use core::cmp::min; #[cfg(feature = "async")] use core::task::Waker; use crate::iface::Context; use crate::socket::PollAt; #[cfg(feature = "async")] use crate::socket::WakerRegistration; use crate::storage::Empty; use crate::wire::{IpProtocol, IpRepr, IpVersion}; #[cfg(feature = "proto-ipv4")] use crate::wire::{Ipv4Packet, Ipv4Repr}; #[cfg(feature = "proto-ipv6")] use crate::wire::{Ipv6Packet, Ipv6Repr}; /// Error returned by [`Socket::bind`] #[derive(Debug, PartialEq, Eq, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum BindError { InvalidState, Unaddressable, } /// Error returned by [`Socket::send`] #[derive(Debug, PartialEq, Eq, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum SendError { BufferFull, } /// Error returned by [`Socket::recv`] #[derive(Debug, PartialEq, Eq, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum RecvError { Exhausted, } /// A UDP packet metadata. pub type PacketMetadata = crate::storage::PacketMetadata<()>; /// A UDP packet ring buffer. pub type PacketBuffer<'a> = crate::storage::PacketBuffer<'a, ()>; /// A raw IP socket. /// /// A raw socket is bound to a specific IP protocol, and owns /// transmit and receive packet buffers. #[derive(Debug)] pub struct Socket<'a> { ip_version: IpVersion, ip_protocol: IpProtocol, rx_buffer: PacketBuffer<'a>, tx_buffer: PacketBuffer<'a>, #[cfg(feature = "async")] rx_waker: WakerRegistration, #[cfg(feature = "async")] tx_waker: WakerRegistration, } impl<'a> Socket<'a> { /// Create a raw IP socket bound to the given IP version and datagram protocol, /// with the given buffers. pub fn new( ip_version: IpVersion, ip_protocol: IpProtocol, rx_buffer: PacketBuffer<'a>, tx_buffer: PacketBuffer<'a>, ) -> Socket<'a> { Socket { ip_version, ip_protocol, rx_buffer, tx_buffer, #[cfg(feature = "async")] rx_waker: WakerRegistration::new(), #[cfg(feature = "async")] tx_waker: WakerRegistration::new(), } } /// Register a waker for receive operations. /// /// The waker is woken on state changes that might affect the return value /// of `recv` method calls, such as receiving data, or the socket closing. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. /// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has /// necessarily changed. #[cfg(feature = "async")] pub fn register_recv_waker(&mut self, waker: &Waker) { self.rx_waker.register(waker) } /// Register a waker for send operations. /// /// The waker is woken on state changes that might affect the return value /// of `send` method calls, such as space becoming available in the transmit /// buffer, or the socket closing. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. /// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has /// necessarily changed. #[cfg(feature = "async")] pub fn register_send_waker(&mut self, waker: &Waker) { self.tx_waker.register(waker) } /// Return the IP version the socket is bound to. #[inline] pub fn ip_version(&self) -> IpVersion { self.ip_version } /// Return the IP protocol the socket is bound to. #[inline] pub fn ip_protocol(&self) -> IpProtocol { self.ip_protocol } /// Check whether the transmit buffer is full. #[inline] pub fn can_send(&self) -> bool { !self.tx_buffer.is_full() } /// Check whether the receive buffer is not empty. #[inline] pub fn can_recv(&self) -> bool { !self.rx_buffer.is_empty() } /// Return the maximum number packets the socket can receive. #[inline] pub fn packet_recv_capacity(&self) -> usize { self.rx_buffer.packet_capacity() } /// Return the maximum number packets the socket can transmit. #[inline] pub fn packet_send_capacity(&self) -> usize { self.tx_buffer.packet_capacity() } /// Return the maximum number of bytes inside the recv buffer. #[inline] pub fn payload_recv_capacity(&self) -> usize { self.rx_buffer.payload_capacity() } /// Return the maximum number of bytes inside the transmit buffer. #[inline] pub fn payload_send_capacity(&self) -> usize { self.tx_buffer.payload_capacity() } /// Enqueue a packet to send, and return a pointer to its payload. /// /// This function returns `Err(Error::Exhausted)` if the transmit buffer is full, /// and `Err(Error::Truncated)` if there is not enough transmit buffer capacity /// to ever send this packet. /// /// If the buffer is filled in a way that does not match the socket's /// IP version or protocol, the packet will be silently dropped. /// /// **Note:** The IP header is parsed and re-serialized, and may not match /// the header actually transmitted bit for bit. pub fn send(&mut self, size: usize) -> Result<&mut [u8], SendError> { let packet_buf = self .tx_buffer .enqueue(size, ()) .map_err(|_| SendError::BufferFull)?; net_trace!( "raw:{}:{}: buffer to send {} octets", self.ip_version, self.ip_protocol, packet_buf.len() ); Ok(packet_buf) } /// Enqueue a packet to be send and pass the buffer to the provided closure. /// The closure then returns the size of the data written into the buffer. /// /// Also see [send](#method.send). pub fn send_with(&mut self, max_size: usize, f: F) -> Result where F: FnOnce(&mut [u8]) -> usize, { let size = self .tx_buffer .enqueue_with_infallible(max_size, (), f) .map_err(|_| SendError::BufferFull)?; net_trace!( "raw:{}:{}: buffer to send {} octets", self.ip_version, self.ip_protocol, size ); Ok(size) } /// Enqueue a packet to send, and fill it from a slice. /// /// See also [send](#method.send). pub fn send_slice(&mut self, data: &[u8]) -> Result<(), SendError> { self.send(data.len())?.copy_from_slice(data); Ok(()) } /// Dequeue a packet, and return a pointer to the payload. /// /// This function returns `Err(Error::Exhausted)` if the receive buffer is empty. /// /// **Note:** The IP header is parsed and re-serialized, and may not match /// the header actually received bit for bit. pub fn recv(&mut self) -> Result<&[u8], RecvError> { let ((), packet_buf) = self.rx_buffer.dequeue().map_err(|_| RecvError::Exhausted)?; net_trace!( "raw:{}:{}: receive {} buffered octets", self.ip_version, self.ip_protocol, packet_buf.len() ); Ok(packet_buf) } /// Dequeue a packet, and copy the payload into the given slice. /// /// See also [recv](#method.recv). pub fn recv_slice(&mut self, data: &mut [u8]) -> Result { let buffer = self.recv()?; let length = min(data.len(), buffer.len()); data[..length].copy_from_slice(&buffer[..length]); Ok(length) } /// Peek at a packet in the receive buffer and return a pointer to the /// payload without removing the packet from the receive buffer. /// This function otherwise behaves identically to [recv](#method.recv). /// /// It returns `Err(Error::Exhausted)` if the receive buffer is empty. pub fn peek(&mut self) -> Result<&[u8], RecvError> { let ((), packet_buf) = self.rx_buffer.peek().map_err(|_| RecvError::Exhausted)?; net_trace!( "raw:{}:{}: receive {} buffered octets", self.ip_version, self.ip_protocol, packet_buf.len() ); Ok(packet_buf) } /// Peek at a packet in the receive buffer, copy the payload into the given slice, /// and return the amount of octets copied without removing the packet from the receive buffer. /// This function otherwise behaves identically to [recv_slice](#method.recv_slice). /// /// See also [peek](#method.peek). pub fn peek_slice(&mut self, data: &mut [u8]) -> Result { let buffer = self.peek()?; let length = min(data.len(), buffer.len()); data[..length].copy_from_slice(&buffer[..length]); Ok(length) } pub(crate) fn accepts(&self, ip_repr: &IpRepr) -> bool { if ip_repr.version() != self.ip_version { return false; } if ip_repr.next_header() != self.ip_protocol { return false; } true } pub(crate) fn process(&mut self, cx: &mut Context, ip_repr: &IpRepr, payload: &[u8]) { debug_assert!(self.accepts(ip_repr)); let header_len = ip_repr.header_len(); let total_len = header_len + payload.len(); net_trace!