2BIG; b->sockaddr.un = (struct sockaddr_un) { .sun_family = AF_UNIX, }; memcpy(b->sockaddr.un.sun_path, path, l); b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + l + 1; } else { assert(abstract); l = strlen(abstract); if (l >= sizeof(b->sockaddr.un.sun_path) - 1) /* We insist on NUL termination */ return -E2BIG; b->sockaddr.un = (struct sockaddr_un) { .sun_family = AF_UNIX, }; memcpy(b->sockaddr.un.sun_path+1, abstract, l); b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + 1 + l; } b->is_local = true; return 0; } static int parse_tcp_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *host = NULL, *port = NULL, *family = NULL; int r; struct addrinfo *result, hints = { .ai_socktype = SOCK_STREAM, }; assert(b); assert(p); assert(*p); assert(guid); while (!IN_SET(**p, 0, ';')) { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "host", &host); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "port", &port); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "family", &family); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!host || !port) return -EINVAL; if (family) { hints.ai_family = af_from_ipv4_ipv6(family); if (hints.ai_family == AF_UNSPEC) return -EINVAL; } r = getaddrinfo(host, port, &hints, &result); if (r == EAI_SYSTEM) return -errno; else if (r != 0) return -EADDRNOTAVAIL; memcpy(&b->sockaddr, result->ai_addr, result->ai_addrlen); b->sockaddr_size = result->ai_addrlen; freeaddrinfo(result); b->is_local = false; return 0; } static int parse_exec_address(sd_bus *b, const char **p, char **guid) { char *path = NULL; unsigned n_argv = 0, j; char **argv = NULL; int r; assert(b); assert(p); assert(*p); assert(guid); while (!IN_SET(**p, 0, ';')) { r = parse_address_key(p, "guid", guid); if (r < 0) goto fail; else if (r > 0) continue; r = parse_address_key(p, "path", &path); if (r < 0) goto fail; else if (r > 0) continue; if (startswith(*p, "argv")) { unsigned ul; errno = 0; ul = strtoul(*p + 4, (char**) p, 10); if (errno > 0 || **p != '=' || ul > 256) { r = -EINVAL; goto fail; } (*p)++; if (ul >= n_argv) { if (!GREEDY_REALLOC0(argv, ul + 2)) { r = -ENOMEM; goto fail; } n_argv = ul + 1; } r = parse_address_key(p, NULL, argv + ul); if (r < 0) goto fail; continue; } skip_address_key(p); } if (!path) { r = -EINVAL; goto fail; } /* Make sure there are no holes in the array, with the * exception of argv[0] */ for (j = 1; j < n_argv; j++) if (!argv[j]) { r = -EINVAL; goto fail; } if (argv && argv[0] == NULL) { argv[0] = strdup(path); if (!argv[0]) { r = -ENOMEM; goto fail; } } b->exec_path = path; b->exec_argv = argv; b->is_local = false; return 0; fail: for (j = 0; j < n_argv; j++) free(argv[j]); free(argv); free(path); return r; } static int parse_container_unix_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *machine = NULL, *pid = NULL; int r; assert(b); assert(p); assert(*p); assert(guid); while (!IN_SET(**p, 0, ';')) { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "machine", &machine); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "pid", &pid); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!machine == !pid) return -EINVAL; if (machine) { if (!hostname_is_valid(machine, VALID_HOSTNAME_DOT_HOST)) return -EINVAL; free_and_replace(b->machine, machine); } else b->machine = mfree(b->machine); if (pid) { r = parse_pid(pid, &b->nspid); if (r < 0) return r; } else b->nspid = 0; b->sockaddr.un = (struct sockaddr_un) { .sun_family = AF_UNIX, /* Note that we use the old /var/run prefix here, to increase compatibility with really old containers */ .sun_path = "/var/run/dbus/system_bus_socket", }; b->sockaddr_size = SOCKADDR_UN_LEN(b->sockaddr.un); b->is_local = false; return 0; } static void bus_reset_parsed_address(sd_bus *b) { assert(b); zero(b->sockaddr); b->sockaddr_size = 0; b->exec_argv = strv_free(b->exec_argv); b->exec_path = mfree(b->exec_path); b->server_id = SD_ID128_NULL; b->machine = mfree(b->machine); b->nspid = 0; } static int bus_parse_next_address(sd_bus *b) { _cleanup_free_ char *guid = NULL; const char *a; int r; assert(b); if (!b->address) return 0; if (b->address[b->address_index] == 0) return 0; bus_reset_parsed_address(b); a = b->address + b->address_index; while (*a != 0) { if (*a == ';') { a++; continue; } if (startswith(a, "unix:")) { a += 5; r = parse_unix_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "tcp:")) { a += 4; r = parse_tcp_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "unixexec:")) { a += 9; r = parse_exec_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "x-machine-unix:")) { a += 15; r = parse_container_unix_address(b, &a, &guid); if (r < 0) return r; break; } a = strchr(a, ';'); if (!a) return 0; } if (guid) { r = sd_id128_from_string(guid, &b->server_id); if (r < 0) return r; } b->address_index = a - b->address; return 1; } static void bus_kill_exec(sd_bus *bus) { if (!pid_is_valid(bus->busexec_pid)) return; sigterm_wait(TAKE_PID(bus->busexec_pid)); } static int bus_start_address(sd_bus *b) { int r; assert(b); for (;;) { bus_close_io_fds(b); bus_close_inotify_fd(b); bus_kill_exec(b); /* If you provide multiple different bus-addresses, we * try all of them in order and use the first one that * succeeds. */ if (b->exec_path) r = bus_socket_exec(b); else if ((b->nspid > 0 || b->machine) && b->sockaddr.sa.sa_family != AF_UNSPEC) r = bus_container_connect_socket(b); else if (b->sockaddr.sa.sa_family != AF_UNSPEC) r = bus_socket_connect(b); else goto next; if (r >= 0) { int q; q = bus_attach_io_events(b); if (q < 0) return q; q = bus_attach_inotify_event(b); if (q < 0) return q; return r; } b->last_connect_error = -r; next: r = bus_parse_next_address(b); if (r < 0) return r; if (r == 0) return b->last_connect_error > 0 ? -b->last_connect_error : -ECONNREFUSED; } } int bus_next_address(sd_bus *b) { assert(b); bus_reset_parsed_address(b); return bus_start_address(b); } static int bus_start_fd(sd_bus *b) { struct stat st; int r; assert(b); assert(b->input_fd >= 0); assert(b->output_fd >= 0); if (DEBUG_LOGGING) { _cleanup_free_ char *pi = NULL, *po = NULL; (void) fd_get_path(b->input_fd, &pi); (void) fd_get_path(b->output_fd, &po); log_debug("sd-bus: starting bus%s%s on fds %d/%d (%s, %s)...", b->description ? " " : "", strempty(b->description), b->input_fd, b->output_fd, pi ?: "???", po ?: "???"); } r = fd_nonblock(b->input_fd, true); if (r < 0) return r; r = fd_cloexec(b->input_fd, true); if (r < 0) return r; if (b->input_fd != b->output_fd) { r = fd_nonblock(b->output_fd, true); if (r < 0) return r; r = fd_cloexec(b->output_fd, true); if (r < 0) return r; } if (fstat(b->input_fd, &st) < 0) return -errno; return bus_socket_take_fd(b); } _public_ int sd_bus_start(sd_bus *bus) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus_set_state(bus, BUS_OPENING); if (bus->is_server && bus->bus_client) return -EINVAL; if (bus->input_fd >= 0) r = bus_start_fd(bus); else if (bus->address || bus->sockaddr.sa.sa_family != AF_UNSPEC || bus->exec_path || bus->machine) r = bus_start_address(bus); else return -EINVAL; if (r < 0) { sd_bus_close(bus); return r; } return bus_send_hello(bus); } _public_ int sd_bus_open_with_description(sd_bus **ret, const char *description) { const char *e; _cleanup_(bus_freep) sd_bus *b = NULL; int r; assert_return(ret, -EINVAL); /* Let's connect to the starter bus if it is set, and * otherwise to the bus that is appropriate for the scope * we are running in */ e = secure_getenv("DBUS_STARTER_BUS_TYPE"); if (e) { if (streq(e, "system")) return sd_bus_open_system_with_description(ret, description); else if (STR_IN_SET(e, "session", "user")) return sd_bus_open_user_with_description(ret, description); } e = secure_getenv("DBUS_STARTER_ADDRESS"); if (!e) { if (cg_pid_get_owner_uid(0, NULL) >= 0) return sd_bus_open_user_with_description(ret, description); else return sd_bus_open_system_with_description(ret, description); } r = sd_bus_new(&b); if (r < 0) return r; r = sd_bus_set_address(b, e); if (r < 0) return r; b->bus_client = true; /* We don't know whether the bus is trusted or not, so better * be safe, and authenticate everything */ b->trusted = false; b->is_local = false; b->creds_mask |= SD_BUS_CREDS_UID | SD_BUS_CREDS_EUID | SD_BUS_CREDS_EFFECTIVE_CAPS; r = sd_bus_start(b); if (r < 0) return r; *ret = TAKE_PTR(b); return 0; } _public_ int sd_bus_open(sd_bus **ret) { return sd_bus_open_with_description(ret, NULL); } int bus_set_address_system(sd_bus *b) { const char *e; int r; assert(b); e = secure_getenv("DBUS_SYSTEM_BUS_ADDRESS"); r = sd_bus_set_address(b, e ?: DEFAULT_SYSTEM_BUS_ADDRESS); if (r >= 0) b->is_system = true; return r; } _public_ int sd_bus_open_system_with_description(sd_bus **ret, const char *description) { _cleanup_(bus_freep) sd_bus *b = NULL; int r; assert_return(ret, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; if (description) { r = sd_bus_set_description(b, description); if (r < 0) return r; } r = bus_set_address_system(b); if (r < 0) return r; b->bus_client = true; /* Let's do per-method access control on the system bus. We * need the caller's UID and capability set for that. */ b->trusted = false; b->creds_mask |= SD_BUS_CREDS_UID | SD_BUS_CREDS_EUID | SD_BUS_CREDS_EFFECTIVE_CAPS; b->is_local = true; r = sd_bus_start(b); if (r < 0) return r; *ret = TAKE_PTR(b); return 0; } _public_ int sd_bus_open_system(sd_bus **ret) { return sd_bus_open_system_with_description(ret, NULL); } int bus_set_address_user(sd_bus *b) { const char *a; _cleanup_free_ char *_a = NULL; int r; assert(b); a = secure_getenv("DBUS_SESSION_BUS_ADDRESS"); if (!a) { const char *e; _cleanup_free_ char *ee = NULL; e = secure_getenv("XDG_RUNTIME_DIR"); if (!e) return log_debug_errno(SYNTHETIC_ERRNO(ENOMEDIUM), "sd-bus: $XDG_RUNTIME_DIR not set, cannot connect to user bus."); ee = bus_address_escape(e); if (!ee) return -ENOMEM; if (asprintf(&_a, DEFAULT_USER_BUS_ADDRESS_FMT, ee) < 0) return -ENOMEM; a = _a; } r = sd_bus_set_address(b, a); if (r >= 0) b->is_user = true; return r; } _public_ int sd_bus_open_user_with_description(sd_bus **ret, const char *description) { _cleanup_(bus_freep) sd_bus *b = NULL; int r; assert_return(ret, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; if (description) { r = sd_bus_set_description(b, description); if (r < 0) return r; } r = bus_set_address_user(b); if (r < 0) return r; b->bus_client = true; /* We don't do any per-method access control on the user bus. */ b->trusted = true; b->is_local = true; r = sd_bus_start(b); if (r < 0) return r; *ret = TAKE_PTR(b); return 0; } _public_ int sd_bus_open_user(sd_bus **ret) { return sd_bus_open_user_with_description(ret, NULL); } int bus_set_address_system_remote(sd_bus *b, const char *host) { _cleanup_free_ char *e = NULL; char *m = NULL, *c = NULL, *a, *rbracket = NULL, *p = NULL; assert(b); assert(host); /* Skip ":"s in ipv6 addresses */ if (*host == '[') { char *t; rbracket = strchr(host, ']'); if (!rbracket) return -EINVAL; t = strndupa_safe(host + 1, rbracket - host - 1); e = bus_address_escape(t); if (!e) return -ENOMEM; } else if ((a = strchr(host, '@'))) { if (*(a + 1) == '[') { _cleanup_free_ char *t = NULL; rbracket = strchr(a + 1, ']'); if (!rbracket) return -EINVAL; t = new0(char, strlen(host)); if (!t) return -ENOMEM; strncat(t, host, a - host + 1); strncat(t, a + 2, rbracket - a - 2); e = bus_address_escape(t); if (!e) return -ENOMEM; } else if (*(a + 1) == '\0' || strchr(a + 1, '@')) return -EINVAL; } /* Let's see if a port was given */ m = strchr(rbracket ? rbracket + 1 : host, ':'); if (m) { char *t; bool got_forward_slash = false; p = m + 1; t = strchr(p, '/'); if (t) { p = strndupa_safe(p, t - p); got_forward_slash = true; } if (!in_charset(p, "0123456789") || *p == '\0') { if (!hostname_is_valid(p, 0) || got_forward_slash) return -EINVAL; m = TAKE_PTR(p); goto interpret_port_as_machine_old_syntax; } } /* Let's see if a machine was given */ m = strchr(rbracket ? rbracket + 1 : host, '/'); if (m) { m++; interpret_port_as_machine_old_syntax: /* Let's make sure this is not a port of some kind, * and is a valid machine name. */ if (!in_charset(m, "0123456789") && hostname_is_valid(m, 0)) c = strjoina(",argv", p ? "7" : "5", "=--machine=", m); } if (!e) { char *t; t = strndupa_safe(host, strcspn(host, ":/")); e = bus_address_escape(t); if (!e) return -ENOMEM; } a = strjoin("unixexec:path=ssh,argv1=-xT", p ? ",argv2=-p,argv3=" : "", strempty(p), ",argv", p ? "4" : "2", "=--,argv", p ? "5" : "3", "=", e, ",argv", p ? "6" : "4", "=systemd-stdio-bridge", c); if (!a) return -ENOMEM; return free_and_replace(b->address, a); } _public_ int sd_bus_open_system_remote(sd_bus **ret, const char *host) { _cleanup_(bus_freep) sd_bus *b = NULL; int r; assert_return(host, -EINVAL); assert_return(ret, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; r = bus_set_address_system_remote(b, host); if (r < 0) return r; b->bus_client = true; b->trusted = false; b->is_system = true; b->is_local = false; r = sd_bus_start(b); if (r < 0) return r; *ret = TAKE_PTR(b); return 0; } int bus_set_address_machine(sd_bus *b, bool user, const char *machine) { _cleanup_free_ char *a = NULL; const char *rhs; assert(b); assert(machine); rhs = strchr(machine, '@'); if (rhs || user) { _cleanup_free_ char *u = NULL, *eu = NULL, *erhs = NULL; /* If there's an "@" in the container specification, we'll connect as a user specified at its * left hand side, which is useful in combination with user=true. This isn't as trivial as it * might sound: it's not sufficient to enter the container and connect to some socket there, * since the --user socket path depends on $XDG_RUNTIME_DIR which is set via PAM. Thus, to be * able to connect, we need to have a PAM session. Our way out? We use systemd-run to get * into the container and acquire a PAM session there, and then invoke systemd-stdio-bridge * in it, which propagates the bus transport to us. */ if (rhs) { if (rhs > machine) u = strndup(machine, rhs - machine); else u = getusername_malloc(); /* Empty user name, let's use the local one */ if (!u) return -ENOMEM; eu = bus_address_escape(u); if (!eu) return -ENOMEM; rhs++; } else { /* No "@" specified but we shall connect to the user instance? Then assume root (and * not a user named identically to the calling one). This means: * * --machine=foobar --user → connect to user bus of root user in container "foobar" * --machine=@foobar --user → connect to user bus of user named like the calling user in container "foobar" * * Why? so that behaviour for "--machine=foobar --system" is roughly similar to * "--machine=foobar --user": both times we unconditionally connect as root user * regardless what the calling user is. */ rhs = machine; } if (!isempty(rhs)) { erhs = bus_address_escape(rhs); if (!erhs) return -ENOMEM; } /* systemd-run -M… -PGq --wait -pUser=… -pPAMName=login systemd-stdio-bridge */ a = strjoin("unixexec:path=systemd-run," "argv1=-M", erhs ?: ".host", "," "argv2=-PGq," "argv3=--wait," "argv4=-pUser%3d", eu ?: "root", ",", "argv5=-pPAMName%3dlogin," "argv6=systemd-stdio-bridge"); if (!a) return -ENOMEM; if (user) { /* Ideally we'd use the "--user" switch to systemd-stdio-bridge here, but it's only * available in recent systemd versions. Using the "-p" switch with the explicit path * is a working alternative, and is compatible with older versions, hence that's what * we use here. */ if (!strextend(&a, ",argv7=-punix:path%3d%24%7bXDG_RUNTIME_DIR%7d/bus")) return -ENOMEM; } } else { _cleanup_free_ char *e = NULL; /* Just a container name, we can go the simple way, and just join the container, and connect * to the well-known path of the system bus there. */ e = bus_address_escape(machine); if (!e) return -ENOMEM; a = strjoin("x-machine-unix:machine=", e); if (!a) return -ENOMEM; } return free_and_replace(b->address, a); } static int user_and_machine_valid(const char *user_and_machine) { const char *h; /* Checks if a container specification in the form "user@container" or just "container" is valid. * * If the "@" syntax is used we'll allow either the "user" or the "container" part to be omitted, but * not both. */ h = strchr(user_and_machine, '@'); if (!h) h = user_and_machine; else { _cleanup_free_ char *user = NULL; user = strndup(user_and_machine, h - user_and_machine); if (!user) return -ENOMEM; if (!isempty(user) && !valid_user_group_name(user, VALID_USER_RELAX | VALID_USER_ALLOW_NUMERIC)) return false; h++; if (isempty(h)) return !isempty(user); } return hostname_is_valid(h, VALID_HOSTNAME_DOT_HOST); } static int user_and_machine_equivalent(const char *user_and_machine) { _cleanup_free_ char *un = NULL; const char *f; /* Returns true if the specified user+machine name are actually equivalent to our own identity and * our own host. If so we can shortcut things. Why bother? Because that way we don't have to fork * off short-lived worker processes that are then unavailable for authentication and logging in the * peer. Moreover joining a namespace requires privileges. If we are in the right namespace anyway, * we can avoid permission problems thus. */ assert(user_and_machine); /* Omitting the user name means that we shall use the same user name as we run as locally, which * means we'll end up on the same host, let's shortcut */ if (streq(user_and_machine, "@.host")) return true; /* Otherwise, if we are root, then we can also allow the ".host" syntax, as that's the user this * would connect to. */ uid_t uid = geteuid(); if (uid == 0 && STR_IN_SET(user_and_machine, ".host", "root@.host", "0@.host")) return true; /* Otherwise, we have to figure out our user id and name, and compare things with that. */ char buf[DECIMAL_STR_MAX(uid_t)]; xsprintf(buf, UID_FMT, uid); f = startswith(user_and_machine, buf); if (!f) { un = getusername_malloc(); if (!un) return -ENOMEM; f = startswith(user_and_machine, un); if (!f) return false; } return STR_IN_SET(f, "@", "@.host"); } _public_ int sd_bus_open_system_machine(sd_bus **ret, const char *user_and_machine) { _cleanup_(bus_freep) sd_bus *b = NULL; int r; assert_return(user_and_machine, -EINVAL); assert_return(ret, -EINVAL); if (user_and_machine_equivalent(user_and_machine)) return sd_bus_open_system(ret); r = user_and_machine_valid(user_and_machine); if (r < 0) return r; assert_return(r > 0, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; r = bus_set_address_machine(b, false, user_and_machine); if (r < 0) return r; b->bus_client = true; b->is_system = true; r = sd_bus_start(b); if (r < 0) return r; *ret = TAKE_PTR(b); return 0; } _public_ int sd_bus_open_user_machine(sd_bus **ret, const