( "raw:{}:{}: receiving {} octets", self.ip_version, self.ip_protocol, total_len ); match self.rx_buffer.enqueue(total_len, ()) { Ok(buf) => { ip_repr.emit(&mut buf[..header_len], &cx.checksum_caps()); buf[header_len..].copy_from_slice(payload); } Err(_) => net_trace!( "raw:{}:{}: buffer full, dropped incoming packet", self.ip_version, self.ip_protocol ), } #[cfg(feature = "async")] self.rx_waker.wake(); } pub(crate) fn dispatch(&mut self, cx: &mut Context, emit: F) -> Result<(), E> where F: FnOnce(&mut Context, (IpRepr, &[u8])) -> Result<(), E>, { let ip_protocol = self.ip_protocol; let ip_version = self.ip_version; let _checksum_caps = &cx.checksum_caps(); let res = self.tx_buffer.dequeue_with(|&mut (), buffer| { match IpVersion::of_packet(buffer) { #[cfg(feature = "proto-ipv4")] Ok(IpVersion::Ipv4) => { let mut packet = match Ipv4Packet::new_checked(buffer) { Ok(x) => x, Err(_) => { net_trace!("raw: malformed ipv6 packet in queue, dropping."); return Ok(()); } }; if packet.next_header() != ip_protocol { net_trace!("raw: sent packet with wrong ip protocol, dropping."); return Ok(()); } if _checksum_caps.ipv4.tx() { packet.fill_checksum(); } else { // make sure we get a consistently zeroed checksum, // since implementations might rely on it packet.set_checksum(0); } let packet = Ipv4Packet::new_unchecked(&*packet.into_inner()); let ipv4_repr = match Ipv4Repr::parse(&packet, _checksum_caps) { Ok(x) => x, Err(_) => { net_trace!("raw: malformed ipv4 packet in queue, dropping."); return Ok(()); } }; net_trace!("raw:{}:{}: sending", ip_version, ip_protocol); emit(cx, (IpRepr::Ipv4(ipv4_repr), packet.payload())) } #[cfg(feature = "proto-ipv6")] Ok(IpVersion::Ipv6) => { let packet = match Ipv6Packet::new_checked(buffer) { Ok(x) => x, Err(_) => { net_trace!("raw: malformed ipv6 packet in queue, dropping."); return Ok(()); } }; if packet.next_header() != ip_protocol { net_trace!("raw: sent ipv6 packet with wrong ip protocol, dropping."); return Ok(()); } let packet = Ipv6Packet::new_unchecked(&*packet.into_inner()); let ipv6_repr = match Ipv6Repr::parse(&packet) { Ok(x) => x, Err(_) => { net_trace!("raw: malformed ipv6 packet in queue, dropping."); return Ok(()); } }; net_trace!("raw:{}:{}: sending", ip_version, ip_protocol); emit(cx, (IpRepr::Ipv6(ipv6_repr), packet.payload())) } Err(_) => { net_trace!("raw: sent packet with invalid IP version, dropping."); Ok(()) } } }); match res { Err(Empty) => Ok(()), Ok(Err(e)) => Err(e), Ok(Ok(())) => { #[cfg(feature = "async")] self.tx_waker.wake(); Ok(()) } } } pub(crate) fn poll_at(&self, _cx: &mut Context) -> PollAt { if self.tx_buffer.is_empty() { PollAt::Ingress } else { PollAt::Now } } } #[cfg(test)] mod test { use super::*; use crate::wire::IpRepr; #[cfg(feature = "proto-ipv4")] use crate::wire::{Ipv4Address, Ipv4Repr}; #[cfg(feature = "proto-ipv6")] use crate::wire::{Ipv6Address, Ipv6Repr}; fn buffer(packets: usize) -> PacketBuffer<'static> { PacketBuffer::new(vec![PacketMetadata::EMPTY; packets], vec![0; 48 * packets]) } #[cfg(feature = "proto-ipv4")] mod ipv4_locals { use super::*; pub fn socket( rx_buffer: PacketBuffer<'static>, tx_buffer: PacketBuffer<'static>, ) -> Socket<'static> { Socket::new( IpVersion::Ipv4, IpProtocol::Unknown(IP_PROTO), rx_buffer, tx_buffer, ) } pub const IP_PROTO: u8 = 63; pub const HEADER_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address([10, 0, 0, 1]), dst_addr: Ipv4Address([10, 0, 0, 2]), next_header: IpProtocol::Unknown(IP_PROTO), payload_len: 4, hop_limit: 64, }); pub const PACKET_BYTES: [u8; 24] = [ 0x45, 0x00, 0x00, 0x18, 0x00, 0x00, 0x40, 0x00, 0x40, 0x3f, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x01, 0x0a, 0x00, 0x00, 0x02, 0xaa, 0x00, 0x00, 0xff, ]; pub const PACKET_PAYLOAD: [u8; 4] = [0xaa, 0x00, 0x00, 0xff]; } #[cfg(feature = "proto-ipv6")] mod ipv6_locals { use super::*; pub fn socket( rx_buffer: PacketBuffer<'static>, tx_buffer: PacketBuffer<'static>, ) -> Socket<'static> { Socket::new( IpVersion::Ipv6, IpProtocol::Unknown(IP_PROTO), rx_buffer, tx_buffer, ) } pub const IP_PROTO: u8 = 63; pub const HEADER_REPR: IpRepr = IpRepr::Ipv6(Ipv6Repr { src_addr: Ipv6Address([ 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, ]), dst_addr: Ipv6Address([ 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, ]), next_header: IpProtocol::Unknown(IP_PROTO), payload_len: 4, hop_limit: 64, }); pub const PACKET_BYTES: [u8; 44] = [ 0x60, 0x00, 0x00, 0x00, 0x00, 0x04, 0x3f, 0x40, 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xaa, 0x00, 0x00, 0xff, ]; pub const PACKET_PAYLOAD: [u8; 4] = [0xaa, 0x00, 0x00, 0xff]; } macro_rules! reusable_ip_specific_tests { ($module:ident, $socket:path, $hdr:path, $packet:path, $payload:path) => { mod $module { use super::*; #[test] fn test_send_truncated() { let mut socket = $socket(buffer(0), buffer(1)); assert_eq!(socket.send_slice(&[0; 56][..]), Err(SendError::BufferFull)); } #[test] fn test_send_dispatch() { let mut socket = $socket(buffer(0), buffer(1)); let mut cx = Context::mock(); assert!(socket.can_send()); assert_eq!( socket.dispatch(&mut cx, |_, _| unreachable!()), Ok::<_, ()>(()) ); assert_eq!(socket.send_slice(&$packet[..]), Ok(())); assert_eq!(socket.send_slice(b""), Err(SendError::BufferFull)); assert!(!socket.can_send()); assert_eq!( socket.dispatch(&mut cx, |_, (ip_repr, ip_payload)| { assert_eq!(ip_repr, $hdr); assert_eq!(ip_payload, &$payload); Err(()) }), Err(()) ); assert!(!socket.can_send()); assert_eq!( socket.dispatch(&mut cx, |_, (ip_repr, ip_payload)| { assert_eq!(ip_repr, $hdr); assert_eq!(ip_payload, &$payload); Ok::<_, ()>(()) }), Ok(()) ); assert!(socket.can_send()); } #[test] fn test_recv_truncated_slice() { let mut socket = $socket(buffer(1), buffer(0)); let mut cx = Context::mock(); assert!(socket.accepts(&$hdr)); socket.process(&mut cx, &$hdr, &$payload); let mut slice = [0; 4]; assert_eq!(socket.recv_slice(&mut slice[..]), Ok(4)); assert_eq!(&slice, &$packet[..slice.len()]); } #[test] fn test_recv_truncated_packet() { let mut socket = $socket(buffer(1), buffer(0)); let mut cx = Context::mock(); let mut buffer = vec![0; 128]; buffer[..$packet.len()].copy_from_slice(&$packet[..]); assert!(socket.accepts(&$hdr)); socket.process(&mut cx, &$hdr, &buffer); } #[test] fn test_peek_truncated_slice() { let mut socket = $socket(buffer(1), buffer(0)); let mut cx = Context::mock(); assert!(socket.accepts(&$hdr)); socket.process(&mut cx, &$hdr, &$payload); let mut slice = [0; 4]; assert_eq!(socket.peek_slice(&mut slice[..]), Ok(4)); assert_eq!(&slice, &$packet[..slice.len()]); assert_eq!(socket.recv_slice(&mut slice[..]), Ok(4)); assert_eq!(&slice, &$packet[..slice.len()]); assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Exhausted)); } } }; } #[cfg(feature = "proto-ipv4")] reusable_ip_specific_tests!( ipv4, ipv4_locals::socket, ipv4_locals::HEADER_REPR, ipv4_locals::PACKET_BYTES, ipv4_locals::PACKET_PAYLOAD ); #[cfg(feature = "proto-ipv6")] reusable_ip_specific_tests!( ipv6, ipv6_locals::socket, ipv6_locals::HEADER_REPR, ipv6_locals::PACKET_BYTES, ipv6_locals::PACKET_PAYLOAD ); #[test] #[cfg(feature = "proto-ipv4")] fn test_send_illegal() { #[cfg(feature = "proto-ipv4")] { let mut socket = ipv4_locals::socket(buffer(0), buffer(2)); let mut cx = Context::mock(); let mut wrong_version = ipv4_locals::PACKET_BYTES; Ipv4Packet::new_unchecked(&mut wrong_version).set_version(6); assert_eq!(socket.send_slice(&wrong_version[..]), Ok(())); assert_eq!( socket.dispatch(&mut cx, |_, _| unreachable!()), Ok::<_, ()>(()) ); let mut wrong_protocol = ipv4_locals::PACKET_BYTES; Ipv4Packet::new_unchecked(&mut wrong_protocol).set_next_header(IpProtocol::Tcp); assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(())); assert_eq!( socket.dispatch(&mut cx, |_, _| unreachable!()), Ok::<_, ()>(()) ); } #[cfg(feature = "proto-ipv6")] { let mut socket = ipv6_locals::socket(buffer(0), buffer(2)); let mut cx = Context::mock(); let mut wrong_version = ipv6_locals::PACKET_BYTES; Ipv6Packet::new_unchecked(&mut wrong_version[..]).set_version(4); assert_eq!(socket.send_slice(&wrong_version[..]), Ok(())); assert_eq!( socket.dispatch(&mut cx, |_, _| unreachable!()), Ok::<_, ()>(()) ); let mut wrong_protocol = ipv6_locals::PACKET_BYTES; Ipv6Packet::new_unchecked(&mut wrong_protocol[..]).set_next_header(IpProtocol::Tcp); assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(())); assert_eq!( socket.dispatch(&mut cx, |_, _| unreachable!()), Ok::<_, ()>(()) ); } } #[test] fn test_recv_process() { #[cfg(feature = "proto-ipv4")] { let mut socket = ipv4_locals::socket(buffer(1), buffer(0)); assert!(!socket.can_recv()); let mut cx = Context::mock(); let mut cksumd_packet = ipv4_locals::PACKET_BYTES; Ipv4Packet::new_unchecked(&mut cksumd_packet).fill_checksum(); assert_eq!(socket.recv(), Err(RecvError::Exhausted)); assert!(socket.accepts(&ipv4_locals::HEADER_REPR)); socket.process( &mut cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD, ); assert!(socket.can_recv()); assert!(socket.accepts(&ipv4_locals::HEADER_REPR)); socket.process( &mut cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD, ); assert_eq!(socket.recv(), Ok(&cksumd_packet[..])); assert!(!socket.can_recv()); } #[cfg(feature = "proto-ipv6")] { let mut socket = ipv6_locals::socket(buffer(1), buffer(0)); assert!(!socket.can_recv()); let mut cx = Context::mock(); assert_eq!(socket.recv(), Err(RecvError::Exhausted)); assert!(socket.accepts(&ipv6_locals::HEADER_REPR)); socket.process( &mut cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD, ); assert!(socket.can_recv()); assert!(socket.accepts(&ipv6_locals::HEADER_REPR)); socket.process( &mut cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD, ); assert_eq!(socket.recv(), Ok(&ipv6_locals::PACKET_BYTES[..])); assert!(!socket.can_recv()); } } #[test] fn test_peek_process() { #[cfg(feature = "proto-ipv4")] { let mut socket = ipv4_locals::socket(buffer(1), buffer(0)); let mut cx = Context::mock(); let mut cksumd_packet = ipv4_locals::PACKET_BYTES; Ipv4Packet::new_unchecked(&mut cksumd_packet).fill_checksum(); assert_eq!(socket.peek(), Err(RecvError::Exhausted)); assert!(socket.accepts(&ipv4_locals::HEADER_REPR)); socket.process( &mut cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD, ); assert!(socket.accepts(&ipv4_locals::HEADER_REPR)); socket.process( &mut cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD, ); assert_eq!(socket.peek(), Ok(&cksumd_packet[..])); assert_eq!(socket.recv(), Ok(&cksumd_packet[..])); assert_eq!(socket.peek(), Err(RecvError::Exhausted)); } #[cfg(feature = "proto-ipv6")] { let mut socket = ipv6_locals::socket(buffer(1), buffer(0)); let mut cx = Context::mock(); assert_eq!(socket.peek(), Err(RecvError::Exhausted)); assert!(socket.accepts(&ipv6_locals::HEADER_REPR)); socket.process( &mut cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD, ); assert!(socket.accepts(&ipv6_locals::HEADER_REPR)); socket.process( &mut cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD, ); assert_eq!(socket.peek(), Ok(&ipv6_locals::PACKET_BYTES[..])); assert_eq!(socket.recv(), Ok(&ipv6_locals::PACKET_BYTES[..])); assert_eq!(socket.peek(), Err(RecvError::Exhausted)); } } #[test] fn test_doesnt_accept_wrong_proto() { #[cfg(feature = "proto-ipv4")] { let socket = Socket::new( IpVersion::Ipv4, IpProtocol::Unknown(ipv4_locals::IP_PROTO + 1), buffer(1), buffer(1), ); assert!(!socket.accepts(&ipv4_locals::HEADER_REPR)); #[cfg(feature = "proto-ipv6")] assert!(!socket.accepts(&ipv6_locals::HEADER_REPR)); } #[cfg(feature = "proto-ipv6")] { let socket = Socket::new( IpVersion::Ipv6, IpProtocol::Unknown(ipv6_locals::IP_PROTO + 1), buffer(1), buffer(1), ); assert!(!socket.accepts(&ipv6_locals::HEADER_REPR)); #[cfg(feature = "proto-ipv4")] assert!(!socket.accepts(&ipv4_locals::HEADER_REPR)); } } }