char *user_and_machine) { _cleanup_(bus_freep) sd_bus *b = NULL; int r; assert_return(user_and_machine, -EINVAL); assert_return(ret, -EINVAL); /* Shortcut things if we'd end up on this host and as the same user. */ if (user_and_machine_equivalent(user_and_machine)) return sd_bus_open_user(ret); r = user_and_machine_valid(user_and_machine); if (r < 0) return r; assert_return(r > 0, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; r = bus_set_address_machine(b, true, user_and_machine); if (r < 0) return r; b->bus_client = true; b->trusted = true; r = sd_bus_start(b); if (r < 0) return r; *ret = TAKE_PTR(b); return 0; } _public_ void sd_bus_close(sd_bus *bus) { if (!bus) return; if (bus->state == BUS_CLOSED) return; if (bus_pid_changed(bus)) return; /* Don't leave ssh hanging around */ bus_kill_exec(bus); bus_set_state(bus, BUS_CLOSED); sd_bus_detach_event(bus); /* Drop all queued messages so that they drop references to * the bus object and the bus may be freed */ bus_reset_queues(bus); bus_close_io_fds(bus); bus_close_inotify_fd(bus); } _public_ sd_bus *sd_bus_close_unref(sd_bus *bus) { if (!bus) return NULL; sd_bus_close(bus); return sd_bus_unref(bus); } _public_ sd_bus* sd_bus_flush_close_unref(sd_bus *bus) { if (!bus) return NULL; /* Have to do this before flush() to prevent hang */ bus_kill_exec(bus); sd_bus_flush(bus); return sd_bus_close_unref(bus); } void bus_enter_closing(sd_bus *bus) { assert(bus); if (!IN_SET(bus->state, BUS_WATCH_BIND, BUS_OPENING, BUS_AUTHENTICATING, BUS_HELLO, BUS_RUNNING)) return; bus_set_state(bus, BUS_CLOSING); } DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_bus, sd_bus, bus_free); _public_ int sd_bus_is_open(sd_bus *bus) { if (!bus) return 0; assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return BUS_IS_OPEN(bus->state); } _public_ int sd_bus_is_ready(sd_bus *bus) { if (!bus) return 0; assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->state == BUS_RUNNING; } _public_ int sd_bus_can_send(sd_bus *bus, char type) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->state != BUS_UNSET, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->is_monitor) return 0; if (type == SD_BUS_TYPE_UNIX_FD) { if (!bus->accept_fd) return 0; r = bus_ensure_running(bus); if (r < 0) return r; return bus->can_fds; } return bus_type_is_valid(type); } _public_ int sd_bus_get_bus_id(sd_bus *bus, sd_id128_t *id) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(id, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = bus_ensure_running(bus); if (r < 0) return r; *id = bus->server_id; return 0; } #define COOKIE_CYCLED (UINT32_C(1) << 31) static uint64_t cookie_inc(uint64_t cookie) { /* Stay within the 32bit range, since classic D-Bus can't deal with more */ if (cookie >= UINT32_MAX) return COOKIE_CYCLED; /* Don't go back to zero, but use the highest bit for checking * whether we are looping. */ return cookie + 1; } static int next_cookie(sd_bus *b) { uint64_t new_cookie; assert(b); new_cookie = cookie_inc(b->cookie); /* Small optimization: don't bother with checking for cookie reuse until we overran cookiespace at * least once, but then do it thorougly. */ if (FLAGS_SET(new_cookie, COOKIE_CYCLED)) { uint32_t i; /* Check if the cookie is currently in use. If so, pick the next one */ for (i = 0; i < COOKIE_CYCLED; i++) { if (!ordered_hashmap_contains(b->reply_callbacks, &new_cookie)) goto good; new_cookie = cookie_inc(new_cookie); } /* Can't fulfill request */ return -EBUSY; } good: b->cookie = new_cookie; return 0; } static int bus_seal_message(sd_bus *b, sd_bus_message *m, usec_t timeout) { int r; assert(b); assert(m); if (m->sealed) { /* If we copy the same message to multiple * destinations, avoid using the same cookie * numbers. */ b->cookie = MAX(b->cookie, BUS_MESSAGE_COOKIE(m)); return 0; } if (timeout == 0) { r = sd_bus_get_method_call_timeout(b, &timeout); if (r < 0) return r; } if (!m->sender && b->patch_sender) { r = sd_bus_message_set_sender(m, b->patch_sender); if (r < 0) return r; } r = next_cookie(b); if (r < 0) return r; return sd_bus_message_seal(m, b->cookie, timeout); } static int bus_remarshal_message(sd_bus *b, sd_bus_message **m) { bool remarshal = false; assert(b); /* wrong packet version */ if (b->message_version != 0 && b->message_version != (*m)->header->version) remarshal = true; /* wrong packet endianness */ if (b->message_endian != 0 && b->message_endian != (*m)->header->endian) remarshal = true; return remarshal ? bus_message_remarshal(b, m) : 0; } int bus_seal_synthetic_message(sd_bus *b, sd_bus_message *m) { assert(b); assert(m); /* Fake some timestamps, if they were requested, and not * already initialized */ if (b->attach_timestamp) { if (m->realtime <= 0) m->realtime = now(CLOCK_REALTIME); if (m->monotonic <= 0) m->monotonic = now(CLOCK_MONOTONIC); } /* The bus specification says the serial number cannot be 0, * hence let's fill something in for synthetic messages. Since * synthetic messages might have a fake sender and we don't * want to interfere with the real sender's serial numbers we * pick a fixed, artificial one. We use UINT32_MAX rather * than UINT64_MAX since dbus1 only had 32bit identifiers, * even though kdbus can do 64bit. */ return sd_bus_message_seal(m, 0xFFFFFFFFULL, 0); } static int bus_write_message(sd_bus *bus, sd_bus_message *m, size_t *idx) { int r; assert(bus); assert(m); r = bus_socket_write_message(bus, m, idx); if (r <= 0) return r; if (*idx >= BUS_MESSAGE_SIZE(m)) log_debug("Sent message type=%s sender=%s destination=%s path=%s interface=%s member=%s cookie=%" PRIu64 " reply_cookie=%" PRIu64 " signature=%s error-name=%s error-message=%s", bus_message_type_to_string(m->header->type), strna(sd_bus_message_get_sender(m)), strna(sd_bus_message_get_destination(m)), strna(sd_bus_message_get_path(m)), strna(sd_bus_message_get_interface(m)), strna(sd_bus_message_get_member(m)), BUS_MESSAGE_COOKIE(m), m->reply_cookie, strna(m->root_container.signature), strna(m->error.name), strna(m->error.message)); return r; } static int dispatch_wqueue(sd_bus *bus) { int r, ret = 0; assert(bus); assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO)); while (bus->wqueue_size > 0) { r = bus_write_message(bus, bus->wqueue[0], &bus->windex); if (r < 0) return r; else if (r == 0) /* Didn't do anything this time */ return ret; else if (bus->windex >= BUS_MESSAGE_SIZE(bus->wqueue[0])) { /* Fully written. Let's drop the entry from * the queue. * * This isn't particularly optimized, but * well, this is supposed to be our worst-case * buffer only, and the socket buffer is * supposed to be our primary buffer, and if * it got full, then all bets are off * anyway. */ bus->wqueue_size--; bus_message_unref_queued(bus->wqueue[0], bus); memmove(bus->wqueue, bus->wqueue + 1, sizeof(sd_bus_message*) * bus->wqueue_size); bus->windex = 0; ret = 1; } } return ret; } static int bus_read_message(sd_bus *bus) { assert(bus); return bus_socket_read_message(bus); } int bus_rqueue_make_room(sd_bus *bus) { assert(bus); if (bus->rqueue_size >= BUS_RQUEUE_MAX) return -ENOBUFS; if (!GREEDY_REALLOC(bus->rqueue, bus->rqueue_size + 1)) return -ENOMEM; return 0; } static void rqueue_drop_one(sd_bus *bus, size_t i) { assert(bus); assert(i < bus->rqueue_size); bus_message_unref_queued(bus->rqueue[i], bus); memmove(bus->rqueue + i, bus->rqueue + i + 1, sizeof(sd_bus_message*) * (bus->rqueue_size - i - 1)); bus->rqueue_size--; } static int dispatch_rqueue(sd_bus *bus, sd_bus_message **m) { int r, ret = 0; assert(bus); assert(m); assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO)); for (;;) { if (bus->rqueue_size > 0) { /* Dispatch a queued message */ *m = sd_bus_message_ref(bus->rqueue[0]); rqueue_drop_one(bus, 0); return 1; } /* Try to read a new message */ r = bus_read_message(bus); if (r < 0) return r; if (r == 0) { *m = NULL; return ret; } ret = 1; } } _public_ int sd_bus_send(sd_bus *bus, sd_bus_message *_m, uint64_t *cookie) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m); int r; assert_return(m, -EINVAL); if (bus) assert_return(bus = bus_resolve(bus), -ENOPKG); else assert_return(bus = m->bus, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; if (m->n_fds > 0) { r = sd_bus_can_send(bus, SD_BUS_TYPE_UNIX_FD); if (r < 0) return r; if (r == 0) return -EOPNOTSUPP; } /* If the cookie number isn't kept, then we know that no reply * is expected */ if (!cookie && !m->sealed) m->header->flags |= BUS_MESSAGE_NO_REPLY_EXPECTED; r = bus_seal_message(bus, m, 0); if (r < 0) return r; /* Remarshall if we have to. This will possibly unref the * message and place a replacement in m */ r = bus_remarshal_message(bus, &m); if (r < 0) return r; /* If this is a reply and no reply was requested, then let's * suppress this, if we can */ if (m->dont_send) goto finish; if (IN_SET(bus->state, BUS_RUNNING, BUS_HELLO) && bus->wqueue_size <= 0) { size_t idx = 0; r = bus_write_message(bus, m, &idx); if (r < 0) { if (ERRNO_IS_DISCONNECT(r)) { bus_enter_closing(bus); return -ECONNRESET; } return r; } if (idx < BUS_MESSAGE_SIZE(m)) { /* Wasn't fully written. So let's remember how * much was written. Note that the first entry * of the wqueue array is always allocated so * that we always can remember how much was * written. */ bus->wqueue[0] = bus_message_ref_queued(m, bus); bus->wqueue_size = 1; bus->windex = idx; } } else { /* Just append it to the queue. */ if (bus->wqueue_size >= BUS_WQUEUE_MAX) return -ENOBUFS; if (!GREEDY_REALLOC(bus->wqueue, bus->wqueue_size + 1)) return -ENOMEM; bus->wqueue[bus->wqueue_size++] = bus_message_ref_queued(m, bus); } finish: if (cookie) *cookie = BUS_MESSAGE_COOKIE(m); return 1; } _public_ int sd_bus_send_to(sd_bus *bus, sd_bus_message *m, const char *destination, uint64_t *cookie) { int r; assert_return(m, -EINVAL); if (bus) assert_return(bus = bus_resolve(bus), -ENOPKG); else assert_return(bus = m->bus, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; if (!streq_ptr(m->destination, destination)) { if (!destination) return -EEXIST; r = sd_bus_message_set_destination(m, destination); if (r < 0) return r; } return sd_bus_send(bus, m, cookie); } static usec_t calc_elapse(sd_bus *bus, uint64_t usec) { assert(bus); assert_cc(sizeof(usec_t) == sizeof(uint64_t)); if (usec == USEC_INFINITY) return 0; /* We start all timeouts the instant we enter BUS_HELLO/BUS_RUNNING state, so that the don't run in parallel * with any connection setup states. Hence, if a method callback is started earlier than that we just store the * relative timestamp, and afterwards the absolute one. */ if (IN_SET(bus->state, BUS_WATCH_BIND, BUS_OPENING, BUS_AUTHENTICATING)) return usec; else return usec_add(now(CLOCK_MONOTONIC), usec); } static int timeout_compare(const void *a, const void *b) { const struct reply_callback *x = a, *y = b; if (x->timeout_usec != 0 && y->timeout_usec == 0) return -1; if (x->timeout_usec == 0 && y->timeout_usec != 0) return 1; return CMP(x->timeout_usec, y->timeout_usec); } _public_ int sd_bus_call_async( sd_bus *bus, sd_bus_slot **slot, sd_bus_message *_m, sd_bus_message_handler_t callback, void *userdata, uint64_t usec) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m); _cleanup_(sd_bus_slot_unrefp) sd_bus_slot *s = NULL; int r; assert_return(m, -EINVAL); assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL); assert_return(!m->sealed || (!!callback == !(m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED)), -EINVAL); if (bus) assert_return(bus = bus_resolve(bus), -ENOPKG); else assert_return(bus = m->bus, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; /* If no callback is specified and there's no interest in a slot, then there's no reason to ask for a reply */ if (!callback && !slot && !m->sealed) m->header->flags |= BUS_MESSAGE_NO_REPLY_EXPECTED; r = ordered_hashmap_ensure_allocated(&bus->reply_callbacks, &uint64_hash_ops); if (r < 0) return r; r = prioq_ensure_allocated(&bus->reply_callbacks_prioq, timeout_compare); if (r < 0) return r; r = bus_seal_message(bus, m, usec); if (r < 0) return r; r = bus_remarshal_message(bus, &m); if (r < 0) return r; if (slot || callback) { s = bus_slot_allocate(bus, !slot, BUS_REPLY_CALLBACK, sizeof(struct reply_callback), userdata); if (!s) return -ENOMEM; s->reply_callback.callback = callback; s->reply_callback.cookie = BUS_MESSAGE_COOKIE(m); r = ordered_hashmap_put(bus->reply_callbacks, &s->reply_callback.cookie, &s->reply_callback); if (r < 0) { s->reply_callback.cookie = 0; return r; } s->reply_callback.timeout_usec = calc_elapse(bus, m->timeout); if (s->reply_callback.timeout_usec != 0) { r = prioq_put(bus->reply_callbacks_prioq, &s->reply_callback, &s->reply_callback.prioq_idx); if (r < 0) { s->reply_callback.timeout_usec = 0; return r; } } } r = sd_bus_send(bus, m, s ? &s->reply_callback.cookie : NULL); if (r < 0) return r; if (slot) *slot = s; s = NULL; return r; } int bus_ensure_running(sd_bus *bus) { int r; assert(bus); if (bus->state == BUS_RUNNING) return 1; for (;;) { if (IN_SET(bus->state, BUS_UNSET, BUS_CLOSED, BUS_CLOSING)) return -ENOTCONN; r = sd_bus_process(bus, NULL); if (r < 0) return r; if (bus->state == BUS_RUNNING) return 1; if (r > 0) continue; r = sd_bus_wait(bus, UINT64_MAX); if (r < 0) return r; } } _public_ int sd_bus_call( sd_bus *bus, sd_bus_message *_m, uint64_t usec, sd_bus_error *error, sd_bus_message **reply) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m); usec_t timeout; uint64_t cookie; size_t i; int r; bus_assert_return(m, -EINVAL, error); bus_assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL, error); bus_assert_return(!(m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED), -EINVAL, error); bus_assert_return(!bus_error_is_dirty(error), -EINVAL, error); if (bus) assert_return(bus = bus_resolve(bus), -ENOPKG); else assert_return(bus = m->bus, -ENOTCONN); bus_assert_return(!bus_pid_changed(bus), -ECHILD, error); if (!BUS_IS_OPEN(bus->state)) { r = -ENOTCONN; goto fail; } r = bus_ensure_running(bus); if (r < 0) goto fail; i = bus->rqueue_size; r = bus_seal_message(bus, m, usec); if (r < 0) goto fail; r = bus_remarshal_message(bus, &m); if (r < 0) goto fail; r = sd_bus_send(bus, m, &cookie); if (r < 0) goto fail; timeout = calc_elapse(bus, m->timeout); for (;;) { usec_t left; while (i < bus->rqueue_size) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *incoming = NULL; incoming = sd_bus_message_ref(bus->rqueue[i]); if (incoming->reply_cookie == cookie) { /* Found a match! */ rqueue_drop_one(bus, i); log_debug_bus_message(incoming); if (incoming->header->type == SD_BUS_MESSAGE_METHOD_RETURN) { if (incoming->n_fds <= 0 || bus->accept_fd) { if (reply) *reply = TAKE_PTR(incoming); return 1; } return sd_bus_error_set(error, SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Reply message contained file descriptors which I couldn't accept. Sorry."); } else if (incoming->header->type == SD_BUS_MESSAGE_METHOD_ERROR) return sd_bus_error_copy(error, &incoming->error); else { r = -EIO; goto fail; } } else if (BUS_MESSAGE_COOKIE(incoming) == cookie && bus->unique_name && incoming->sender && streq(bus->unique_name, incoming->sender)) { rqueue_drop_one(bus, i); /* Our own message? Somebody is trying to send its own client a message, * let's not dead-lock, let's fail immediately. */ r = -ELOOP; goto fail; } /* Try to read more, right-away */ i++; } r = bus_read_message(bus); if (r < 0) { if (ERRNO_IS_DISCONNECT(r)) { bus_enter_closing(bus); r = -ECONNRESET; } goto fail; } if (r > 0) continue; if (timeout > 0) { usec_t n; n = now(CLOCK_MONOTONIC); if (n >= timeout) { r = -ETIMEDOUT; goto fail; } left = timeout - n; } else left = UINT64_MAX; r = bus_poll(bus, true, left); if (r < 0) goto fail; if (r == 0) { r = -ETIMEDOUT; goto fail; } r = dispatch_wqueue(bus); if (r < 0) { if (ERRNO_IS_DISCONNECT(r)) { bus_enter_closing(bus); r = -ECONNRESET; } goto fail; } } fail: return sd_bus_error_set_errno(error, r); } _public_ int sd_bus_get_fd(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(bus->input_fd == bus->output_fd, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_CLOSED) return -ENOTCONN; if (bus->inotify_fd >= 0) return bus->inotify_fd; if (bus->input_fd >= 0) return bus->input_fd; return -ENOTCONN; } _public_ int sd_bus_get_events(sd_bus *bus) { int flags = 0; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); switch (bus->state) { case BUS_UNSET: case BUS_CLOSED: return -ENOTCONN; case BUS_WATCH_BIND: flags |= POLLIN; break; case BUS_OPENING: flags |= POLLOUT; break; case BUS_AUTHENTICATING: if (bus_socket_auth_needs_write(bus)) flags |= POLLOUT; flags |= POLLIN; break; case BUS_RUNNING: case BUS_HELLO: if (bus->rqueue_size <= 0) flags |= POLLIN; if (bus->wqueue_size > 0) flags |= POLLOUT; break; case BUS_CLOSING: break; default: assert_not_reached(); } return flags; } _public_ int sd_bus_get_timeout(sd_bus *bus, uint64_t *timeout_usec) { struct reply_callback *c; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(timeout_usec, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (!BUS_IS_OPEN(bus->state) && bus->state != BUS_CLOSING) return -ENOTCONN; if (bus->track_queue) { *timeout_usec = 0; return 1; } switch (bus->state) { case BUS_AUTHENTICATING: *timeout_usec = bus->auth_timeout; return 1; case BUS_RUNNING: case BUS_HELLO: if (bus->rqueue_size > 0) { *timeout_usec = 0; return 1; } c = prioq_peek(bus->reply_callbacks_prioq); if (!c) { *timeout_usec = UINT64_MAX; return 0; } if (c->timeout_usec == 0) { *timeout_usec = UINT64_MAX; return 0; } *timeout_usec = c->timeout_usec; return 1; case BUS_CLOSING: *timeout_usec = 0; return 1; case BUS_WATCH_BIND: case BUS_OPENING: *timeout_usec = UINT64_MAX; return 0; default: assert_not_reached(); } } static int process_timeout(sd_bus *bus) { _cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL; _cleanup_(sd_bus_message_unrefp) sd_bus_message* m = NULL; struct reply_callback *c; sd_bus_slot *slot; bool is_hello; usec_t n; int r; assert(bus); assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO)); c = prioq_peek(bus->reply_callbacks_prioq); if (!c) return 0; n = now(CLOCK_MONOTONIC); if (c->timeout_usec > n) return 0; r = bus_message_new_synthetic_error( bus, c->cookie, &SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Method call timed out"), &m); if (r < 0) return r; m->read_counter = ++bus->read_counter; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; assert_se(prioq_pop(bus->reply_callbacks_prioq) == c); c->timeout_usec = 0; ordered_hashmap_remove(bus->reply_callbacks, &c->cookie); c->cookie = 0; slot = container_of(c, sd_bus_slot, reply_callback); bus->iteration_counter++; is_hello = bus->state == BUS_HELLO && c->callback == hello_callback; bus->current_message = m; bus->current_slot = sd_bus_slot_ref(slot); bus->current_handler = c->callback; bus->current_userdata = slot->userdata; r = c->callback(m, slot->userdata, &error_buffer); bus->current_userdata = NULL; bus->current_handler = NULL; bus->current_slot = NULL; bus->current_message = NULL; if (slot->floating) bus_slot_disconnect(slot, true); sd_bus_slot_unref(slot); /* When this is the hello message and it timed out, then make sure to propagate the error up, don't just log * and ignore the callback handler's return value. */ if (is_hello) return r; return bus_maybe_reply_error(m, r, &error_buffer); } static int process_hello(sd_bus *bus, sd_bus_message *m) { assert(bus); assert(m); if (bus->state != BUS_HELLO) return 0; /* Let's make sure the first message on the bus is the HELLO * reply. But note that we don't actually parse the message * here (we leave that to the usual handling), we just verify * we don't let any earlier msg through. */ if (!IN_SET(m->header->type, SD_BUS_MESSAGE_METHOD_RETURN, SD_BUS_MESSAGE_METHOD_ERROR)) return -EIO; if (m->reply_cookie != 1) return -EIO; return 0; } static int process_reply(sd_bus *bus, sd_bus_message *m) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *synthetic_reply = NULL; _cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL; struct reply_callback *c; sd_bus_slot *slot; bool is_hello; int r; assert(bus); assert(m); if (!IN_SET(m->header->type, SD_BUS_MESSAGE_METHOD_RETURN, SD_BUS_MESSAGE_METHOD_ERROR)) return 0; if (m->destination && bus->unique_name && !streq_ptr(m->destination, bus->unique_name)) return 0; c = ordered_hashmap_remove(bus->reply_callbacks, &m->reply_cookie); if (!c) return 0; c->cookie = 0; slot = container_of(c, sd_bus_slot, reply_callback); if (m->n_fds > 0 && !bus->accept_fd) { /* If the reply contained a file descriptor which we * didn't want we pass an error instead. */ r = bus_message_new_synthetic_error( bus, m->reply_cookie, &SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Reply message contained file descriptor"), &synthetic_reply); if (r < 0) return r; /* Copy over original timestamp */ synthetic_reply->realtime = m->realtime; synthetic_reply->monotonic = m->monotonic; synthetic_reply->seqnum = m->seqnum; synthetic_reply->read_counter = m->read_counter; r = bus_seal_synthetic_message(bus, synthetic_reply); if (r < 0) return r; m = synthetic_reply; } else { r = sd_bus_message_rewind(m, true); if (r < 0) return r; } if (c->timeout_usec != 0) { prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx); c->timeout_usec = 0; } is_hello = bus->state == BUS_HELLO && c->callback == hello_callback; bus->current_slot = sd_bus_slot_ref(slot); bus->current_handler = c->callback; bus->current_userdata = slot->userdata; r = c->callback(m, slot->userdata, &error_buffer); bus->current_userdata = NULL; bus->current_handler = NULL; bus->current_slot = NULL; if (slot->floating) bus_slot_disconnect(slot, true); sd_bus_slot_unref(slot); /* When this is the hello message and it failed, then make sure to propagate the error up, don't just log and * ignore the callback handler's return value. */ if (is_hello) return r; return bus_maybe_reply_error(m, r, &error_buffer); } static int process_filter(sd_bus *bus, sd_bus_message *m) { _cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL; int r; assert(bus); assert(m); do { bus->filter_callbacks_modified = false; LIST_FOREACH(callbacks, l, bus->filter_callbacks) { sd_bus_slot *slot; if (bus->filter_callbacks_modified) break; /* Don't run this more than once per iteration */ if (l->last_iteration == bus->iteration_counter) continue; l->last_iteration = bus->iteration_counter; r = sd_bus_message_rewind(m, true); if (r < 0) return r; slot = container_of(l, sd_bus_slot, filter_callback); bus->current_slot = sd_bus_slot_ref(slot); bus->current_handler = l->callback; bus->current_userdata = slot->userdata; r = l->callback(m, slot->userdata, &error_buffer); bus->current_userdata = NULL; bus->current_handler = NULL; bus->current_slot = sd_bus_slot_unref(slot); r = bus_maybe_reply_error(m, r, &error_buffer); if (r != 0) return r; } } while (bus->filter_callbacks_modified); return 0; } static int process_match(sd_bus *bus, sd_bus_message *m) { int r; assert(bus); assert(m); do { bus->match_callbacks_modified = false; r = bus_match_run(bus, &bus->match_callbacks, m); if (r != 0) return r; } while (bus->match_callbacks_modified); return 0; } static int process_builtin(sd_bus *bus, sd_bus_message *m) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *reply = NULL; int r; assert(bus); assert(m); if (bus->is_monitor) return 0; if (bus->manual_peer_interface) return 0; if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL) return 0; if (!streq_ptr(m->interface, "org.freedesktop.DBus.Peer")) return 0; if (m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED) return 1; if (streq_ptr(m->member, "Ping")) r = sd_bus_message_new_method_return(m, &reply); else if (streq_ptr(m->member, "GetMachineId")) { sd_id128_t id; r = sd_id128_get_machine(&id); if (r < 0) return r; r = sd_bus_message_new_method_return(m, &reply); if (r < 0) return r; r = sd_bus_message_append(reply, "s", SD_ID128_TO_STRING(id)); } else { r = sd_bus_message_new_method_errorf( m, &reply, SD_BUS_ERROR_UNKNOWN_METHOD, "Unknown method '%s' on interface '%s'.", m->member, m->interface); } if (r < 0) return r; r = sd_bus_send(bus, reply, NULL); if (r < 0) return r; return 1; } static int process_fd_check(sd_bus *bus, sd_bus_message *m) { assert(bus); assert(m); /* If we got a message with a file descriptor which we didn't * want to accept, then let's drop it. How can this even * happen? For example, when the kernel queues a message into * an activatable names's queue which allows fds, and then is * delivered to us later even though we ourselves did not * negotiate it. */ if (bus->is_monitor) return 0; if (m->n_fds <= 0) return 0; if (bus->accept_fd) return 0; if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL) return 1; /* just eat it up */ return sd_bus_reply_method_errorf(m, SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Message contains file descriptors, which I cannot accept. Sorry."); } static int process_message(sd_bus *bus, sd_bus_message *m) { int r; assert(bus); assert(m); bus->current_message = m; bus->iteration_counter++; log_debug_bus_message(m); r = process_hello(bus, m); if (r != 0) goto finish; r = process_reply(bus, m); if (r != 0) goto finish; r = process_fd_check(bus, m); if (r != 0) goto finish; r = process_filter(bus, m); if (r != 0) goto finish; r = process_match(bus, m); if (r != 0) goto finish; r = process_builtin(bus, m); if (r != 0) goto finish; r = bus_process_object(bus, m); finish: bus->current_message = NULL; return r; } static int dispatch_track(sd_bus *bus) { assert(bus); if (!bus->track_queue) return 0; bus_track_dispatch(bus->track_queue); return 1; } static int process_running(sd_bus *bus, sd_bus_message **ret) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL; int r; assert(bus); assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO)); r = process_timeout(bus); if (r != 0) goto null_message; r = dispatch_wqueue(bus); if (r != 0) goto null_message; r = dispatch_track(bus); if (r != 0) goto null_message; r = dispatch_rqueue(bus, &m); if (r < 0) return r; if (!m) goto null_message; r = process_message(bus, m); if (r != 0) goto null_message; if (ret) { r = sd_bus_message_rewind(m, true); if (r < 0) return r; *ret = TAKE_PTR(m); return 1; } if (m->header->type == SD_BUS_MESSAGE_METHOD_CALL) { log_debug("Unprocessed message call sender=%s object=%s interface=%s member=%s", strna(sd_bus_message_get_sender(m)), strna(sd_bus_message_get_path(m)), strna(sd_bus_message_get_interface(m)), strna(sd_bus_message_get_member(m))); r = sd_bus_reply_method_errorf( m, SD_BUS_ERROR_UNKNOWN_OBJECT, "Unknown object '%s'.", m->path); if (r < 0) return r; } return 1; null_message: if (r >= 0 && ret) *ret = NULL; return r; } static int bus_exit_now(sd_bus *bus) { assert(bus); /* Exit due to close, if this is requested. If this is bus object is attached to an event source, invokes * sd_event_exit(), otherwise invokes libc exit(). */ if (bus->exited) /* did we already exit? */ return 0; if (!bus->exit_triggered) /* was the exit condition triggered? */ return 0; if (!bus->exit_on_disconnect) /* Shall we actually exit on disconnection? */ return 0; bus->exited = true; /* never exit more than once */ log_debug("Bus connection disconnected, exiting."); if (bus->event) return sd_event_exit(bus->event, EXIT_FAILURE); else exit(EXIT_FAILURE); assert_not_reached(); } static int process_closing_reply_callback(sd_bus *bus, struct reply_callback *c) { _cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL; _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL; sd_bus_slot *slot; int r; assert(bus); assert(c); r = bus_message_new_synthetic_error( bus, c->cookie, &SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Connection terminated"), &m); if (r < 0) return r; m->read_counter = ++bus->read_counter; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; if (c->timeout_usec != 0) { prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx); c->timeout_usec = 0; } ordered_hashmap_remove(bus->reply_callbacks, &c->cookie); c->cookie = 0; slot = container_of(c, sd_bus_slot, reply_callback); bus->iteration_counter++; bus->current_message = m; bus->current_slot = sd_bus_slot_ref(slot); bus->current_handler = c->callback; bus->current_userdata = slot->userdata; r = c->callback(m, slot->userdata, &error_buffer); bus->current_userdata = NULL; bus->current_handler = NULL; bus->current_slot = NULL; bus->current_message = NULL; if (slot->floating) bus_slot_disconnect(slot, true); sd_bus_slot_unref(slot); return bus_maybe_reply_error(m, r, &error_buffer); } static int process_closing(sd_bus *bus, sd_bus_message **ret) { _cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL; struct reply_callback *c; int r; assert(bus); assert(bus->state == BUS_CLOSING); /* First, fail all outstanding method calls */ c = ordered_hashmap_first(bus->reply_callbacks); if (c) return process_closing_reply_callback(bus, c); /* Then, fake-drop all remaining bus tracking references */ if (bus->tracks) { bus_track_close(bus->tracks); return 1; } /* Then, synthesize a Disconnected message */ r = sd_bus_message_new_signal( bus, &m, "/org/freedesktop/DBus/Local", "org.freedesktop.DBus.Local", "Disconnected"); if (r < 0) return r; bus_message_set_sender_local(bus, m); m->read_counter = ++bus->read_counter; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; sd_bus_close(bus); bus->current_message = m; bus->iteration_counter++; r = process_filter(bus, m); if (r != 0) goto finish; r = process_match(bus, m); if (r != 0) goto finish; /* Nothing else to do, exit now, if the condition holds */ bus->exit_triggered = true; (void) bus_exit_now(bus); if (ret) *ret = TAKE_PTR(m); r = 1; finish: bus->current_message = NULL; return r; } static int bus_process_internal(sd_bus *bus, sd_bus_message **ret) { int r; /* Returns 0 when we didn't do anything. This should cause the * caller to invoke sd_bus_wait() before returning the next * time. Returns > 0 when we did something, which possibly * means *ret is filled in with an unprocessed message. */ assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); /* We don't allow recursively invoking sd_bus_process(). */ assert_return(!bus->current_message, -EBUSY); assert(!bus->current_slot); /* This should be NULL whenever bus->current_message is */ BUS_DONT_DESTROY(bus); switch (bus->state) { case BUS_UNSET: return -ENOTCONN; case BUS_CLOSED: return -ECONNRESET; case BUS_WATCH_BIND: r = bus_socket_process_watch_bind(bus); break; case BUS_OPENING: r = bus_socket_process_opening(bus); break; case BUS_AUTHENTICATING: r = bus_socket_process_authenticating(bus); break; case BUS_RUNNING: case BUS_HELLO: r = process_running(bus, ret); if (r >= 0) return r; /* This branch initializes *ret, hence we don't use the generic error checking below */ break; case BUS_CLOSING: return process_closing(bus, ret); default: assert_not_reached(); } if (ERRNO_IS_DISCONNECT(r)) { bus_enter_closing(bus); r = 1; } else if (r < 0) return r; if (ret) *ret = NULL; return r; } _public_ int sd_bus_process(sd_bus *bus, sd_bus_message **ret) { return bus_process_internal(bus, ret); } _public_ int sd_bus_process_priority(sd_bus *bus, int64_t priority, sd_bus_message **ret) { return bus_process_internal(bus, ret); } static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec) { struct pollfd p[2] = {}; usec_t m = USEC_INFINITY; int r, n; assert(bus); if (bus->state == BUS_CLOSING) return 1; if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; if (bus->state == BUS_WATCH_BIND) { assert(bus->inotify_fd >= 0); p[0].events = POLLIN; p[0].fd = bus->inotify_fd; n = 1; } else { int e; e = sd_bus_get_events(bus); if (e < 0) return e; if (need_more) /* The caller really needs some more data, they don't * care about what's already read, or any timeouts * except its own. */ e |= POLLIN; else { usec_t until; /* The caller wants to process if there's something to * process, but doesn't care otherwise */ r = sd_bus_get_timeout(bus, &until); if (r < 0) return r; if (r > 0) m = usec_sub_unsigned(until, now(CLOCK_MONOTONIC)); } p[0].fd = bus->input_fd; if (bus->output_fd == bus->input_fd) { p[0].events = e; n = 1; } else { p[0].events = e & POLLIN; p[1].fd = bus->output_fd; p[1].events = e & POLLOUT; n = 2; } } if (timeout_usec != UINT64_MAX && (m == USEC_INFINITY || timeout_usec < m)) m = timeout_usec; r = ppoll_usec(p, n, m); if (r <= 0) return r; return 1; } _public_ int sd_bus_wait(sd_bus *bus, uint64_t timeout_usec) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_CLOSING) return 0; if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; if (bus->rqueue_size > 0) return 0; return bus_poll(bus, false, timeout_usec); } _public_ int sd_bus_flush(sd_bus *bus) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_CLOSING) return 0; if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; /* We never were connected? Don't hang in inotify for good, as there's no timeout set for it */ if (bus->state == BUS_WATCH_BIND) return -EUNATCH; r = bus_ensure_running(bus); if (r < 0) return r; if (bus->wqueue_size <= 0) return 0; for (;;) { r = dispatch_wqueue(bus); if (r < 0) { if (ERRNO_IS_DISCONNECT(r)) { bus_enter_closing(bus); return -ECONNRESET; } return r; } if (bus->wqueue_size <= 0) return 0; r = bus_poll(bus, false, UINT64_MAX); if (r < 0) return r; } } _public_ int sd_bus_add_filter( sd_bus *bus, sd_bus_slot **slot, sd_bus_message_handler_t callback, void *userdata) { sd_bus_slot *s; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(callback, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); s = bus_slot_allocate(bus, !slot, BUS_FILTER_CALLBACK, sizeof(struct filter_callback), userdata); if (!s) return -ENOMEM; s->filter_callback.callback = callback; bus->filter_callbacks_modified = true; LIST_PREPEND(callbacks, bus->filter_callbacks, &s->filter_callback); if (slot) *slot = s; return 0; } static int add_match_callback( sd_bus_message *m, void *userdata, sd_bus_error *ret_error) { sd_bus_slot *match_slot = userdata; bool failed = false; int r; assert(m); assert(match_slot); sd_bus_slot_ref(match_slot); if (sd_bus_message_is_method_error(m, NULL)) { log_debug_errno(sd_bus_message_get_errno(m), "Unable to add match %s, failing connection: %s", match_slot->match_callback.match_string, sd_bus_message_get_error(m)->message); failed = true; } else log_debug("Match %s successfully installed.", match_slot->match_callback.match_string); if (match_slot->match_callback.install_callback) { sd_bus *bus; bus = sd_bus_message_get_bus(m); /* This function has been called as slot handler, and we want to call another slot handler. Let's * update the slot callback metadata temporarily with our own data, and then revert back to the old * values. */ assert(bus->current_slot == match_slot->match_callback.install_slot); assert(bus->current_handler == add_match_callback); assert(bus->current_userdata == userdata); bus->current_slot = match_slot; bus->current_handler = match_slot->match_callback.install_callback; bus->current_userdata = match_slot->userdata; r = match_slot->match_callback.install_callback(m, match_slot->userdata, ret_error); bus->current_slot = match_slot->match_callback.install_slot; bus->current_handler = add_match_callback; bus->current_userdata = userdata; } else { if (failed) /* Generic failure handling: destroy the connection */ bus_enter_closing(sd_bus_message_get_bus(m)); r = 1; } /* We don't need the install method reply slot anymore, let's free it */ match_slot->match_callback.install_slot = sd_bus_slot_unref(match_slot->match_callback.install_slot); if (failed && match_slot->floating) bus_slot_disconnect(match_slot, true); sd_bus_slot_unref(match_slot); return r; } static int bus_add_match_full( sd_bus *bus, sd_bus_slot **slot, bool asynchronous, const char *match, sd_bus_message_handler_t callback, sd_bus_message_handler_t install_callback, void *userdata) { struct bus_match_component *components = NULL; unsigned n_components = 0; sd_bus_slot *s = NULL; int r = 0; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(match, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = bus_match_parse(match, &components, &n_components); if (r < 0) goto finish; s = bus_slot_allocate(bus, !slot, BUS_MATCH_CALLBACK, sizeof(struct match_callback), userdata); if (!s) { r = -ENOMEM; goto finish; } s->match_callback.callback = callback; s->match_callback.install_callback = install_callback; if (bus->bus_client) { enum bus_match_scope scope; scope = bus_match_get_scope(components, n_components); /* Do not install server-side matches for matches against the local service, interface or bus path. */ if (scope != BUS_MATCH_LOCAL) { /* We store the original match string, so that we can use it to remove the match again. */ s->match_callback.match_string = strdup(match); if (!s->match_callback.match_string) { r = -ENOMEM; goto finish; } if (asynchronous) { r = bus_add_match_internal_async(bus, &s->match_callback.install_slot, s->match_callback.match_string, add_match_callback, s); if (r < 0) return r; /* Make the slot of the match call floating now. We need the reference, but we don't * want that this match pins the bus object, hence we first create it non-floating, but * then make it floating. */ r = sd_bus_slot_set_floating(s->match_callback.install_slot, true); } else r = bus_add_match_internal(bus, s->match_callback.match_string, &s->match_callback.after); if (r < 0) goto finish; s->match_added = true; } } bus->match_callbacks_modified = true; r = bus_match_add(&bus->match_callbacks, components, n_components, &s->match_callback); if (r < 0) goto finish; if (slot) *slot = s; s = NULL; finish: bus_match_parse_free(components, n_components); sd_bus_slot_unref(s); return r; } _public_ int sd_bus_add_match( sd_bus *bus, sd_bus_slot **slot, const char *match, sd_bus_message_handler_t callback, void *userdata) { return bus_add_match_full(bus, slot, false, match, callback, NULL, userdata); } _public_ int sd_bus_add_match_async( sd_bus *bus, sd_bus_slot **slot, const char *match, sd_bus_message_handler_t callback, sd_bus_message_handler_t install_callback, void *userdata) { return bus_add_match_full(bus, slot, true, match, callback, install_callback, userdata); } bool bus_pid_changed(sd_bus *bus) { assert(bus); /* We don't support people creating a bus connection and * keeping it around over a fork(). Let's complain. */ return bus->original_pid != getpid_cached(); } static int io_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) { sd_bus *bus = userdata; int r; assert(bus); /* Note that this is called both on input_fd, output_fd as well as inotify_fd events */ r = sd_bus_process(bus, NULL); if (r < 0) { log_debug_errno(r, "Processing of bus failed, closing down: %m"); bus_enter_closing(bus); } return 1; } static int time_callback(sd_event_source *s, uint64_t usec, void *userdata) { sd_bus *bus = userdata; int r; assert(bus); r = sd_bus_process(bus, NULL); if (r < 0) { log_debug_errno(r, "Processing of bus failed, closing down: %m"); bus_enter_closing(bus); } return 1; } static int prepare_callback(sd_event_source *s, void *userdata) { sd_bus *bus = userdata; int r, e; usec_t until; assert(s); assert(bus); e = sd_bus_get_events(bus); if (e < 0) { r = e; goto fail; } if (bus->output_fd != bus->input_fd) { r = sd_event_source_set_io_events(bus->input_io_event_source, e & POLLIN); if (r < 0) goto fail; r = sd_event_source_set_io_events(bus->output_io_event_source, e & POLLOUT); } else r = sd_event_source_set_io_events(bus->input_io_event_source, e); if (r < 0) goto fail; r = sd_bus_get_timeout(bus, &until); if (r < 0) goto fail; if (r > 0) { int j; j = sd_event_source_set_time(bus->time_event_source, until); if (j < 0) { r = j; goto fail; } } r = sd_event_source_set_enabled(bus->time_event_source, r > 0); if (r < 0) goto fail; return 1; fail: log_debug_errno(r, "Preparing of bus events failed, closing down: %m"); bus_enter_closing(bus); return 1; } static int quit_callback(sd_event_source *event, void *userdata) { sd_bus *bus = userdata; assert(event); if (bus->close_on_exit) { sd_bus_flush(bus); sd_bus_close(bus); } return 1; } int bus_attach_io_events(sd_bus *bus) { int r; assert(bus); if (bus->input_fd < 0) return 0; if (!bus->event) return 0; if (!bus->input_io_event_source) { r = sd_event_add_io(bus->event, &bus->input_io_event_source, bus->input_fd, 0, io_callback, bus); if (r < 0) return r; r = sd_event_source_set_prepare(bus->input_io_event_source, prepare_callback); if (r < 0) return r; r = sd_event_source_set_priority(bus->input_io_event_source, bus->event_priority); if (r < 0) return r; r = sd_event_source_set_description(bus->input_io_event_source, "bus-input"); } else r = sd_event_source_set_io_fd(bus->input_io_event_source, bus->input_fd); if (r < 0) return r; if (bus->output_fd != bus->input_fd) { assert(bus->output_fd >= 0); if (!bus->output_io_event_source) { r = sd_event_add_io(bus->event, &bus->output_io_event_source, bus->output_fd, 0, io_callback, bus); if (r < 0) return r; r = sd_event_source_set_priority(bus->output_io_event_source, bus->event_priority); if (r < 0) return r; r = sd_event_source_set_description(bus->input_io_event_source, "bus-output"); } else r = sd_event_source_set_io_fd(bus->output_io_event_source, bus->output_fd); if (r < 0) return r; } return 0; } static void bus_detach_io_events(sd_bus *bus) { assert(bus); bus->input_io_event_source = sd_event_source_disable_unref(bus->input_io_event_source); bus->output_io_event_source = sd_event_source_disable_unref(bus->output_io_event_source); } int bus_attach_inotify_event(sd_bus *bus) { int r; assert(bus); if (bus->inotify_fd < 0) return 0; if (!bus->event) return 0; if (!bus->inotify_event_source) { r = sd_event_add_io(bus->event, &bus->inotify_event_source, bus->inotify_fd, EPOLLIN, io_callback, bus); if (r < 0) return r; r = sd_event_source_set_priority(bus->inotify_event_source, bus->event_priority); if (r < 0) return r; r = sd_event_source_set_description(bus->inotify_event_source, "bus-inotify"); } else r = sd_event_source_set_io_fd(bus->inotify_event_source, bus->inotify_fd); if (r < 0) return r; return 0; } _public_ int sd_bus_attach_event(sd_bus *bus, sd_event *event, int priority) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus->event, -EBUSY); assert(!bus->input_io_event_source); assert(!bus->output_io_event_source); assert(!bus->time_event_source); if (event) bus->event = sd_event_ref(event); else { r = sd_event_default(&bus->event); if (r < 0) return r; } bus->event_priority = priority; r = sd_event_add_time(bus->event, &bus->time_event_source, CLOCK_MONOTONIC, 0, 0, time_callback, bus); if (r < 0) goto fail; r = sd_event_source_set_priority(bus->time_event_source, priority); if (r < 0) goto fail; r = sd_event_source_set_description(bus->time_event_source, "bus-time"); if (r < 0) goto fail; r = sd_event_add_exit(bus->event, &bus->quit_event_source, quit_callback, bus); if (r < 0) goto fail; r = sd_event_source_set_description(bus->quit_event_source, "bus-exit"); if (r < 0) goto fail; r = bus_attach_io_events(bus); if (r < 0) goto fail; r = bus_attach_inotify_event(bus); if (r < 0) goto fail; return 0; fail: sd_bus_detach_event(bus); return r; } _public_ int sd_bus_detach_event(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); if (!bus->event) return 0; bus_detach_io_events(bus); bus->inotify_event_source = sd_event_source_disable_unref(bus->inotify_event_source); bus->time_event_source = sd_event_source_disable_unref(bus->time_event_source); bus->quit_event_source = sd_event_source_disable_unref(bus->quit_event_source); bus->event = sd_event_unref(bus->event); return 1; } _public_ sd_event* sd_bus_get_event(sd_bus *bus) { assert_return(bus = bus_resolve(bus), NULL); return bus->event; } _public_ sd_bus_message* sd_bus_get_current_message(sd_bus *bus) { assert_return(bus = bus_resolve(bus), NULL); return bus->current_message; } _public_ sd_bus_slot* sd_bus_get_current_slot(sd_bus *bus) { assert_return(bus = bus_resolve(bus), NULL); return bus->current_slot; } _public_ sd_bus_message_handler_t sd_bus_get_current_handler(sd_bus *bus) { assert_return(bus = bus_resolve(bus), NULL); return bus->current_handler; } _public_ void* sd_bus_get_current_userdata(sd_bus *bus) { assert_return(bus = bus_resolve(bus), NULL); return bus->current_userdata; } static int bus_default(int (*bus_open)(sd_bus **), sd_bus **default_bus, sd_bus **ret) { sd_bus *b = NULL; int r; assert(bus_open); assert(default_bus); if (!ret) return !!*default_bus; if (*default_bus) { *ret = sd_bus_ref(*default_bus); return 0; } r = bus_open(&b); if (r < 0) return r; b->default_bus_ptr = default_bus; b->tid = gettid(); *default_bus = b; *ret = b; return 1; } _public_ int sd_bus_default_system(sd_bus **ret) { return bus_default(sd_bus_open_system, &default_system_bus, ret); } _public_ int sd_bus_default_user(sd_bus **ret) { return bus_default(sd_bus_open_user, &default_user_bus, ret); } _public_ int sd_bus_default(sd_bus **ret) { int (*bus_open)(sd_bus **) = NULL; sd_bus **busp; busp = bus_choose_default(&bus_open); return bus_default(bus_open, busp, ret); } _public_ int sd_bus_get_tid(sd_bus *b, pid_t *tid) { assert_return(b, -EINVAL); assert_return(tid, -EINVAL); assert_return(!bus_pid_changed(b), -ECHILD); if (b->tid != 0) { *tid = b->tid; return 0; } if (b->event) return sd_event_get_tid(b->event, tid); return -ENXIO; } _public_ int sd_bus_path_encode(const char *prefix, const char *external_id, char **ret_path) { _cleanup_free_ char *e = NULL; char *ret; assert_return(object_path_is_valid(prefix), -EINVAL); assert_return(external_id, -EINVAL); assert_return(ret_path, -EINVAL); e = bus_label_escape(external_id); if (!e) return -ENOMEM; ret = path_join(prefix, e); if (!ret) return -ENOMEM; *ret_path = ret; return 0; } _public_ int sd_bus_path_decode(const char *path, const char *prefix, char **external_id) { const char *e; char *ret; assert_return(object_path_is_valid(path), -EINVAL); assert_return(object_path_is_valid(prefix), -EINVAL); assert_return(external_id, -EINVAL); e = object_path_startswith(path, prefix); if (!e) { *external_id = NULL; return 0; } /* Note that 'e' might be an empty string here. That's expected. E.g. a case where the subtree * corresponds to a subtree on a disk, and we want to return something that represents the root * of the filesystem. */ ret = bus_label_unescape(e); if (!ret) return -ENOMEM; *external_id = ret; return 1; } _public_ int sd_bus_path_encode_many(char **out, const char *path_template, ...) { _cleanup_strv_free_ char **labels = NULL; char *path, *path_pos, **label_pos; const char *sep, *template_pos; size_t path_length; va_list list; int r; assert_return(out, -EINVAL); assert_return(path_template, -EINVAL); path_length = strlen(path_template); va_start(list, path_template); for (sep = strchr(path_template, '%'); sep; sep = strchr(sep + 1, '%')) { const char *arg; char *label; arg = va_arg(list, const char *); if (!arg) { va_end(list); return -EINVAL; } label = bus_label_escape(arg); if (!label) { va_end(list); return -ENOMEM; } r = strv_consume(&labels, label); if (r < 0) { va_end(list); return r; } /* add label length, but account for the format character */ path_length += strlen(label) - 1; } va_end(list); path = malloc(path_length + 1); if (!path) return -ENOMEM; path_pos = path; label_pos = labels; for (template_pos = path_template; *template_pos; ) { sep = strchrnul(template_pos, '%'); path_pos = mempcpy(path_pos, template_pos, sep - template_pos); if (!*sep) break; path_pos = stpcpy(path_pos, *label_pos++); template_pos = sep + 1; } *path_pos = 0; *out = path; return 0; } _public_ int sd_bus_path_decode_many(const char *path, const char *path_template, ...) { _cleanup_strv_free_ char **labels = NULL; const char *template_pos, *path_pos; char **label_pos; va_list list; int r; /* * This decodes an object-path based on a template argument. The * template consists of a verbatim path, optionally including special * directives: * * - Each occurrence of '%' in the template matches an arbitrary * substring of a label in the given path. At most one such * directive is allowed per label. For each such directive, the * caller must provide an output parameter (char **) via va_arg. If * NULL is passed, the given label is verified, but not returned. * For each matched label, the *decoded* label is stored in the * passed output argument, and the caller is responsible to free * it. Note that the output arguments are only modified if the * actually path matched the template. Otherwise, they're left * untouched. * * This function returns <0 on error, 0 if the path does not match the * template, 1 if it matched. */ assert_return(path, -EINVAL); assert_return(path_template, -EINVAL); path_pos = path; for (template_pos = path_template; *template_pos; ) { const char *sep; size_t length; char *label; /* verify everything until the next '%' matches verbatim */ sep = strchrnul(template_pos, '%'); length = sep - template_pos; if (strncmp(path_pos, template_pos, length)) return 0; path_pos += length; template_pos += length; if (!*template_pos) break; /* We found the next '%' character. Everything up until here * matched. We now skip ahead to the end of this label and make * sure it matches the tail of the label in the path. Then we * decode the string in-between and save it for later use. */ ++template_pos; /* skip over '%' */ sep = strchrnul(template_pos, '/'); length = sep - template_pos; /* length of suffix to match verbatim */ /* verify the suffixes match */ sep = strchrnul(path_pos, '/'); if (sep - path_pos < (ssize_t)length || strncmp(sep - length, template_pos, length)) return 0; template_pos += length; /* skip over matched label */ length = sep - path_pos - length; /* length of sub-label to decode */ /* store unescaped label for later use */ label = bus_label_unescape_n(path_pos, length); if (!label) return -ENOMEM; r = strv_consume(&labels, label); if (r < 0) return r; path_pos = sep; /* skip decoded label and suffix */ } /* end of template must match end of path */ if (*path_pos) return 0; /* copy the labels over to the caller */ va_start(list, path_template); for (label_pos = labels; label_pos && *label_pos; ++label_pos) { char **arg; arg = va_arg(list, char **); if (arg) *arg = *label_pos; else free(*label_pos); } va_end(list); labels = mfree(labels); return 1; } _public_ int sd_bus_try_close(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return -EOPNOTSUPP; } _public_ int sd_bus_get_description(sd_bus *bus, const char **description) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(description, -EINVAL); assert_return(bus->description, -ENXIO); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->description) *description = bus->description; else if (bus->is_system) *description = "system"; else if (bus->is_user) *description = "user"; else *description = NULL; return 0; } _public_ int sd_bus_get_scope(sd_bus *bus, const char **scope) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(scope, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->is_user) { *scope = "user"; return 0; } if (bus->is_system) { *scope = "system"; return 0; } return -ENODATA; } _public_ int sd_bus_get_address(sd_bus *bus, const char **address) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(address, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->address) { *address = bus->address; return 0; } return -ENODATA; } _public_ int sd_bus_get_creds_mask(sd_bus *bus, uint64_t *mask) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(mask, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); *mask = bus->creds_mask; return 0; } _public_ int sd_bus_is_bus_client(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->bus_client; } _public_ int sd_bus_is_server(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->is_server; } _public_ int sd_bus_is_anonymous(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->anonymous_auth; } _public_ int sd_bus_is_trusted(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->trusted; } _public_ int sd_bus_is_monitor(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->is_monitor; } static void flush_close(sd_bus *bus) { if (!bus) return; /* Flushes and closes the specified bus. We take a ref before, * to ensure the flushing does not cause the bus to be * unreferenced. */ sd_bus_flush_close_unref(sd_bus_ref(bus)); } _public_ void sd_bus_default_flush_close(void) { flush_close(default_starter_bus); flush_close(default_user_bus); flush_close(default_system_bus); } _public_ int sd_bus_set_exit_on_disconnect(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); /* Turns on exit-on-disconnect, and triggers it immediately if the bus connection was already * disconnected. Note that this is triggered exclusively on disconnections triggered by the server side, never * from the client side. */ bus->exit_on_disconnect = b; /* If the exit condition was triggered already, exit immediately. */ return bus_exit_now(bus); } _public_ int sd_bus_get_exit_on_disconnect(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); return bus->exit_on_disconnect; } _public_ int sd_bus_set_sender(sd_bus *bus, const char *sender) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus->bus_client, -EPERM); assert_return(!sender || service_name_is_valid(sender), -EINVAL); return free_and_strdup(&bus->patch_sender, sender); } _public_ int sd_bus_get_sender(sd_bus *bus, const char **ret) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(ret, -EINVAL); if (!bus->patch_sender) return -ENODATA; *ret = bus->patch_sender; return 0; } _public_ int sd_bus_get_n_queued_read(sd_bus *bus, uint64_t *ret) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); assert_return(ret, -EINVAL); *ret = bus->rqueue_size; return 0; } _public_ int sd_bus_get_n_queued_write(sd_bus *bus, uint64_t *ret) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(!bus_pid_changed(bus), -ECHILD); assert_return(ret, -EINVAL); *ret = bus->wqueue_size; return 0; } _public_ int sd_bus_set_method_call_timeout(sd_bus *bus, uint64_t usec) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); bus->method_call_timeout = usec; return 0; } _public_ int sd_bus_get_method_call_timeout(sd_bus *bus, uint64_t *ret) { const char *e; usec_t usec; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(ret, -EINVAL); if (bus->method_call_timeout != 0) { *ret = bus->method_call_timeout; return 0; } e = secure_getenv("SYSTEMD_BUS_TIMEOUT"); if (e && parse_sec(e, &usec) >= 0 && usec != 0) { /* Save the parsed value to avoid multiple parsing. To change the timeout value, * use sd_bus_set_method_call_timeout() instead of setenv(). */ *ret = bus->method_call_timeout = usec; return 0; } *ret = bus->method_call_timeout = BUS_DEFAULT_TIMEOUT; return 0; } _public_ int sd_bus_set_close_on_exit(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); bus->close_on_exit = b; return 0; } _public_ int sd_bus_get_close_on_exit(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); return bus->close_on_exit; } _public_ int sd_bus_enqueue_for_read(sd_bus *bus, sd_bus_message *m) { int r; assert_return(bus, -EINVAL); assert_return(bus = bus_resolve(bus), -ENOPKG); assert_return(m, -EINVAL); assert_return(m->sealed, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (!BUS_IS_OPEN(bus->state)) return -ENOTCONN; /* Re-enqueue a message for reading. This is primarily useful for PolicyKit-style authentication, * where we accept a message, then determine we need to interactively authenticate the user, and then * we want to process the message again. */ r = bus_rqueue_make_room(bus); if (r < 0) return r; bus->rqueue[bus->rqueue_size++] = bus_message_ref_queued(m, bus); return 0; }